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A B S T R A C T

Coffee berry necrosis is a fungal disease that, at a high level, significantly affects coffee productivity. With the
advent of surface mapping satellites, it was possible to obtain information about the spectral signature of the
crop on a time scale pertinent to the monitoring and detection of plant phenological changes. The objective of
this paper was to define the best machine learning algorithm that is able to classify the incidence CBN as a
function of Landsat 8 OLI images in different atmospheric correction methods. Landsat 8 OLI images were
acquired at the dates closest to sampling anthracnose field data at three times corresponding to grain filling
period and were submitted to atmospheric corrections by DOS, ATCOR, and 6SV methods. The images classified
by the algorithms of machine learning, Random Forest, Multilayer Perceptron and Naive Bayes were tested 30
times in random sampling. Given the overall accuracy of each test, the algorithms were evaluated using the
Friedman and Nemenyi tests to identify the statistical difference in the treatments. The obtained results indicated
that the overall accuracy and the balanced accuracy index were on an average around 0.55 and 0.45, respec-
tively, for the Naive Bayes and Multilayer Perceptron algorithms in the ATCOR atmospheric correction.
According to the Friedman and Nemenyi tests, both algorithms were defined as the best classifiers. These results
demonstrate that Landsat 8 OLI images were able to identify an incidence of the coffee berry necrosis by means
of machine learning techniques, a fact that cannot be observed by the Pearson correlation.

1. Introduction

Coffee farming has always played a prominent role in Brazilian
commodities. In the 2017/2018 harvesting, Brazilian coffee production
accounted for about 32.4% of the world market for in natura coffee
(IOC, 2018). The technologies employed from planting to commercia-
lization are being increasingly demanded mainly with the advent of
precision agriculture, which can provide in gaining productivity.

Within the mechanisms adopted in crop management, knowledge of
tools that monitor pests and diseases is essential. Regarding coffee
diseases, the Coffee Berry Necrosis – CBN – is one of the main coffee
diseases, since it has a direct action on coffee productivity. CBN, in most
cases, is related to fungi of the genus Colletotrichum, which has reported
a reduction of up to 80% in productivity (Griffiths et al., 1971; Varzea
et al., 2002).

Although the fungus acts on fruits, the presence of Colletotrichum

spp. in coffee branches cause changes in the normal stem and leaf
structure due to physiological disorders that are associated with disease
onset. Among them, the most common are high pending fruit loads,
nutritional deficiency, physical and chemical impediments in the soil
(Paradela Filho, 2001). Sera et al. (2005), observed a negative corre-
lation between the increased incidence of Colletotrichum ssp. and the
vegetative vigor, which was evaluated in the visual perception of the
plant, observing the leaf tone and branch dryness.

The incidence of the disease can change the density of the canopy
and the leaf area, factors that can be identified by spectral signature
mainly in the infrared region (Franke and Menz, 2007). The combina-
tion of different wavelengths may be able to detect diseases by multi-
spectral sensors, given that the disease signals may influence peculiarly
the spectral signature of the target (Mahlein et al., 2013). Therefore,
multispectral satellite imagery can aid the detection and control of the
pathogen due to its ability to infer in physiological aspects of plants
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(Lopresti et al., 2015).
The use of orbital images for detection, quantification and classifi-

cation of coffee diseases has been used and improved over time
(Chemura et al., 2018a, 2017; Price et al., 1993; Tucker et al., 2013).
Accurate and reliable detection of diseases is facilitated by highly so-
phisticated and innovative methods of data analysis that lead to new
insights derived from sensor data for complex plant-pathogen systems
(Mahlein, 2016).

Machine learning algorithms make no assumptions about frequency
distribution and are becoming increasingly popular to classify remote
sensing data, which rarely have normal distributions (Belgiu and Drăgu,
2016). It is estimated that the techniques of machine learning can find a
classifier capable of identifying the incidence of coffee berry necrosis
based on Landsat 8 OLI images, once the relation of the spectral sig-
nature of the coffee canopy under the effect of coffee berry necrosis
incidence is known.

This paper aimed to define which methods of atmospheric correc-
tion combined with machine learning techniques can approximate the
process of evaluating the disease in the field data.

