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1. Introduction
The search for the understanding of ecological processes 
that determine species distribution patterns, tree 
community structure, and dynamics is one of the main 
challenges in plant ecology (Tilman et al., 1997; Begon 
et al., 2007; Leps, 2013). The occurrence of a species in a 
given area is determined by its colonization capacity and 
environmental conditions that act as a filter to colonization, 
mediated by evolutionary factors (Leps, 2013). When 
environmental conditions are spatially heterogeneous, 
competitors may coexist for long periods of time through 
species differentiation in their ability to acquire and use 
resources (Chesson, 2000). 

On the small scale, heterogeneity in soil and habitat 
conditions is an important driver of plant community 
structure (Baldeck et al., 2012). On these scales, soil 
variation in fertility and texture may be so pronounced 
as to act as filters, influencing tree species distribution, 
composition, and substitution (Figueiredo et al., 2018; 
Medvigy et al., 2019), community structure (Peña-Claros 

et al., 2012; Martins et al., 2015), and temporal variations 
in demography and biomass (Russo et al., 2008; Quesada 
et al., 2012). 

For instance, soils play an important role in post 
disturbance dynamics, being a potentially decisive factor in 
determining the successional trajectories of tropical forest 
regeneration (Chazdon et al., 2007; Martins et al., 2015). 
Under these conditions, the environmental heterogeneity 
produced by variation in soil type, coupled with forest age, 
explains changes in basal area, species, and tree density 
that occur along the successional gradient (Martins et al., 
2015).

Environmental heterogeneity plays a major role in 
the evolutionary differentiation across communities 
dwelling in different habitats (Leps, 2013), especially 
in seasonally dry tropical forests (Pennington et al., 
2000; Neves et al., 2015). Pennington et al. (2009) 
found high niche conservatism among seasonally dry 
tropical forests and demonstrated the importance of the 
evolutionary dimension for determining the patterns of 
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these communities. Thus, seasonally dry tropical forests 
provide a good study case for understanding community 
assembly rules, given their disjunct distribution and past 
connections resulting in high environmental heterogeneity 
(Pennington et al., 2000).  

Studies have shown this floristic differentiation and 
environmentally driven distribution patterns in the 
Brazilian semideciduous seasonal forests and related this 
physiognomy to other physiognomies of the Atlantic 
domain (Oliveira-Filho and Fontes, 2000; Oliveira-Filho 
et al., 2005). Ecological patterns in semideciduous forest 
fragments have been investigated through tree community 
structure and ecological guilds (Nunes et al., 2003), as well 
as through the role of environmental heterogeneity for 
species distribution (Espirito-Santo et al., 2002). However, 
studies that investigate the effects of temporal variation 
and its interactions with environmental variables in this 
vegetation type are scarce (Higuchi et al., 2008). Higuchi 
et al. (2008) demonstrated that soil variability might not 
reflect the dynamic community rates (or the community 
temporal change in demography and biomass). However, 
it is not yet known whether the variability in soils can 
affect beta diversity and community structural processes 
over time.

Tree communities are dynamic elements and changes 
occur over time at population levels of species and 
individuals (Felfili, 1995a). Changes include edaphic, 
climatic, and biogeochemical factors that influence the 
colonization of the environment and vegetation dynamics 
by affecting the success of different life strategies (Phillips 
et al., 2004). T﻿hus, in spite of the great diversification 
of habitats among fragments of seasonally dry forests 
and temporal changes, communities tend to maintain 
a composition pattern depending on the evolutionary 
adaptations of the species to that habitat.

By examining the temporal changes in the composition 
and the structure of a community, it is possible to reveal 
the ecological processes that affect vegetation patterns 
(Chazdon et al., 2007). Understanding the temporal 
changes in heterogeneous communities on forest fragments 
is of paramount importance for the understanding of 
ecological processes, allowing conservation, management, 
and restoration actions for these environments (Higuchi et 
al., 2008). Accordingly, the aim of this study was to evaluate 
the floristic and structural changes of the tree community 
in a fragment of semideciduous seasonal forest present in 
three soil classes over a period of 16 years (2000–2016). We 
hypothesized that: (1) communities on different soil classes 
exhibit directional changes in dynamic behavior and (2) 
such temporal changes do not alter floristic and structural 
differences between communities. Specifically, the tree 
communities showed similar changes in the floristic and 
structural parameters, maintaining the pattern of three 

distinct communities in terms of floristics and structure, 
determined by edaphic heterogeneity.

