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RESUMO

Avangos tecnologicos t€m proporcionado alternativas para diminuir
problemas comuns enfrentados em levantamentos de solos antes, durante e apos
os trabalhos de campo. Algumas ferramentas consideram o relevo, representado
por Modelos Digitais de Elevagdo, como um adequado fator para ser associado a
variabilidade das classes e propriedades dos solos ao longo da paisagem.
Entretanto, ajustes regionais devem ser realizados para se atingir melhor
qualidade dos mapas de solos finais devido a variabilidade espacial dos mesmos.
Os objetivos desse trabalho contemplam: (I) uma revisdo bibliografica sobre
algumas ferramentas de mapeamento digital de solos recentemente criadas,
dando énfase a sua importancia para paises em desenvolvimento; (II) criar um
mapa da profundidade do solum de uma microbacia hidrografica de cabeceira de
Minas Gerais, Brasil, a partir da associagdo entre conhecimento de campo,
logica fuzzy e atributos de terreno, e fazer sua validagdo em campo usando o
sistema de amostragem Hipercubo Latino Condicionado; e (III) comparar o
mapeamento de solos convencional com o digital em relacdo ao ganho de
informagdes proporcionadas pela possibilidade de criar mapas continuos de
solos e seus atributos. A revisdo foi realizada através de analises de diferentes
técnicas e ferramentas de mapeamento de solos recentemente publicadas em
revistas cientificas com o objetivo de reuni-las em um tnico documento, facilitar
o0 seu uso e destacar a sua importancia para tais atividades, principalmente para
paises em desenvolvimento. O mapa da profundidade do solum foi criado para
uma microbacia hidrografica de cabeceira no sul de Minas Gerais, devido a area
apresentar grande importdncia ambiental relativa a qualidade e suprimento de
agua para usinas hidrelétricas, fatores que estdo relacionados a profundidade do
solum. Alguns dados de campo envolvidos na validagdo do mapa da
profundidade do solum foram usados para realizar a compara¢do entre mapas
gerados pelos métodos convencional e digital em termos de quantidade de
informacgdes apresentadas. O emprego de conhecimento de campo associado as
ferramentas de mapeamento apresentaram resultados adequados, tendo o mapa
da profundidade do solum acurécia de 80% e indice kappa de 0,161. O mapa da
profundidade do solum criado pelo método digital apresentou maior acuricia e
detalhes que o gerado pelo método convencional. Essas ferramentas e dados
disponiveis tém alto potencial para serem usadas para complementar o
levantamento ¢ mapeamento de solos, principalmente em paises onde sdo
comuns dificuldades para a realizagdo de trabalhos de campo intensivos.

Palavras-chave: Pedologia. Geoprocessamento. Logica Fuzzy.



ABSTRACT

The advances in technology have provided alternatives to diminish
common issues faced by soil surveyors prior, during and after the field work.
Some tools consider the relief, obtained from Digital Elevation Models, an
adequate factor to be associated with soil types and properties variability along
the landscape. However, regional adjustments have to be made for a better
quality of the final soil maps due to soils spatial variability. The objectives of
this work contemplate: (I) a review discussing some of the recently created soil
mapping tools, emphasizing their importance for developing countries; (II) to
create a solum depth map for a watershed in southern Minas Gerais, Brazil,
associating expert knowledge with fuzzy logic and terrain derivatives, and
validate it in the field by using Conditioned Latin Hypercube sampling scheme;
and (III) to compare the conventional to digital soil mapping in regard to the
gain of information provided by the possibility of creating continuous maps of
soil types and properties. The review was made after analyses of different soil
mapping tools and techniques recently published in scientific journals in order to
join them into a comprehensive document, to facilitate their use, and to highlight
their importance for such activities, mainly for developing countries. The solum
depth map was created for a headwater watershed in south of Minas Gerais
State, Brazil, due to the mentioned area presents environmental importance for
water quality and supply for hydroelectric power plants, factors that are related
to solum depth. Some of the field data used to validate the solum depth map
were used to make a comparison between solum depth maps created by
conventional and digital mapping in terms of amount of provided information.
The use of expert knowledge associated with mapping tools presented adequate
results, being the solum depth map accuracy of 80% and kappa index of 0.616.
Solum depth map created by digital mapping tools presented higher accuracy
and details in comparison with the one created by conventional mapping
method. Those available tools and data have a high potential to be used to
complement soil surveys and mapping, mainly in countries where difficulties to
accomplish an intensive field work are not rare.

Index terms: Pedology. Geoprocessing. Fuzzy Logic.
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PRIMEIRA PARTE

AVANCOS TECNOLOGICOS AUXILIARES AO MAPEAMENTO
DIGITAL DE SOLOS
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1 INTRODUCAO

1.1 Introducio geral

A identificacdo e classificagdo de solos sdo realizadas a partir de
levantamentos de solos, atividades que, segundo Resende et al. (2014), fornecem
informagdes insubstituiveis para a estratificagdo de ambientes. Através do
levantamento de solos, diversas classes de solos sdo identificadas e diferenciadas
pela morfologia e caracteristicas fisica, quimica, bioldgica e mineralogica
(Motta et al., 2001). A partir dessas informagdes, a representagao da distribuigdo
espacial de cada classe de solo ¢ feita através de mapas de solos.

Entretanto, pelo fato de levantamentos de solos serem procedimentos
que demandam tempo devido a grande quantidade de amostras a serem coletadas
e que requerem certo investimento financeiro (McBratney et al. 2003), poucos
sdo os mapas de solos em escala detalhada na grande maioria dos paises. Para o
Brasil isso ndo ¢ diferente. Coelho e Giasson (2010) apontam que os mapas para
a maior parte do territorio nacional sdo oriundos do projeto Radam Brasil,
iniciado em 1986, e sdo pouco detalhados (escala 1:1.000.000), o que ndo
permite o planejamento ao nivel de propriedades rurais e bacias hidrograficas.
Levantamentos mais detalhados carecem de recursos financeiros, porém as
vantagens que proporcionam para a tomada de decisdes envolvendo uso e
manejo sustentavel do solo sdo enormes.

Iwashita et al. (2012) destacam que, durante os levantamentos de solos,
as restrigdes financeiras e de tempo disponivel tipicamente limitam a
amostragem ao longo de toda a area. Por outro lado, essa limitagdo motiva a
busca de métodos alternativos para a realizacdo dos levantamentos (McBratney

et al., 2003), uma vez que o numero reduzido de amostras pode diminuir a
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acuracia dos mapas e, consequentemente, levar a tomadas de decisdes

incompativeis com a realidade.

Diante desses fatos, avangos tecnologicos, tais como computadores cada
vez mais potentes para o processamento de dados, imagens de satélite, Modelos
Digitais de Elevagdo (MDEs) e os atributos de terreno deles derivados, e
programas de computador voltados ao mapeamento digital de solos estdo se
tornando mais e mais utilizados e de facil acesso no mundo todo. Esse conjunto
de ferramentas proporciona alternativas para melhorar tanto a eficiéncia dos
trabalhos de campo quanto a qualidade dos mapas de solos finais, especialmente
quando essas técnicas sdo combinadas ao conhecimento de pedodlogos que
conhecam bem as relagdes solo-paisagem da area de interesse (conhecimento de
campo), unindo, desta forma, uma fonte de conhecimento e experiéncia a
potentes ferramentas para a extrapolacdo de informagdes e rapido processamento
de dados. Essa associagdo pode contribuir tanto para a economia de recursos
financeiros quanto para a extrapolacdo de informag¢des com maior confiabilidade

para locais ndo amostrados.

1.2 Objetivos

Os objetivos desse trabalho contemplam: (I) realizar uma revisdao
bibliografica sobre algumas ferramentas de mapeamento digital de solos
recentemente criadas, dando énfase na sua importancia para paises em
desenvolvimento; (II) criar um mapa da profundidade do solum de uma
microbacia hidrografica de cabeceira de Minas Gerais, Brasil, a partir da
associacdo entre conhecimento de campo, logica fuzzy e atributos de terreno, e
fazer sua validacdo em campo usando o sistema de amostragem Hipercubo

Latino Condicionado; e (III) comparar o mapeamento de solos convencional
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com o digital em relacdo ao ganho de informagdes proporcionadas pela

possibilidade de criar mapas continuos de solos e seus atributos.

REFERENCIAS
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2. ARTIGO 1. Digital soil mapping approach based on fuzzy logic and

expert knowledge

*Artigo nas normas da Revista Ciéncia e Agrotecnologia.

ABSTRACT

In Brazil, soil surveys in more detailed scale are still scarce and
necessary to more adequately support the decision makers for planning soil and
environment activities in small areas. Hence, this review addresses some digital
soil mapping techniques that enable faster production of soil surveys, beyond
fitting continuous spatial distribution of soil properties into discrete soil
categories, in accordance with the inherent complexity of soil variation,
increasing the accuracy of spatial information. The technique focused here is
knowledge-based in expert systems, under fuzzy logic and vector of similarity.
For that, a contextualization of each tool in the soil types and properties
prediction is provided, as well as some options of knowledge extraction
techniques. Such tools have reduced the inconsistency and costs associated with
the traditional manual processes, relying on a relatively low density of soil
samples. On the other hand, knowledge-based technique is not automatic, and
just as the traditional soil survey, the knowledge of soil-landscape relationships

is irreplaceable.

Index terms: digital soil mapping, soil prediction, conditioned Latin hypercube

sampling, knowledge miner.
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RESUMO

No Brasil, levantamentos de solos em escalas maiores ainda sdo
escassos ¢ necessarios para dar apoio mais adequado ao planejamento de
atividades relacionadas a solos e ambientes em 4reas menores. Em
consequéncia, este trabalho apresenta algumas técnicas de mapeamento digital
de solos que permitem a produ¢ao mais rapida de levantamentos de solos, além
de ajustar a distribui¢do espacial continua das propriedades do solo em
categorias discretas, de acordo com a complexidade inerente da variabilidade
dos mesmos, aumentando a acuracia de informacdes espaciais. A técnica aqui
enfatizada ¢é baseada em sistemas que empregam o conhecimento de um
especialista, sob uso de logica fuzzy e similaridade de vetores. Para isso, ¢é
proporcionada a contextualizagdo de cada ferramenta para a predicao de classes
de solos e suas propriedades, assim como algumas opgdes de técnicas para
aquisicao de conhecimentos. Tais ferramentas t€ém reduzido a inconsisténcia e
custos associados aos tradicionais procedimentos manuais, utilizando uma
relativamente baixa densidade de amostragem. Por outro lado, a técnica baseada
no conhecimento de especialistas ndo ¢ automatizada, e, assim como no método
tradicional de levantamentos de solos, o conhecimento das relacdes solo-

paisagem ¢ insubstituivel.

Termos para indexacdo: mapeamento digital de solos, predicdo de solos,

amostragem por Hipercubo Latino Condicionado, minerag¢ao de conhecimento.

2.1 INTRODUCTION

In Brazil, soil surveys in more detailed scale are still necessary because

the lack of information or the small-scale existing maps do not adequately
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support planning and management of agricultural and environmental projects.
Soil surveys or sampling schemes in a more detailed scale are common only in
small areas, generally to attend specific projects (MENDONCA-SANTOS;
SANTOS, 2007). Since the traditional soil maps are manually produced, even on
a GIS basis, and have as limitation the low speed and high production cost (ZHU
et al., 2001), digital soil mapping is viewed as an opportunity to optimize soil
mapping, employing more quantitative techniques for spatial prediction
(MCBRATNEY et al., 2003), in which the accuracy or uncertainty has been
measured and discussed, and that makes the pedologist mental model more
explicit. In theory, the basis of predictive soil mapping is similar to traditional
soil survey, since it is possible to use knowledge of soil-environment relations to
make inferences (SCULL et al., 2003).

Various approaches have been used for fitting quantitative relationships
between soil properties or types and their environment, in order to predict them
(spatial inference models). The models are divided into data-driven (Pedometry
approach) and quantitative soil survey approach (knowledge driven). Pedometry
approaches are more quantitative and automatic, mainly based on statistics,
geostatistics, machine learning and data mining techniques. A dense scheme of
sampling is often required. On the other hand, the knowledge driven approach
tries to fit within the conventional soil survey and mapping framework, aiming
to effectively utilize the soil scientist’s knowledge (SHI et al., 2009).

Soil survey is a paradigm-based science that is based on the application
of conceptual soil-landscape models, in which the hypothesis is that the location
and distribution of soils in the landscape is predictable (HUDSON, 1992). Such
models rely on tacit pedological knowledge, generally acquired by systematic
field observation of repeating relationships between soil types or properties and
landform position (MACMILLAN et al., 2005). Most of the information about

soils is found in soil maps and respective legend or in the mind of the soil



18

surveyor. Hudson (1992) argued that soil survey was deficient for not expressing
the scientific knowledge in a more formal and systematic way.

