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Abstract
Our knowledge of how tropical forest biodiversity and functioning respond to an-
thropogenic and climate-associated stressors is limited. Research exploring El Niño 
impacts are scarce or based on single post-disturbance assessments, and few studies 
assess forests previously affected by anthropogenic disturbance. Focusing on dung 
beetles and associated ecological functions, we assessed (a) the ecological effects of 
a strong El Niño, (b) if post-El Niño beetle responses were influenced by previous for-
est disturbance, and (c) how these responses compare between forests impacted only 
by drought and those affected by both drought and fires. We sampled 30 Amazonian 
forest plots distributed across a gradient of human disturbance in 2010, 2016, and 
2017—approximately 5 years before, and 3–6 and 15–18 months after the 2015–16 
El Niño. We found 14,451 beetles from 98 species and quantified the beetle-medi-
ated dispersal of >8,600 seed mimics and the removal of c. 30 kg of dung. All dung 
beetle responses (species richness, abundance, biomass, compositional similarity to 
pre-El Niño condition, and rates of dung removal and seed dispersal) declined after 
the 2015–16 El Niño, but the greatest immediate losses (i.e., in 2016) were observed 
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1  | INTRODUC TION

El Niño Southern Oscillation (ENSO) events are becoming increasingly 
frequent and severe (Timmermann et al., 2018), potentially due to hu-
man-induced climate change (Cai et al., 2014). Over the last 40 years, 
strong ENSO events have been associated with changes in precipita-
tion patterns in tropical rain forests, leading to extreme droughts and 
forest fires (Juárez-Orozco, Siebe, & D. Fernández y Fernández., 2017). 
The frequency and extent of forest fires are further exacerbated by 
decadal-scale increases in dry season lengths (Fu et al., 2013), the 
spread of fire-dependent agriculture, and the increases in forest flam-
mability that results from human-driven disturbances such as logging 
and fragmentation (Hardwick et al., 2015; Uhl & Kauffman, 1990).

Despite advances in our knowledge of El Niño consequences 
for the carbon cycle (Berenguer et al., 2018; Malhi et al., 2018), 
our understanding of the impacts for biodiversity and related eco-
system functions remains limited, especially in human-modified 
tropical forests. While detailed studies have been conducted fol-
lowing experimental fires (e.g., ≤50-ha forest plots; Balch, Massad, 
Brando, Nepstad, & Curran, 2013; Brando et al., 2014; Oliveras 
et al., 2014), these may underestimate the effects of large-scale 
megafires which can affect millions of hectares (e.g., Withey et 
al., 2018). In these fires, burned forests may be tens of kilometers 
away from source populations in unburned forests or isolated by a 
matrix of agricultural land-uses. Furthermore, large-scale fires may 
have higher fire intensities as severe droughts also result in a drier 
fuel layer (Brando et al., 2019) and increased fuel loads (Brando et 
al., 2008).

Where large-scale studies assessing the ecological consequences 
of wildfires have taken place, they often lack pre-fire information (e.g., 
Barlow & Peres, 2004) and rely on space-for-time approaches that may 
underestimate biotic changes in tropical forests (Christie et al., 2019; 
França, Louzada, et al., 2016). Furthermore, it is not clear how previous 
anthropogenic forest disturbance, such as selective logging, influences 
the response of biodiversity and associated functions to ENSO-
mediated droughts and wildfires, or whether changes in biodiversity 
result in further changes in ecosystems functioning. Addressing these 
knowledge gaps is critically important given the increased likelihood 

of severe dry seasons (Duffy, Brando, Asner, & Field, 2015) and the 
increased rates of human-driven forest modification that is expected 
for tropical regions (Lewis, Edwards, & Galbraith, 2015).