2. Materials and methods
2.1. Characterization of the study area
The study was undertaken in a fragment of semideciduous 
seasonal forest (Oliveira-Filho and Fontes, 2000) located 
on the campus of the Federal University of Lavras, Lavras, 
Minas Gerais, Brazil (Figure 1). The fragment is situated 
at coordinates of 21°13′17.29″S and 44°57′47″W, covering 
an area of 8.75 ha, with elevations ranging from 890 m to 
948 m. The climate of the region according to the Köppen 
classification is Cwb, with mild summers and dry winters. 
The average rainfall and temperature between the years 
1965 and 2016 was 1428.92 mm and 20.05 °C, respectively 
(INMET, 2017).

The studied fragment occurs within an agricultural 
matrix, surrounded by farmland and pasture. According 
to reports from Espírito-Santo et al. (2002) and Higuchi 
et al. (2008), the area underwent clear-cutting in the 
1950s, with rapid natural regeneration mainly through 
resprouting. After the clear-cutting and the beginning 
of the regeneration process, the area did not suffer 
considerable anthropogenic disturbances, except in plots 
that were withdrawn from sampling.
2.2. Vegetation sampling
The first measurement occurred in 2000, when 52 
contiguous plots of 20 × 20 m (400 m2) were allocated, 
constituting a total area of 2.08 ha, encompassing 0.4 ha 
in Cambisol, 1.12 ha in Oxysol, and 0.56 ha in Nitosol. 
Tree individuals within the inclusion criterion of diameter 
at breast height of ≥5 cm were measured, numbered, and 
identified. The trees within the plots were measured again 
in 2005, 2010, and 2016, and because in the year 2005 a 
road was opened near the forest fragment, five plots were 
removed from the sample (Higuchi et al., 2008; present 
study). In the measurement years, all surviving individual 
trees were remeasured. New individuals that reached the 
inclusion criterion (recruits) were identified in the field 
with the aid of specialists, marked with aluminum tags, 
numbered, and measured in terms of circumference and 
height. Dead individuals were recorded.
2.3. Soil types of the sampling units
The forest fragment presents three types of soil: Red-Yellow 
Oxysols, Haplic Cambisols, and Red Nitosols (Espírito-
Santo et al., 2002; Higuchi et al., 2008), which differ in 
terms of fertility, texture, and drainage, classified according 
to EMBRAPA (2013). Nitosols are at the base of the slope, 
showing a medium texture and moderate drainage. This 
class has the highest K, Ca, and Mg and lower Al levels, 
which favors a higher effective cation exchange capacity 
and higher values ​for sum of bases (S) and base saturation 
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(V), besides showing the highest pH and highest organic 
matter and silt. Cambisols are also found at the base of the 
slope, with a medium texture, well drained and showing 
the highest values of P and sand and the lowest clay 
content, characterized by sandy soils. Oxysols, the most 
acidic soil type among the three, are found on top of the 
slope of the fragment, display a clayey texture, are well 
drained or significantly drained, and present the highest 
values of K, clay, H+AL, and aluminum saturation.  
2.4. Data analysis

Vegetation structural patterns on each of the 
three soil classes was evaluated by using the value of 
phytosociological importance (VI) and the value of 
cumulative phytosociological importance (VIA), obtained 
for the species through their relative participation in 
density (RD), dominance (RDo), and frequency (RF). 
These parameters were calculated based on the following 
formulae:

𝐴𝐴𝐴𝐴𝐴𝐴 = 	
𝑛𝑛𝑛𝑛
𝐴𝐴 			 ; 				𝑅𝑅𝑅𝑅 = )

𝐴𝐴𝐴𝐴𝐴𝐴
∑𝐴𝐴𝐴𝐴𝐴𝐴+	× 100				 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 	
𝑏𝑏𝑏𝑏𝑏𝑏
𝐴𝐴 			 ; 				𝑅𝑅𝑅𝑅𝑅𝑅 = )

𝑏𝑏𝑏𝑏𝑏𝑏
∑𝐴𝐴𝐴𝐴𝐴𝐴+	× 100				 

𝐴𝐴𝐴𝐴𝐴𝐴 = 	
𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 			 ; 				𝑅𝑅𝑅𝑅 = )

𝐴𝐴𝐴𝐴𝐴𝐴
∑𝐹𝐹𝐹𝐹𝐹𝐹+	× 100				 

 The expressions use the absolute density of the species 
(ADi), number of individuals of the species in the sample 
(ni), total area sampled in hectare (D), relative density 
(RD), absolute dominance of the species (ADoi), basal 
area of the species (bai), relative dominance (RDo), relative 
frequency of the species (AFi), number of sampling units 

in which the species was sampled (ui), and total number 
of sample units (ut). VIA is the cumulative sum of species 
VIs. 