Thus, this review attempts to elucidate the use of expert systems under
fuzzy logic and its application for predicting soil types and properties. Expert
systems allow the use of existing data or expert knowledge of the pedologist in
conjunction with statistical and mathematical approaches to generate soil
information. Besides, they allow to fit continuous spatial distribution of soil
properties into discrete soil categories, in accordance with the inherent
complexity of soil variation, increasing the accuracy of spatial information

(ZHU et al., 2001).

2.2 EXPERT SYSTEMS

According to Dale et al. (1989), expert systems consist of ways to
harvesting and engineering knowledge, which allow exploiting the information
of soil surveyor acquired through experience. Expert knowledge systems try to
capture tacit knowledge and integrate it in the predictive model in order to
improve it. Dale et al. (1989) delineated the components of an expert system to
soil data: a source (e.g. data or environmental variables), an organizer and an
information predictor, and a client to use the information. The predictor includes
a knowledge-based and an inference engine which operates on the knowledge
base. The computer-based knowledge can use the human expert or numerical
methods. Such approach is able to exploit soil surveyor knowledge by
developing rule-based systems that imitate the surveyor’s conceptual model of
soil variability (SCULL et al., 2003). The pioneering attempts to apply expert
systems in Pedology used the Boolean logic (SKIDMORE et al.,1991), which

defines a strict binary decision (true or false, 0 or 1). In terms of soil maps, the
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soil surveyor has to assign individual soils in the field in only one class (ZHU et
al., 2001). The polygons of the maps, also referred to as crisp or Boolean,
represent only the distribution of a set of prescribed soil class (central concepts
of soils). The same approach is used for soil property maps, where the whole

polygon assumes a property value assigned to the mapping unit.

2.3 FUZZY LOGIC

The nature of soil-landscapes are complex, whose changes in soils or
properties are often more gradual and continuous, differently to the variation
represented by a crisp map (polygon-based) (Figure 1a). There is uncertainty in
the boundaries allocation, as well as in the values of the soil properties
(LEGROS, 2006) (Figure 1b). Fuzzy logic attempts to represent the uncertainty
in the predictor and predicted properties or types, as an alternative that seems
more adapted to the imprecise knowledge conveyed by soil surveyors
(WALTER et al., 2007), recognizing the concept of partial truth, alternatively to
the subjective rigidity imposed on soils.

Instead of a crisp membership (e.g., entirely Red Latosol or Yellow
Latosol, Figure 1a), the idea is that the soils in nature rarely fit exactly the
classification types to which they are assigned (ZADEH, 1965). Nevertheless,
there is a range of optimal values among classes. The concept of belonging to a
set has been modified to include partial degrees of membership. The maximum
membership is often 1 and represents the central or modal concept, whereas the
0 value expresses no membership. Values in between this range express different

degrees of similarity to the central concept.
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a) b)

L

Figure 1 - Lateral distribution of an optimal value under Boolean logic (a) and
fuzzy logic (b) related to distribution of Yellow Latosol (YL) and Red Latosol
(RL) in the landscape.

Besides the broad application of fuzzy logic in science, Scull et al.
(2003) cited two different approaches for soil prediction in a continuous way:
the first is based on the fuzzy-k-means classifier, which partitions observations
in multivariate space into natural classes. The second is known as the semantic
import model, and is used in situations when classification schemes are pre-
defined and class limits are relatively well understood. The semantic model is
commonly used with expert knowledge and it refers to a data integration
concerned with analysis and interpretation of a multi-source spatial data. In
geographic analysis, it is frequently required the integration of spatial data with
multi-sources (as raster or vector formats, crisp or continuous maps) to answer
specific questions about given spatial phenomenon. In this sense, Zhu and Band
(1994) presented the first approach which employs knowledge-based semantic
data integration, combined with expert system techniques and fuzzy set theory
for spatial data integration.

A fuzzy logic based model called similarity vector (ZHU et al., 1997)
represents soils at a given location, in which the landscape is perceived as a
continuum. The fuzzy logic is used to infer the membership of a soil type from
environmental variables, such as parent material, canopy coverage, digital

elevation model and its derivative maps. Under fuzzy logic, a soil at a given
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1

pixel (ij) is represented by a n-element similarity vector: S;;= (Sj; ,

Sizj ,...,Sik]- ) eens Si’} ), where n is the number of prescribed soil types over the
area and Sikj is an index which measures the similarity between the local soil at
(i,j) to the prescribed soil type k. Sikj is soil type k. The similarity value is
measured according to how close the soil is to the centroid concept (between 1
and 0, as already discussed). The more similar a soil is to a prescribed soil type,
the higher its similarity value (fuzzy membership).

This methodology has been successfully applied to generate soil maps
(crisp maps) (ZHU; BAND, 1994; ZHU et al., 1996; MCKAY et al., 2010;
MENEZES, 2011) and to predict properties in a continuous way, as depth of A
horizon (ZHU et al., 1997), solum depth (QUINN et al., 2005; LIBOHOVA,
2010; SILVA, 2013), drainage classes (MCKAY et al., 2010), A horizon silt and
sand contents (QI et al., 2006), soil transmissivity (ZHU et al., 1997) or aquifer
recharge potential, which is a spatially distributed phenomenon and closely

related to soil-landscape models (MENEZES, 2011).

2.4 SOLIM (SOIL-LAND INFERENCE MODEL) AND ARCSIE (SOIL
INFERENCE ENGINE)

In order to overcome some limitations of a traditional soil survey,
researches and tools have applied knowledge-based techniques and fuzzy logic
concepts as a predictive approach, for instance, the softwares SoLIM (ZHU et
al.,, 2003) and ArcSIE (SHI, 2013). They have two major components: a
similarity model for representing soil spatial variation and a set of inference
techniques for populating the similarity model. The improvements of the last

versions also contain means of extracting rules (expert knowledge extraction).
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Hereafter is provided a review about the potential of some tools to predict soil
types and properties.

ArcSIE works as an extension of ArcMAP (ArcGIS - Environmental
Systems Resource Institute). There are two inference methods implemented in
ArcSIE for calculating fuzzy membership values: rule-base reasoning (RBR)
and case-based reasoning (CBR). In other words, rule and case are two types of
knowledge supported by ArcSIE. In RBR, rules are created from direct
specifications of soil surveyor, while in CBR it represents the knowledge of the

soil at a specific location, also called tacit points.

2.4.1 Ruled-based reasoning with ArcSIE (RBR)

Rule-based reasoning (RBR) in ArcSIE can be useful when the soil
scientist knows the soil-landscape relationships and prescribes, under certain
environmental conditions, where a specific soil type is more likely to occur. The
premise of this technique is that one or two factors out of the five state factors
(parent material, climate, organisms, time and topography, JENNY, 1941)
control the distribution of soils on the landscape. For example, when climate,
organisms, parent material, and time are relatively constant, the topography
would be the greatest driver for soil differentiation. Continuous variation of soils
are represented by continuous soil property maps derived from the similarity
vectors (ZHU et al., 1997) and a lower number of sample points is required
(only one typical value per soil type). The following steps are required in order

to predict soil types or properties (adapted from LIBOHOVA, 2010) (Figure 2).

1) Establishing soil-landscape relationships
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In order to establish the soil-landscape relationships, Zhu and Band
(1994) used the knowledge drawn by a certified soil scientist in his domain
expert, since he was working in the study area. Libohova (2010) used previous
soil surveys and block diagrams from the county soil survey to provide visual
insight into the soil-landscape model established by the field soil scientist. In
Brazil, where soil series have not been established so far, Menezes (2011) used
information from previous soil survey reports and scientific papers which
detailed the topographic sequence of soils. For a better comprehension of spatial
distribution of soils, it is required the integration of pedologic studies with other
branches of science, specially Geology (stratigraphy), Geomorphology and
Hydrology (VIDAL-TORRADO et al., 2005). The analysis of the phenomena
studied by these disciplines and their results can help in pedologic

investigations, collaborating for a better soil sampling and interpretations.
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Figure 2 - Steps required for rule-based reasoning. Maps extracted from
Menezes (2011).
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2) Quantifying relationships between soils and terrain attributes and

formalizing these relationships in a set of rules that relates to raster maps

ArcSIE provides tools for soil scientists to formalize the relationships
based on pedological knowledge of the local soils. In this case, the inference is
based on rules using fuzzy logic. Threshold values are identified and assigned to
each soil map unit in a GIS basis. For this, data layers in a raster format that
characterize environmental covariates, as terrain attributes, geology, vegetation,
climate and others are prepared (SHI et al., 2009). Then, the knowledge about
soil-landscape relationships in the first step is qualitatively modeled on a
continuous basis in a set of created rules.

The values of the environmental covariates and ranges associated with
each soil map class (rules) are used to define membership functions, which, in
turn, are referred to as optimality functions as they define the relationships
between the values of an environmental feature and a soil type. The rules are set
within the software based on “if-then” statements, in which a central location
encompasses the rules that provide 100% probability of meeting the class. As
the covariates get further from meeting all the rules, the probability of the
location being in that class changes and alters the soil property prediction. The
number of rules is not limited and information, such as land-use derived from
remotely sensed data, can be inserted as a rule and the predictions altered based
on the land use type. The cutoffs are set based on knowledge from a soil scientist
who understands the soil-landscape relationships (MENEZES, 2011).

The initial output from the inference is a series of fuzzy membership
maps in raster format, one for each soil type under consideration (Figure 2). The
fuzzy membership values represent the similarities of each place in the
landscape to those soil types. The equation below describes how the knowledge

of a given soil type is used for a global knowledge in RBR and CBR in order to
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create fuzzy membership values, represented by three functions (E, P, and T)
(SHI et al., 2004):

/ﬁ' n n
S"]= Tk { Pg [ Eg,ﬂ' ( Z”’ ngu )]

g=1 a=1

where Sikj is the fuzzy membership value at a location (i, j) for a soil k. The m is

the number of environmental features used in the inference. The # is the number
of instances for soil type k. Z;, is the value of the a™ environmental feature at
location (i,j). Z,. is the most optimal range given by rule or case g, defining the
most favorable condition of feature a for soil 4. In RBR it is directly specified by
the soil scientist, while in CBR, it is derived by the computer based on the case
location and the environmental data layers. £ is the function for evaluating the
optimality value at the environmental features level. If Z;;, falls into the range of
Z4., E returns the maximum optimality value; otherwise, E uses a function to
derive the optimality value based on the difference between Z;, and Z, .. Based
on the nature of the environmental covariates used in the prediction, there are
five choices for E: cyclic, ordinal, nominal, raw values, and continuous (bell-
shape, z-shape and s-shape continuous curves). P integrates the optimality
values from individual environmental covariates to generate an overall predicted
value for soil £. T is the function for deriving the final fuzzy membership value
for soil k at site (i,/) based on all the instances for soil 4.

Using this toolbox, the parameters are adjusted to the curves and
explicitly express the mental model of the pedologist. Accomplishing this step,
fuzzy membership maps are created (Figure 2, step 2). These maps reveal more
details at the spatial level than polygon maps. According to Zhu et al. (1996), the
general shapes on the membership images follow the landscape better than the
ones on the soil maps where inclusion or exclusion from a region is more based

on restrictions derived from the scale of the map than on local conditions. The
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central concept of the soil type responds to local variations in the apparent soil

forming environment (represented by covariables).
3) Creating hardened map

The fuzzy membership maps (Figure 2, step 3) for each soil type are
aggregated in order to create a hardened or a defuzzified map, which
corresponds to the traditional soil vector map (discrete distribution). For that,
ArcSIE assigns at each pixel the soil type with the highest fuzzy membership

value.
4) Creating soil property maps

The soil-landscape relationships are extracted and the characterized
environmental conditions are linked through a set of inference techniques to
populate the similarity model for a given area (ZHU; MCKAY, 2001). Thus,
based on fuzzy membership values, the continuous variation of soil properties
can be derived from the similarity vectors, using the following formula (ZHU et
al., 1997):

Tk=1 Sij * VK
L I
where V;; is the estimated potential of recharge value at location (i,j), Vkis a
typical value of soil type & (e.g. Haplic Cambisol under native forest), and » is
the total number of prescribed soil types for the area. If the local soil formative
environment characterized by a GIS resembles the environment of a given soil
category, then property values of the local soil should resemble the property
values of the candidate soil type. The resemblance between the environment for

local soil at (i,7) and the environment for soil type & is expressed by Si'j- , which
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is used as an index to measure the level of resemblance between the soil
property values of the local soil and those of soil category (ZHU et al., 2001).
The property value Sl!‘j can be any property that shows a recognizable pattern or
relationship with the terrain attribute or landscape position (LIBOHOVA, 2010).
The higher the membership of a local soil in a given soil type, the closer the
property values (potential of recharge) at that location will be to the typical
property values (ZHU et al., 2010).

