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Abstract—Current implementations of 5G networks consider
higher frequency range of operation than previous telecommu-
nication networks, and it is possible to offer higher data rates
for different applications. On the other hand, atmospheric phe-
nomena could have a more negative impact on the transmission
quality. Thus, the study of the transmitted signal quality at
high frequencies is relevant to guaranty the user´s quality of
experience. In this research, the recommendations ITU-R P.838-
3 and ITU-R P.676-11 are implemented in a network scenario,
which are methodologies to estimate the signal degradations
originated by rainfall and atmospheric gases, respectively. Thus,
speech signals are encoded by the Adaptive Multi-Rate Wideband
(AMR-WB) codec, transmitted and the perceptual speech quality
is evaluated using the algorithm described in ITU-T Rec. P.863,
mostly known as POLQA. In this work, a novel non-intrusive
speech quality classifier that considers atmospheric phenomena
is proposed. This classifier is based on Deep Belief Networks
(DBN) that uses Support Vector Machine (SVM) with radial
basis function kernel (RBF-SVM) as classifier, to identify five
predefined speech quality classes. Experimental results show
that the proposed speech quality classifier reached an accuracy
between 92% and 95% for each quality class overcoming the
results obtained by the sole non-intrusive standard described in
ITU-T Recommendation P.563. Furthermore, subjective tests are
carried out to validate the proposed classifier performance, and
it reached an accuracy of 94.8%.

Index Terms—Wireless communications, speech quality, atmo-
spheric phenomena, rain, atmospheric gases.

I. INTRODUCTION

Nowadays, the demand for services with high data rates
is being increasingly demanded, due to the emergence appli-
cations such as video streaming, online gaming and virtual
reality [1], [2]. In mobile communication systems, four gen-
erations (1 to 4G) were implemented. These generations use
bandwidth up to 780 MHz. However, these frequency spectra
are no longer sufficient to meet the new needs of mobile
service providers. Therefore, wireless communication systems
are advancing in the use of the millimeter wave frequency
spectrum (mmWave) [3].
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It is expected that the use of mmWave in communication sys-
tems will bring a considerable advance in solving congestion
problems, limited bandwidth and restricted channel capacity of
wireless systems. In this context, the fifth-generation systems
(5G) are expected to meet these demands, due to the use of
the (mmWave) frequency spectrum. This frequency waveband
is being considered very important for the new generation
of wireless systems, due to wider bandwidth, low latencies,
less than 1ms, and data rates higher than 10Gbps. Thus, the
5G networks promise to improve Quality of Service (QoS) in
telecommunications [1], [2], [4].

Frequency spectrum availability is a fundamental require-
ment to allow the testing and deployment of 5G in 2020 [5].
Therefore, according to [6], a larger spectrum band, such as the
(mmWave) frequency band, will be used by 5G systems, since
this band has a large available bandwidth. Several countries
have used similar frequency bands for testing and deploying
5G systems. Despite of 5G network advantages, the use of very
high carrier frequencies is associated with serious propagation
losses [3], [7]–[9]. This problem occurs mainly because of
the rain. According to [3], at high frequencies (mmWave),
the rain causes random fluctuations in the refractive index
of the air. These fluctuations cause random changes in the
intensity of a propagation signal, causing the phenomenon
called fading, [10], [11]. This phenomenon is directly related
to the frequency of operation, channel conditions, path length,
as well as rainfall rate, among others [12]. Considering pre-
vious generations (1 to 4G), rain does not cause significant
degradation in the transmitted signals, since the wavelength of
the carrier frequency is different from the physical dimensions
of the raindrops.

To quantify the influence of rain on the attenuation of the
transmitted signal, the Radio Communications Sector of the
International Telecommunication Union (ITU-R) has produced
a global standard named ITU-R P.838-3. This recommendation
provides a specific attenuation model for the signal transmitted
due to the influence of rain. In addition to this recommen-
dation, ITU-R has another recommendation that quantifies
the impact that atmospheric gases in the transmitted signal,
which is called ITU-R P.676-11. In both recommendations,
the operating frequency range varies from 1 to 100 GHz.

Speech quality in a telecommunications system is consid-
ered an important parameter for assessing the user satisfaction
[13]. It depends on different factors, such as network condi-
tions, speech codec, environment noise, among others. There
are different speech codec characteristics, one of the most
used in current cellular networks is the Adaptive Multi-Rate
Wideband (AMR-WB) codec [14]. Speech quality assessment
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is complex, since it is a subjective concept, as it is determined
by the listener’s perception. The Mean Opinion Score (MOS)
test, defined in ITU-T Rec. P.800, is widely accepted as a
standard for the subjective classification of speech quality [15].
This test is carried out in a controlled laboratory. At the end of
the tests, the scores of all subjects are collected and the average
is calculated, and named Mean Opinion Score (MOS). This
subjective test is the most accurate, however, it is considered
time-consuming and expensive.

Objective methods can be classified into two categories,
intrusive or non-intrusive. Intrusive metrics assess speech
quality by comparing reference samples (sent) and degraded
(received), that is, there is a need for a reference signal
to verify the actual degradation of the transmitted signal.
Non-intrusive metrics, on the other hand, use the signal in
service to make predictions of speech quality, without the need
for a reference signal. The algorithms described in the ITU
recommendations, P.862 [16], P.863 [17] and P.563 [18] are
examples of objective measures. The two first are intrusive
algorithms; thus, they need both a reference and degraded
speech signals. The third one is a non-intrusive metric, and
it only uses a degraded speech signal to estimate a MOS
score. For this reason, the P.862 and P.863 algorithms present
more accurate results. In addition, it is worth noting that
the P.863 algorithm also presents additional features related
to modern communication systems and works from narrow-
band to full-band networks. However, the P.563 algorithm is
more recommended for real-time applications, such as VoIP
communications [19].

