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ABSTRACT 

Due to a number of factors involving the thermal environment of a broiler cutting 
installation and its interaction with the physiological and productive responses of birds, 
artificial intelligence has been shown to be an interesting methodology to assist in the 
decision-making process. For this reason, the main aim of this work was to develop an 
artificial neural network (ANN) to predict feed conversion (FC), water consumption 
(Cwater), and cloacal temperature (tclo) of broilers submitted to different air dry-bulb 
temperatures (24, 27, 30, and 33ºC) and durations (1, 2, 3, and 4 days) of thermal stress 
in the second week of the production cycle. Relative humidity and wind speed were fixed 
at 60% and 0.2 ms-1, respectively. The experimental data were used for the development 
of an ANN with supervised training using the Levenberg-Marquardt backpropagation 
algorithm. The ANN consisted of three input layers one hidden, and three output with 
sigmoidal tangent transfer functions with values between -1 and 1. The developed ANN 
has adequate predictive capacity, with coefficients of determination (R2) for tclo, FC, and 
Cwater of 0.79, 0.87, and 0.97, respectively. In this way, the proposed ANN can be used as 
a support for decision-making to trigger poultry heating systems for broiler breeding.  

 
 
INTRODUCTION 

In the current poultry scenario, changes in 
management techniques are indispensable. Therefore, the 
use of intelligent systems for decision-making is necessary 
to obtain a maximum index of market performance and 
competitiveness (Pandorfi et al., 2012), in addition to 
mitigating or even eliminating the harmful effects of a 
thermal environment unsuitable for the physiological 
demands of birds (Nascimento et al., 2014). 

Several studies have verified only the influence of 
different thermal stress intensities, without varying the 
duration of the thermal stress (Al-Zghoul et al., 2015; 
Cândido et al., 2016: Zhang et al., 2016). However, 
analyzing the intensity and duration together makes it 
possible to investigate possible occurrences of adaptation of 
the bird to the stressful environment, depending on the 
exposure time, or to verify how stressor intensity can 
aggravate productivity losses due to longer or shorter 
exposure times. Thus, the control of environmental 

variables becomes essential for the process of rearing 
broilers (Cassuce et al., 2013; Mirzaee-Ghaleh et al., 2015). 

The evaluation of the thermal comfort of birds can 
be measured by cloacal temperature, which is altered when 
the bird is subjected to thermal stress (Yanagi Junior et al., 
2012; Mayes et al., 2014). Also, discomfort influences 
water consumption (Lopes et al., 2015), feed intake, and 
weight gain, affecting feed conversion (Boiago et al., 2013).  

Therefore, the importance of monitoring the thermal 
stress of broilers and the influence on behavioral 
parameters, physiological responses, and productive 
performance has been verified. Thus, through information 
generated by intelligent systems, the producer will be able 
to control his business more appropriately (Pandorfi et al., 
2012; Ferraz et al., 2014). 

Among these systems, we can include artificial 
neural networks (ANNs), which consist of computational 
models formed by simple processing units based on the 
structure of the human brain, thus called artificial neurons 
(Binoti et al., 2013). These units allow the system to 
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simulate behaviors, such as learning, association ability, 
generalization, and abstraction, which are based on the logic 
of parameters (Ferreira et al., 2011). 

The applicability of ANNs is associated with 
situations where input and output information are 
interconnected by a nonlinear relationship of dependent and 
independent variables. Thus, ANNs can be used for 
predicting and representing parameters not quantified from 
data evaluated by behavior patterns, thus allowing the 
development of techniques for solving complex problems 
(Pandorfi et al., 2011; Matin et al., 2012). 

In this sense, mathematical modeling through ANNs 
is a critical methodology for the analysis of complex 
systems, such as the prediction of the thermal comfort of 
broilers. ANNs forecast different answers that quantify 
animal comfort, such as productive and physiological 
responses in the same network. Thus, there exist several 
studies that implement ANNs applied to predicting and 
managing environment and responses in animal 
production (Borges et al., 2018; Ribeiro et al., 2019; 
Santos et al., 2016).  

Therefore, the main objective of this study was to 
develop an ANN to predict the cloacal temperature, water 
consumption, and feed conversion of broilers subjected to 
different intensities and durations of thermal stress during 
the second week of the production cycle. 