2.4.2 Case-based reasoning (CBR) with ArcSIE

CBR, in general, is a method of solving problems based on similar
problems solved in the past. Dutta and Bonissone (1993) defines better this type
of methodology as the action of solving new problems by identifying and
adapting similar problems stored in a library of past experiences.

CBR has been applied to soil science in association with fuzzy logic in
order to solve problems related to soil data extrapolation. CBR emerges as an
alternative to the RBR, since the formulation of rules to explain soils variability
becomes laborious, even possessing the knowledge, motivating a search for
alternative solutions, being one of them also provided by ArcSIE.

For instance, from a set of points (ArcSIE also works with lines,
polygons and rasters as sources of information) with x, y coordinates distributed
within a study area and a set of environmental covariates layers (GIS data
layers), ArcSIE can extract information from each environmental covariate layer
at the site where each point is located, and then associate the points classified as
the same soil type with their environmental covariate values of occurrence. For
example, considering two soil types (A and B), each one containing 8 and 10

sample points, respectively, and two environmental covariate layers (elevation
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and slope). The information obtained would be 8 slope and elevation values for
soil A and 10 ones for soil B. Thus, one could predict soil properties in no
sampled places according to the relationships between environmental data and
soil properties. In this example of CBR use, the "former problems" would be the
sampled locations, and from them, other places ("new problems") would be
classified based on membership approaches characteristic of fuzzy logic.

It has been noticed that a minimum sample size covering the different
combinations among environmental covariates has to be reached to allow the
data extrapolation. If not, places with environmental combinations not included
in the set of points would not be classified, as in the example of Figure 3. In this
case, the watershed is located at a mountainous region with dense rain forest
vegetation, which hampers the full access to visit and sample soil. Thus, the
same property map could be successfully generated with the use of RBR, since
this watershed has been intensely studied. Thus, the knowledge could make up
the low density of samples.

A Horizon Types

No Classification .

I Prominent ‘.r
N - " Z

Moderate
Weak A

= o
700 350 0 700 Meters g
[ SN

Figure 3 - An example of non-classified places due to the absence of data
covering all the environmental features of the interest area.
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2.5 CONDITIONED LATIN HYPERCUBE SAMPLING SCHEME

The necessity of finding out the optimal sampling method in order to
adequately represent the soil variability within an area has generated many
suggestions by soil scientists for years. Over the past decades, extensive work
has been published on sampling schemes for soil mapping (MULDER et al.,
2013). Additionally, especially in developing countries, the number of samples
for a soil survey is limited not only by access difficulties, but also by time and
funding restrictions, which hampers the sampling representativeness of the area
and influence the final soil map quality. Also, this scenery would not allow the
use of CBR for not covering all of the ranges of the environmental covariates.

In this context, Minasny and McBratney (2006) proposed the
conditioned Latin Hypercube Sampling (cLHS), derived from Latin Hypercube
Sampling (LHS) (McKay et al., 1979), and it has been used in soil science and
environmental studies for assessing the uncertainty in a prediction model
(MINASNY; MCBRATNEY, 2002). LHS is a stratified random procedure that
provides an efficient way of sampling variables from their multivariate
distributions (MINASNY; MCBRATNEY, 2006). It follows the idea of a Latin
square where there is only one sample in each row and each column,
generalizing this concept to an arbitrary number of dimensions. Also, the
number of samples desired is taken into account at the time of determining the
sampling locations. According to Mulder et al. (2013), if # is the desired sample
size, LHS stratifies the marginal distributions of the covariates into n equally
probably intervals and randomly samples the multivariate strata such that all
marginal strata are included in the sample. However, it may face the issue that
sometimes the sampling local may not exist in the field.

In this context, the conditioned Latin Hypercube Sampling (cLHS) adds

the condition that the sample chosen must actually occur on the landscape
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(BRUNGARD; BOETTINGER, 2010). Minasny and McBratney (2006) showed
that cLHS closely represented the original distribution of the environmental
covariates with relatively small sample sizes in a digital soil mapping project in
the Hunter Valley of New South Wales, Australia.

Small sample sizes able to represent the soils variability is interesting
especially for soil scientists from developing countries, where investments and
time availability, area accessibility and former soil information are scarce.
However, Mulder et al. (2013) highlight that, while LHS is probability sampling,
conditioning the LHS on any constraints and sampling costs leads to a purposive
sampling strategy since the inclusion probabilities of locations are modified by
the conditioning criteria.

The cLHS may distribute the samples throughout the study area, but,
sometimes, some places are very difficult or even impossible to be visited for
sampling. To avoid this situation, Roudier et al. (2012) proposed a method for
incorporating operational constraints into cLHS. They created a "cost" map
representing the cost of reaching every place on the landscape considering
terrain and landcover attributes. The mentioned work showed that a cost-
constrained LHS is not as optimized as the one without cost-conditionings, but
the cost of the produced sampling scheme was reduced, thus providing an
alternative to implement it.

Silva (2013) used the cLHS constrained by a cost map (created
according to the distance from roads, slope and vegetation cover) to indicate the
sampling places for validating a rule-based Cambisol solum depth map created
through fuzzy logic (RBR) and terrain derivative maps in a watershed of Minas
Gerais State, Brazil. The work presented an illustration of the sampling locals
disposal with and without cost-constraining the sampling scheme (Figure 4).
Also, he affirmed that the cLHS indicated sampling places with different soil

properties, such as solum depth, soil moisture and color, and amount of pebbles
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and gravels, providing an adequate idea of the soil properties distribution along
with the landscape features within the study area and, mainly, this sampling

scheme reduced the time and investments needed for the field work.
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Figure 4 - Conditioned Latin Hypercube Sampling scheme without considering
the cost-constrained raster (a) and considering the cost-constrained raster (b) for
locating the sampling places in a Cambisol area.

2.6 ACQUIRING INFORMATION FROM EXISTING SOIL MAPS FOR
SOIL DATA TRANSFERABILITY

Nowadays, there is a plenty of covariates or layers that can be used to
predict soil types and properties, derived from remote sensing, digital elevation
models from topographic surveys, geomorphometric variables, analogical or
digital soil maps, and others. McKay et al. (2010) investigated potential data
layers involved using visual assessment and comparison to known soil locations
by expert scientists. Even if the soil-landscape relationships are well known, it

could be a hard task to find out which covariate would be more appropriate to
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tell soil types apart for predictions. From an existing soil map, SoLIM and
ArcSIE provide tools for a soil scientist to discover the knowledge implicitly
represented by an existing soil map and revise the discovered knowledge. So, it
would be possible to transfer the extracted knowledge to other areas with similar
soil-landscape relationships.

Transferability of soil types or rules for predicting properties from one
small area to a larger extent can be done if the digital soil mapper knows that the
initial area is representative of the larger extent (MCBRATNEY et al., 1993).
LAGACHERIE et al. (2001) applied this concept for extrapolating French
Mediterranean soilscapes (combination of soil-forming factors in a buffer
neighbor can be expressed as a vector composition of elementary landscape
classes of different sizes). McKay et al. (2010) applied an accurate
transferability of knowledge-based model to predict soil series and drainage
classes between similar soil-landscape relationship areas. Such concept along
with knowledge mining, fits with the scenery of soil surveys in Brazil, where
detailed and semidetailed types are available in small areas to support local
specific agricultural and environmental projects (MENDONCA-SANTOS;
SANTOS, 2007), but the necessity of more detailed soil maps in larger
extensions still remains. Hereafter two ways of extracting knowledge are

presented.

2.6.1 SoLIM Knowledge Miner

According to Bui (2004), soil maps represent the structured mental soil-
landscape model. One way to exploit such information is provided by SoLIM
software (ZHU; BAND, 1994; ZHU et al. 1996; ZHU, 1997; ZHU et al., 1997).

The knowledge acquisition tool allows the users to extract pixels information
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from the terrain derivative maps for each polygon (mapping unit). In this
context, occurrence rules for each soil type could be formulated by a soil expert
in association with SoLIM knowledge acquisition tool and then transferred to a
similar area to identify the places more likely to find similar soil types.

One potential application of that is in areas with limited or no soil data
availability, but with some soils similarity, especially in terms of environmental
factors that influence the soil formation, to another area with already existing
soil maps. They could be used as a source of data for predicting soil information
(MCBRATNEY et al, 2003). From an existing map, which contains the
surveyor knowledge about the distribution of soils on the landscape, and
employing GIS data, models could be adjusted through the analysis of terrain
derivative maps, such as slope, wetness index, aspect, profile curvature and so
forth, which are supposed to explain the different soil types occurrence in an
area based on the catena concept (MILNE, 1935): soil profiles occurring on
topographically associated landscapes will be repeated on similar landscapes.
This should permit soil data transferability as a manner of assuming soil patterns
in the no-data area, based on soil scientist knowledge and soil-landscape models.
Zhu et al. (2001) state that the soil-landscape concept contends that if one knows
the relationships between each soil and its environment within an area, then one
is able to infer what soil might be at each location on the landscape by assessing
the environmental conditions at that point.

For instance, it is well-known that the Gleysols are more likely to occur
in low elevation and concave places, with high water accumulation (RESENDE
et al., 2007), but it should be difficult to tell the values of wetness indexes or
concavity in order to separate those places from the surrounding areas. Likewise,
Cambisols are more likely to be found on steep relief, but how steep the
topography should be in an area of interest to determine the places representative

of Cambisols could be hard to tell. Thus, a tool proposed by Zhu et al. (1997)
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that extracts the values of those terrain derivatives could help to understand soil
types occurrence pattern and, hence, to extrapolate soil types distribution from a
mapped area to a similar one that does not have soil data.

SoLIM software contains a knowledge acquisition tool which allows the
users to extract pixels information from the terrain derivative maps for each
polygon. Regarding a soil map, polygons should represent different mapping
units. Thus, through the use of terrain derivative maps, SoLIM provides a way to
acquire soil information from environment -characteristics, helping to
comprehend how the soil data were extrapolated to non-sampled places. This
tool also generates graphics from the values of each terrain derivative map for
each mapping unit. This would inform the user whether the mapping units are
overlapping or not for each terrain derivative map. This latter result would allow
the user to classify an area with no soil data based on environmental similarities
of different areas through correlations between soil types and terrain attributes.

As an example, a watershed located in Nazareno county, in Minas
Gerais State, Brazil, contains Latosols (Oxisols) in association with Cambisols
(Inceptisols) on high lands, and Gleysols in low elevation areas (MOTTA et al.,
2001). Using the SoLIM tool, it was possible to extract the pixel values of
altitude above the channel network (AACN) map over the soil units, as shown
on Figure 5. Both curves are not presenting large overlapping areas: Gleysols, as
expected, present lower AACN values, basically inferior to 10, the contrary of
Red Oxisols. This graphic setting those curves apart contributes to a better
understanding of the soil types correlation to AACN. In this context, occurrence
rules for each soil type could be formulated by a soil expert in association with
SoLIM knowledge acquisition tool and then transferred to a similar area to

identify the places more likely to find similar soil types.
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Figure 5 - Graphic showing the pixel frequency distribution (from 0 to 1) for
Gleysols and Red Oxisols over altitude above the channel values.

2.6.2 Boxplots

Boxplots are another way to visualize the differences between pixel
values of terrain derivative maps for different soil types and also to verify how
adequate the extraction of information from existing maps was. They may show
the overlapping values and present the differences or similarities of quartiles and
medians according to different terrain derivatives and, thus, it makes it possible
to identify the best environmental covariate for predicting soil properties.

In order to illustrate this identification tool, Figure 6 shows boxplots of
four different mapping units (1, 2, 3 and 4) and four terrain derivatives (slope,
profile curvature, wetness index and AACN) of a watershed in Minas Gerais
State, Brazil. They were created using the R software (R DEVELOPMENT
CORE TEAM, 2013).
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Figure 6 - Boxplots for terrain derivatives and mapping units. prfcrv - profile
curvature, wetindex - wetness index, aacn - altitude above the channel network.

Analyzing the boxplots, some overlapping of ranges in values can be
seen for slope data although the medians are well separated. Wetness index
boxplots for mapping units 1 and 2 are entirely overlapping in values, as well as
for 3 and 4 ones, indicating that this terrain attribute would not succeed in
separating all the mapping units occurrence. The least overlapping of values is
pursued for better understanding the mapping methodology to represent the soils

distribution on the landscape.

2.7 COMMONLY USED ACCURACY EVALUATION METHODS

In general, the use of Digital Soil Mapping techniques to spatialize
information requires validation of this procedure through field works, that
includes soil sampling and/or prospections, to certify that maps are portraying

the reality and to measure their accuracy. Many validation methods have been



38

adopted by Digital Soil Mapping community, although some works have not
used any validation procedure (Grunwald, 2009).