Richness within soil classes was analyzed through 
rarefaction curves of estimated species richness as a 
function of individual abundance (Gotelli and Colwell, 
2001). The rarefaction curve is created by repeated 
resampling of the pool of individuals (N) randomly 
and thus generates the expected number of species in a 
sampled number of individuals, and it can be viewed as 
the statistical expectation of the accumulation curve, 
although without the bias promoted by the second (Gotelli 
and Colwell, 2001). The phytosociological structure and 
richness were compared spatially (among soil classes) and 
temporally (within each soil class). 

Differences concerning the floristic composition 
among soil classes were verified through analysis 
of similarities (ANOSIM) (Anderson 2013) at 5% 
significance level using the Bray–Curtis index (Magurran, 
2003) as a measure of similarity among sample units. 
Temporal changes in within-class floristic composition 
were evaluated through temporal beta diversity (https://
CRAN.R-project.org/package=betapart) for each soil class 
among measurement intervals. All statistical analyses 
performed for soil attributes, structure, and temporal 
variation were performed with R Studio software 3.3.1 
using the packages “vegan” (https://CRAN.R-project.org/
package=vegan) and “betapart” (https://CRAN.R-project.
org/package=betapart).

3. Results
The three soil classes showed particular structural 
characteristics, with differences concerning the most 

Figure 1. Location of the city of Lavras in the State of Minas Gerais, Brazil and in 
South America.
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important species (VIs), the structural pattern, richness, 
and floristic composition. Despite substrate differences, 
the density of individuals was similar among soil classes, 
characterized by a reduction in the number of individuals 
over time. Species richness was similar between the Oxysol 
and Nitosol communities, but superior to the Cambisol 
soil class in all measurement years (Figure 2). Richness 
displayed an increasing trend throughout the monitoring 
period that was consistent in the Oxysol class (131 species 
in 2000, 132 in 2005, 143 in 2010, and 145 in 2016), while 
in the Cambisol (89 species in 2000, 92 in 2005, 98 in 2010, 
and 95 in 2016) and Nitosol (121 species in 2000, 125 in 
2005, 126 in 2010, and 114 in 2016), richness decreased in 
the last interval, between 2010 and 2016 (Figure 2).

Besides presenting the lowest richness, the floristic 
composition of Cambisols was similar with the richest 
classes. The number of species exclusive to Cambisol 
ranged from four in 2000 and 2005 to 11 in 2016. In 
Nitosol, the largest number of exclusive species was 
observed in 2000, 24 species, and the smallest in 2016, 15 
species. Oxysol showed the highest number of exclusive 
species, ranging from 26 in 2005 to 38 species in 2016 

(Figure 3). The number of species shared among the three 
communities increased over the first two measurement 
intervals, from 69 species in 2000 to 72 in 2005 and 73 in 
2010, but declined in 2016 to a total of 62 species.

The soil classes differed significantly in relation to the 
floristic composition in all measurement years, Oxysol 
and Nitosol showing less dissimilarity than Cambisol 
(Figure 4). Temporal beta diversity did not significantly 
differ among the classes in any of the intervals, indicating 
that species substitution occurs similarly in each of them 
(Figure 5). 

The vegetation structure on Cambisols was 
characterized by the dominance of Galipea jasminiflora 
(A.St.-Hil.) Engl., while Oxysol and Nitosol communities 
were not dominated by any species (Figure 6).  Some 
changes in the species hierarchy of the community 
occurred across the 16 years of monitoring. From the five 
species of major importance in the Nitosol and Cambisol 
classes, three remained in this group over time. In the 
Oxysol, only Eugenia acutata Miq. remained among the 
five most important species during the 16 years. The 
species E. acutata also increased in importance over 
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Figure 2. Rarefaction curves for the three soil classes in the four years of measurement in a semideciduous seasonal forest in southeastern 
Brazil. The y axis represents the estimated richness (created by resamplings of individuals’ pools, randomly) and the x axis represents the 
number of individuals sampled (n). 
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the monitoring period in all soil classes, resulting in the 
presence of this species among the five most important in 
all soil classes in the last measurement year (Table).