2. Material and methods

The analyzed area is located in the southern region of Minas Gerais,
in a coffee crop, in the municipality of Carmo do Rio Claro, centered at
coordinates of latitude 21°00′28′' South of Ecuador and longitude
46°01′30′' West of Greenwich (Fig. 1). The planting of coffee (Coffea
arabica L.) cultivar Acaiá 474/19 was arranged with a spacing of 3.6m
between rows and 0.70m between plants in a total area of 11 ha. The
crop was irrigated through drip irrigation with management based on
the water demand, measured through properly installed tensiometer
batteries.

2.1. Berry necrosis assessment in the field

The sample mesh was composed of georeferenced points in a spa-
cing of 40 to 40m measured in the field with a GPS TRIMBLE 4600 LS ®

and Total Station Leica TC600 ® (Fig. 1). In each georeferenced point

five plants were assessed, and in each plant two branches in the third
middle of the plant canopy were randomly defined and marked using a
wire in order to assess the same branch in all evaluated periods. The
percentage of reproductive nodes with diseased berries in relation to
reproductive nodes of the branch was evaluated (Santos Neto, 2017).

During disease assessment, necrotic berry samples were collected
and sent to the diagnostic and control laboratory of plant diseases of the
Federal University of Lavras (UFLA), where it was possible to observe
the presence of the fungus Colletotrichum ssp. The isolates were mor-
phologically characterized as belonging to Colletotrichum gloeosporioides
species complex and had its pathogenicity proved on coffee berries.

The assessment of the berries disease was carried out in three per-
iods (December, 15, 2013; January, 18 and February, 26, 2014), cor-
responding to the period of grain development according to the scale of
evaluation of phenological stages proposed by Pezzopane et al. (2003).
All assessments were considered over the months in a single sample,
which allowed to separate the intensity of coffee berry necrosis in 4
bands of classes defined by the quartile (0–25, 25–50, 50–75, 75–100%
of the total number of samples), which corresponded to 32 samples per
established class.

2.2. Constitution of the sample mesh to remote sensing analysis

The sample mesh was composed of georeferenced points in a spa-
cing of 40 by 40m collected by means of a GPS TRIMBLE 4600 LS ® and
Total Station Leica TC600 ®. In these points, it is considered a buffer of
7.2 m of radius corresponding to the spacing between two lines of
planting.

At these points, its framing was not considered in the pixels of the
Landsat 8 OLI image. In this sense, a criterion of selection of the points
was put into practice, in which it guarantees that it is representative of
a single pixel. The criterion of point selection was established in the
condition that the polygon of the buffer contained in a single pixel of
the Landsat 8 OLI image, discarding all points in an intersection be-
tween two pixels. The resampling was carried out by moving the
pointer to the closest position to the center of the pixel in which it
contained to reorganize a mesh structure coincident with the images

Fig. 1. The spatial location of the analyzed area highlighted the distribution of the sample set, emphasizing the five coffee plants selected in each sample.
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(Fig. 2).

2.3. Atmospheric corrections

Images from the Landsat 8 OLI satellite at orbit 219 points 75 which
are freely available through the Earth Explore online interface. These
images were obtained as close as possible to the date of the field
sampling to minimize the phenological transformations that occur over
time, which may prevent the direct correlation between the intensity of
the necrotic berries and its spectral characteristics. The selected images
were collected from December, 6, 2013, January, 23 and February, 24,
2014 (Table 1 and Table 2).

Three atmospheric correction models were used to compare atmo-
spheric correction methods more suitable to characterize the features in
the coffee canopy. It has been used the Dark Object Subtraction (DOS),
Atmospheric and Topographic Correction for Satellite Imagery
(ATCOR) and Second Simulation at the Satellite Signal in the Solar
Vector Spectrum (6SV).

The atmospheric correction by the DOS method (Chavez, 1988)
performed considering the histogram of the image of the region of
smaller wavelength, in which for Landsat 8 OLI images refers to the
band of blue of a wavelength of 0.43 μm. The input information were
the raw images and their metadata. Based on this information, the at-
mospheric interference in each spectral band was estimated followed by
calculations for the transformation of the digital number into radiance
values and then for reflectance values. All procedures of the equations
can be consulted in the study of Chavez (1988).

For ATCOR atmospheric correction, the algorithm proposed by
Richter (1996) consisted in the entry of a fog-free image, cloud shadow
and full pixel mask. However, in the absence of this information, the
azimuth and zenith angle information were used as the basis, the ca-
libration coefficients contained in the metadata Image. Consequently,
the top atmosphere reflectance (TOA) and the cloud mask were defined.