In spatialization of information in soil mapping, estimate data are
assigned to places that have not been sampled. However, those estimate data
should be verified by acquiring information in some of those places. In this
sense, a simple way of verifying the similarity between the predicted and real
data in a specific place is possible through a 1:1 ratio graphic. In this graphic,
the closer the set of data is from the main diagonal, the more similar are the real
data in relation to the estimate data. From this set of data it is also possible to
calculate factors of measurement, such as coefficient of determination (R?), in
which values closer to 1 represent higher similarity between observed and
estimate data. As an example, Silva et al. (2014) used 1:1 ratio graphics to verify
the accuracy of real soil moisture data measured in the field and estimate soil
moisture obtained from Digital Soil Mapping techniques. An example of 1:1
graphic ratio is shown on Figure 7 comparing clay percentage values obtained
from estimates by data spatialization (estimate clay percentage) and from

laboratory analysis of soil samples (real clay percentage).

o 70

&0 L)

& 601  y=0,860x+ 5,897

§ 50 - R2=0,922

E 40 -

2820

o= 20 -

2 10 -

]

.g 0 T T T 1

4 0 20 40 60 80
Real Clay Percentage (%)

Figure 7 - Example of 1:1 ratio graphic to compare real with estimate clay

percentage in soils.
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Another commonly employed comparison factor is the root mean square
error (RMSE). It measures the difference between values predicted by a model
and values observed in the field. Values closer to zero indicate less differences
of the real in comparison with the estimate set of data. RMSE can be calculated

through the following equation:

n
1
RMSE = EZ(ei — mi)?
i=1

where: n 1s the number of observations, ei is the estimated value and mi is the
measured value. Santos et al. (2013) used RMSE and other factors to evaluate
the performance of pedotransfer functions to estimate soil water content at -33
and -1500 KPa for different soil classes of Rio Grande do Sul State, Brazil.
Omran (2012) used RMSE as one of the comparison measurements to determine
the best interpolation method for predicting diverse soil properties in Egypt.

In addition to the formerly presented accuracy evaluation methods,
Kappa index (or Kappa coefficient) is a statistical measure for categorical
(qualitative) data, such as soil classes, proposed by Cohen (1960). It is employed
when two raters or methods are employed to classify items into categories. Then,
it represents the degree of agreement between the two classifiers. Kappa index is
calculated according to the following equation:
K= Pr(a) — Pr(e)

1—Pr(e)

where Pr(a) is the relative observed agreement between classifiers and Pr(e) is
the hypothetical probability of chance agreement.

This index is represented by values ranging from 0 to 1, this latter
representing higher accuracy. According to Landis and Koch (1977), Kappa
index may be interpreted in five levels: 0-0.2 (slight agreement), 0.2-0.4 (fair
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agreement), 0.4-0.6 (moderate agreement), 0.6-0.8 (substantial agreement), 0.8-
1.0 (almost perfect agreement). As examples of using Kappa index on digital
soil mapping, Abdel-Kader (2013) employed Kappa index to compare a
reproduction of an original soil map to one created according to regression
methods, while Giasson et al. (2011) used kappa index to evaluate the
correspondence between original and predicted soil maps created through

decision tree methods in Rio Grande do Sul State, Brazil.

2.8 FINAL CONSIDERATIONS

The tools presented in this review have a potential for faster production
of soil surveys, since the techniques reduce the inconsistency and costs
associated with the traditional manual processes (ZHU et al., 2001). Also, when
compared with pedometric approaches, a low density of soil samples is
necessary. On the other hand, knowledge-based technique is not automatic, and
just as the traditional soil survey, the knowledge of soil-landscape relationships
is necessary, and its use has been considered both efficient and economical
(HUDSON, 1992; MCMILLAN et al., 2007).

As raised by Hudson (1992), the soil survey has so far failed in not
expliciting the mental model of the soil surveyor. Expliciting the rules in
functions to get optimality values, as well as the use of knowledge miner
techniques in order to utilize the legacy data, can contour this limitation of
traditional soil survey. Once the knowledge is explicit, extracted or established
in reference areas, the transferability to larger areas within same soil-landscape
relationships should be tested (MCKAY et al., 2010), as an opportunity to raise

the geographic expression of surveyed areas, very much needed in Brazil.
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Since fuzzy membership maps represent soil types and can be viewed as
a non-linear transformation of environmental variables based on expert
knowledge of a soil-landscape model (ZHU et al., 2010), its use as an auxiliary
in soil property prediction should be more explored. One example of such
application is related to pedometric prediction methods. Those that do not
incorporate the use of auxiliary variables (interpolation relying only on point
observations) have been outperformed by hybrid methods (interpolation relying
on point observations combined with interpolation based on regression of the
target variable on spatially exhaustive auxiliary information). Hybrid methods
explore the extra information when there is auxiliary information (maps of
covariates related to terrain, land use, and others) able to explain part of
variation (HENGL et al., 2007). In this sense, Zhu and Lin (2010) compared
maps generated from linear regression and environmental variables with
regression using fuzzy membership maps as auxiliary. The non-linearity and
complexity inherent to the steeper terrain with more variable soil types were
well captured by a set of soil membership maps, which can be used to describe
model and non-linear variation of soil property values. The linear regression
using environmental variables would be more appropriate to be used on gently
rolling landscapes, where soil-environment model is simple and stable over
space.

Finally, the mapping tools presented in this work show the advantages of
associating them to the field expert-knowledge in order to enhance the final
results quality. Along with that, however, it is worthy to remind that these tools
should be used on soil surveys and mapping to assist the field work (and never
in order to replace it), mainly because the soil variability is not completely

predictable, which makes this field activity irreplaceable for soil mapping.
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3. ARTIGO 2. A technique for low cost soil mapping and validation

using expert knowledge on a watershed in Minas Gerais, Brazil

*Artigo nas normas da Soil Science Society of America Journal.

ABSTRACT

Understanding the soil attributes and types occurring within a region is
critical for providing the best land-use decisions. Soils vary in their ability to
clean and store water, provide water for plant growth, and many other ecosystem
services. Soil variability is dependent on climate, parent material, organisms,
time, and topography. When only topography varies within an area, the
topography and redistribution of water should be the main drivers for soils
differentiation. Digital soil mapping (DSM) has advantages due to
computational tools and easily accessible digital elevation models (DEMs) at
multiple resolutions. Terrain attributes (e.g., slope, wetness index, and profile
curvature) are derived from the DEM and, in association with a soil expert,
knowledge-based models can be applied to predict soil variability. The objective
of this study was to create and validate a predicted Cambisol (Inceptisol) solum
depth map for Lavrinha Creek Watershed (LCW) in Minas Gerais, Brazil, by
applying DSM techniques for the Brazilian soil landscapes. The best available
30-m DEM was used to derive the terrain derivatives. A set of rules were
formulated according to the terrain attributes, limited data, and expert
knowledge to predict the solum depth behavior throughout the watershed.
Conditioned Latin hypercube sampling scheme was used for allocating the
validation points. In this study, 20 out of the 25 validating samples were
correctly classified yielding a Kappa index of 0.616. Soil expert knowledge and
Digital Soil Mapping techniques can be employed for mapping areas, especially



49

in countries where there is limited data available, which will provide a useful

soil map for planning while saving time and investments.

Abbreviations: AACN, altitude above the channel network; cLHS, conditioned
Latin hypercube sampling; DEM, digital elevation model; DSM, digital soil
mapping; GIS, geographic information systems; LCW, Lavrinha Creek
Watershed; LHS, Latin hypercube sampling; SWI, SAGA wetness index.

3.1 INTRODUCTION

Understanding the role soil plays in ecosystem functions occurring over
large regions is critical for informing the best use and aid management decisions
of natural resources. In Brazil, soils information is most often obtained from soil
surveys, which are commonly coarse resolution, outdated, or based on
taxonomic divisions. Due to funding limitations, soil surveys for most of Brazil
are available only at small scale (1:750,000), and just a small portion of the
Brazilian territory has semidetailed or detailed soil surveys (Giasson et al.,
2006). Furthermore, there are many financial and time restrictions that typically
limit sampling at temporal and spatial scales, which also slow the progress
towards fine resolution soil maps (Iwashita et al., 2012). Due to these
limitations, the availability of soils information has not kept up with the demand
for soil information, and this demand motivates the development of alternative

soil mapping methods based on limited data (McBratney et al., 2003).

Introduction of digital technologies, such as remote sensing and DSM
techniques, has provided new opportunities to predict soil properties and
processes (Grunwald, 2009). Among them, knowledge-based DSM methods
have advantages for being a quick and economic alternative (Mendonga-Santos
et al., 2008), not only for using local soil scientist knowledge of soil-landscape

relationships but also for capturing the pedologists’ mental model. Lagacherie



50

and Voltz (2000) highlight that the regional soil pattern knowledge from local
soil scientists can be an important tool due to the possibility of predicting the
soil types occurring in non-mapped areas, using previous information generated
in reference areas. Thus, associating expert knowledge with new soil mapping
methods may improve soil mapping final products, especially in countries where

information and field activities are limited.

Since the factors of soil formation (climate, organisms, topography,
parent material, and time) have been described for soil development (Jenny,
1941), this mental model may be used to develop predictive soil maps. Also,
using Milne’s catena concept that soils occur on topographically associated
landscapes that are repeated on similar landscapes (Milne, 1935), soils should be
predictable where only topography is varying across the landscape (Menezes et
al., 2013). Gessler et al. (2000) found high correlation among several soil
properties and topographic indices (e.g., slope, profile curvature, and
topographic wetness index) derived from DEMs. Like no other time in history,
pedologists have access to DEMs available at different resolutions, which can
aid in relating soils differentiation based on the relief factor, soil expert

knowledge, and mapping techniques, such as fuzzy logic.

Fuzzy logic has been increasingly employed in soil science due to its
ability to capture and represent the continuous nature of soil spatial variation
(Zhu and Band, 1994), and, along with knowledge-based digital soil mapping, it
has been extensively used to predict soil types and soil physical-chemical
properties (McKay et al., 2010; Zhu and Band, 1994; Zhu et al., 1997, 2010),
since these properties are inherent to soils and landscapes (Menezes et al., 2013).
In this sense, soil properties in non-sampled places can be predicted according to
their membership to places wherein the relation between soil properties and

environmental variables, such as topographic factors, is known. The membership
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values range from 0 to 1 and the higher the value, the higher the similarity
between different places. Zhu et al. (1997) successfully used this methodology
to predict the depth of A horizon, while Quinn et al. (2005) employed this
technique to predict solum depth. However, this knowledge-based mapping
method requires a non-biased validation method, and validation of predictive

maps is one of the most crucial steps in creating the product.

Validation involves sampling schemes that contemplate soil property
variability over the entire area and ancillary data, as terrain attributes, can be
used for this purpose. In this context, conditioned Latin hypercube sampling
(cLHS) can be used to validate the knowledge-based inference maps. The
conditioned Latin hypercube has been increasingly adopted by the DSM
community (Minasny and McBratney, 2010). It was proposed by Minasny and
McBratney (2006) as a derivation of Latin hypercube sampling (LHS) (McKay
et al., 1979). Contrary to LHS, cLHS adds the condition that the chosen
sampling place must actually occur on the landscape (Brungard and Boettinger,
2010) and may be conditioned to other requirements such as location to access.
Roudier et al. (2012) proposed the association of the cLHS with a cost raster,
which represented the cost (difficulty) of reaching every place within a study
area, taking into account the terrain attribute maps and other variables, such as
distance from roads and landcover. Thus, the cLHS scheme would give
preference to sample in the low-cost areas. Although Roudier et al. (2012) found
that this cost-constrained cLHS is not as representative of the variability as the
standard cLHS because the former under-sampled high cost places, this
sampling scheme might also be used for choosing validation locales in

predictive maps, especially in areas of difficult access.

In this context, this study was performed to accomplish two objectives:

(i) to create low cost, reliable soil maps with limited data based on soil expert
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knowledge inference predictive soil maps, using DSM tools in Brazil; and (ii) to
test the cost-sensitive validation method using conditioned Latin hypercube
sampling techniques. In Brazil and much of the world, a low cost alternative is
needed to create soil maps at reasonable scales for adequate use and
management. This method will combine soil expert knowledge with DSM
techniques (relationship between terrain attributes and soil properties) creating a
predicted solum thickness map for Cambisols (Inceptisols) in LCW, with limited
data availability.

3.2 MATERIALS AND METHODS

3.2.1 Study area

This study was conducted in LCW, which is located in Bocaina de
Minas county, in Minas Gerais State, Brazil, within the Serra da Mantiqueira
physiographical region (between the longitudes 44°26'21" and 44°28'39" W,
and latitudes 22°06'53" and 22°08'28"" S). This study site is a component of the
Alto Rio Grande Basin and is one of the headwater streams, which flow into the
Grande River, which is very important for the water supply for Camargos

Hydroelectric Power Station.