 
MATERIAL AND METHODS 

The research was developed in four air-conditioned 
wind tunnels (0.8 x 5.0 m) installed in an animal ambiance 
laboratory. All procedures performed during this 
experiment were approved by the Ethics Committee for the 
Use of Animals (CEUA) of the Federal University of Lavras 
(UFLA), Minas Gerais, protocol No 008/12. The air-
conditioned wind tunnels were constructed of steel plates 
and PVC pipes; each tunnel was equipped with two 
electric heaters and two humidifiers operating in two 
stages of the drive. 

Ventilation inside each tunnel was performed by 
employing an exhaust with a diameter of 40 cm, and the 
speed adjusted using a potentiometer. Inside the tunnels, 
cages of 0.24 m2 (0.40 x 0.60 m) were allocated, which were 
divided into three equal parts and equipped with 
independent feeders and drinking fountains in each 
repetition. To control the temperature inside the room,     
two air conditioning systems with 18,000 BTUs of power 
were used. 

The control of the thermal environment within the 
air-conditioned wind tunnels was carried out by the 
combination of a data logger (CR1000, Campbell 
Scientific), a relay controller (SDM-CD16AC, Campbell 
Scientific), a channel multiplexer (AM16/32B, Campbell 
Scientific), and air dry-bulb temperature sensors (tdb) and 
relative air humidity (RH) (HMP45c, Vaisala, accuracy ± 
0.3ºC for tdb and ± 2 % for RH).  

During the entire experimental period, Cobb 500® 
males and females from the same hatchery were used, where 
they were vaccinated against the avian diseases Marek’s, 
Gumboro, and avian pox. The birds arrived at the 
experiment shortly after birth and remained until they had 

completed twenty-two days of life. During this period, 
water and ad libitum feed was supplied to birds to meet their 
nutritional requirements according to Rostagno et al. 
(2011). The feed used was the same for all chicks 
throughout the experimental period, with no variation in 
its formulation. 

The experiment was carried out in four stages, in 
order to evaluate sixty birds in each stage, totaling two 
hundred and forty animals. Thus, in each distribution of the 
cage, five birds were allocated, characterizing fifteen birds 
per air-conditioned wind tunnel in the first week of life. 
However, to maintain the ideal density of comfort, in the 
second and third week of life, four and three birds were 
kept, respectively, according to the Cobb manual (2013), 
because the high density harmfully affects physiological 
parameters (Castilho et al., 2015). Hygienic maintenance of 
the breeding environment was carried out daily to avoid the 
formation of gases and to provide a pleasant environment 
for the development of broilers (Sousa et al., 2016).  

The experiment was carried out for twenty-one days, 
in which the birds were submitted to thermal challenges 
only in the second week of life—from the eighth day of life. 
During the first and third weeks of life, temperatures were 
maintained in the thermoneutrality zone, with air dry-bulb 
temperatures (tdb) of 33ºC and 27ºC, respectively (Cassuce 
et al., 2013; Ferraz et al., 2018). In the second week, a 
difference between treatments was established by the 
intensity and duration of thermal stress. The stress 
intensities were 24, 27, and, 33ºC for each stage, in 
addition to 30ºC for tdb, which was considered as comfort 
for the second week of life (Cassuce et al., 2013; Ferraz et 
al., 2017). 

Thermal stress was applied at four levels of duration 
(1, 2, 3, and 4 days) in the first four days that make up the 
second week (8th, 9th, 10th, and 11th days of life); shortly 
after this period, the temperatures returned to the thermal 
comfort zone (30ºC). The experimental stage submitted to a 
temperature of 30°C was considered the control (comfort), 
and the others were maintained in order to provide thermal 
challenges both by low (24ºC and 27ºC) and high (33ºC) 
temperatures (Curtis, 1983; Cassuce et al., 2013). 

The luminosity was fixed inside each tunnel with 
the aid of an analog dimmer and measured using a lux 
meter (LDR-380, accuracy ± 3%). The established values 
were 25, 10, and 5 lux, for the first, second, and third 
week, respectively (Cobb, 2013), to provide the maximum 
efficiency in development that adequate lighting               
can generate on broilers (Lima et al., 2014). In turn, 
relative air humidity (RH) was set at 60% and airspeed at 
0.2 ± 0,1 m s-1.  

Cloacal temperature (tclo) was measured daily using 
a digital thermometer (±0.01ºC accuracy) in a bird by 
distribution of the cage, totaling twelve birds per day or 
forty-eight in each of the four stages. 