Another approach to estimate speech quality is the para-
metric models [20]. They use network parameters to estimate
speech quality at the receptor, such as the algorithm described
in ITU-T Rec. G.107 [21], [22], mostly known as E-model.

Nowadays, several algorithms, such as, the Artificial Neural
Networks (ANN), has been employed for speech analysis
and recognition. The Deep Convolutional Neural Network
(DCNN) [23], the Restricted Boltzmann Machine (RBM) [24]
among others, are used in speech and image applications
The RBM is a generative stochastic ANN. It works using a
supervised or unsupervised approach. In unsupervised tasks
[25], [26] that need a classification step, a supervised learning
algorithm need to be added, classifying the samples based on
the features extracted by the RBM. Support Vector Machine
(SVM) with Radial Basis Function (RBF) kernel (RBF-SVM)
associated to DBN presents reliable results in several tasks,
such as speech signal pattern recognition [27].

In this arena, this research presents additional contributions
regarding [28], which can be summarized as follows:

• A wireless network simulator that considers the imple-
mentation of the AMR-WB speech codec using two
different operation modes. Thus, more realistic results are
obtained. The implementation of atmospheric phenomena
in the transmission channel is also considered.

• The P.863 algorithm is used to evaluate the speech signal
quality, which gives more realistic results because it
considers modern network characteristics.

• A proposed speech quality classifier model that considers
atmospheric phenomena parameters and speech codec
characteristics, which is based on Deep Belief Networks
(DBN) with RBF-SVM. It is important to note that this
proposed model analyze the speech signal itself, different
that the solution proposed in [28] that considered a
network parametric approach.

It is worth noting that the proposed model estimates a
perceptual speech quality class, and its main goal is to be
useful in wireless network transmission monitoring tasks. Ex-
perimental validation results show that the proposed classifier
model results are highly correlated to the results obtained by
subjective tests.

The article is divided into the following sections. Section II
summarizes the recommendations ITU-R P.838-3 and R P.676-
11 related to the attenuation caused by rain and atmospheric
gases, respectively. Section III presents an overview of deep
belief network and speech signal features. The overview
of AMR-WB speech codec is presents in Section IV. The
implemented simulation scenario is described in Section V.
Section VI presents the proposed speech quality assessment
model based on DBN. The results obtained are presented in
the Section VII. Finally, the conclusion is discussed in Section
VIII.

II. IMPACT OF ATMOSPHERIC PHENOMENA ON WIRELESS
TRANSMISSION

The use of millimeter wave frequencies has gained promi-
nence in recent years, since it was proposed for 5G systems.
The millimeter wave bands allow the use of simpler interfaces
to achieve high data rates. Also, the large bandwidth available
is an advantage of mmWave. According to [29], mmWave has
the following advantages:
• Large bandwidth capacity.
• Highly directive beams.
• Relatively small antennas.
• Low transmitter power requirement.
In recent years, due to the emergence of a new mobile gen-

eration system, several types of research are focused on main
technologies for 5G, in addition to issues related to network
architecture, resource allocation and spectrum management
[30].

According to [31] the modeling of radio channels and the
propagation prediction for 5G mobile communication systems
is one of the most important questions to technically assess
whether this new technology will work properly. Also, the
propagation of electromagnetic waves is a fundamental factor
to understand the design of the transmitter and receiver,
the antenna requirements, the power transmission and, the
interference levels.

Despite the numerous benefits of using mmWave in 5G
systems, this frequency range has a disadvantage. The use
of very high carrier frequencies involves serious propagation
losses, mainly due to rain. This interference in the transmitted
signals is more common in regions of intense rain.

In this context, when radio waves propagate in a rainy area,
the absorption and dispersion of electromagnetic waves result
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in significant path-loss. The effect of scattering occurs because
the physical dimensions of the raindrops are the same order
as the wavelength of the carrier frequency, above 28GHz. In
addition to the frequency, the attenuation caused by the rain
depends on the size distribution of the raindrop, as well as the
polarization of the waves.

[30] states that the attenuation of the transmitted signal due
to rain is considered very small at frequencies below 5 GHz.
However, considering frequencies above 5 GHz, rain falls, in
the form of absorption and dispersion, become more evident,
contributing to transmission losses. Although the effect of the
rain are small, at frequencies below 5GHz, the absorption
effect is evident for frequencies below roughly 1 GHz and
the scattering effect is more considered for frequencies above
1 GHz.

High rainfall can cause interruption of mmWave length
links, which could lead to the disconnection of part of the
mobile network. Thus, it is necessary to apply mathematical
models to verify the effects of rain on wireless transmissions
by mmWave, since this atmospheric phenomenon limits the
availability and performance of the system. There are several
models in the literature that estimate the attenuation caused by
rain. These models are based on the same equation to calculate
attenuation due to precipitation, as shown in (1).