We address these knowledge gaps by evaluating changes 
in biodiversity and some ecological processes in a region of the 
Amazon affected by a mega fire and intense drought in the 2015–
16 El Niño event (Figure 1). We focus on dung beetles (Coleoptera: 
Scarabaeinae), because they (a) had been sampled in >200 forest 
plots in 2010, 5 years before the 2015–16 El Niño, encompassing 
a gradient of pre-El Niño forest disturbance, from undisturbed pri-
mary forests to logged primary forests and logged-and-burned 
primary forests (Barlow et al., 2016; Gardner et al., 2013); (b) are 
a cost-effective indicator group (Gardner, Barlow, et al., 2008); and 
(c) perform a number of important ecological functions that can be 
readily assessed in the field (e.g., França, Louzada, & Barlow, 2018; 
Nichols et al., 2008; Raine et al., 2019). We returned to 30 of these 
forest plots between 3–6 and 15–18 months after the ENSO drought 
and related wildfires, repeating the sampling techniques used in 
2010. This design allowed us to have a full-factorial design (Table S1) 
to assess the following questions: (a) Are there post-El Niño declines 
in dung beetle communities and ecological functions?; (b) Are post-El 
Niño beetle responses influenced by previous forest disturbance?; 
and (c) Are beetle communities and ecological functions in forests 
only affected by the El Niño drought different from those affected 
by both drought and fires?

2  | METHODS

2.1 | Study region

We conducted our study in three municipalities in the Brazilian 
Amazon: Belterra, Santarém, and Mojuí dos Campos in the state of 
Pará (Figure 1). The climate in this region is characterized as hot-
humid (Köppen's classification), and the annual average temperature 
and precipitation are 25°C and 1,920 mm, respectively, with short 
dry seasons between August and October (Figure S1), which are 
longer and drier during El Niño years (Jolly et al., 2015).
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2.2 | Sampling design

We sampled dung beetles and beetle-associated ecological func-
tions within 30 forest plots (Figure 1) distributed along a pre-El Niño 
disturbance gradient, including undisturbed primary forests (n = 10), 
logged primary forests (n = 10), and logged-and-burned primary for-
ests (n = 10). Between October and December 2015, half of these 
forests plots were impacted by understory fires that occurred dur-
ing the exceptionally dry weather caused by the extreme 2015–16 
El Niño event, while unburned controls were preserved in all of our 
previous forest disturbance classes (hereafter fire-affected and 
drought-only forests, respectively; Table S1).

2.3 | Data collection

Dung beetles and ecological functions were surveyed in exactly the 
same locations (Figure 1) and following the same sampling tech-
niques in all three surveys (Figure S2). The first data collection oc-
curred in June–July 2010, around 5 years before the 2015–16 El 
Niño. The second and third surveys took place in June–July 2016 
(as in 2010, end of the rainy season; Figure S1) and March–April 
2017 (in the rainiest months in the study region; Figure S1), ap-
proximately 3–6 and 15–18 months after the El Niño-associated 
uncontrolled fires that affected our study region. At each of the 30 
forest sites, beetles and their ecological functions were sampled 
at three sampling points (0, 150 and 300 m) along a 300-m tran-
sect. We used nine dung-baited pitfall traps (three traps per sam-
pling point; Figure S2c) to sample dung beetles, resulting in a total 
of 810 dung-baited pitfall traps (270 pitfalls/year). All trapped dung 

beetles were identified to species or morphospecies. Dung beetle 
species-level average body mass was calculated from the dry body 
weight of 15 individuals using a Shimadzu balance with precision of 
0.0001 g. Rates of dung removal and secondary seed dispersal were 
assessed between 3 and 4 weeks after the dung beetle surveys. At 
each sampling point, we placed a mesocosm arena with ~0.79-m2 
area (Figure S2a,b) and containing, in the centre, a 200-g dung pile 
(4:1 pig to human ratio, following França et al., 2018) mixed with 
50 seed mimics (3.5-mm diameter, as in Braga et al., 2017; Braga, 
Korasaki, Andresen, & Louzada, 2013). Further methodological de-
tails are described in Supporting Information.

2.4 | Statistical analyses

To address our research questions, we examined changes in six 
response variables: species richness, abundance, species composi-
tion, biomass, and rates of dung removal and seed dispersal. All 
analyses were performed within the R Studio version 3.3.1 (R Core 
Team, 2019) and conducted at the plot-level: community attrib-
utes (richness, abundance, and biomass) were the sum of values 
from each of the nine pitfall traps, and rates of ecological func-
tions were the average of the values recorded in the three arenas. 
Dung beetle biomass at the plot-level was calculated by multiply-
ing the average body mass of each species by their abundance. 
Species composition was measured as pairwise beta-diversity 
(Socolar, Gilroy, Kunin, & Edwards, 2016), based on the Bray–
Curtis similarity index (1-dissimilarity) calculated for each forest 
plot and year through the vegdist function (“vegan”; Oksanen et al., 
2015). Post-El Niño species composition therefore represents the 