The experiment was conducted by adopting a 
completely randomized design (CRD) with three replicates 
in a factorial scheme (4 x 4), four tdb in the second week of 
birdlife (24, 27, 30, and 33°C), and four durations of 
thermal stress (1, 2, 3, 4, and 5 days).  
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After the experiment, a database containing the 
primary information of tdb, duration of stress (DS), days after 
stress (DAS), cloacal temperature (tclo), feed conversion 
(FC), and water consumption (Cwater) was generated.  

For the preparation of the ANN, the data set 
consisted of three input variables: tdb (24, 27, 30, and 33ºC), 
DS (1, 2, 3, 4 days), and DAS (0, 1, 2, 3, 4 and 5 days). The 
tclo (ºC), FC (g g-1) and Cwater (mL day-1) were used as output 
variables. To train, validate, and test ANN-based models, 
the total dataset formed by 360 data pairs was used. The data 
were randomly divided using the random sampling 
function, and 70% (252 data pairs) of the data were used for 
training, 15% (54 data pairs) for validation, and 15% (54 
data pairs) for testing. These percentages for the subsets 
were chosen because they are those most commonly used 
for mathematical modeling (Brown-Brandl et al., 2005; 
Hernández-Julio et al., 2014). Thus, 3000 ANN-based 
models were developed (modifying the number of neurons 
in the hidden layer from 1 to 300 with 10 replications each) 
with the objective of predicting the three output variables 
(tclo, FC, and Cwater), and the architecture that presented the 
highest correlation coefficient (R2) and the lowest mean 
square error (MSE) was selected. 

According to Kiran & Rajput (2011), the formation 
layer is transmitted to the ANN model with the aid of a set 
known as data patterns, causing the network to continually 
“learn,” adapting its weights and deviations through an 
activation function.  

Activation functions can be sigmoid, tangent-
sigmoid, linear, or other types. Thus, the network is formed 
until the error is reduced enough to provide an accurate 
output to the input dataset. Model parameters include the 
number of hidden layers, transfer functions in each hidden 
layer, the number of neurons in the hidden layer, the 
learning rate, the moment rate, and the weights of neurons. 

To develop the ANN-based models, Matlab® 
software, version 7.13.0.564 (R2011b), was used with the 
application of the neural adjustment tool (Mathworks, 
2013). These models were trained using 70% of randomly 
divided experimental data, with different numbers of hidden 
neurons (from 1 to 20, ranging from 1 to 1; from 25 to 200, 
ranging from 5 to 5; and from 210 to 300, varying from 10 
to 10) for the test.  

 

In this study, of all trained network architectures 
(3000) using the mentioned methodology, the tested 
architecture that presented the best performance for 
prediction of tclo, FC, and Cwater was the multi-layer network 
(multi-layer perceptron; MLP) with 50 neurons in the 
hidden layer. This MLP architecture has been widely used 
for the development of ANN (Rocha Neto et al., 2015; Rigo 
Júnior et al., 2016; Borges et al., 2017; Felix et al., 2017). 

Three feedforward layers (input, hidden layer, and 
output layer) and supervised training were employed with 
the Levenberg-Marquardt backpropagation training 
algorithm, which is considered the fastest method for 
networking (Barbosa et al., 2005). MSE was used for the 
performance function of the model, in which, for the output 
of the neuron, the sigmoidal tangent activation function was 
selected (Ferraz et al., 2014; Oliveira et al., 2015).  

Initial network parameters were configured as 
follows: hidden layer (1, default value), number of times 
(1000), error tolerance (<0.099), learning rate (0.7), and 
time rate (1x10-3) (Hernández-Julio et al., 2014). These 
values, as well as neuron weights, were used as the standard 
configuration by the software for network training. The 
software optimized these values automatically. This model 
was developed to allow the user to train and test ANN 
independently. In turn, for the significance analysis of the 
ANN coefficients, f- and t-tests (p<0.05) were used.  

 
RESULTS AND DISCUSSION 

For the output variables cloacal temperature (tclo), 
feed conversion (FC), and water consumption (Cwater), the 
ANN architectures with the best performance were chosen 
using the criterion of the lowest mean square error (MSE) 
of prediction. The MSE values in the training, validation, 
and testing processes were 59.16, 102.27, and 67.23, 
respectively. The variables chosen contributed to the 
learning of the network, increasing accuracy in pattern 
recognition (Pandorfi et al., 2011).  

Adjustment of the values of the errors of the desired 
output versus predicted output was carried out using the 
Levenberg-Marquardt backpropagation algorithm 
(Hernández-Julio et al., 2014), in which the system made 
changes in the values of synaptic weights and bias values 
until it reached the least error. Table 1 lists synaptic and bias 
weights resulting from the ANN training process that 
achieved the best performance.  
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TABLE 1. Bias and synaptic weights of input and output variables. 