A[dB] =

∫ d

0

kRα(l)dl (1)

where k and α are empirical coefficients and depend on
frequency and polarization. R(l) corresponds to the point rain
intensity in mm/h, along the path at distance l and d is the
path length of the link.

According to [32], the rainfall rate and the attenuation
caused can vary considerably, along longer paths. Thus, in
practice, the average value on the way is considered.

The most commonly used rain attenuation prediction model
is the ITU-R P.530-15. This model does not use the complete
distribution of the rain rate, but only one parameter, called
0.01. This parameter represents the rainfall rate, obtained
for 0.01% of an average year (with an integration time of
1 min). ITU-R P.530-15 determines that if these values are
not available from local measurement sources, it is possible
to obtain an estimate according to recommendation ITU-R
P.837. After determining the rain rate, specific attenuation
is calculated (γR). The relationship between the attenuation
suffered by the signal (γR), in dB/km, and the rate of rainfall
(R), in mm/h, can be calculated as presented in (2). This
attenuation calculation is described in the recommendation
ITU-R P.838 [33].

γR = kRα (2)

where the coefficients k and α are defined according to
variable related to frequency, rainfall, temperature, refractive
indexes, elevation angles and polarization state (horizontal or
vertical) of the system, as shown in (3) and (4).

log10k =
4∑
j=1

(
ajexp

[
−
(
log10f − bj

cj

)2
])

+mklog10f+ck

(3)

α =
5∑
j=1

(
ajexp

[
−
(
log10f − bj

cj

)2
])

+mαlog10f + cα

(4)
The values of the constants aj , bj , cj ,mk, ck, cα, and mα

are given in [33]. The operating frequency of this model varies
from 1 to 1000 GHz.

Then, to set the attenuation value along the way, just
multiply the attenuation value γR by the effective length of
the link path.

As mentioned, this model makes predicts rain attenuation
based on only the rainfall rate for 0.01% of an average year.
However, there are methods depend upon the full rainfall rate
distribution, such as UK (2003 RAL) and the Brazil models
[32]. However, the model presented in Recommendation ITU-
R P.530-15 is the most used, and is therefore used in this
work.

In addition to rain, atmospheric gases are also responsible
for causing attenuation in the signals transmitted in wireless
network systems. When dealing with this phenomenon, the
ITU-R produces the recommendation ITU-R P.676-1. This
recommendation provides methods to estimate the attenuation
by atmospheric gases for electromagnetic waves, in the 1 a
1000 GHz frequency range [34].

According to [35], ITU calculations are generated from a
number of equations applied to a dataset of absorption lines
water vapor. This dataset is fixed and includes 34 water vapor
absorption lines, in different frequency bands.

Thus, the attenuation due to dry air and water vapor can be
evaluated for any pressure, temperature and humidity value
through a sum of the individual oxygen and water vapor
resonance lines. This gas attenuation, according to ITU-R
Recommendation P.676-11, is given by [34]:

γ = γ0 + γW (5)

γ = 0.1820f(N ′′Oxygen(f) +N ′′WaterV apour(f)) (6)

where γ0 and γW correspond the specific attenuation, in
dB/km, of dry air and water vapor, respectively. f corresponds
to the operating frequency which may range from 2 to 1000
GHz. N ′′Oxygen(f) and N ′′WaterV apour(f) consists of the imag-
inary parts of the refractive dependent frequencies related to
air pressure and water vapor pressure, respectively.

III. DEEP BELIEF NETWORK AND SPEECH SIGNAL
FEATURES

Several speech signals features are used to determine the
speech signal characteristics used for different applications
[36], [37]. Zero-crossing rate (ZCR) parameter represent fast
changes on the speech signal that is composed by vowel and
consonant sequence in the temporal domain. There are a high
number of parameters based on the frequency domain analysis,
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such as, the Mel-Frequency Cepstrum Coefficients (MFCC)
[38] that gives a speech representation using the mel-frequency
scale.

In a speech signal recognition, the hidden Markov models
(HMMs) is very used for recognizing the temporal variability
of the speech and the Gaussian mixture models (GMMs),
which is used to model the density of the states in the HMM
because the speech signal can be observed such as a piecewise
stationary signal [39]. The area of speech signal recognition
in the majority involves a reference signal to be manipulated
[40], however the adaptability of new characteristics is more
difficult. On the other hand, a reduced-reference method
for speech recognition permits to measure the accuracy of
classification.

Speech signal parameters are used for several applica-
tions applying different methodologies, for instances, in [41],
MFCC, amplitude and ZCR parameters are used with GMM
for speech discrimination. In [42], authors proposed a model
for music and speech classification based on MFCC, ZCR,
Linear Predictive Coding (LPC), the spectral centroid, rolloff
and flux parameters.

In addition, speech recognition can be accomplished by
unsupervised learning. This technique builds representations of
the input, which are useful for data classification. There are
different techniques that can be used for this purpose, such
as density estimation, clustering and Principal Component
Analysis (PCA). In addition to these techniques, there is vector
quantization (VQ). VQ provides discrete inputs, being con-
sidered an initial application for audio analysis. Unsupervised
training models work with initial models. Thus, small amounts
of transcribed data are represented and the model is used to
decode large amounts of un-transcribed data. In this way, new
models are trained using part or all of this automatic labeled
data.