F I G U R E  1   Map showing the location of our study region in the eastern Brazilian Amazonia. (a) Around 8,072 km2 of primary forests 
from the total area in the map (ca 27,418 km2) were burned during the 2015–16 El Niño event. The inset shows the study region (light green) 
within Brazil (light gray) and state of Pará (dark gray). (b) The map within the study region—shown by the gray border in (a). Also shown in 
these panels are the locations of the 30 sampled forest plots (beige-filled circles)
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compositional similarity of each post-El Niño survey (i.e., 2016 and 
2017) to the pre-El Niño condition in the same forest plot. Pre-El 
Niño species composition was based on the average compositional 
similarity of each surveyed forest to the ten undisturbed forests 
surveyed before the El Niño. For undisturbed forests, we consid-
ered the average compositional similarity of each plot to the other 
nine undisturbed forests surveyed in 2010.

We conducted a three-way full-factorial (Table S1) repeat-
ed-measures analysis of variance (RM-ANOVA) using the ezANOVA 
function (“ez” package; Lawrance, 2016), with “Forest type” (3 
levels: undisturbed, logged, or logged-and-burned) and “El Niño 
classes” (2 levels: drought-only vs. fire-affected) as between sub-
ject factors, “Year” (3 levels: 2010, 2016 or 2017) as within-subject 
factor and their interactions. The assumption of sphericity was 
not violated for any of our dependent variables (Mauchly's test, 
Table S2; all p-values ≤.2). When two factors or interaction terms 
were statistically significant, we therefore used Tukey's Wholly 
Significant Difference through the “lsmeans” package to assess 
post hoc differences (Lenth, 2016). Plots were generated by using 
the ezPlot function (“ez”; Lawrance, 2016) and subsequently mod-
ified using “ggplot2” (Wickham, 2009).

Gaussian distributions for all response variables and model resid-
uals were tested using the Shapiro-Wilk normality test through the 
Shapiro.test function (“stats”; Crawley, 2002). Data normality and ho-
moscedasticity were achieved for biomass, abundance, and dung re-
moval rates after rank-transformation. We used the package “dplyr” 
for data cleaning and the function pearson.test in “stats” to assess the 
residual independence from all RM-ANOVAs (Table S2). As sites that 
are closer together are expected to hold more similar communities 
(Kühn & Dormann, 2012), we also assessed spatial autocorrelation 
within our datasets by performing Pearson-based Mantel tests using 
the mantel function with 1,000 permutations (“vegan”; Oksanen et 
al., 2015). Mantel tests were made separately for dung beetle rich-
ness from each survey.

3  | RESULTS

Across our three surveys, we sampled 14,451 dung beetles (8,070, 
3,733, and 2,648 individuals, in 2010, 2016, and 2017, respectively) 
from 98 species (2010:75; 2016:65, and 2017:68). Dung beetles 
removed >30 kg of dung (2010:13.3; 2016:11.1; and 2017:5.7 kg; 
representing 74.1%, 62.2%, and 32.1% of the total dung placed, re-
spectively) and dispersed >8,600 seed mimics (2010:3,393 [or 75.1% 
of total seeds placed]; 2016:2,632 [58.4%]; and 2017:2,664 [59.2%]). 
Mantel tests of distance between forests showed a weak but signifi-
cant effect of spatial autocorrelation on pre-El Niño beetle richness 
(R2 = .19, p = .009), but this was not significant in either of the post-El 
Niño surveys (2016: R2 = .003, p = .33; and 2017: R2 = .11, p = .06).

All dung beetle responses declined in the post-El Niño surveys 
(Figure 2a–r). Reductions in species richness and abundance varied sig-
nificantly among surveyed years, forest types, and El Niño classes (RM-
ANOVA Year × Forest type × El Niño species richness F4,48 = 2.9, p = .02; 

abundance F4,48 = 3.6, p = .01; Table S2 and Figure 2a–f). Post hoc pair-
wise comparisons showed that undisturbed forests that burned during 
the El Niño had significantly lower species richness and abundance in 
2016 and in 2017 when compared with (a) all forests in the pre-El Niño 
survey and (b) undisturbed forests and logged forests that were im-
pacted only by the El Niño drought (Figure S3). Dung beetle species 
richness and abundance were significantly higher in undisturbed for-
ests and logged forests sampled before the El Niño than in either of the 
post-El Niño assessments, in logged forests and logged-and-burned 
forests sampled after the El Niño fires (Figure S3), or in logged-and-
burned forests affected by drought only (Figure S3).