To mitigate the effects of cloudiness that masked the actual re-
flectance, the values of the highest and lowest brightness pixels and the
maximum magnitude (in pixels) present in each cloud have been ad-
justed. The altered adjustment values followed the criterion in which
the current mask overlies the maximum on the cloud cover.

The adjustment of the scene lighting conditions was established
based on the digital elevation model (DEM) imagery from the Shuttle
Radar Topographic Mission (SRTM). This feature allows the radar,
transmittance and irradiance values to be obtained in conjunction with
the TOA image. This process was performed iteratively to recover the
surface reflectance value for each pixel.

Considering the effects of aerosols on the atmosphere, the rural
model was selected to represent the aerosol conditions that are not
influenced by urban or industrial sources. It is a product of the reactions
between atmospheric gases and the effects of the dust particles (Richter
and Schläpfer, 2011, 2003).

For atmospheric correction 6SV (Vermote et al., 2016), the product
already processed by NASA has been used. Atmospheric data for the

Fig. 2. Scheme of the sample selection process coincident with Landsat 8 OLI images.

Table 1
Images Landsat 8 OLI used in the process and metadata information.

Date 12/06/2013 01/23/2014 02/24/2014

Land cloud cover (%) 17.38 23.39 38.89
Sun Azimuth angle 76.08 94.12 100.16

Table 2
Description of Landsat 8 OLI used products.

Bands Wavelength (μm) Description

B2 0.452-0.512 Blue
B3 0.533-0.590 Green
B4 0.636-0.673 Red
B5 0.851-0.879 Near Infrared
B6 1.566-1.651 Short-wave infrared 1
B7 2.107-2.294 Short-wave infrared 2
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latest 6SV models use the Moderate Resolution Imaging Spectro-
radiometer (MODIS) sensor as the source of information for applying
the atmospheric correction to Landsat 8 OLI images.

With these reflectance values corrected by atmospheric effects, it
was possible to perform radiometric transformations in order to en-
hance the vegetation information. The normalized difference vegetation
index (NDVI) proposed by Rouse (1973), the improved vegetation index
(EVI) proposed by Huete et al. (1997) and the normalized difference
water index (NDWI) proposed by Gao (1996) have been used. (Equa-
tions 1, 2 and 3).

=
−

+

NDVI
ρ ρ
ρ ρ

nir red

nir red (1)

=
−

+ + −

EVI G*
ρ ρ

L ρ C *ρ C *ρ
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Where: ρnir is the band reflectance of Near-Infrared; ρred is the re-
flectance band of red; ρswir1 is the band reflectance of short-wave in-
frared 1; ρblue is the band reflectance of blue; L is the soil adjustment
factor adopted for value 1; C1 is the coefficient for the aerosol effect
adopted in value 6; C2 also refers to aerosol, however the adopted value
was 7.5; G refers to gain factor of 2.5.

2.4. Machine learning process

We have used the Python-based learning algorithm Naive Bayes
(John and Langley, 1995), Random Forest (Breiman, 2001) and the
Multilayer Perceptron (Hinton, 1990).

For the Naive Bayes algorithm, the classification that has been
performed started by estimating the probabilities of each class, fol-
lowed by the calculation of the respective mean, so the algorithm
constructed the covariance matrices forming the discriminant function
for each type according to Bhargavi and Jyothi (2009).

In the classification by Random Forest, we used a set of 500 decision
trees that were formed by values of the set of data sampled by boot-
strap. According to Lawrence et al. (2006), estimation errors tend to
stabilize before this reached tree number. The entropy criterion was

used in tree hierarchization to reduce the randomness of the classifier.
However, the classifier by the Multilayer Perceptron configured so

that the found errors were less than 0.000001 in the classification, or
that reached a maximum iteration of 1000, the optimization of the
weights adjusted the errors based on the Adam stochastic function
gradient (Kingma and Ba, 2014).

The algorithms were validated by the 10-fold stratified cross-vali-
dation method, which consisted of the iteration number of the algo-
rithms in which each round is a new set of training data, and test was
changed and organized with the same amount of repetitions of each
sample class. The results of the classification were defined by the final
mean of alliterations, as recommended by the authors (Hall et al.,
2009).