In recent years, due to the high processing power combined
with the expansion of computer memories, it favored the
development of complex learning algorithms, such as DNN
[43]. This algorithm can be composed of a large number of
layers containing non-linear hidden units, as well as many
output layers. It should be noted that the DNN can be im-
plemented using unsupervised, as well as supervised machine
learning techniques. Another existing technique is RBM. This
technique can learn more discriminatory characteristics for
a given problem [44]. Thus, the fundamental idea of this
technique is to feed the network with unlabeled examples and
then rebuild the input data. Thus, this technique can provide
an improvement computational cost and, consequently, in the
time necessary to complete the training process.

The structure of the RBM is basically composed of visible
and hidden units, and the adjacent layers are connected by
weights. Thus, RBMs are similar to classic Boltzmann Ma-
chines. However, in RBM connections between neurons in
the same layer are not allowed. Among the existing methods
for training, there is a Contrastive Divergence (CD) [45].
According to [46], this method commonly used in RBMs, due
to its efficiency, as well as its reliable results. The CD aims to
adjust the input values into the model, in order to work with
the approach of maximum likelihood learning. Thus, in this

work, it was used as a learning rule.
According to [47], RBM can be used to model fragments of

a speech signal. The structure of a DBN is composed by many
RBMs. In this structure, the first RBM is trained and, its output
is used as an input to the second RBM and, successively. Thus,
a hierarchical model learns low-level resources, in order to
obtain a high-level representation. The output of a DBN is used
as an input for supervised learning methods, such as SVM.
In [47], RBM is used for a better representation of speech
sound waves. According to these authors, the performance of
phoneme recognition using the proposed RBM model is better
than solutions based on MFCC.

IV. OVERVIEW OF AMR-WB SPEECH CODEC

AMR-WB speech codec is described in ITU-T Rec. G.722.2
[14]. It works with nine bit rates from 6.60 kbps and 23.85
kbps, and a low rate background noise encoding mode. The
AMR-WB codec can change its bit-rate every 20 ms speech,
and it is based on ACELP algorithm.

The number of bits of header and supplementary infor-
mation of the AMR-WB frame structure are the same of
its predecessor the AMR narrow-band (NB) codec. The core
frame length–in bits–is different for each operation mode as
can be observed in Table I.

TABLE I
BITS OF AMR-WB CONSIDERING EACH OPERATION MODE.

Frame Number Bit-rate
Type bits (kbps)

0 132 6.60
1 177 8.85
2 181 12.65
3 213 14.25
4 245 15.85
5 293 18.25
6 325 19.85
7 389 23.05
8 405 23.85

The AMR-WB speech codec works with a sample rate
of 16 kHz reaching an improved speech signal quality in
relation to the AMR-NB codec. This codec is used in modern
communication networks because its reasonable performance
in adverse network conditions [48], providing high quality
phone calls. The operation modes that use high bit-rates are
used for high quality such as music, and its lower bit-rates
presents a better performance considering speech quality than
other NB codecs.

V. IMPLEMENTATION OF THE NETWORK TEST SCENARIO

The influence of atmospheric phenomena was analyzed in
several audio signals. For this, 20 voice files were extracted,
with telephone conversation characteristics. The files were
extracted from Rec. ITU-T P.862, with an average duration
of around 8 seconds [49]. All of these files have similar
characteristics, the total length each audio file is composed by
60% of voice segments and 40% of silence segments. These
signals were transmitted in a wireless channel that considers
atmospheric factors related to rain and gases.
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For the analysis of the degradation of these voice files
a simulator was implemented, developed in the Matlab ®
software, version 2017b. This software has a function package
in which it is possible to simulate the rain and atmospheric
gases degradation model, by the rainpl and gaspl functions,
respectively.

The rainpl function was developed in accordance with
Rec. ITU-R P. 838-3. According to this recommendation, the
variables that can influence the degradation of the transmitted
signal are the operating frequency carrier of the system, which
has values between 1 and 1000 GHz; the distance between
the transmitter and receiver (m); the rainfall rate (mm/h); the
elevation angles and polarization state of the system, both
ranging from -90 to 90°.

The evaluation of the degradation caused by atmospheric
gases was verified by the gaspl function, which was imple-
mented according to Rec. ITU-R P.676-11. According to this
recommendation, the parameters that influence signal degrada-
tion consist of operating frequency; atmospheric pressure (Pa),
air temperature (°C); and relative humidity (g/cm3).

In this work, the range of 10 to 100 GHz for the operating
frequency was stipulated because it largely covers the frequen-
cies of 5G networks. Others parameters were fixed to specific
values to restrict the number of test scenarios. The distance
between the transmitter and receiver was fixed to 1000 m, to
enable attenuation assessment at each 1 Km. The atmospheric
pressure was fixed to 101, 300 Pa, because it corresponds to
sea-level pressure. The values of the elevation angles and
polarization state used were equivalent to 0°. Preliminary
tests were performed with the angle varying from -90 to 90°.
However, in all tests, it was found that such parameters did
not represent significant changes in the MOS and BER index.
Thus, the value of 0° for the variables of the elevation and
polarization angles were used in all test. The temperatures
of 12, 14, 16, 18, 20 and 25°C were selected. According
to [50] the relative humidity of the air equivalent to these
temperatures are: 10.68, 12.09, 13.65, 15.4, 17.31 and 23.07
g/cm3, therefore, these values are adopted. In the transmission
system, only the QPSK modulation scheme was implemented.