Species composition varied significantly among years and forest 
types (RM-ANOVA Year × Forest type F4,48 = 2.9; p = .02; Table S2 and 
Figure 2g–i). The reductions of the pre-El Niño compositional similar-
ity were greater in fire-affected forests than in those affected only by 
drought during the El Niño (RM-ANOVA Year × El Niño F2,48 = 12.6, 
p < .0001; significant post hoc comparisons are shown in Figure S3). 
Dung beetle biomass varied significantly among years (RM-ANOVA 
F2,48 = 35.1, p < .0001) and El Niño classes (RM-ANOVA F1,24 = 24.0, 
p < .0001; Figure 2j-l). Post hoc analyses supported these findings, 
demonstrating that beetle biomass in 2017 within fire-affected undis-
turbed forests was lower than (a) in all forests surveyed before the El 
Niño and (b) in those logged forests and logged-and-burned forests 
that were affected by drought only and surveyed in 2016 (Figure S3).

When assessing post-El Niño changes in dung beetle ecolog-
ical functions, rates of dung removal and seed dispersal varied 
among years and El Niño classes (RM-ANOVA: El Niño × Year dung 
removal F2,48 = 7.0, p = .002; seed dispersal F2,48 = 4.2, p = .02; 
Figure 2m-r). Post-El Niño dung removal rates were significantly 
higher in drought-only impacted forests surveyed in 2016 when 
compared to fire-affected forests surveyed in 2017 (Figure S3). 
Dung removal rates also declined significantly between 2016 and 
2017 within undisturbed forests that were affected by drought 
only (Figure S3). Finally, post hoc comparisons suggested that 
seed dispersal rates in 2016 within logged-and-burned forests 
that burned again during the El Niño were significantly lower than 
those found in (a) pre-El Niño logged forests and logged-and-
burned forests (Figure S3), and (b) undisturbed forests and logged-
and-burned forests affected by drought only (Figure S3). Rates of 
seed dispersal in 2017 within logged-and-burned forests affected 
by El Niño fires were still lower than the pre-El Niño condition (t-
test, t-ratio = 3.6, p = .04; Figure S3).

4  | DISCUSSION

We evaluated dung beetle communities and the ecological processes 
of dung removal and secondary seed dispersal along a gradient of 
human-modified Amazonian forests, before and after an extreme 
drought and forest fires that occurred during the 2015–16 El Niño—
considered one of the strongest events to date (Timmermann et al., 
2018). Our investigation provides important insights into how the in-
teractions between human-driven disturbances and El Niño-related 
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weather and fires can affect tropical forest biodiversity and func-
tioning. All dung beetle responses declined after the El Niño event 
(Figure 2a–r), demonstrating the low resistance that tropical forest 
dung beetles and relevant ecological processes have to extreme dry 
seasons and associated fire events. Previous forest disturbance sig-
nificantly affected the post-El Niño dung beetle species richness, 
abundance, and compositional similarity to pre-El Niño condition 
(Figure 2a-i), while all beetle responses varied significantly between 
drought-only and fire-affected forests in at least one of the post-El 
Niño surveys (Figure 2a-r). Importantly, some dung beetle responses 
continued to decline up to two years after the El Niño event. Such 
longer-term declines were observed in both drought-only and fire-
affected forests (Figure 2e, k), suggesting there is either a lag be-
tween El Niño and the effects on tropical invertebrates and their 
ecological processes, or that ecological condition deteriorates over 

time (due to ongoing tree morality, for example—Silva et al., 2018). 
We discuss these results in light of the ecological consequences that 
interactions between climatic and local stressors can bring to tropi-
cal forest biodiversity and ecological functions.