This area is characterized as having semitropical of high altitudes
climate, with an average temperature in the hottest month lower than 22°C, dry
winters, and rainy summers. The annual average precipitation is 2000 mm, with
an annual water deficit ranging from 50 to 100 mm and an annual water surplus
greater than 800 mm. Lavrinha Creek Watershed covers an area of 676 ha, the
altitude ranges from 1160 to 1729 m, it is included in the Andrelandia Plateau,
and the soil parent material is derived from gneiss. The native vegetation is

Atlantic forest, and the land uses include native Atlantic forest reserve in the
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steepest slopes and degraded pasture and Eucalyptus plantation in the gentle

slopes.

3.2.2 Data used for digital soil mapping

The available site information was obtained from Menezes et al. (2009),
which include the LCW soil taxonomic map (Fig. 1), at a scale of 1:20,000
based on samples collected throughout the area and profile descriptions.
Cambisols (Inceptisols) on the sloping landscape cover 92% of the watershed,
followed by 7% and 1% of Fluvic Neosols (Fluvents) and Haplic Gleysol
(Aquents), respectively, on floodplains. A 30-m pixel Aster DEM was obtained
from the website www.gdem.aster.ersdac.or.jp (accessed on May, 14™ 2012) to
create raster maps of terrain attributes derived from the DEM. Slope, profile
curvature and SAGA wetness index (SWI) were used in the solum depth map
prediction, whereas altitude above the channel network, elevation, slope, and
SWI were used for selecting the lowest elevation areas of the landscape, which

were not classified as Cambisols (Inceptisols) and are not a focus of this study.
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Fig. 1. Lavrinha Creek Watershed soil map and its location within Minas Gerais
State, Brazil.

3.2.3 Methods for creating inference maps

Terrain attribute maps of SWI, profile curvature, altitude above the
channel network (AACN), and slope were created in SAGA geographic
information systems (GIS) (Bohner and Conrad, 2009) and ArcGIS 9.3 (ESRI)
software to characterize topographic attributes. Those terrain attributes were
selected based on methodologies used by Kuriakose et al. (2009), Boer et al.
(1996), and Gessler et al. (2000), and were adapted for the study area. From
them (environmental conditions) and their relationships to solum thickness, rules
of occurrence for each solum depth class were created, according to soil expert
knowledge, for inference mapping. Solum thickness (A+B horizons) was aimed

to be predicted instead of soil depth to the bedrock because, in this region, C
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horizon is very thick, sometimes reaching more than 26 m of depth (Rezende,
1980).

Based on this methodology and on the developed rules, different
combinations of the terrain attributes slope, profile curvature, and SWI were
related to each expected solum depth class for each pixel on the map as
described in the subsequent sections. The depth classes are in agreement with
the Brazilian Soil Classification System (Embrapa, 2013): Shallow (<50 cm),
Moderate Deep (>50 and <100 cm), Deep (>100 and <200 cm), and Very Deep
(>200 cm).

The environmental conditions in which each solum depth class was
expected (rules) were based on a local soil expert’s knowledge, with experience
on soil survey, genesis, and classification, and the following conditions: it is
expected that places with higher wetness index (>10.5) have more water and
sediments accumulation (deep soil) and in places where the wetness index is
lower (£10.5), water movement is faster, and, hence, due to low water
infiltration, erosion is more likely to occur (shallow soil); profile curvature
values lower than —0.0008 represent convex landscapes and the values between
—0.0008 and +0.0008 define linear landscapes. Both intervals indicate regions
more likely to lose soil, while the values greater than +0.0008 represent concave
places more likely to receive soil eroded from higher altitude and, therefore, to
present thicker solum; deeper soils are also expected to be found under gentle
slopes whereas shallower soils are expected to be found on steep slopes
(Schaetzl and Anderson, 2005).

The rules presented in Table 1, established by a soil expert, were
inserted in an ArcGIS 9.3 (ESRI) extension named ArcSIE (Soil Inference
Engine) (Shi, 2013). This tool uses expert knowledge and fuzzy logic to show on

maps the areas that better fit each rule by presenting high membership values,
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which corresponds to more similarities to the given rules (Table 1). The greater
the similarity of a pixel to a certain rule, according to its environmental
conditions, the higher its membership to that rule and, hence, to the solum depth,
which that rule represents. Table 2 presents the parameters used in ArcSIE to

insert each rule presented in Table 1.

Table 1 — Rules to predict the Cambisol solum depth based on soil expert
knowledge.

Rule Slope (%) Profile Curvature Wetness Solum Depth

Index (cm)
1 <20 >-0.0008 <+0.0008 <10.5 > 50 and < 100
2 <20 >-0.0008 < +0.0008 >10.5 > 100
3 <20 <-0.0008 >10.5 > 100
4 <20 <-0.0008 <105 > 100
5 <20 >0.0008 >10.5 > 100
6 <20 >0.0008 <105 > 100
7 >20and <45  >-0.0008 <+0.0008 <10.5 > 50 and < 100
8 >20and <45  >-0.0008 <+0.0008 >10.5 > 50 and <100
9 >20and <45 <-0.0008 >10.5 > 100
10 >20and <45 <-0.0008 <10.5 > 50 and <100
11 >20and <45 >0.0008 >10.5 > 100
12 > 20 and <45 >0.0008 <10.5 > 50 and <100
13 > 45 >-0.0008 <+0.0008 <10.5 <50
14 > 45 >-0.0008 < +0.0008 >10.5 > 50 and < 100
15 > 45 <-0.0008 >10.5 > 50 and <100
16 > 45 <-0.0008 <10.5 <50
17 > 45 >0.0008 >10.5 >50and <100
18 > 45 >0.0008 <10.5 <50
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Table 2 — Parameters and classes used in ArcSIE to predict the Cambisol solum
depth based on soil expert knowledge.

:tfrrirlillltle Class of Values vl and v2 wl w2 Curve Shape
<20 0.20 -- 0.02 z-shaped

Slope (%) >20and <45 0.32 0.12 0.13 bell-shaped
> 45 0.45 0.02 -- s-shaped
<-0.0008 -0.0008 - 0.0004  z-shaped

>+0.0008 and <

coroflle = o008 0 00008 0.0008 bell-shaped
> +0.0008 0.0008  0.0004 - s-shaped
<10.5 10.5 -- 1 z-shaped

SWI

>10.5 10.5 1 -- s-shaped

SWI: Saga Wetness Index; vl and v2: threshold values that determine high
membership below or above that value according to the curve shape; wl and
w2: deviations from the v1 and v2 that represent 50% membership.

The expected Cambisol solum depth map was generated using the
mentioned ArcGIS extension. In Table 2, “v1” and “v2” are the thresholds, “w1”
and “w2” are deviations, and curve shapes indicate the values that should have
high membership values. The “s-shaped” curve is used to determine that raster
values that are greater than a pre-established value (vl) are assigned high
membership; while a “z-shaped” curve determines that raster values lower than
the pre-established one, v2 in this case, are assigned high membership; and the
bell-shaped curve assigns higher membership to the raster values in between two

other pre-established values (w1 and w2).

For instance, the first line on Table 2 indicates an expert knowledge-
based rule for identifying places where the slope gradient is lower than 20%.
Thus, it uses a z-shaped curve (Fig. 2), being the threshold 0.20 (v2) and a

deviation of 0.02 (w2), which means that slope values lower than 20% will be
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assigned 100% membership, while slope values between 20 and 22% (v2+w?2 or
0.20+0.02) are assigned membership decreasing from 100% as pixel values get
farther from the threshold (v2 or 20%). On the other hand, a s-shaped curve (Fig.
2) was employed to determine places where slope is greater than 45%, where v1
is 0.45 and the w1 deviation is 0.02. Thus, slope gradients greater than 45% are
assigned 100% membership, and the ones between 43 (0.45—0.02) and 45% are
assigned decreasing membership according to the rule (slope > 45%). To
identify places where slope ranges from 20 to 45%, a bell-shaped curve was
used (Fig. 2). vl was 0.32, wl was 0.12, and w2 was 0.13. This means that
raster values ranging from 20 (0.32 — 0.12) to 45% slope (0.32 + 0.13) are
assigned higher membership than those which are not included in this interval.
In this example, only slope was discussed, but other terrain attributes such as
wetness index and profile curvature were also employed to define the solum

depth class variability in the study area.

Z-shaped A Bell-shaped A S-shaped
o 1 0.20 . 1 0.45
=
[
é 0.5 022 05| 020 0.45 05 0.43
]
=
> > >
Slope Slope Slope

Fig. 2. Curve shapes used to define values of terrain attributes (i.e., slope) to
which high membership is assigned according to different rules to predict solum
depth in Lavrinha Creek Watershed: lower than 20% slope in z-shaped curve,
between 20 and 45% slope in bell-shaped curve, and greater than 45% in s-
shaped curve.
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It was necessary to delineate the lowest areas in the landscape near the
drainage channels so that the rules would not apply to these non-Cambisol areas.
The geomorphic and pedogenic processes are different within these areas and
must be separated. ArcSIE was used again to select and then exclude from the
LCW map the lowest areas on the landscape, where the lowland soils are
located, so that only Cambisols would be represented on the map. For this
purpose, elevation, slope, AACN, and SWI were used. Table 3 presents the
instances, also based on soil expert knowledge, for each of those parameters
used in ArcSIE to select the lowest areas on the landscape. The validation of this
procedure was made by sampling two random places within this area to certify

that area was not occupied by Cambisols.

Table 3 — Parameters applied in ArcSIE for pointing out the lowest areas on
the landscape based on soil expert knowledge.

Attributes Curve Shape v W

Elevation Z-shaped 1220 12
Slope Z-shaped 0.06 0.02

AACN Z-shaped 12 3
Wetness Index S-shaped 15 0.43

AACN: Altitude Above the Channel Network; v: threshold value that determine
high membership below or above that value according to the curve shape; w:
deviations from the v that represent 50% membership.

3.2.4 Soil sampling for validation

The cLHS, proposed by Minasny and McBratney (2006), was used for
choosing the locations for validating the predicted map by verifying the actual
solum depth in the field. This method may place each validation sample

according to environmental variables (slope, profile curvature, and SWI),
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considering that their variability should explain the soil properties of interest, in
this case, the solum depth. The cLHS could be considered valid when the
assumed major varying factor driving pedogenesis within the studied area is the

topography.

Keeping this in mind, the cLHS will determine the combinations needed
for statistical validity but restricts choosing a place within the watershed that is
difficult to access. Therefore, the sample locations were selected in places with
similar environmental characteristics located in easy-to-reach areas. Following
the steps proposed by Roudier et al. (2012) to create a cost raster, in this study,
distance from the road, slope, and vegetation cover were considered the

constraining attributes that would possibly hamper the sampling process.

Each of those terrain attribute rasters was divided into cost classes
(Table 4), which present the difficulty of reaching a place with certain
characteristics. For example, considering the slope raster for the value class
greater than 45%, it was given a cost of 9, whereas for the class 0-3%, the
assigned cost is 1, which means it is easier to reach places under gentle slopes
than steep slopes. This procedure does not mean that slopes greater than 45%
will not be sampled, they will only have a cost associated with the sample. Then,
the three rasters reclassified according to costs were added to one another,
resulting in a final cost raster that represents the difficulty of reaching each place

(pixel) in the field.

Table 4 — Values assigned per class for each attribute raster in order to create a
cost raster showing the difficulty to reach every part of the study area.

Slope Slope Distance Distance Vegetation Vegetation
Class (%) Value  Class (m) Value & Value
0-3 1 0-50 1
Pasture 1
3-8 3 50-100 5

To be continued...
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Table 4 - Conclusion.

8-20 5 100-200 13
20-45 7 200-300 25 Native 35
Forest
>45 9 >300 50

With this final cost raster as constraining factor and considering the
three other terrain attribute rasters, the analysis was conducted using R software
(R Development Core Team, 2009). The cLHS scheme for collecting 25
validating samples was accomplished through the use of the following R
packets: clhs (Roudier, 2012), raster (Hijmans and van Etten, 2012), proj4
(Urbanek, 2011), rgdal (Keitt et al., 2012), and shapefiles (Stabler, 2006). Those
25 validating places were chosen based only on the environmental variables and
the cost raster. The predicted solum depth map was not taken into account on
that procedure because its accuracy would be known with this validation. A
global index, Kappa index, commission, and omission errors were calculated to
evaluate how many samples out of the 25 ones for field validation correctly

match the predicted solum depth class on the map.

3.3 RESULTS AND DISCUSSION

The predicted Cambisol (Inceptisols) solum depth map was created
according to knowledge-based inferences about the landscape conditions more
likely to characterize solum depth variability (Fig. 3). Visually, there is an
obvious relationship between the shallow soils and the steepest slopes (steeper
than 45%) on the landscape. The shallow sola on steep slopes are common due
to the high ratio between erosion and pedogenesis. Steep slopes reduce the water
infiltration, increase overland flow, and decrease water available for weathering-
leaching, preventing the solum from becoming thicker. All these processes

would lead to the shallow soils found on steep slopes (Schaetzl and Anderson,
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2005). Dietrich et al. (1995) proposed a model based on topographic
measurements to predict soil depth and also noted the tendency of thin soils

forming on steep landscapes.