4. Discussion
The tree communities on the three soil types investigated 
here were found to be distinct in terms of floristic 
composition and structure, and they varied in species 
composition and structural patterns over the years. 
However, these temporal modifications did not alter the 
original characteristics of the vegetation, corroborating 
our hypothesis. The floristic-structural distinction 
among soil types may be related to the diversification of 
these habitats (distinct niches), while the maintenance 
of existing patterns among communities over time may 
be associated with temporal differentiation of niches 

(Begon et al., 2007). This environmental heterogeneity 
is an important controlling factor of species distribution 
(Réjou-Méchain et al., 2008), and the maintenance of the 
environmental characteristics over time contributed to 
the maintenance of community temporal patterns. Thus, 
through specific environmental filters, habitats select 
ecologically equivalent species that maintain the already 
existing relationships in the community, producing a 
directional establishment.

Soil spatial heterogeneity may offer a wider range of 
niches so that species with different resource needs coexist 
locally, thus promoting high species substitution within 
small distances (Tilman and Pacala, 1993). The role of 
niche in structuring plant communities and maintaining 
diversity in tropical forests is widely recognized (Baldeck et 
al., 2012; Maia et al., 2020), together with the evolutionary 

Figure 3. Venn diagram of floristic composition (species richness) by soil class in a semideciduous seasonal forest in southeastern Brazil. 
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coexistence ability of plant species (Leps, 2013). In the 
present study, the highest species richnesses found in the 
Nitosol and Oxysol, as well as the lowest richness of the 
Cambisol community, were maintained over time. This 
greater richness may have been conditioned by the higher 
fertility in the Nitosol and the higher water availability in 
the Oxysol, characteristics that contribute to maintaining 
high species diversity (Tuomisto et al., 2014). John et al. 
(2007), analyzing soil maps of three plots in neotropical 
forests, found a distribution from 30% to 40% of the tree 
species associated with soil nutritional variation. Fertile 
soils tend to be more species-rich because they allow 
the coexistence of more species (Dantas and Batalha, 
2011; Figueiredo et al., 2018), mainly due to a decrease in 
resource competition (MacArthur, 1972). 

The strong influence of soils on the floristic composition 
of tropical forests has been discussed before (Espirito-
Santo et al., 2002; Figueiredo et al., 2018; Medvigy et al., 

2019). Texture and fertility variations can be limiting 
factors (environmental filters) for the establishment of 
species, thus reflected directly on their abundance and 
distribution (Botrel et al., 2002; Rodrigues et al., 2007; 
Fagundes et al., 2019) and, consequently, on the species 
richness of a site (Lemos et al., 2013). Species distributions 
are typically associated with habitat conditions, which act 
as environmental filters for plant colonization, survival, 
and growth (Cadotte and Tucker, 2017; Maia et al., 2020). 
The higher quality and quantity of resources will enable 
more species-rich areas (such as the Nitosol and Oxysol 
areas of our study) to be occupied by species with different 
life strategies. Cambisols are sandier in texture, with 
reduced water availability and lower fertility, all factors 
that can act as environmental filters in this community. 
The restrictiveness imposed by the Cambisol may exceed 
the physiological tolerance threshold of many species 
(Reich et al., 2003), reducing the number of species that 

Figure 4. Average dissimilarity of the soil classes found in the semideciduous seasonal forest sampled in southeastern Brazil, analyzed 
for the years of measurement using Bray-Curtis dissimilarity. Error bars represent the sample’s standard error.
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are able to colonize this area, as we show with our results.  
The higher dominance found in the Cambisol community 
is a typical pattern on forest formations under unfavorable 
environmental conditions (Souza et al., 2007; Fagundes et 
al., 2019). 

On small scales, soil is the main driver of vegetation 
patterns in space (Arruda et al., 2013; Chase 2014; 
Fagundes et al., 2019). Pedogenesis is a slow process, and 
because the fragment has not undergone any disturbance 
capable of altering soil properties (e.g., the occurrence of 
fire) (Rheinheimer et al., 2003; Lorenzon et al., 2014), the 
communities are structured according to the attributes 
of each soil type. Differences in habitat resources and the 
ability of species to colonize these areas are an expression 
of different anatomical, physiological, and functional traits 
in different ecological strategies (Wright et al., 2004; Chave 
et al., 2009; Mayfield et al., 2010; Adler et al., 2014).  Highly 
fertile soils tend to favor the existence of good competitor 
species, with fast growth and recruitment, high resource 
acquisition, and low internal conservation of resources, 
while poorer soils tend to favor slow-growth species that 
invest in survival more than growth (Wright et al., 2004; 
Chave et al., 2009; Adler et al., 2014). Thus, species fitness 