4.1 | Direct drivers of change in dung beetle 
communities

We provide evidence that El Niño-induced droughts and fires can 
be strong direct drivers of change in dung beetle communities. 
Although spatial patterns of movement can vary among species 
(Silva & Hernández, 2015), most dung beetles are poor fliers—for 
example, having an estimated movement of 90 m in 48 hr (Silva & 
Hernández, 2015) and may not be able to escape understory fires; 

F I G U R E  2   Dung beetle responses to El Niño-induced drought and fires in previously undisturbed and human-modified Amazonian 
forests. (a–c) Dung beetle species richness, (d–f) abundance, (g–i) compositional similarity, (j–l) biomass and rates of (m–o) dung removal, 
and (p–r) secondary seed dispersal were sampled within 30 forest plots (n = 5 plots per forest type and El Niño class) in the eastern Brazilian 
Amazon region, near Santarém in the State of Pará. Surveys were carried out in 2010 (i.e., pre-El Niño survey) and in 2016 and 2017—
around 3–6 months and 15–18 months after the 2015–16 El Niño fires affected half of these forest plots. Models were repeated-measures 
ANOVA treating “Year” as the repeated measure, and “forest classes” and “El Niño classes” as grouping factors for each response variable. 
To facilitate post hoc visual comparisons within the analyzed data, error bars depict Fisher's least significant difference on the three-way 
interaction (ezPlot, by default; Lawrance, 2016); thus non-overlapping bars can be interpreted as being significantly different
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even if the flame heights are low, the area scorched extends many 
meters in height and dense smoke reaches beyond the canopy. 
Droughts and warming can also affect the survival and brood pro-
duction in adult dung beetles. Previous research has found a large 
number of beetles reabsorbing their oocytes—suggested as physi-
ological response to heat and water stress (Tyndale-Biscoe, Wallace, 
& Walker, 1981), while artificial warming experiments have shown 
that hotter and drier conditions affected the relative survival and 
emigration of two dung beetle species (Holley & Andrew, 2019a), as 
well as disrupted dung beetle reproduction via a decline in ball burial 
(Holley & Andrew, 2019b).

There is, however, a lack of understanding to what extent be-
lowground nests are affected by droughts or fires. Although tem-
peratures at the soil surface can be extremely high even during 
low-intensity fires (Kennard & Gholz, 2001), these decrease abruptly 
with increasing depth—for example, reaching only 22–25°C between 
22 and 30 cm in depth after burning for 2 hr (Beadle, 1940). But most 
Amazonian dung beetles nest in shallower soil layers (Griffiths et al., 
2015), raising the possibility that mortality within nests contributes 
to the immediate post-El Niño declines in dung beetle communities. 
Alternatively, the belowground environment may represent a refuge 
for dung beetles (both larvae and adults) nesting in deeper soil layers 
(Gregory, Gómez, Oliveira, & Nichols, 2015; Griffiths et al., 2015), and 
post-drought and fire emerged beetles could help explain the time 
lag between the El Niño and dung beetle responses two years later.

4.2 | Indirect mechanisms underpinning post-El 
Niño changes in dung beetle communities

With some exceptions (e.g., Barlow et al., 2016; Cleary & Mooers, 
2006), the current literature on drought- and fire-induced impacts 
on tropical forests is dominated by plant studies (e.g., Berenguer 
et al., 2018; Brando et al., 2008; Silva et al., 2018), which show in-
creased tree mortality (Nakagawa et al., 2000), reduced carbon stor-
age (Brando et al., 2019), and large physiological changes such as 
in flower and fruit production (Sakai et al., 2006). Given the scale 
of effects observed among the primary producers, it seems likely 
that invertebrate taxa would also be affected. Two obvious mecha-
nisms could underpin these changes. First, lower post-El Niño fruit 
production can result in large-vertebrate famine (Barlow & Peres, 
2006; Wright, Carrasco, Calderon, & Paton, 1999). These drought 
and fire-induced changes in vertebrate communities (Barlow, 
Peres, Henriques, Stouffer, & Wunderle, 2006; Peres, Barlow, & 
Haugaasen, 2003) are likely to result in cascading effects on dung 
beetles (Nichols, Gardner, Peres, & Spector, 2009), as co-declines 
in these two groups have been reported in other human-modified 
tropical forest landscapes (e.g., Bogoni, Silva, & Peres, 2019; Raine & 
Slade, 2019). Second, high rates of tree mortality following droughts 
and forest fires result in more open canopies, which may affect com-
munities through the hotter and drier forest microclimates (Brando, 
Oliveria-Santos, Rocha, Cury, & Coe, 2016; Hardwick et al., 2015). 
Tropical dung beetles have been shown to respond to such forest 

modification, both indirectly through sublethal changes on their 
body conditions (França, Barlow et al., 2016; Salomão, González-
Tokman, Dáttilo, López-Acosta, & Favila, 2018) and directly, by re-
ducing species-specific relative abundances and the community 
diversity and biomass (Barlow et al., 2016; França et al., 2016).