2.5. Evaluation of machine learning models

We performed 30 tests of the algorithms, modifying the sample set
by randomizing the generating seed from 1 to 30. In each analysis, the
global accuracy, user accuracy, producer accuracy and Balanced
Accuracy (BAC) have been calculated. The global accuracy was defined
by the number of the correctness of the error matrix by the total of
evaluated samples. The accuracy of the user is associated with the
commission error, in which the committed error is attributed to a pixel
that does not belong to the true class. The producer's accuracy is as-
sociated with the omission error, which occurs when we fail to map a
pixel in the true class and the BAC is the average specificity and sen-
sitivity.

The best classifier defined by the method of Friedman and Nemenyi
was the one that performs a non-parametric analysis of variance for a
single factor of variation and makes comparisons between independent
samples by ordering the data by increasing values; and then the original
values are replaced by the order number in a set of ordered series.

The global accuracy values of each test ranked in increasing order
among the classifiers in different atmospheric corrections. If there are
no statistically significant differences between the two classifiers, they
will be connected in the diagram by a straight line (Rodríguez et al.,
2010). All discussed processing is expressed in the flowchart below
(Fig. 3).

Fig. 3. Scheme of the methodology used to choose the best combination of data for the machine learning process in the classification of the incidence of coffee berry
necrosis.
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3. Results and discussion

On-site monitoring showed a peak infestation in February 2014
(Fig. 4 and 5). During this period, berries were in the phenological
phase of expansion, in which there was a greater proliferation of the
attack of the pathogen on the reproductive nodes. We believe that the
occurrence of diseases in the coffee crop could be influenced by factors
related to the pathogen's virulence, as well as host resistance, climatic
conditions and crop management (Maia et al., 2013).

There were isolated points in February in which the incidence was
lower than that found in January. This was a normal diseased because
berries tend to fall. The infestation of the Colletotrichum gloeosporioides
in an advanced stage presents necrotic centers that when reaches the
leaves and berries of the coffee tree tend to cause the early fall beside
the dry of the branches. However, in these situations, the same value of
incidence of the previous evaluation was considered, since the berry fall
did not represent if there was a decrease in the disease (Fernandes and
Vieira Junior, 2015; Paradela Filho, 2001).

In the evaluation of the atmospheric correction models, there was

Fig. 4. Quantile spatial distribution of the incidence of coffee berry necrosis field data throughout December (2013), January and February (2014).

Fig. 5. Box plot of field data evaluations of the coffee berry necrosis incidence
during December (2013), January, and February (2014).

Fig. 6. RGB-321 Landsat 8 OLI color composition for the 6SV, ATCOR and DOS atmospheric correction methods at the dates closest to the field data assessments of
coffee berry necrosis incidence.
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not a discrepant difference in the visualizations in true color composi-
tions (RGB-432), with an exception of December (Fig. 6). According to
the quality of the pixel that is available in the images corrected by 6SV,
specifically in this month, there was a higher concentration of aerosol
and the presence of clouds. These factors mainly affect the bands in the
spectrum in the region of the visible that corresponds to the bands of
0.43, 0.56 and 0.69 μm. The effects of the aerosol concentration on
bands centered at shorter wavelengths (0.43 μm) make the surface re-
flectance generally small, with a robust aerosol signal. In this case,
there will be a greater Rayleigh-type dispersion and gas absorption of
electromagnetic energy (Vermote et al., 2016). The other configura-
tions of colored compositions presented similar tonalities and visual
appearance among themselves. It was the color-accurate color compo-
sition that performed the best contrast between the atmospheric

corrections.
The reflectance in the visible region was lower in February than in

previous months, and this aspect can be observed independently re-
garding the atmospheric correction method and coffee berry necrosis
incidence (Fig. 7). Because the crop is relatively young, approximately
three-years old, the plant is in full development, being the month of
February with greater leafing, which consequently absorbed more en-
ergy in the visible region.

The atmospheric correction in the DOS method presented higher
values of reflectance compared to the other methods, possibly because
the algorithm does not consider meteorological factors in the calcula-
tion. The DOS, the atmospheric effects scaled by the distribution of the
histogram of the assigned image in the bands of shorter wavelengths
and formulates a linear equation of atmospheric correction for each

Fig. 7. Spectral signature of the upper and lower classes of the coffee berry necrosis incidence during December, January and February for the 6SV, ATCOR, and DOS
atmospheric correction methods.

Table 3
Vegetation index values for the lowest and highest coffee berry necrosis incidence classes in the analyzed period in images of different atmospheric corrections.