The speech signals were encoded using the AMR-WB
speech codec that is used in current telecommunication net-
works, specifically the mode operations that represent the
maximum (Mode 8) and minimum (Mode 0) bit-rates are
implemented to obtain different speech perceptual qualities.

Table II presents an overview of the input parameters used
in the simulator.

TABLE II
CONFIGURATION PARAMETERS FOR DIFFERENT TEST SCENARIOS

Parameters Options/values
Speech Codec AMR-WB codec - Modes 0 and 8

Modulation scheme BPSK, QPSK, QAM (16, 64, 256)
Frequency of Operation 10 a 100 GHz - steps of 10 GHz

Rainfall 0, 5, 25, 50, 75, 100 and 200 mm/h
Temperature 12, 14, 16, 16, 18 and 20°C

Relative Humidity of Air 10.68, 12.09, 13.65, 15.4, 17.31 and 23.07 g/cm3

Fig. 1 presents the block diagram used for the development
of the simulator. As previously stated, the simulator aims

to quantify the level of degradation of the transmitted audio
signals, in the GHz frequency bands. This degradation analysis
is done using the MOS index given by the POLQA algorithm.

VI. PROPOSED SPEECH CLASSIFIER BASED ON DBN

The proposed speech quality classifier model that considers
the presence of atmospheric phenomena during signal trans-
mission is based on an DBN with RBF-SVM. This proposed
model uses the signal information of different speech samples.

The network and atmospheric parameters introduced in
Table II are used to create different transmission scenarios.
Thus, in total six parameters, each one with different values
or operation modes, are utilized in the simulation tests. The
speech samples at the end side are analyzed considering their
speech signal features. In addition, the speech quality of each
sample is evaluate by the P.863 algorithm (POLQA), given
as a result a MOS score. Therefore, a data-set of speech
samples with different impairment types is obtained, and a
speech quality score is determined for each sample. Then, a
DBN model can be determined using this data-set as shown
in Fig. 2.

As can be observed in Fig. 2, the first step in the training
process is the speech signal feature extraction. These features
are extracted using Matlab tools and they are utilized to
build the DBN structure. In order to permit a fast processing,
those features are stored in a vector. Additionally, the feature
processing of each sample is associated with the corresponding
POLQA score that is considered as the learning model output.
Because the AMR-WB codec characteristics, a 20 ms speech
segment is considered to evaluate the speech features. This
period of time is valid for every AMR-WB operation mode.

The speech signal features considered in the tests are the
inputs of the DBN that gave the estimated values for every of
the impaired speech segments. In this study, 64 features were
used, which are: ZCR, spectral flux, spectral roll-off, pitch,
spectral centroid, 13 MFCC static features and the first and
second derivatives of the static features, and 20 FFT Power
Spectrum.

As previously stated, the proposed speech quality assess-
ment model does not give a MOS value, but gives a speech
quality class. In this work, five quality classes or categories are
proposed. It is important to note that these classes are based
on the ITU-T Recommendation P.800, specifically in the five-
point MOS scale. Also, it is expected that in real application
to know only the speech class be useful. Table III presents the
quality scales used in this research.

TABLE III
SPEECH QUALITY CLASSES AND THEIR MOS VALUES RANGE

Speech Quality Perceived quality MOS index
Class (ACR Scale) values

Class-A Excellent 5.00-4.00
Class-B Good 3.99-3.00
Class-C Fair 2.99-2.00
Class-D Poor 1.99 and 1.30
Class-E Very Poor 1.29 and lower

It is important to highlight that two classifiers were tested
in initial tests, specifically, the Softmax function and the
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Fig. 1. Block diagram of the network simulator to generate impaired speech samples due to atmospheric phenomena.

Fig. 2. Flowchart of the DBN training process.

RBF-SVM. In preliminary results the DBN with RBF-SVM
classifier reached the best accuracy, then, it was used in all
experiments.

VII. RESULTS AND DISCUSSION

In this section, firstly, the impact of the rain and atmospheric
gases on speech signal quality are presented, for both AMR-
WB mode operation used. Later, the performance validation
of the proposed model is shown.

A. Impact of Rain and Atmospheric Gases on Speech Quality

As stated before, to evaluate the impact of rainfall rates
on speech quality, the model presented in Rec. ITU-R P.
838-3 was considered in the network scenario, and POLQA
algorithm evaluated impaired speech samples. The results are

shown in Tables IV to VIII, that correspond to the radio
frequencies of: 10, 30, 50, 70 and 90 GHz, respectively. In
these test scenarios, the QPSK modulation scheme was used,
and the AMR-WB operation modes 0 (AMR-WB M-0) and 8
(AMR-WB M-8) were implemented.

TABLE IV
SIGNAL IMPAIRMENT USING A RAINFALL RATE (R) PARAMETER AT 10

GHZ

f
(GHz)

R
(mm/h) AMR-WB M-8 AMR-WB M-0

10 0 4.23 3.52
5 4.23 3.52

25 4.23 3.52
50 4.23 3.52
75 4.23 3.51
100 4.22 3.50
200 4.21 3.50

TABLE V
SIGNAL IMPAIRMENT USING A RAINFALL RATE (R) PARAMETER AT 30

GHZ

f
(GHz)

R
(mm/h) AMR-WB M-8 AMR-WB M-0

30 0 4.23 3.52
5 4.23 3.52

25 4.23 3.51
50 4.21 3.48
75 4.19 3.32
100 3.82 3.02
200 3.11 2.49

As can be observed in the Tables IV to VIII, in ideal trans-
mission conditions (R=0), AMR-WB M-8 and M-8 obtained
the MOS scores of 3.52 and 4.23, respectively, which are the
highest speech quality reached in the test scenario.