4.3 | Could pre-El Niño forest disturbance influence 
post-El Niño ecological communities?

Previous forest disturbance influenced the post-El Niño declines in 
dung beetle richness, abundance, and compositional similarity to pre-
El Niño condition, while previously logged-and-burned forests had 
slightly faster recovery times for some dung beetle responses between 
2016 and 2017. Both these findings suggest that previous forest dis-
turbance could have acted as an environmental filter or selective force 
(Balmford, 1996; Nunes et al., 2016): Microclimatic changes relating 
to previous logging or fires (e.g., Hardwick et al., 2015; Lindenmayer, 
Hunter, Burton, & Gibbons, 2009) may have extirpated the most dis-
turbance-sensitive species—as previously observed for dung beetle 
communities in primary forests converted to oil palm plantations in 
Southeast Asia (Edwards et al., 2014)—and favored the species that 
are more tolerant to drought and fires. This conjecture is supported 
by evidence showing that dung beetle species are highly susceptible 
to environmental modification (Beiroz et al., 2018), including changes 
in forest structure (Salomão et al., 2018) and microclimatic conditions 
(Birkett, Blackburn, & Menéndez, 2018). Perhaps more importantly, 
our results support that local human-driven disturbance and climate-
associated stressors can act together and influence tropical forest 
biodiversity and functioning. Thus, focusing on a single stressor may 
fail to capture the magnitude of the threat faced by tropical forests 
and their fauna (Barlow et al., 2018; Newbold et al., 2019), which are 
increasingly threatened by local human-driven disturbances (Lewis 
et al., 2015) and are expected to have more frequent and extreme 
droughts in the next decades (Duffy et al., 2015).

4.4 | Exploring the resilience of dung beetle-
mediated processes

The lack of influence of pre-El Niño forest disturbance on beetle-
mediated processes is consistent with previous studies showing 
the disturbance resilience of invertebrate-mediated processes in 
tropical forests (Ewers et al., 2015; França et al., 2018) and con-
firms that community and functional attributes may be asymmetri-
cally affected by human activities in tropical forests (Braga et al., 
2013; Carvalho et al., 2020; França et al., 2018). However, forest 
structure is known to be a key determinant of insect communities 
(Basset, Charles, Hammond, & Brown, 2001), and there is presum-
ably a threshold at which point changes in forest structure are so 
great that invertebrate communities and mediated processes are 
also affected (e.g., França, Frazão, Korasaki, Louzada, & Barlow, 
2017). The lower rates of dung removal and seed dispersal in post-El 
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Niño surveys (Figure 2m–r) suggest this threshold was surpassed by 
the severe impacts of the 2015–16 El Niño drought and wildfires 
on vegetation and forest structure in this region (Berenguer et al., 
2018; Silva et al., 2018; Withey et al., 2018). These lower rates of 
ecological functions—which occurred within both drought-only 
and fire-affected forests—could be attributed to the higher vulner-
ability of large-bodied dung beetles to forest disturbance (Larsen, 
Williams, & Kremen, 2005). For example, we found 61 individuals of 
Coprophanaeus lancifer (Linné, 1767) during the pre-El Niño survey 
in 2010, while only 11 and 5 specimens were sampled in 2016 and 
2017, respectively. This is the largest dung beetle species found in 
the study region and belongs to one of the most important func-
tional groups (large tunnelers) performing ecosystem functions of 
soil bioturbation (Gregory et al., 2015) and dung and seed removal 
(Slade, Mann, Villanueva, & Lewis, 2007).

4.5 | Dung beetle responses between El Niño 
drought-only impacted and fire-affected forests

We found dung beetle responses declining within both drought-
only and fire-affected forests. However, as expected by the relative 
severity of the impacts on vegetation, El Niño fire-affected for-
ests showed greater immediate declines (i.e., in 2016; Figure 2f–h, 
m–o) and longer-term losses in beetle responses (i.e., in 2017; 
Figure 2a,b,d, g–i) when compared to those forests that only ex-
perienced the drought. These findings provide evidence that both 
El Niño-related extreme droughts and fire events can bring drastic 
consequences not only for plant communities and carbon cycling 
(Silva et al., 2018; Withey et al., 2018) but also for fauna diversity 
and associated ecological functions.