Atmospheric correction Index vegetation 12/06/2013 Incidence (%) 01/23/2014 Incidence (%) 02/24/2014 Incidence (%)

<7.40 > 22.32 <15.40 > 22.32 < 7.40 >22.32

6SV NDVI 0.716 0.685 0.741 0.738 0.816 0.796
NDWI 0.325 0.278 0.249 0.235 0.342 0.302
EVI 0.581 0.532 0.515 0.510 0.618 0.603

ATCOT NDVI 0.742 0.700 0.579 0.575 0.864 0.842
NDWI 0.332 0.281 0.267 0.253 0.361 0.321
EVI 0.600 0.531 0.439 0.434 0.819 0.795

DOS NDVI 0.701 0.662 0.737 0.734 0.819 0.800
NDWI 0.331 0.273 0.246 0.232 0.338 0.299
EVI 0.535 0.474 0.517 0.512 0.626 0.612
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band (King, 2003). This method was not sufficient to mitigate the in-
fluence of the atmosphere on the image.

According to Martinelli et al. (2015), pathogens cause a reduction in
chlorophyll content in leaves due to necrotic lesions, tending to change
in spectral signature, causing a change in the value of index vegetation.
It has been observed that small differences between changes in re-
flectance values (Fig. 7) and vegetation indices between incidence less
than 7.40% and greater than 22.32% did not exceed 10%, but even
subtle there was a signal that fruit necrosis decreases in the value of
vegetation indices (Table 3).

The relationship between coffee berry necrosis and reflectance had
higher correlations in the medium infrared region and also in the index
vegetation, specifically for December and February (Fig. 8). In this re-
gion, the internal scattering of the electromagnetic radiation occurred
as a consequence of its interaction with the leaf mesophyll, external
factors such as the disease can be altering the water and air relation in
the mesophyll, resulting in a lower reflectance (Franke and Menz,
2007).

Fig. 8. Pearson correlation coefficient (r) for the reflectance of the wavelengths and index vegetation of the Landsat 8 OLI images between the incidence of coffee
berry necrosis (α≤ 0.01).

Table 4
Global Accuracy and the Balanced Accuracy (BAC) mean index of the 30
random seed evaluations of the Multilayer Perceptron, Random Forest and
Naive Bayes algorithms in detecting the incidence of coffee berry necrosis.

Atm. Cor. 6SV Atm. Cor. ATCOR Atm. Cor. DOS

All Bands
Machine Learning

Algorithm
Global
Accuracy

BAC Global
Accuracy

BAC Global
Accuracy

BAC

Multilayer
Perceptron

0.516 0.523 0.577 0.589 0.509 0.518

Random Forest 0.498 0.504 0.487 0.494 0.499 0.503
Naive Bayes 0.549 0.539 0.585 0.577 0.463 0.459
All Bands and Index vegetation
Multilayer

Perceptron
0.520 0.521 0.579 0.580 0.505 0.505

Random Forest 0.504 0.507 0.493 0.493 0.519 0.521
Naive Bayes 0.534 0.526 0.545 0.540 0.475 0.463

Table 5
Producer and user accuracy for the coffee berry necrosis incidence classes obtained by the Multilayer Perceptron, Random Forest and Naive Bayes classifier algo-
rithms based on the Landsat 8 OLI image reflectance in the 6SV, ATCOR and DOS atmospheric correction methods.

Machine Learning Algorithm Incidence Class (%) Atm. Cor. 6SV Atm. Cor. ATCOR Atm. Cor. DOS

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Producer
Accuracy

User
Accuracy

Multilayer Perceptron 00.00 - 07.40 0.606 0.606 0.576 0.704 0.576 0.633
07.40 - 15.25 0.452 0.333 0.806 0.439 0.452 0.318
15.25 - 22.32 0.250 0.615 0.250 0.727 0.125 0.571
22.32 - 53.28 0.727 0.585 0.758 0.735 0.758 0.521

Random Forest 00.00 - 07.40 0.545 0.486 0.576 0.514 0.576 0.500
07.40 - 15.25 0.355 0.324 0.290 0.281 0.323 0.323
15.25 - 22.32 0.281 0.333 0.344 0.393 0.375 0.414
22.32 - 53.28 0.636 0.677 0.636 0.656 0.636 0.677