and representativity in the habitats are niche-determined, 
with plant–soil associations acting as an important 
mechanism shaping the plant community structure 
(Terra et al., 2018; Maia et al., 2020). On a small scale, 
the soil selected the most adapted individuals to explore 
the available resources, whereas other variables (e.g., 
precipitation and temperature) shaped the evolution of 
species on major scales (e.g., biomes) (Oliveira-Filho and 
Fontes, 2000). Evolutionary factors may have conditioned 
the coexistence of a pool of species that are able to persist 
in this area with similar life histories. Therefore, within 
the same fragment and the same physiognomy, habitat 
diversification contributes to supporting floristically and 
structurally different communities, but maintaining their 
patterns through temporal directional processes. 

 Studies that bring about the temporal dimension of 
forest community floristics and structure derive important 
insights on the direction of modifications verified among 
communities occurring in different environments (Botrel 
et al., 2002), such as the different soil types investigated 
here. Condit et al. (2002) highlighted that the substitution 
of species among communities may reflect the adaptation 
processes to different substrates, resulting from limited 

Figure 5. Temporal beta diversity of the three soil classes in the intervals between measurements in a semideciduous seasonal 
forest in southeastern Brazil. Beta temp = beta temporal diversity.
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dispersal associated with speciation or other historical 
factors. In the present study, similar temporal beta diversity 
among soil classes may also be associated with the fact 
that the tree community has not experienced significant 
anthropogenic interference since the 1950s (Espírito-
Santo et al., 2002), being already established in the area. 
Swanson et al. (2011) emphasized that disturbances are the 
main factors driving changes in forests due to the opening 
of clearings, which are the basis for the renewal of floristic 
composition of communities in tropical forests (Jardim et 
al., 2007). However, small clearings have little influence on 
recruitment rates, as they result in the appearance of few 
new individuals (Paula et al., 2004), and therefore in low 
species substitution over time. This substitution occurs by 
species with ecological equivalence (due to environmental 
filtering) and is constant over time, showing evolutionary 
adaptation of the communities to the soil types.

The results corroborate one of the main hypotheses 
about the origin and maintenance of beta diversity, 

which relates species distribution with environmental 
conditions, whereby a mosaic of areas with different 
species compositions would be controlled by the site’s 
environmental characteristics (Whittaker, 1956; Legendre 
et al., 2005). The presence of environmental filters in a 
community (as in the Cambisol class) results in the species 
of this community being a subset of a species group from 
a richer community, such as the entire studied fragment 
(Keddy, 1992). Thus, the presence of environmental 
filters makes the environment more selective, causing 
the recruited species to be eliminated before reaching the 
intermediate and upper strata of the forest (Carvalho et 
al., 2009). Consequently, only species that are functionally 
adapted to survive and grow under the specific conditions 
of that environment are able to establish themselves in the 
community (Lohbeck et al., 2013). This selectivity of the 
environmental conditions leads to a lower species richness 
and greater dominance (Keddy, 1992; Botrel et al., 2002; 
Fagundes et al., 2019). In the Cambisol, the structural 

Figure 6. Structural pattern of the three soil classes for each of the years of measurement in a semideciduous seasonal forest in 
southeastern Brazil. The y axis represents the value of phytosociological importance (importance value – IV) and the x axis presents the 
value of cumulative phytosociological importance (accumulated importance value – AIV).



SANTOS et al. / Turk J Bot

240

Table. Importance values​ (VI%) of the five most important species in the years 2000, 2005, 2010, and 
2016 by soil class in a semideciduous seasonal forest in southeastern Brazil.

2000
Class Species VI Rank

Cambisol

Galipea jasminiflora (A.St.-Hil.) Engl. 9.44 1°
Sebastiania commersoniana (Baill.) L.B.Sm. & Downs 6.26 2°
Platycyamus regnellii Benth. 3.93 3°
Machaerium stipitatum (DC.) Vogel 4.20 4°
Albizia polycephala (Benth.) Killip ex Record 4.08 5°

Nitosol

Casearia sylvestris Sw. 4.64 1°
Albizia polycephala (Benth.) Killip ex Record 4.61 2°
Cupania vernalis Cambess. 3.98 3°
Machaerium stipitatum (DC.) Vogel 3.71 4°
Platycyamus regnellii Benth. 3.20 5°