However, drought effects on dung beetles were surprisingly 
strong considering that tree mortality in drought-affected forests 
is only 1%–3% (Phillips et al., 2010) compared with 50% or more 
in drought and fire-affected forests (e.g., Barlow et al., 2012). 
Furthermore, while there was a slight recovery in some fire-affected 
forests between 2016 and 2017 (e.g., Figure 2c,f,l–o,r), most dung 
beetle responses in drought-only forests declined even more from 
2016 to 2017. It is not yet clear why droughts should have such a 
strong and long-lasting impact, or why the relative magnitude of ef-
fects from fire and drought-and-fire for dung beetles should be so 
different from vegetation. Furthermore, as human activities such as 
logging and fires can affect forest structure and composition for de-
cades (Osazuwa-Peters, Chapman, & Zanne, 2015; Silva et al., 2018), 
it is unclear at what point and if the dung beetle-mediated ecosys-
tem functioning will return to pre-disturbance levels.

4.6 | Research limitations

While our findings are likely to reflect the short-term sensitivity of 
tropical invertebrates and associated processes in human-modified 
forests to El Niño drought and fires, they are not without limitations. 

One key issue is that our pre-El Niño plots were sampled nearly 
5 years before the event. Although assessments of the vegetation 
suggest minimal differences between 2010 and pre-El Niño samples 
in 2016, at least some of the influence of El Niño on invertebrate 
communities may be obscured by pre-El-Niño changes in biodiver-
sity through processes such as succession (e.g., Lennox et al., 2018), 
longer-term disturbance responses (e.g., Silva et al., 2018), or eco-
logical drift and competition (e.g., Levi et al., 2019; Ulrich, Puchałka, 
Koprowski, Strona, & Gotelli, 2019). As such, while before–after 
studies hold many advantages when the before assessment is im-
mediately before the disturbance (e.g., Christie et al., 2019; França, 
Louzada, et al., 2016), there is a risk that the ecological signal will 
become degraded with greater temporal disconnection.

Another potential limitation relates to seasonality. We sampled 
dung beetles at the end of the rainy seasons in 2010 and 2016, and 
in the rainiest months in 2017 (March–April; Figure S1). Thus, our 
research does not take seasonality into account, which can play 
a significant role in dung beetle responses to forest disturbance 
(Andrade et al., 2011; but see Gardner, Hernández, Hernández, 
Barlow, & Peres, 2008). Furthermore, the post-El Niño samples 
only extended to 15–18 months after the fires occurred in our for-
est plots, and patterns may be dominated by non-equilibrium pro-
cesses, including high levels of instability and stochasticity, which 
often dominate the short-term responses of ecological communities 
to disturbance (Mori, 2011) and can result in black-swan events in 
animal populations (Anderson, Branch, Cooper, & Dulvy, 2017). As 
our assessments are restricted to a single taxon and their associated 
functions, more long-term research is therefore needed to under-
stand how reproducible our results are in other taxa performing key 
ecosystem processes in tropical forests, such as ants (Griffiths et al., 
2018), termites (Ashton et al., 2019), and seed-disperser vertebrates 
(Paolucci et al., 2019). This would foster a better knowledge of how 
resilient tropical forest fauna and ecosystem functioning are to the 
interactions between human- and climate-associated stressors.

5  | CONCLUSIONS

By exploring the impacts of the 2015–16 El Niño on dung beetle 
communities and associated ecological processes across a gradient 
of previous forest disturbance in the Amazon, we confirm the threat 
posed by extreme drought and fire events for biodiversity and func-
tioning of human-modified tropical forests. We found that undis-
turbed forests were more sensitive than logged-and-burned forests 
for most dung beetle responses, and that El Niño drought alone and/
or combined with fires can result in drastic losses in beetle diversity, 
abundance, biomass, and rates of dung removal and seed dispersal 
that can last for at least 18 months. Our results, therefore, suggest 
that local human-driven disturbances and climate-associated stress-
ors can interact in different ways and that these interplays may 
asymmetrically affect the community and functional attributes of 
tropical forest invertebrates. However, future investigations, with 
more tightly controlled pre-disturbance conditions and longer-term 
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tracking of recovery, are needed to better understand the interac-
tions between multiple forest stressors.
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