Naive Bayes 00.00 - 07.40 0.576 0.760 0.576 0.655 0.576 0.633
07.40 - 15.25 0.613 0.396 0.742 0.404 0.355 0.324
15.25 - 22.32 0.219 0.636 0.250 0.727 0.219 1.000
22.32 - 53.28 0.758 0.556 0.758 0.781 0.818 0.466
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Similar results were found by Boechat et al. (2014), who evaluated
the spectral signature of the bean white mold using a spectroradiometer
field data. The authors observed that in the near-infrared region, the
leaves infected by the fungi presented lower reflectance than in healthy
leaves, caused by the destruction of plant tissues during colonization of
the leaves, as correlations between NDVI and a white mold severity,
which were not statistically understood between loading and grain
maturation.

Other studies also report the existence of the relationship between
reflectance and pathogen infection in plants. In a study by Zhao et al.
(2014), the authors evaluated the effect of the severity of yellow rust
(Puccinia striiformis) on wheat by hyperspectral reflectance of a spec-
trophotometer. The correlations were highest in the visible region and
reached the maximum correlation at about 0.85 with the disease. In the
near and medium infrared region, there was a decrease in the mean
correlation to 0.45. Prabhakar et al. (2011), in a study on the cotton
stress attacked by green spittlebugs (Hemiptera cicadellidae), obtained a
high negative correlation in the near-infrared region with the pest,
reaching a value of -0.77, which corroborated the average R² de-
termination index of 0.68 in the NDVI ratio and the leafhopper. In the

infrared medium and in the visible region, the correlation was high and
positive, with the maximum in the red wavelength reaching approxi-
mately 0.79. These studies revealed the potential of using spectral
signatures as indicative of physiological disturbances in crops, from
satellite imagery, such as Landsat 8 OLI.

Concerning January, the correlations were not significant in the
test. In this case, the hypothesis is that the reflectance relations and the
incidence of the coffee berry necrosis were not linear. In some in-
stances, not even hyperspectral satellites operating in narrow and
specific bands obtained linear relationships, probably due to the spec-
tral mixing components (Chemura et al., 2018b).

From the use of the machine learning algorithms, it was possible to
identify the level of the coffee berry necrosis incidence as a function of
the reflectance of the Landsat 8 OLI bands for every month in the
analysis, even in different atmospheric corrections, surpassing the an-
swers obtained by the Pearson correlation. Specifically for biological
analysis, modern machine learning techniques were capable of de-
scribing patterns that exceed the estimates determined by conventional
statistical methods, such as regression and linear correlation (Ma et al.,
2014).

In the results concerning the identification of the class intensity of
the coffee berry necrosis as a function of the reflectance, the ATCOR
atmospheric correction presented the higher values of accuracy and
BAC index was compared to the 6SV and DOS ones (Table 4). The in-
clusion of the SRTM images in the corrections by the ATCOR allowed a
reference of illumination originated by the terrain effect, which guar-
anteed standardization between the images of different evaluated dates.
According to Richter and Schläpfer (2011), this mode of atmospheric
correction is especially important in cases of multi-temporal, multi-
sensor or multi-condition images and must be standardized so that they
can be compared.

Vermote et al. (2016) specified that the 6SV correction was limited
to uniform and flat targets. Tan et al. (2013) indicated that in cases of
rough terrain, the topographic effects may introduce interference in the
reflectance promoted by the shading of the image that in this method
are not counted in the 6SV atmospheric correction. The application of
the DOS method in soft or smooth undulating areas may lead to the
underestimation of the atmospheric effects on the images due to the low
presence of shading (Chavez, 1988).

The global accuracy and BAC using all bands were similar with
respect to analysis of all bands with the addition of vegetation indices.
All indices have in common the use of the near-infrared band that ob-
tained significant correlation only with the application of 6SV

Fig. 9. Friedman and Nemenyi test for the Multilayer Perceptron, Random
Forest and Naive Bayes classifier algorithms to identify the coffee berry necrosis
incidence classes based on the reflectance of Landsat 8 OLI images in the
ATCOR, DOS, and 6SV atmospheric corrections.

Fig. 10. Incidence classification of coffee berry necrosis from the Naive Bayes and Multilayer perceptron algorithm in Landsat 8 OLI images used in the ATCOR
atmospheric correction during December, January and February.
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atmospheric correction, so its relationship with fruit necrosis was not
enough to increase the accuracy of machine learning models. By the
principle of parsimony, which refers to choosing a smaller set of in-
formation to elucidate the problem according to Powers and Turk
(2012), it has been decided to use only the spectral bands for further
analysis.