  Synaptic input weights   Synaptic output weights 
Number of 

neurons 
Bias tdb  DS  DAS    tclo  Bias FC Bias Cwater  Bias 

1 5.6730 -3.7309 -2.1988 -2.5360  -0.8105

-1.9518 

-1.0462

-1.1428

0.5961 

-1.0346 

2 5.4965 -1.6594 -2.9090 -2.6028 -0.0417 0.6430 -0.2194 
3 4.5551 -4.8295 -1.1604 3.2698 0.5774 -0.3427 0.3309 
4 4.2253 -3.7410 -3.2180 1.5039 0.2993 -0.0691 0.6132 
5 3.7633 -1.5908 -5.6054 2.0938 0.1191 0.7127 -0.6062 
6 3.7993 -5.1288 -0.8997 -0.9806 0.0360 0.1020 0.7392 
7 3.9382 -4.2414 -2.7975 0.8227 -0.1431 0.4602 -0.9695 
8 -3.7455 3.2583 -3.0143 -1.4687 -0.3335 0.1747 0.0806 
9 3.8952 -3.9638 -2.6769 -1.4269 0.2714 0.8014 0.0097 

10 -2.4731 0.8126 5.4852 -0.7459 0.1950 0.5199 -0.4965 
11 3.4339 -1.5757 -4.5601 -0.7468 0.4251 -0.0822 -0.0410 
12 2.9459 -4.4153 0.8536 2.9175 -0.9589 0.7146 -0.1023 
13 -2.8741 0.0841 -0.3531 4.8561 0.3627 -0.2947 0.2444 
14 -2.4693 3.0516 -4.2634 0.3784 -0.1241 -0.4582 -0.0999 
15 3.4082 -3.9547 1.5403 -1.2257 0.0288 0.3433 0.2909 
16 -1.9316 5.2635 -0.7620 0.9752 0.5126 0.1848 -0.0303 
17 1.2329 -2.2100 1.3950 -2.8426 -0.2358 0.4321 -1.1778 
18 2.1046 -2.7346 1.7043 -4.0373 -0.0693 -0.3800 0.7716 
19 -2.0332 4.0696 3.2312 4.2627 -0.9403 0.1424 0.0399 
20 -3.3880 3.3955 -1.1837 3.3351 -0.6707 -0.0018 0.2229 
21 -0.1774 -1.9272 3.2974 2.3974 -0.6174 -0.1925 -0.2343 
22 -0.1527 -4.3510 -3.1714 0.8211 0.2560 -0.5563 0.0761 
23 -0.5192 -0.7998 -2.2317 -2.5793 -0.9796 -0.5854 -0.0632 
24 -0.6838 4.0195 -0.0300 4.0795 -0.2690 0.2154 -0.3345 
25 0.2941 3.8122 3.5383 -2.2838 1.1548 -1.1709 0.2044 
26 0.1135 4.6109 1.7382 -4.5512 -0.1423 0.5313 -0.0620 
27 -0.6931 4.1909 1.9806 4.1861 0.6677 -0.0362 0.4297 
28 -0.5459 -3.3901 3.1203 0.2114 -0.4230 0.8781 -0.2626 
29 -1.4810 -3.9807 -4.5295 2.5876 1.1113 -0.9750 0.2020 
30 -0.9797 3.0255 -3.5221 -3.9337 -0.2520 0.1789 -0.2063 
31 -1.3851 -4.7913 2.3962 -1.9010 0.7647 -1.2764 0.2495 
32 -2.3812 -1.3094 3.5509 2.1522 0.0825 -0.6756 0.1143 
33 2.5705 3.6264 3.3295 1.4181 -1.0652 0.0338 -0.0028 
34 1.4169 3.9074 3.4495 0.8445 0.5382 -0.4481 0.4072 
35 -2.2387 -4.8972 1.3467 0.4737 0.1076 -0.4438 -0.1736 
36 -2.3037 -1.5509 5.0220 0.3295 0.5899 -0.0982 0.2742 
37 -3.5870 -2.2083 3.8040 2.1091 -0.5302 1.1806 -0.6557 
38 2.4058 3.2096 -0.6839 -3.0771 -0.2512 0.3810 0.0444 
39 -2.7776 -2.8914 -1.7215 1.9028 -0.3326 -0.2601 -0.2765 
40 -1.2673 -5.8171 -0.0245 -2.2488 -0.0350 -0.0270 0.0273 
41 5.3834 0.3080 -1.4606 4.3778 -0.4368 -0.5450 0.5777 
42 2.3525 2.0842 3.2726 4.9933 -0.5924 -0.2983 -0.1340 
43 4.3052 2.5841 2.6182 4.2024 -0.2405 0.9707 0.0420 
44 -4.1299 -4.3737 -1.7779 1.4595 -0.7133 1.4519 0.0956 
45 5.5556 0.3355 -0.4018 4.4813 1.7529 0.8221 -0.2202 
46 -5.6530 -3.7297 1.2921 3.8807 0.4996 -0.3991 0.8200 
47 4.2032 2.4936 -2.0691 6.1808 0.2713 -0.1002 0.1937 
48 -5.4270 -2.8866 0.2158 4.0836 -0.3463 -0.2538 -0.7294 
49 4.4499 5.5281 -1.7889 -0.6415 0.2831 -0.3974 -0.4044 
50 5.3942 2.5977 3.8161 4.0788  0.8404 -0.7622 0.0342 