Oxysol

Croton floribundus Spreng. 4.73 1°
Colubrina glandulosa Perkins 3.44 2°
Albizia polycephala (Benth.) Killip ex Record 3.30 3°
Eugenia acutata Miq. 3.28 4°
Piptadenia gonoacantha (Mart.) J.F.Macbr. 3.23 5°

2005

Cambisol

Galipea jasminiflora (A.St.-Hil.) Engl. 10.29 1°
Sebastiania commersoniana (Baill.) L.B.Sm. & Downs 5.84 2°
Piptadenia gonoacantha (Mart.) J.F.Macbr. 5.40 3°
Platycyamus regnellii Benth. 4.15 4°
Machaerium stipitatum (DC.) Vogel 3.87 5°

Nitosol

Casearia sylvestris Sw. 4.61 1°
Albizia polycephala (Benth.) Killip ex Record 4.52 2°
Cupania vernalis Cambess. 4.20 3°
Machaerium stipitatum (DC.) Vogel 3.92 4°
Eugenia acutata Miq. 3.07 5°

Oxysol

Croton floribundus Spreng. 4.01 1°
Eugenia acutata Miq. 3.66 2°
Colubrina glandulosa Perkins 3.31 3°
Ixora brevifolia Benth. 3.22 4°
Ocotea corymbosa (Meisn.) Mez 3.21 5°

2010

Cambisol

Galipea jasminiflora (A.St.-Hil.) Engl. 10.65 1°
Sebastiania commersoniana (Baill.) L.B.Sm. & Downs 5.90 2°
Piptadenia gonoacantha (Mart.) J.F.Macbr. 4.63 3°
Platycyamus regnellii Benth. 4.52 4°
Machaerium stipitatum (DC.) Vogel 3.76 5°

Nitosol

Albizia polycephala (Benth.) Killip ex Record 4.54 1°
Casearia sylvestris Sw. 4.54 2°
Cupania vernalis Cambess. 4.10 3°
Machaerium stipitatum (DC.) Vogel 3.71 4°
Eugenia acutata Miq. 3.57 5°
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pattern of the tree community was characterized by the 
dominance of the species Galipea jasminiflora, which did 
not change over time. This shows that this species is more 
efficient in exploring the available resources in this area 
(Felfili, 1995b), due to its adaptations to the environmental 
conditions that allow its dominance (Lohbeck et al., 2013). 
Therefore, in the absence of major disturbances, it is 
unlikely that this species will alter its participation in the 
community structure (Pinto and Hay, 2005).

Niche conservatism was discussed by Pennington et 
al. (2009) for seasonally dry forests and it allows us the 
inference about the importance of evolutionary factors in 
choosing a pool of species able to coexist in the climatic 
and soil conditions of these areas. This long-term stable 
coexistence is possible because species differ in their ability 
to acquire and use resources as the environment varies 
(Chesson, 2000). In this study, we observed that changes in 

soil conditions promote changes in semideciduous seasonal 
forest community structure and composition. Despite 
the soil types acting as an environmental filter, selecting 
the functionally more skilled in each soil condition (and 
promoting a high beta diversity), community dynamics 
were maintained over time, displaying a directional 
establishment and evolutionary adaptation to soil type in 
the community.
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Oxysol

Eugenia acutata Miq. 4.05 1°
Croton floribundus Spreng. 3.37 2°
Ixora brevifolia Benth. 3.33 3°
Ocotea corymbosa (Meisn.) Mez 3.23 4°
Piptadenia gonoacantha (Mart.) J.F.Macbr. 3.18 5°

2016

Cambisol

Galipea jasminiflora (A.St.-Hil.) Engl. 10.95 1°
Piptadenia gonoacantha (Mart.) J.F.Macbr. 6.33 2°
Sebastiania commersoniana (Baill.) L.B.Sm. & Downs 6.23 3°
Platycyamus regnellii Benth. 4.53 4°
Eugenia acutata Miq. 3.53 5°

Nitosol

Machaerium stipitatum (DC.) Vogel 5.42 1°
Galipea jasminiflora (A.St.-Hil.) Engl. 4.76 2°
Casearia sylvestris Sw. 4.51 3°
Cupania vernalis Cambess. 4.27 4°
Eugenia acutata Miq. 4.15 5°

Oxysol

Eugenia acutata Miq. 4.57 1°
Ixora brevifolia Benth. 3.55 2°
Mollinedia widgrenii A.DC. 3.45 3°
Colubrina glandulosa Perkins 3.35 4°
Albizia polycephala (Benth.) Killip ex Record 3.05 5°

Table. (Continued).
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