Considering that the disease level control has an incidence of 5%,
being tolerable up to 12%, the primary attention in the accuracy was
given to 0–7.4% incidence class. The Multilayer Perceptron algorithm
had the highest efficiency classification in images corrected by the 6SV
method, and the accuracy was around 0.6. Regarding the user accuracy,
the most significant was 0.76, determined by the Naive Bayes in the
atmospheric correction 6SV. This adjustment can be advantageous,
once the sites that have not been affected yet by the pathogen were
identified in the images, which makes targeting the regions possible, in
which they need an application of fungicides.

In the lowest incidence class interval between 7.40 and 15%, the
highest producer accuracy and user accuracy (of 0.8 and 0.43) was
found by the Multilayer Perceptron algorithm in the ATCOR atmo-
spheric correction, respectively (Table 5). These results may aid field
data monitoring, in which the indication of the intensity of the disease
can be evaluated punctually, thus providing a rapid identification and a
previous mapping of the places where a control measure should be
taken. Decisions on the timely management of diseases in coffee are
particularly important because they are closely linked to the yield losses
(Martinelli et al., 2015).

The Friedman test indicated that there was a significant difference
(p-value< 0.01) between the classifications, given that the Naive Bayes
in the ATCOR correction suggested by the Nemenyi test is the best
classifier (Fig. 9). Although simple, Naive Bayes can often overcome
some sophisticated classification methods (Farid et al., 2012). This al-
gorithm based on the common assumption that all the characteristics
are independent from one another, there is a tendency to be less tol-
erable to the changes in values in the spectral bands, being able to
identify patterns of behavior even with few samples (Xu, 2018). This
algorithm is known to be more sensitive to changes in the training set
because it has a fixed structure and a small number of parameters
(Rodríguez et al., 2013).

The Multilayer Perceptron in the ATCOR correction also stood out
among the best classifiers and statically equal to the Naive Bayes, as
already pointed out the averages of the accuracy and BAC (Table 1) and
the spatial distribution of the classes (Fig. 10). Researches report on the
efficiencies of classification techniques with the use of neural networks
to produce results according to the presence/absence of the disease in
crops and possibly severity levels. West et al. (2004), employing spec-
tral images aboard a spectrograph mounted at the level of the spray bar,
obtained increased performance of the classifier in 99% accuracy to
differentiate healthy wheat from disease wheat using the algorithm of
neural network perceptron multi-layered. Abdulridha et al. (2016) se-
lected the appropriate wavelengths to correctly classify healthy trees of
stressed trees with an accuracy of 98% through the neural network. Li
et al. (2009) had an accuracy of 95% of the classification by neural
networks for unhealthy rice stressed by rice diseases and healthy rice
pests based on spectral leaf behavior.

However, the performance of the classifiers depends on the ar-
rangement of the data sets, being that each algorithm can have a better
performance in each case. In this paper, Naive Bayes presented the best
results, but this does not mean that it is the best classifier. As an ex-
ample, Ma et al. (2015) identified the activities of relationships of
biological structures in medicines by making use of Random Forest,
obtaining the best performance in most of the data sets when compared
to the classifier of deep learning by neural networks. In the study car-
ried out by Russo et al. (2018), to predict compounds for endocrine-
disrupting abilities, such as estrogen receptor binding, Random Forest
once again had the best performance when compared to Naive Bayes
and Multilayer Perceptron. Other researches evidence the potential of

the Multilayer Perceptron. Were et al. (2015), mapping soil organic
carbon variations, the Neural Networks algorithm obtained a superior
performance of up to 36% when compared to Random Forest. This
research evidenced the need for tests to choose the best learning al-
gorithm of the machine adjusted to the data set.

4. Conclusion

The global accuracy and BAC were generally less than 0.60 for the
trained data set. With a more robust database of samples from other
coffee crops, it is believed that this result may be more accurate. The
results are indicative that Landsat 8 OLI images may provide pertinent
information for decision-making in agricultural planning, as well as for
the timely application of pesticides. Machine learning tools were more
efficient than Pearson’s correlation to detect the incidence of coffee
necrosis. The best classifier performance was Naive Bayes and
Multilayer Perceptron in atmospheric images corrected by the ATCOR
method.
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