Cambisol Solum Depth Map

Legend
« Samples
Depth Classes
[0 > 100 cm
> 50 and <= 100 cm
T<=50

1.000 500 V] 1.000 Meters

Fig. 3. Predicted solum depth map for Lavrinha Creek Watershed created using
soil expert knowledge associated with fuzzy logic and environmental covariates.

The 30-m DEM was used to derive three terrain attribute rasters of
slope, profile curvature, and SWI and were used for the proposed solum depth
map creation (Fig. 4). These data in Fig. 4 illustrate that the lowest areas on the
landscape, excluding the floodplains, are represented by high wetness indexes
and gentle topography, favoring the sediment accumulation transported from
higher elevation areas, which should increase the Cambisol solum thickness in
those areas (Dietrich et al., 1995). Although the highest wetness indexes occur
on floodplains, those areas were not included on the predicted Cambisol solum
depth map for being mostly occupied by Fluvic Neosols and Haplic Gleysols

(Fig. 1). The highest areas are found under the lowest wetness index values and
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predominantly steep slopes. Those steep conditions are generally related to
shallow soils because small amounts of water are expected to reach the bedrock,
which reduces the weathering rates and, hence, the soil thickening (Schaetzl and
Anderson, 2005). Also, on steep side slopes, rates of erosion outpace soil

development (Aquino et al., 2013).

Fig. 4. Digital Elevation Model and the terrain derivative maps of slope, profile
curvature, and SAGA wetness index used along with soil expert knowledge for
the predicted solum depth map creation.

According to the predicted solum depth map, a solum shallower than 50
cm (Shallow class) occupies 34.9% of the area, which is the dominant class, and
it is located on steep slopes (Fig. 3). This depth class is followed by Moderate
Deep class solum covering 32.8%. Although the steep relief is the dominant
topography in this watershed, the Deep solum class encompasses 32.3% of the

area, which is the solum thicker than 100 cm. In this class, the BC horizon is
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generally very thick and can be as much as 40 cm. As reported by Mello and
Curi (2012), the Cambisols of this watershed are deeper than the Cambisols
found in similar landscapes in the rest of the Alto do Rio Grande Basin and the
deeper soils provide higher recharge potential. This deeper solum at LCW has
been attributed to the higher permeability of the gneiss (parent rock in LCW)
when compared with the lower permeability of mica schist, parent material on
major part of Alto do Rio Grande Basin, favoring the weathering rates and,

hence, the solum depth.

In general, the relief at LCW is composed of narrow hills, and it makes
it difficult for the 30-m DEM to capture all the relief variability in the study
area. Soil and landscape vary in distances less than 30 m, so some transitions or
soil variability were not captured by the DEM in this work. Thus, the coarse
resolution DEM may have contributed to some errors in the predicted solum
depth map. The influence of the DEM resolution (grid size) on soil landscape
modeling, as well as on its applications, has been widely discussed (e.g.,
Vazquez et al., 2002; Claessens et al., 2005). The free higher resolution DEMs
with pixels smaller than 30 m by 30 m, when available in Brazil, will possibly
improve the final results of DSM products related to prediction of continuous
soil properties, especially when working in places where the soil management

requires large scale maps.

The low elevation and gentle-slope areas were not considered under the
same validation sampling scheme and were removed from the LCW soil map
(Fluvic Neosols and Haplic Gleysols) due to different geomorphic and
pedogenic processes occurring in these positions when compared to the
Cambisols area. To validate this removing procedure, during the field work, two
locations were sampled within this area (557520, 7551502 WGr; 556194,
7552491 WGr, 23K). Both places were identified as containing lowland soils
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that differed from the Cambisols. Also, two soil profiles (557321, 7551784
WGr; 556825, 7552219 WGr, 23K) described by Menezes et al. (2009)
containing the local soil property and soil type information (lowland soils) were
added to the map in ArcMap (ESRI) to verify whether they were correctly
included in that non-Cambisol area. Both pair of coordinates were located within
the non-Cambisol area, confirming that the mentioned area is composed of

lowland soils that should not be considered in the predicted solum map.

Figure 5 presents the cost raster map and the variables used for its
creation only on the Cambisol area. The increased blue in the pixel color on the
cost raster relates to higher difficulty to reach the pixel location. It is possible to
see that the places surrounding the road and under pasture have lower cost of
sampling than locations farther from the road and under native forest. Gentle
topography places were also considered easier to reach compared to steep

terrain. Thus, those low-cost sampling areas were preferred by cLHS.

™ Distance from the Read

i
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Final Cost Raster
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Fig. 5. Variables used for the creation of the map of the cost (difficulty) of
reaching every place in the study area.
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Two sampling schemes were created to demonstrate how sampling
locations change with and without constraining the cLHS to low-cost places
according to the cost raster (Fig. 6) and to verify whether the cost-constrained
samples adequately represent soil variability according to terrain attributes. In
the field, it was noticed that places where the cost-constrained validation
samples were selected presented different soil attributes such as color, slope
gradient, amount of gravel, moisture, and solum depth, the feature to be
validated (validation results in subsequent sections). Furthermore, some samples
were located in high-cost sampling locations even when conditioning them to
low-cost sampling areas. The high-cost locations presented unique soil
properties compared to other validating locations probably because there was no
possibility for the cost-constrained cLHS to transfer them to low-cost sampling
areas without losing the sampling representativeness. However, the number of
relocated samples demonstrates that the cost-constrained cLHS is an efficient
way to change the sampling locations to easy-to-reach areas, reducing the time
and investments needed during field evaluation for validating the predicted
solum map. Also, this sampling scheme can help researchers working in areas
with limited access to capture soil variability, especially where the major

topographic and land-use conditions are closely related.
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Fig. 6. (a) The standard conditioned Latin hypercube sampling and (b) cost-
constrained conditioned Latin hypercube sampling locations showing how the
sampling points move to easy-to-reach (low cost) areas when the sampling
scheme is cost-constrained by a cost raster.
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Despite this cost reduction during the field activities, from the 25
validating places selected by the cLHS, only two samples were located within
the predicted Shallow class for its validation. The Shallow class locations were
selected based only on the terrain attribute maps and the cost raster, not taking
into account the predicted solum classes, which is needed for validation. The
other two depth classes were well represented on the validation scheme, where
15 samples were located for the Deep class and 8 for the Moderate Deep class
(Table 5). Roudier et al. (2012), comparing sampling schemes made by both
standard cLHS and the cost-constrained cLHS, concluded that the latter did not
provide as optimized sampling representativeness as the scheme using standard
cLHS. The cLHS penalizes and under-represents some of the features that occur
in difficult terrain. On the other hand, the same authors state that the cost of the
produced sampling scheme was reduced. In future works, a comparison between
different sample sizes and the cost of performing those sampling schemes in the
field could be tested to determine the optimal relation between sample sizes and

cost of sampling, maintaining the quality of the final maps.
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Table 5 - Confusion matrix showing the number of correctly predicted places in
order to assess the predicted solum depth map accuracy according to the real
solum depth at each validation point.

Class Shallow Moderate Deep Row Total
Deep
Shallow 1 1 0 2
Moderate Deep 0 6 2 8
Deep 0 2 13 15
Column Total 1 9 15 25

Using the data points collected according to the cLHS to verify the real
solum depth at those places, the predicted solum depth map was validated
through global index, Kappa index, and commission and omission error
assessments. According to Story and Congalton (1986), the global index is the
most common way to express the precision of both images and maps, reporting
the percentage of the mapped area correctly classified in comparison with the
reference data, verified in the field. Table 5 shows the confusion matrix in which
the sum of the main diagonal values (1+6+13) presents the number of validating
samples that correctly match the predicted solum depth class. Likewise, 20 out
of the 25 samples match the predicted solum depth class, which results in a
global index of 80%. This value is lower than the 85% globally accepted,
according to Jensen (1986), indicating that there were some errors, most likely
due to DEM pixel size (30 m) and solum depth variability in the study area. This
landscape has relief with narrow hills, which are not always correctly
represented on the terrain derivative maps at the 30-m resolution used for
prediction. Also, the solum depth variability tends to be higher on Cambisols
(this study) than on more pedogenetically developed soils (Oliveira et al., 2013).

Kappa coefficient considers the proportion of the correctly classified
samples corresponding to the ratio between the sum of the numbers on the

confusion matrix main diagonal (correctly classified samples) and the sum of all
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of the matrix components (number of total samples), taking as reference the total
number of classes (Congalton and Green, 2009). The Kappa index, calculated
according to the confusion matrix shown on Table 5 resulted in 0.616, a value
which corresponds to a substantial classification according to Landis and Koch
(1977). Kappa coefficient value is lower than the global index because the
former takes into account all of the confusion matrix values and not only the

values on the main diagonal as does the global index.

Omission and commission errors were assessed to evaluate the predicted
solum map quality per depth class. Omission error is defined as the exclusion of
a sample from the class that it actually belongs, while the commission error is to
include a sample in a class in which it should not have been included. Omission
and commission errors for the solum depth classes are shown on Table 6, and
the lower the values, the more accurate the predicted solum depth class. In this
study, the commission error for the Shallow class was the lowest, which means
the sample presented the same depth class predicted on the map, whereas the
omission error was the greatest (50%) because the shallow class contains two
validation samples and the one collected where the solum is shallow in the field
occurs where the map indicates the Moderate Deep class. However, due to this
class containing one sample indicated by the cLHS for validation, the errors can
easily be either increased or decreased. On the other hand, Deep class has low
error values, showing that the classification of this solum depth class was
acceptable, being only two samples misclassified out of the 15 belonging to this
class. Also, most validating samples were located on this depth class (15 out of
25). The Moderate Deep class presented intermediate values and also adequate

classification, containing only two errors out of eight samples.
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Table 6 — Omission and commission errors calculated according to the number
of validation points with correctly predicted solum depth per solum depth class.

Class Omission error Commission error

Shallow [1-1/1)]*100=0 [1-(1/2)]*100 =50

Moderate Deep  [1-(6/9)]*100 = 33.33 [1-(6/8)]*100 = 25
Deep [1-(13/15)]*100=13.33 [1-(13/15)]*100=13.33

The actual solum depth measured in the field and the predicted solum
class for each validation point are presented in Table 7. The results show that
five out of the 25 samples did not match the real depth and the predicted depth
class. This result is significant considering that the predicted solum depth map
was totally based on soil expert knowledge that defined the topographical
conditions for each solum depth class for LCW. This result supports the
advantages of considering a soil expert who knows the area of interest as a
strong, reliable, low cost, and helpful mapping tool to improve results, especially
in countries such as Brazil where some of the fundamental elements of a soil
mapping project are difficult to obtain (i.e., pedological information, access due
to rugged terrain, high resolution DEMs, and funding). Bui (2004) states that
soil maps and their legends are representations of structured knowledge, namely
the soil surveyor’s mental soil-landscape model. Thus, one who understands soil
distribution in an area of interest could apply the acquired knowledge to aid soil
mapping. Also, the produced solum depth map may aid planning soil use and
management at LCW, drawing attention for areas where the solum is shallow

and, thus, more susceptible to erosion.
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Table 7 — Predicted solum depth classes confronted with the real solum depth
verified in the field at 25 wvalidating places selected by conditioned Latin
Hypercube Sampling scheme.

. Real .
Validation Predicted Solum Validation Predicted Real Solum
. Solum . Solum Depth
Point Depth Point Depth (cm)
Depth (cm) (cm)
(cm)
1 > 100 > 100 14 > 50 and <100 57
2 >5?Oagd5 90 15 >50and<100 > 100
3 > 100 > 100 16 <50 46
4 ~ nggdg 74 17 > 50 and < 100 9%
5 > 100 > 100 18 > 100 79
6 <50 65 19 > 100 > 100
> 50 and <
7 100 63 20 >100 > 100
8 >100 > 100 21 > 50 and <100 > 100
9 > 100 > 100 22 > 100 > 100
10 > 100 > 100 23 >100 > 100
> 50 and <
11 100 92 24 > 100 > 100
12 >100 86 25 > 100 > 100
13 > 100 > 100 - - -

3.4 SUMMARY AND CONCLUSIONS

The new advances in technology provide tools for soil scientists, which

can be beneficial for soil survey and mapping in areas with limited access and

data. The experts can provide an idea about patterns that may be found in the

study area. This is very important in Brazil because it is difficult to gather

enough information about a specific region before the mapping process begins.

It is worthy to highlight that even employing the most advanced technologies

and local pedologist knowledge for predicting soil properties, predictions may
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not always be totally correct due to soils variability among different regions,
primarily in a large country such as Brazil. This statement supports the
importance of field validation of predictive soil maps, a procedure that makes
the soil map more usable and reliable. The predicted solum thickness map
presented adequate validation results for an area with very limited spatial
information about this soil property, supporting and confirming the importance
of soil expert knowledge application as a soil mapping tool in association with
the new computational assessment tools. Also, the terrain attributes applied were
efficient to predict solum depth, corroborating the findings of Gessler et al.
(2000). These types of functional maps are crucial for addressing many land-use
questions and in particular the issue of soil-water storage for recharge into
streams that supply hydroelectric power plants. Land-use planners will
increasingly need more refined maps, and these technologies will be useful for

future developments.