It is important to note that in each case, as the rainfall
rate increases (R), the MOS index decreases that is according
to (1), in which the degradation suffered by the signal, γR
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TABLE VI
SIGNAL IMPAIRMENT USING A RAINFALL RATE (R) PARAMETER AT 50

GHZ

f
(GHz)

R
(mm/h) AMR-WB M-8 AMR-WB M-0

50 0 4.23 3,52
5 4.23 3.52
25 4.23 3.52
50 4.19 3.47
75 3.33 2.64

100 2.74 2.16
200 1.78 1.41

TABLE VII
SIGNAL IMPAIRMENT USING A RAINFALL RATE (R) PARAMETER AT 70

GHZ

f
(GHz)

R
(mm/h) AMR-WB M-8 AMR-WB M-0

70 0 4.23 3.52
5 4.22 3.50
25 4.20 3.19
50 3.63 2.92
75 3.11 2.43

100 2.05 1.38
200 1.57 1.13

TABLE VIII
SIGNAL IMPAIRMENT USING A RAINFALL RATE (R) PARAMETER AT 90

GHZ

f
(GHz)

R
(mm/h) AMR-WB M-8 AMR-WB M-0

90 0 4.23 3.52
5 4.21 3.51
25 4.20 3.51
50 3.55 2.85
75 2.94 2.34

100 2.22 1.68
200 1.51 1.11

increases with the higher the rainfall rate. Additionally, MOS
values do not present a significant variation for frequencies
lower than 30 GHz. This is because, according to [3], rainfall
impact is more evident at frequencies higher than 28 GHz.
Thus, in the frequency range from 30 and 100 GHz, the MOS
value is negatively affected.

In order to evaluate the impact of atmospheric gases, the test
scenario was implemented according to the ITU-R recommen-
dation P.676-11. Similarly, the frequency range considered in
the test was from 10 to 100 GHz, with steps of 10 GHz.
The experimental results are shown in Tables IX to XIII,
corresponding to carrier frequencies of 20, 40, 60, 80 and
100 GHz, respectively.

TABLE IX
SIGNAL IMPAIRMENT USING ATMOSPHERIC GASES PARAMETERS AT 20

GHZ

f
(GHz)

Temp.
(°C)

Humidity
(g/cm3) AMR-WB M-8 AMR-WB M-0

20 12 10.68 4.23 3.52
14 12.09 4.23 3.52
16 13.65 4.23 3.52
18 15.4 4.23 3.52
20 17.31 4.23 3.52

TABLE X
SIGNAL IMPAIRMENT USING ATMOSPHERIC GASES PARAMETERS AT 40

GHZ

f
(GHz)

Temp.
(°C)

Humidity
(g/cm3) AMR-WB M-8 AMR-WB M-0

40 12 10.68 4.23 3.52
14 12.09 4.23 3.52
16 13.65 4.23 3.52
18 15.4 4.23 3.52
20 17.31 4.23 3.52

TABLE XI
SIGNAL IMPAIRMENT USING ATMOSPHERIC GASES PARAMETERS AT 60

GHZ

f
(GHz)

Temp.
(°C)

Humidity
(g/cm3)

AMR-WB M-8 AMR-WB M-0

60 12 10.68 4.02 3.24
14 12.09 3.96 3.21
16 13.65 3.94 3.18
18 15.4 3.92 3.16
20 17.31 3.91 3.12

TABLE XII
SIGNAL IMPAIRMENT USING ATMOSPHERIC GASES PARAMETERS AT 80

GHZ

f
(GHz)

Temp.
(°C)

Humidity
(g/cm3) AMR-WB M-8 AMR-WB M-0

80 12 10.68 4.23 3.52
14 12.09 4.23 3.52
16 13.65 4.23 3.52
18 15.4 4.23 3.52
20 17.31 4.23 3.52

TABLE XIII
SIGNAL IMPAIRMENT USING ATMOSPHERIC GASES PARAMETERS AT 100

GHZ

f
(GHz)

Temp.
(°C)

]@c@Humidity
(g/cm3)

AMR-WB M-8 AMR-WB M-0

100 12 10.68 4.23 3.52
14 12.09 4.23 3.52
16 13.65 4.23 3.52
18 15.4 4.23 3.52
20 17.31 4.23 3.52

As can be observed, the MOS values are very stable, always
being close to the highest quality of AMR-WB -8 and AMR-
WB-0.Therefore, with the exception of frequencies around
60GHz, the impact of atmospheric gases parameters on speech
quality is almost negligible. This is because the water vapor
first resonant line appears at frequencies above 100 GHz, as
well as the influence of pressure-induced nitrogen attenuation.

In [28], the behavior of signal attenuation (dB/Km) in the
frequency range of 10 to 100 GHz due to atmospheric gases
is presented as can be observed in Fig. 3.

It is worth noting that that there is a greater attenuation at
60 GHz, and this is the only scenario in which the speech
quality is negatively affected. In [51], authors stated that fre-
quency range has not been used in current network generations
because the production of RF equipment that support this
frequency has a high cost.

M. J. da SILVA et al.: SPEECH QUALITY CLASSIFIER MODEL BASED ON DBN 81



Fig. 3. Signal attenuation originated by atmospheric gases [28].