Legend: tdb: air dry-bulb temperature; DS: duration of stress; DAS: days after stress; tclo: cloacal temperature; FC: feed conversion; and Cwater: 
water consumption. 
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The model with the lowest values of MSE (59.16, 
102.27, and 67.23) in the training, validation, and test data 
was obtained with a hidden layer consisting of 50 neurons; 
the highest values of MSE among all the tested architectures 
were 145.54, 1,935.04, and 2,140.02 for the training, 
validation, and test data, respectively. The number of 
neurons in the hidden layer for the architecture with the 

highest values of MSE was 230 and it obtained an R2 of 
0.875. Figure 1 illustrates that the lowest value was 
obtained on the tenth cycle. The maximum number of 
seasons was 15, and the final momentum rate was 0.1. The 
function used to stop training was “minimum gradient 
reached.” The output layer was composed of three neurons 
(tclo, FC, and Cwater). 

 

 
 

 

FIGURE 1. ANN training curve for the renewal of synaptic weights. 
 

As the number of neurons in the hidden layer 
increases, performance improves and reaches satisfactory 
levels; however, if the number of neurons in the hidden 
layer is excessive, performance can be compromised, 
because many weights and the bias of neurons could have 
values equal to zero and would increase the processing of 
output value calculations (spatial and temporal complexity). 
In this case, the methodology proposed by Ferraz et al. 
(2014) recommends using the model with the best 
performance, using the highest coefficient of determination 
(R²) and the lowest MSE. Thus, these values were obtained 
with values of intermediate neurons.  

The efficiency of the model presented in this study  

corroborates the studies conducted by Klassen et al. (2009), 
who used ANN to model the cooling process of chicken 
carcasses in immersion tanks, in which artificial             
neural networks were adequate for the modeling of the 
researched system. 

In this work, the simulation of the model was 
performed according to the combination of the input 
variables tdb, DS, and DAS, to predict tclo, FC, and Cwater. 
The simulated values were compared with the experimental 
data obtained in the air-conditioned wind tunnels, and the 
means, medians, and minimum and maximum values for 
mean deviation, standard deviation, and percentage error 
were determined (Table 2). 

 
TABLE 2. Descriptive statistics comparing the values obtained experimentally and simulated by the model for cloacal 
temperature, feed conversion, and water consumption of broilers. 

Indices  
Cloacal Temperature (ºC) Feed Conversion Water consumption (mL day-1) 

Min. Mea. Medi. Max. Min. Mea. Medi. Max. Min. Mea. Medi. Max. 
Mean 

deviation 
0.00 0.13 0.07 0.81 0.00 0.07 0.05 0.34 0.00 2.24 1.20 11.52 

Standard 
Deviation 

0.00 0.09 0.05 0.57 0.00 0.05 0.04 0.24 0.00 1.59 0.85 8.14 

Error (%) 0.00 0.30 0.18 1.95 0.10 4.85 3.43 21.7 0.00 2.05 1.10 9.98 

Min.= Minimum; Mea.= Mean; Medi.= Median; Max.= Maximum. 
 
The ANN trained in this work for prediction of tclo 

presented an average deviation of 0.13ºC (Table 2) that is, 
close to the value obtained by Ferreira et al. (2010). In this 
work, the authors developed a neuro-fuzzy model to predict 
the tclo of broilers as a function of RH, tdb, and air velocity, 
and the compared results between the neuro-fuzzy network 
and those experimentally measured obtained a mean 
deviation of 0.11ºC. 