The new mapping techniques and DEM availability for soil scientists
tend to somehow compensate the lack of previous pedologic information aiding
the creation of predictive maps for the interest area, especially in Brazil, where
more detailed soil maps are only available for small areas. Also, the cost-
constrained cLHS, although providing a less optimized sampling scheme in
comparison to standard cLHS (Roudier et al., 2012), would be very useful for
Brazilian conditions, for limiting the sampling in low-cost areas, since access
difficulties due to absence of roads and dense vegetation are common. Thus, it
presents a practical way to choose the soil sampling places to save time and

expenses in the field work.

The soil expert knowledge in association with fuzzy logic is a good way
to support soil map creation, especially when it is difficult to appropriately

sample throughout the study area, which is common. This method of soil
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mapping can use the soil-landscape relationships to extrapolate information
based on some environmental support and does not require as many samples as
geostatistical approaches. The weakness with maps using expert knowledge is
that maps may be created differently by different experts. However, the maps are
explicit and the information needed to create them is recorded so that future
updates can be easily performed and the knowledge of the expert can be
captured. In this context, the association of fuzzy logic and a soil expert is even
more important not only because fuzzy logic provides a way to classify soils as a
continuum, capturing their spatial variability (Zhu et al., 1997) but also because
a soil expert can provide more detailed information than the existing maps.
Furthermore, a pedologist can inform, with higher reliability, the soils more
likely to occur in places very hard to reach, based on soil-landscape
relationships, which would diminish the uncertainties about soils in those
locations. Non-pedologists should consider maps to be dynamic rather than
static maps. We can produce the best maps possible with the available data with
the expectation that the maps will be useful for current land management, and
also the maps can be constantly improved with additional data to make

improvements of property predictions with associated uncertainties.
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4. ARTIGO 3. Solum depth spatial prediction comparing
conventional with knowledge-based digital soil mapping approaches

*Artigo nas normas da Scientia Agricola.

ABSTRACT

Solum depth and its spatial distribution play an important role on different types
of environmental studies. Several approaches have been used for fitting
quantitative relationships between soil properties and their environment in order
to predict them spatially. This work aimed to present the steps required for
solum depth spatial prediction from knowledge-based digital soil mapping,
comparing its prediction to the conventional soil mapping approach through
field validation, in a watershed located at Mantiqueira Range region, Minas
Gerais State. Conventional soil mapping had aerial photo-interpretation as a
basis. The knowledge-based digital soil mapping applied fuzzy logic and
similarity vectors in an expert system. The knowledge based digital soil
mapping approach showed the advantages over the conventional soil mapping
approach by applying the field expert-knowledge in order to enhance the quality
of final results, predicting solum depth with suited accuracy in a continuous
way, making the soil-landscape relationship explicit.

Keywords: Soil Survey, Fuzzy Logic, Similarity Vectors.
4.1 INTRODUCTION
The solum depth (A+B horizon) has been applied in distributed hydro-

ecological models to simulate watershed processes as net photosynthesis and

stream flow (Quinn et al., 2005; Zhu and McKay, 2001), affecting the soil
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storage capacity (Follain et al., 2007) or soil drainage condition (Odeh et al.,
1995). Solum depth is strongly linked to landscape characteristics and it is
important for soil mapping (Chartin et al., 2011), land use planning and
management.

Several approaches have been used for fitting quantitative relationships
between soil types and/or properties and their environment in order to predict
their spatial distribution and variability (spatial inference models) (McBratney et
al., 2003). Such models are divided into data-driven (Pedometric approach) and
knowledge-driven (Shi et al., 2009). From pedometric approach (statistic and
geostatistic), the accuracy of prediction is generally related to a dense sampling
scheme, which is not always feasible due to cost and time constraints (Zhu and
Lin, 2010).

Zhu and Band (1994) and Zhu (1997) presented an alternative approach
based on limited observations per soil class, using fuzzy logic and similarity
vectors, in an expert system. Possessing the maps that represent soil forming
factors (environmental variables), the knowledge of pedologists can be
incorporated into spatial prediction, where the qualitative soil-landscape model
is converted to quantitative predictions using relationships between soils and,
more frequently, terrain attributes, such as slope, topographic wetness index, and
profile curvature. It overcomes a limitation of conventional soil mapping
approach, as raised by Hudson (1992), which failures in not expliciting the soil
surveyor mental model. Because this approach requires an understanding from a
soil scientist perspective on the repeating soil patterns on the landscape, as
conventional mapping approach, it is considered a knowledge-driven digital soil
mapping approach and it has been considered efficient and economical (Hudson,

1992; MacMillan et al., 2007).

This work aimed to present the steps required for solum depth spatial

prediction from knowledge-based digital soil mapping, comparing it to the
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conventional soil mapping approach through field validation, in a watershed

located at Mantiqueira Range region, Minas Gerais State.

4.2. MATERIAL AND METHODS

4.2.1 Study area characterization

This study was carried out at Lavrinha Creek Watershed located at
Mantiqueira Range, Southern Minas Gerais state (Figure 1). It is a typical
headwater watershed, representative of the Alto Rio Grande Basin, an important
hydrological region due to its potential to generate electric energy on the basis of
hydraulic energy. There is predominance of dense rain forest, with high slope
gradients and few roads, hindering the access and the traffic in the area. The

main characteristics of the study site are presented in Table 1.
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Figure 1. Geographical location of Lavrinha Creek Watershed.
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Table 1. Basic characteristics of Lavrinha Creek Watershed.

Basic characteristics

Between latitudes 22°6°53.7” and 22°8°28.1” S and

Location longitudes 44°26°21.1” and 44°28°39.2” W
Area 676 ha

Elevation From 1151 to 1687 m

Mean annual temperature 15°C

Annual Precipitation 2000 mm

Land agricultural suitability Fauna and flora reserve

Alluvial material transported by water (floodplains)

Parent material and the massive rock gneiss (high lands)

4.2.2 Conventional soil mapping approach

The photo-interpretation of the watershed was performed using a
stereoscope, with vertical pancromatic aerial photograph at a scale of
approximately 1:35,000. Physiographycally homogeneous areas were separated,
which constituted the preliminary mapping units. This map was further tuned in
the field. The correlation between map units and landform features were verified
and boundaries were redrawn when necessary. This work aided to select
representative sites for describing soil profiles and making prospections. After
the photo interpretation procedure, the landform map was digitalized and
displayed in Geographic Information Systems (GIS) environment (ESRI, 2010),
in which places easily identified in the photo and in the Statistics and Geography
Brazilian Institute (IBGE) maps were used for georeferencing the landform
maps. With respect to solum depth, each soil map unit assumes a unique value
based on the soil profile described, which represents the central or modal

concept for that soil map unit.
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4.2.3 Knowledge-based digital soil mapping approach

The steps required to predict solum depth were mostly accomplished in
ArcSIE (Soil Inference Engine) version 9.2.402, a toolbox that functions as an
ArcMap extension (Shi et al., 2009). ArcSIE is designed for creating soil maps
using fuzzy logic and supports the knowledge based approach to establishing the
relationships between soil and its environment, providing tools for soil scientists
to formalize the relationship based on pedological knowledge of the local soils.
A knowledge-based digital soil mapping is performed according to existing
relationships between soil attributes and landforms. The landforms can be
obtained from DEM derivatives that create the Digital Terrain Models (DTMs)
in a GIS environment. From DTMs and pedological information, soil-landscape
relationships can be employed for extrapolating information to non-sampled
places through mapping techniques (fuzzy logic and similarity vectors) (Zhu,

1997). In order to predict the solum depth, the following steps were conducted:
a) Establishing soil-landscape relationships to predict soil classes.

This step is the basis for setting rules and was based on soil scientist’s
knowledge, maps from previous soil survey and other types of soil research
developed in the study site. Considering the soil-landscape relationships at
LCW, the alteration of gneiss resulted in predominance of Udepts (moderately
developed and well-drained soils) (US Soil Taxonomy - Soil Survey Staff,
1999). The relief is steep with concave-convex slopes, predominated by linear
pedoforms and narrow floodplain. Hydromorphic soils occupy the toeslope

position, where the water table is near to the surface in most part of the year.

b) Quantifying relationships between soils and terrain attributes and

formalizing these relationships in a set of rules
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Analogous to a Digital Elevation Model (DEM), DTMs are represented
in an ordered array of numbers that represent the spatial distribution of terrain
attributes across a landscape, in a raster-based format. Terrain models were
based on a 30 m resolution DEM, generated from the Brazilian source of contour
lines at 1:50,000 scale (IBGE, 1973). The sinks were filled and a hydrologically
consistent DEM was created using ArcGIS version 10.0 (ESRI, 2010). In order
to calculate the terrain attributes from DEM, the System for Automated
Geoscientific Analysis (SAGA) (Bohner et al., 2006), version 2.0.8, ArcMap
spatial analyst and ArcMap extension Soil Inference Engine (ArcSIE), version
9.2.402 were used. The following primary (calculated directly from DEM) and
secondary (calculated from the combination of two or more primary terrain
attributes) terrain attributes were derived from DEM:

- Primary: slope is the gradient of elevation. Profile curvature is the
slope shape in the direction of the maximum slope and is, therefore, important
for water flow. Plan curvature is the slope shape perpendicular to the slope
direction, which measures the convergence or divergence and, hence, the
concentration of water in a landscape (Moore et al., 2003);

- Secondary: SAGA wetness index (WI) was used instead of well-
known topographic wetness index (/n(a/tanf)), where a - ratio of upslope
contributing area per unit contour length and § - local slope). Both wetness
indexes are similar, however, in SAGA it is possible to adjust the width and
convergence of the WI multidirectional flow to single directional flow. Large
WI values indicate an increase likelihood of saturated conditions and are usually
found in lower parts and convergent hollow areas and soils with small hydraulic
conductivity or areas of gentle slope (Beven and Wood, 1983). These indices
have been used to identify water flow characteristics in landscape (Sumfleth and

Duttmann, 2008).
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Soil-landscape relationships were qualitatively modeled using DTMs,
based on the terrain attributes that represent soil and hydrologic processes. Next,
a qualitative soil landscape model from step a) was used to quantify soil-
landscape relationships on a continuous basis, based on different terrain
attributes and their histogram distribution values. For the model development, a
set of rules for the entire watershed was created for each soil map unit (step a)
and applied in ArcSIE in order to create a soil map for the entire watershed.
ArcSIE provides different types of knowledge integration. In this work, the rule-
based reasoning was applied allowing for the covering of the entire mapping

area (Shi et al., 2009).

The soil-landscape relationships were extracted and the characterized
environmental conditions were linked through a set of inference techniques to
populate the similarity model for the area (Zhu and MacKay, 2001). The terrain
attribute values and ranges associated with each soil map class were used to
define membership or optimality functions (curves), which define the
relationship between the values of an environmental feature and soil type. The
initial output from the inference is a series of fuzzy membership maps in raster
format, one for each soil type under consideration (Shi et al., 2009). The fuzzy
membership values represent the similarities of each pixel in the landscape to the
soil types. Then, these fuzzy membership maps are combined into one final soil
class map, in which only the soils with highest membership are assigned to that

pixel.
¢) Creating soil property map (solum depth)

After creating the soil class map, the soil property map (solum depth)
can be created. This technique allows the prediction in a continuous way of any
soil property that shows a recognizable relationship with the terrain attribute or

landscaping position. Based on fuzzy membership values, the continuous
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variation of soils can be represented by continuous solum depth derived from the

similarity vectors, using the following formula (Zhu et al., 1997):

n k k
k=15 *V

ij = n k
k=153

where Vj; is the estimated solum depth at location (i,j), VK is a typical value of
soil type k (e.g. Udepts), and # is the total number of prescribed soil classes for
the area. The typical value consists of the central concept of the soil type, and
corresponds to these same soil profiles used in the conventional soil mapping
approach. If the local soil formative environment characterized by a GIS
resembles the environment of a given soil category (solum depth), then property
values of the local soil should resemble the property values of the candidate soil
type. The resemblance between the environment for soil at (i,j) and the
environment for soil type k is expressed by Sil} , which is used as an index to
measure the level of resemblance between the soil property values of the local
soil and soil category (Zhu et al., 2001). The property value S%} can be any
property that shows a recognizable pattern or relationship with the terrain
attribute or landscape position. The higher the membership of a local soil in a
given soil type, the closer the property values (solum depth) at that location will
be to the typical property values (Zhu et al., 2010).