At this frequency band, many oxygen absorption lines
merge together at sea-level pressures to form a single, broad
absorption band. Thus, this fact causes a greater attenuation
at 60 GHz, since the attenuation of dry air vapor is higher
[34]. This fact is worthy of note, since the 60 GHz band
is considered promising due to its large availability of unli-
censed bandwidth around the world [52]–[54]. In addition, the
development of mmWave frequency standards, such as IEEE
802.11ad, IEEE 802.15.3c and IEEE 802.11ay demonstrates
that 60 GHz band technology can be used in new network
generations, such as 5G technology.

B. Performance Assessment of the Proposed Model

The parameters presented in Table II were used in the test
scenarios to obtain impaired speech samples, which are used
to determine the proposed DBN model. In the DBN training
process, the topology of the network used a learning rate
of 0.0015, a Dropout Fraction value of 0.1, CD steps to
1, and momentum 0.8. Each network of the algorithm was
trained using 500 epochs. The DBN is based on three hidden
layers, with RBM of 100 neurons each one. This topology
is used because reached the best results in relation to other
configuration that were previously tested.

As first step, the unimpaired speech samples from the data-
set are randomly divided for training and validation phases
considering 80% and 20%, respectively. Then, they are used
in the all network simulation scenarios, and the MOS values
obtained by POLQA are used as reference values.

Table XIV presents DBN Model performance assessment re-
sults for speech quality class estimation in the validation tests,
using the confusion matrix format, considering in both cases
the POLQA results as ground truth. For comparison purposes,
Table XV present the results obtained by the non-intrusive
P.563 algorithm, in which each MOS value is attributed to a
quality class according to Table II.

From Tables XIV and XV can be observed the superior
performance results obtained by the proposed DBN classifier
model. The proosed DBN model can be used as a non-intrusive
quality metric that considers the atmospheric phenomena.

As the last step, subjective tests of speech quality assess-
ment were performed in a controlled environment. The ITU-T
P.563 algorithm was used for comparison purposes because
is the sole standardized non-intrusive algorithm in the current
literature. In the subjective test, 34 volunteers participated. 4
speech files that correspond to scenarios presented in Tables
IV to XIII were considering; thus, in total 480 speech files
were evaluated by subjective tests. The classification accuracy
is used to compare proposed DBN model and ITU-T P.563
algorithm considering subective test results. These results are
presented in Table XVI.

As can be observed in Table XVI, the proposed speech
quality classifier model presented a better correlation with
subjective test results than the P.563 algorithm. Thus, the
proposed model can be useful in modern communication
networks that operate in high frequency bands, such as those
used in 5G networks. It is important to note that P.563 is
a non-intrusive algorithm which results are not reliable in
lossy channel transmissions [55], but there is not another
standardized non-intrusive algorithm.

VIII. CONCLUSIONS

In this work, a network transmission scenario is imple-
mented that considers different intensities of rainfall and
atmospheric gases according to ITU-R recommendation P.530-
15 and ITU-R recommendation P.676-1, respectively. Our
preliminary experimental results show the impact of these
atmospheric phenomena on signal quality transmission can be
significant at high frequency range, such as 10 to 100 GHz. It
is important to note that current 5G network implementations
consider this frequency band. Experimental results show that
rainfall has a considerable negative impact on the signal
transmission for frequencies higher than 30 GHz. In the case of
the atmospheric gases model, the impact on the signal quality
is almost negligible, except for the 60 GHz frequency that
causes a high signal attenuation. The low signal degradation
shown in these frequency ranges is due to the influence of
oxygen. That is because the water vapor first resonant line is
above 100 GHz.

In the test scenario, actual speech samples are used, which
are encoded by the AMR-WB speech codec that is used in
current cellular networks. Additionally, to evaluate the speech
quality is used the POLQA algorithm that is the latest ITU-
T standard regarding the intrusive speech quality algorithms,
and also it incorporates modern telecommunication network
characteristics. The resulting impaired speech samples are
assessed by the POLQA algorithm and classified in one of
the five quality classes previously determined.

The proposed speech quality classifier is based on the
RBM that extracts features from speech sample signals, and
the RBF-SVM classifier. The results obtained show the high
performance of the proposed DNC classifier, reaching 92.46%
to 95.76% classification accuracy in the validation test over-
coming the results obtained by the algorithm described in
the ITU-T recommendation P.563. It is important to stress
that te proposed model can be used as non-intrusive method.
Additionally, subjective test were performed to evaluate 480
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TABLE XIV
CONFUSION MATRIX FOR DBN MODEL CLASSIFICATION RESULTS (IN PERCENTAGE)

Speech DBN / P.563 DBN / P.563 DBN / P.563 DBN / P.563 DBN / P.563
Qual. Class Class-A Class-B Class-C Class-D Class-E

Class-A 95.76 4.24 0.0 0.0 0.0
Class-B 3.85 94.58 1.57 0.0 0.0
Class-C 0.0 3.59 93.27 3,14 0.0
Class-D 0.0 0.0 2,26 92.46 5.28
Class-E 0.0 0.0 1.08 6.11 92,81

TABLE XV
CONFUSION MATRIX FOR P.563 RESULTS CONSIDERING SPEECH QUALITY CLASSES (IN PERCENTAGE)