The mean percentage error found between the 
simulated and observed values of FC was 4.85%. In turn, 
Schiassi et al. (2015) obtained an average percentage error of 
1.94% for FC. It is noteworthy that while in this study the 
data were evaluated daily, in work developed by Schiassi et al. 

(2015) the analyses were weekly; this study is characterized by 
lower variation resulting in lower error values. 

When using ANN to predict the body mass of 
broilers, Ferraz et al. (2014) found mean values for absolute 
deviation, standard deviation, and percentage error of 3.3, 
2.3, and 1.2%, respectively. For the ANN developed, 
considering the same statistical analyses, it can be verified 
that the values are modified according to the output 
variable; however, the mean values found in this study were 
close to the values published by the cited authors. 

Vieira et al. (2011) developed an ANN to predict 
pre-slaughter losses through the mortality of broilers, and 
the results were not satisfactory due to low accuracy. Table 
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3 shows that the MSEs have variation between output 
neurons; this reflects the actual behavior of the variable (tclo, 
FC, and Cwater) instead of the absence of information. Also, 
when adjusting the linear regression models to confer the 
accuracy of an ANN developed with the observed values, it 
can be observed that the slope values closer to 1 indicate a 
better accuracy in the model (Tedeschi, 2006). 

The values of the standard error and mean quadratic 
error associated with Cwater are 3.29 and 3.40%, respectively 
(Table 3). These values were higher than those of the other 
variables studied, and were influenced by oscillation in 
daily consumption that was influenced by factors such as 
age, rise in room temperature, and feed consumption (Gama 
et al., 2008). 

 
TABLE 3. Standard error, square root of the mean square error (RMSE), regression coefficient, and intercept for cloacal 
temperature (tclo), feed conversion (FC) and water consumption (Cwater) obtained experimentally and simulated by the model. 

Variable Standard Error RMSE Regression Coefficients 

Cloacal Temperature  0.17 0.19 0.8431 ± 0.0379(1) 

Feed Conversion 0.09 0.10 0.8683 ± 0.0517(1) 

Water Consumption 3.29 3.40 0.9648 ± 0.0176(1) 

 (1) The coefficients are significant according to the t-test (p<0.05). All regressions were significant according to the F-test (p<0.05). 
 

FIGURE 2. Linear regressions of cloacal temperature (tclo - A), feed conversion (FC - B), and water consumption (Cwater - C) of 
broilers obtained experimentally and simulated by the ANN model, in the second week of life. 
 

Simple linear regressions of the values obtained 
experimentally and simulated by ANN are illustrated in 
Figure 2, in which the values of R2 for tclo, FC, and Cwater 
were 0.87, 0.79, and 0.97, respectively.  

According to the mentioned results, the ANN with 
the best architecture performed well, because 87% of the 
predicted values for the tclo were achieved with absolute 
deviations ranging from 0 to 0.8. For the case of FC, the 

ANN obtained satisfactory performance, because 79% of 
the predicted values were reached with absolute deviations 
ranging from 0 to 0.34. For Cwater, the performance was 
higher than the others, and 97% of the predicted values for 
the variable were reached with absolute minimum 
deviations of zero (0) and maximum sums of 1.20.  

Therefore, choosing an architecture with the lowest 
EQM and with the highest R2 indicates that the predicted 

A. B. 

  
 

C. 
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values will have the best results and, consequently, a better 
performing system for management aid in the second week 
of the production cycle. 

According to the data obtained from the literature, 
Medeiros et al. (2001) developed an empirical model to 
predict FC and found a coefficient of determination (R2) of 
0.72 for the same variable under study; the R2 for the 
adjusted model in this study was 0.79. 
   
CONCLUSIONS 

 The methodology used in this work allowed us to 
obtain different models based on ANN. Thus, it can be 
verified that the application of repetitions (in this case, 10) 
for each number of neurons in the hidden layer (from 1 to 
300), made it possible to obtain different random 
combinations of the training, validation, and testing data, 
allowing the ANN architectures to capture an appropriate 
combination for predicting output variables. 
 Thus, the proposed multilayer perceptron artificial 
neural network obtained adequate performance for the 
prediction of cloacal temperature, feed conversion,             
and water consumption of Cobb 500® strain broilers 
subjected to thermal challenges in the second week of the 
production cycle.  
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