Based on the 5 soil class map units established from step a) and the
resulting fuzzy membership map from step b) measured solum depth values
from the five soil profiles were assigned to their respective fuzzy soil

membership maps.
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4.2.4 Assessment of accuracy of solum depth prediction

A set of data containing the solum depth information was obtained for
assessing the accuracy of solum depth maps (conventional and digital). In order
to compare the solum depth information (real vs. estimated) contained on the
soil map created as the conventional manner to the one on the rule-based
reasoning map, the R* and R?,4;, the mean error (ME) and root mean square error
(RMSE) calculated through the formulas below, using R software, (R

Development Core Team) were adopted for comparison purposes:

n
1
ME:_Z L
”.1(el mi)
i=

n

1
RMSE = ;Z(ei —mi)?
i=1
where: n is the number of observations, ei is the estimated value of the solum

depth and the mi is the measured value of the solum depth.

4.3 RESULTS AND DISCUSSION

4.3.1 Conventional soil survey

The map of landforms (Figure 2A) was the basis for creating the soil
class map (Figure 2B). The following landforms were identified: convex hills,
ravined hills, steep slopes, alluvial plains, and embedded valley. The relief
played an important role on soil distribution, since it is the only varying factor in

the study area out of the five soil forming factors (Jenny, 1941). The removal of
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soil through geologic erosion from the steepest portions of relief and material
accumulation by alluvial addition in floodplains explain the spatial variability of
Udepts in the first case, and Fluvents and Acquents in the second case. Figure
2B shows the soil profiles used for assigning solum depth and the validation
points for comparing conventional and digital knowledge-based solum depth

maps.

The conventional soil map has only one solum depth assigned to each
soil polygon map unit from soil profile, and does not necessarily reflect the
variability and continuous nature of solum depth within and between soil
polygon map units. The polygon model assumes a discrete distribution with
definite boundaries, in which spatial generalization occurs due to scale
limitations. Delineations smaller than the minimum mappable area, according to
the soil survey scale, are included in a larger polygons and their actual spatial
locations are lost (Zhu, 1997). The polygon represents only the distribution of a
set of prescribed soil classes (central concepts of the soil), and other minor soil
classes/minor components are not spatially represented. Pedologist knows that
there are local soils that differ from the central concepts of the assigned class,
but this expert knowledge cannot be conveyed using polygon-based soil
mapping (Zhu et al., 2001). This procedure results in a simplification of a solum

depth mapping and loss of information.
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Figure 2. A) Map of landforms from aerial photointerpretation; B) conventional
soil map, validation points, soil profiles used for assigning solum depth and the
respective solum depth prediction for each mapping unit at Lavrinha Creek
Watershed — MG.

4.3.2 Knowledge-based digital soil mapping

The DTMs used in the prediction are presented in the Figure 3. These

models numerically describe the surface form as a continuum, which is more
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appropriate to represent geographic features than the discrete polygon model.
According to Zhu (1997), pixel-based maps minimize the discrepancies between
the spatial resolution of soil spatial information and environmental data (relief in

this case).

The ranges and curve shapes (Table 2) that define the modal soil types
were adjusted using DTMs. This table represents information of optimality
curves that describe quantitatively the relationships between soil type and a
particular DTM (Zhu et al., 1997). It overcomes a limitation of conventional soil
mapping approach, as described by Hudson (1992), which is the failure to not
represent the soil surveyor mental model. Figure 4 shows two examples of curve
shapes used in this study. For the bell-shaped (a), the optimality value decreases
as the difference between the environmental feature value and the central values
(v1 and v2) increases. For example, in Table 2, for classifying any place in the
landscape as clayey Typic Dystrudept, the optimal (central) slope value to
receive 100% membership is 15 and the curve shape is bell, which indicates that
as slope values decrease from 15 to 10 or increase to 20 the pixels will receive
membership values decreasing from 100% to 50%, those latter being, therefore,
less characteristic for clayey Typic Dystrudept to occur (Figure 4A). On the
other hand, the Z-shaped or the-lower-the-better shape curve defines that all the
values inferior to the central one will correspond to 100% membership. In Table
2, this curve type is used to define the typical conditions for loamy/sandy Typic
Udifluvent occurrence. The full membership altitude value was defined as 1156
m, and all of the altitude values smaller than 1156 m will also receive 100%
membership due to the Z-shaped curve. However, as the altitude increases to
1200 m, the membership decreases until it reaches 50% (Figure 4B), indicating

environmental conditions less characteristics of loamy/sandy Typic Udifluvent.
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Figure 3. Digital terrain models for Lavrinha Creek Watershed.

Table 2. Environmental control variables of soil classes at LCW.

Soil type Full membership
Altitude Slope WI cuII')Vl:Elre Profile curvature
Fluvents 1156 1 15;22 - -
Udepts1 - 32.5 7 1 2.3
Udepts2 - 15 7 -1 0
Udepts3 - 32.5 7 -1 0
Udepts4 - 51 7 -1 0
50 % membership
Fluvents 1.200 10 14; 22 - -
Udepts1 - 19.5;45.5 0; 14 0.11;3 1.56; 9.5
Udepts2 - 10; 20 0; 14 -11; 0 -1.5;1.5
Udepts3 - 19.5;45.5 0; 14 -11; 0 -1.5; 1.5
Udepts4 - 45; 95 0; 14 -11; 0 -1.5; 1.5
Curve shape

To be continued...
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Table 2 - Conclusion.

Fluvents Z V4 Bell - -

Udeptsl - Bell Bell Bell Bell
Udepts2 - Bell Bell Bell Bell
Udepts3 - Bell Bell Bell Bell
Udepts4 - Bell Bell Bell Bell
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Figure 4. Bell-shape (A) and Z-shape (B) optimality curves adjusted in ArcSIE
interface.

According to Table 2, higher values of WI and low slopes were used for
mapping hydromorphic soils in flatter alluvial areas (footslope). Udepts occupy
the well-drained portions of the landscape with lower values of WI (summit,
shoulder and backslope) formed by different combinations and ranges of slope,
plan and profile curvatures that represents different landforms. This procedure
reduced the inconsistency and costs associated with the conventional manual

processes (Zhu et al., 2001).

A fuzzy logic based on the model called similarity vector (Zhu, 1997)
represents soils at a given location perceiving the landscape as a continuum. The
fuzzy logic is used to infer the membership of a soil type from environmental

variables, such as digital elevation model and its derivative maps. A soil at a

1

given pixel (i,)) is represented by a n-element of similarity vector: S;; = (Sj;,

Sizj, ...,Sikj,...S{}‘-), where 7 is the number of prescribed soil types over the area, Si'j-

is an index which measures the similarity between the local soil at (i,j) to the
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prescribed soil type k. The similarity value is measured according to how close
the soil is to centroid concept (between 1 and 0). The more similar a soil is to a
prescribed soil type, the higher its similarity value (fuzzy membership). The soil
class, as well as the continuous spatial prediction is done under fuzzy
assignment, which a soil object can be labeled as more than one soil type with
different degrees of assignment depending on the similarities between the soil
and a set of prescribed soil classes. The more similar a soil is to a prescribed soil
type, the higher its similarity value, and from a fuzzy perspective, such values
are the same as fuzzy memberships of the local soil to a soil type (Zhu et al.,
2010).

Figure 5 shows the fuzzy membership maps created according to the
instances for the five soil types (Table 2). They are the first product generated by
the inference process. Every pixel is classified assuming a value ranging from 0
to 100, being high or low according to its similarity to the soil class which is
being classified. These maps reveal more details about soil types than polygon
maps because they are made at pixel size spatial resolution. According to Zhu et
al. (1996), the general shapes on the membership maps follow the landscape
better than the ones on the soil polygon maps where inclusion or exclusion from
a region is based more on restrictions derived from the scale of the map than on
local conditions. The central concept of the soil type responds to local variations
in the apparent soil forming environment (represented by DTMs or terrain
attributes). Fuzzy membership maps can be viewed as a non-linear
transformation of the environmental variables (DTMs) (Zhu et al., 2010) and can
be used to portray the uncertainty associated with the hardened or polygon map
(McKay et al., 2010).
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Figure 5. Fuzzy membership maps for each soil type described at Lavrinha
Creek Watershed.

4.3.3 Solum depth predictive maps

Figure 6 shows the solum depth prediction map from knowledge-based
digital soil mapping. The shallowest sola display hydromorphic features,

occurring under low elevation regions, with gentle slopes, higher wetness index
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and concave landforms (Figure 3), where the water table is closer to surface in
most part of the year. Also, those soils do not contain B horizon because of the
frequent sediments deposition due to floods, which prevent the soil
development, limiting the solum depth to the A horizon thickness only at those
places. On the other hand, Udepts are formed under different landforms, slopes,
and are not subjected to floods, which, in turn, allow the development of a B
horizon and, hence, the solum depth. The moderately deep solum areas (yellow
and light blue on the map), related to Udepts, corresponds to places on steep
slopes (Figure 3) and they are thicker than the ones from lowland that are poorly
developed. The deepest Udepts are related to places with gentle slopes and
intermediate wetness index (high lands). Such conditions allow the soil
development with current characteristics that may reduce erosion rates and
provide higher water infiltration, thus enhancing the pedogenesis development
rates. Also, those areas tend to receive soil eroded (colluvium) from upper lands
which further contributes to their increased thickness. As reported by Menezes et
al. (2009), the only detailed soil survey report at the Mantiqueira Mountain
region, the Udepts around the Lavrinha Creek Watershed, under the same
climate and parent material, are deeper than the ones found in the rest of the Alto
Rio Grande Basin, that are influenced by the faster weathering of gneiss and the

intense precipitation regime.
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4.3.4 Validation and accuracy assessment of the predicted solum depth

The scatterplot graphics to compare the accuracy of conventional and
knowledge-based digital soil mapping approaches are shown in Figure 7, and the
results of the comparison parameters RMSE, ME, R? and R2adj for the
knowledge-based and conventional solum depth map are presented in Table 3.
The scatterplot graphic for conventional solum depth map (7A), shows a greater
spread of data points compared to the knowledge-based graphic (7B), which
means a greater discrepancy between predicted and real solum depths. It is also
apparent through the low R* and R*4. RMSE and ME values, which indicate
that the knowledge-based solum depth map is more accurate compared to the

solum depth map derived from the conventional soil polygon map (Table 3).
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Figure 7. Scatterplot of measured vs. predicted solum depth, R* and R* adjusted
from conventional (A) and knowledge based digital soil mapping approach (B).

Table 3. Comparison parameters between conventional and knowledge-
based mapping to predict solum depth.

Parameters Conventional Knowledge-based
RMSE 35.56 9.12
ME -3.94 -3.29
R’ 0.16 0.92
R’ 0.11 0.92

RMSE: root mean square error; ME: mean error.

The knowledge based digital soil mapping showed the gradual changing
of solum depth through the landscape, which is more realistic and resulted in

greater spatial detail and accuracy when compared to the conventional map.
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Also, the knowledge-based solum depth map provides information about the
smaller but potentially important environmental niches that may be described by

higher resolution DTMs (Zhu, 1997).

The knowledge-based digital soil mapping approach has been
successfully applied in the prediction of A horizon depth (Zhu et al., 1997),
drainage classes (McKay et al., 2010), A horizon silt and sand contents (Qi et
al., 2006), soil transmissivity (Zhu et al., 1997), hydraulic conductivity (Zhu and
McKay, 2001), and solum depth (Quinn et al., 2005; Zhu and McKay, 2001).
While the information about surface topography can nowadays be derived from
easily accessible DEMs in different spatial resolutions and accuracies (Hengl
and MacMillan, 2009), aerial photography interpretation is becoming harder to
be used due to the limited number of Pedologists trained with this methodology
and the difficulty of acquiring aerial photographs at adequate scales in
comparison to widely available high resolution satellite images. Furthermore,
the use of digital soil mapping approach employed in this study provided
adequate estimates of the solum thickness distribution at LCW. It reinforces the
need of associating knowledge of soil experts and soil-landscape relationships to
predict soil properties along the landscape, especially in areas with limited data

availability (Menezes et al., 2013).

4.4. CONCLUSIONS

The knowledge-based digital soil mapping approach showed the
advantages over the conventional soil mapping approach by applying the field
expert-knowledge in order to enhance the quality of final results, predicting

solum depth with suited accuracy in a continuous way, making the soil-
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landscape relationship explicit. A low density of samples was used, which is
suited to the low financial resources for soil survey programs in Brazil.

The Mantiqueira Range region, where LCW is located, plays an
important role on water production. For being a headwater watershed, knowing
the solum depth may aid the decision makers about the most adequate soil
management for each segment of the landscape. Also, since the soil acts as a
filter of particles to which it bounds, the thicker the soil, the greater the travel

pathway of contaminants to the water table.

The use of digital elevation models to derive terrain attributes and the
possibility to use them to predict soil attributes using fuzzy logic provide

adequate results for study areas with various soil types and difficult to access.
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