Speech DBN / P.563 DBN / P.563 DBN / P.563 DBN / P.563 DBN / P.563
Qual. Class Class-A Class-B Class-C Class-D Class-E

Class-A 46.15 23.85 28.44 1.56 0.0
Class-B 1.19 59.21 31.28 7.11 1.21
Class-C 0.43 4.26 82.65 10.44 2.22
Class-D 0.0 0.27 4.53 89.88 5.32
Class-E 0.0 0.02 2.15 6.58 91.25

TABLE XVI
PERFORMANCE ASSESSMENT VALIDATION OF THE PROPOSED MODEL IN

RELATION TO SUBJECTIVE TEST RESULTS

Accuracy
DBN Model vs Subjective tests 0.948
ITU-T P.563 vs Subjective tests 0.693

additional impairment samples, in which the proposed DBN
model reached 94.8% of accuracy.
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“Speech quality assessment in wireless communications with mimo
systems using a parametric model,” IEEE Access, vol. 7, pp. 35 719–
35 730, 2019.

[23] Y. Qian, M. Bi, T. Tan, and K. Yu, “Very deep convolutional neural
networks for noise robust speech recognition,” IEEE/ACM Trans. on
Audio, Speech, and Language Processing, vol. 24, no. 12, pp. 2263–
2276, Dec. 2016.

[24] Y. Wang, S. Zhao, J. Li, and J. Kuang, “Speech bandwidth extension
using recurrent temporal restricted boltzmann machines,” IEEE Signal
Processing Letters, vol. 23, no. 12, pp. 1877–1881, Dec. 2016.

[25] C. L. P. Chen, C. Y. Zhang, L. Chen, and M. Gan, “Fuzzy restricted

M. J. da SILVA et al.: SPEECH QUALITY CLASSIFIER MODEL BASED ON DBN 83



boltzmann machine for the enhancement of deep learning,” IEEE Trans.
on Fuzzy Systems, vol. 23, no. 6, pp. 2163–2173, Dec. 2015.

[26] Y. Qian and P. C. Woodland, “Very deep convolutional neural networks
for robust speech recognition,” IEEE/ACM Trans. on Audio, Speech, and
Language Processing, vol. 24, no. 12, pp. 481–488, Dec. 2016.

[27] G. Wen, H. Li, J. Huang, D. Li, and E. Xun, “Random deep belief
networks for recognizing emotions from speech signals,” Computational
Intelligence and Neuroscience, vol. 2017, no. 2, pp. 1–9, Mar. 2017.

[28] M. J. da Silva, D. C. Begazo, and D. Z. Rodrı́guez, “Evaluation of
speech quality degradation due to atmospheric phenomena,” in 2019 In-
ternational Conference on Software, Telecommunications and Computer
Networks (SoftCOM), Sep. 2019, pp. 1–6.

[29] K. Ulaganathen, I. M. Rafiqul, K. Abdullah, and T. A. Rahman, “Specific
rain attenuation analysis and modeling for 5g communication,” in
2018 7th International Conference on Computer and Communication
Engineering (ICCCE), Sep. 2018, pp. 1–4.

[30] K. Ulaganathen, A. R. Tharek, R. M. Islam, and K. Abdullah, “Rain
attenuation for 5g network in tropical region (malaysia) for terrestrial
link,” in 2017 IEEE 13th Malaysia International Conference on Com-
munications (MICC), Nov 2017, pp. 35–38.

[31] C. Kourogiorgas, S. Sagkriotis, and A. D. Panagopoulos, “Coverage
and outage capacity evaluation in 5g millimeter wave cellular systems:
impact of rain attenuation,” in 2015 9th European Conference on
Antennas and Propagation (EuCAP), April 2015, pp. 1–5.
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A. Hammoudeh, and R. F. S. Caldeirinha, “Will COTS RF Front-Ends
Really Cope With 5G Requirements at mmWave?” IEEE Access, vol. 6,
pp. 38 745–38 769, 2018.

[52] T. S. Rappaport, J. N. Murdock, and F. Gutierrez, “State of the art in
60-ghz integrated circuits and systems for wireless communications,”
Proceedings of the IEEE, vol. 99, no. 8, pp. 1390–1436, Aug 2011.

[53] R. C. Daniels and R. W. Heath, “60 ghz wireless communications:
Emerging requirements and design recommendations,” IEEE Vehicular
Technology Magazine, vol. 2, no. 3, pp. 41–50, Sep. 2007.

[54] J. Kim, J.-J. Lee, and W. Lee, “Strategic control of 60 ghz millimeter-
wave high-speed wireless links for distributed virtual reality platforms,”
Mobile Information Systems, vol. 2017, pp. 1–10, 03 2017.

[55] E. T. Affonso, R. L. Rosa, and D. Z. Rodrı́guez, “Speech quality as-
sessment over lossy transmission channels using deep belief networks,”
IEEE Signal Processing Letters, vol. 25, no. 1, pp. 70–74, 2018.

M. J. da Silva received her Master’s degree in
Systems Engineering and Automation from the Fed-
eral University of Lavras, 2019. She received her
graduation in Electrical Engineering from the Fed-
eral Institute of Education, Science and Technology
of Minas Gerais, 2016. She is computer technician
from the Federal Center for Technological Education
of Minas Gerais, 2011. She is currently a substitute
professor in the Mechatronic Engineering Depart-
ment at CEFET-MG, Divinópolis campus.
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