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ABSTRACT

We study the Time Window Assignment Vehicle Routing Problem (TWAVRP), which appears
in real contexts where we can see, for example, unknown demand, fluctuations per delivery,
and multi-periods. We consider two problems, that share as the main characteristics of capa-
citated vehicles, and exogeneous time windows for each client. The first problem is a stochastic
approach, we deal with a set of scenarios, and a multi-period variant. Our goal is to minimize
transportation costs and to assign endogeneous time windows overall scenarios, for variant 1,
and for all periods, for variant 2. We propose a hybrid algorithm for both problems, that gene-
rates a set of routes by requesting an Iterated Local Search (ILS) metaheuristic and then chooses
the most appropriate routes through a set-covering based auxiliary formulation. The contribu-
tions described here are threefold. First, we improve the best-known solutions reported to the
stochastic TWAVRP, proposed in the literature. Then we test an approach for the multi-period
TWAVRP by adding heterogeneous vehicles and driver stopping periods assumptions. This
variant appears in the pharmaceutical industry. With a database provided by the Coopservice
company, TWAVRP has been adjusted to handle real instances. Finally, we test our approach
with such an instance. Computational results indicate that the proposed algorithm is accurate
in practice, obtained good solutions for both artificial and real instances. For instances that
have more than 45 customers, our method outperforms the results found in the literature. In the
end, we were able to answers our research question: "What are the algorithms that can optimize
costs and respect all constraints of TWAVRP and its variant concerning the Coopservice routing
planning?"

Keywords: Vehicle Routing Problem, Time Window Assignment, Pharmaceutical industry,
Coopservice Company, Hybrid algorithm.
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1 INTRODUCTION

Vehicle routing is a class of problems that appears in several combinatorial optimization

studies due to their practical relevance, mainly in the areas of retail and transport (TOTH; VIGO,

2014). The classical Vehicle Routing Problem (VRP) calls for shipping freight to customers

located along a distribution network using a fleet of vehicles, to minimize the delivery costs.

Inspired by retail distribution networks, Spliet and Desaulniers (2015) introduced the

Time Window Assignment Vehicle Routing Problem (TWAVRP). The TWAVRP appears when

the quantity of demands of the customers are uncertain, and time windows should be allocated

to the customers located at the distribution network, to minimize the expected travel costs. In the

TWAVRP, each endogenous time window with a fixed-width, must be associated with the ex-

ogenous time window of the client. The exogenous time windows are represented by the arrival

and departure limits of a customer. According to Neves-Moreira et al. (2018), the TWAVRP

can be defined as a two-stage stochastic optimization problem. The first stage decisions are to

assign a set of time windows to customers before demand is known. In the second stage, after

requests are revealed for each day, delivery schedules respecting the assigned time windows

must be designed.

The TWAVRP appears in several segments of the world economy, such as the pharma-

ceutical industry. The pharmaceutical industry has stood out in the world economy for its great

importance to public health. According to the World Health Organization (WHO), the global

pharmaceutical market is worth US$ 300 billion a year, and this number is going up to US$ 400

billion in the next three years. The Italy health system’s guidelines are for the centralization of

drug distribution to hospitals and health structures. Medicines need safety and efficient trans-

port due to the high demand from hospitals and pharmacies. This fact explains the increasing

amount of investments in logistics to improve the effectiveness of transportation.

Coopservice is one of the most prominent Italian companies in the design, supply, and

management of integrated services to businesses and communities. One of these services is

pharmaceutical logistics. The benefits for institutions are the reduction of business costs and

staff dedicated to the purchasing function. The company is responsible for delivering medica-

tion to several hospitals in order to fulfill their demands. For that, Coopservice has the support

of a robust fleet of over 300 vehicles of three different types, a nationwide network of ware-

houses, and about one thousand coordinated operators (COOPSERVICE, 2018). Each vehicle,

with limited cargo capacity, leaves a depot and must visit a set of hospitals. Technicians should
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be at the delivery place when the vehicle arrives to take care of the shipment. Each hospital has a

particular time window that must be respected by the vehicle. Moreover, each hospital must or-

der fewer products than the total capacity of the vehicle. Over a planning horizon (i.e., weekly,

monthly), the challenge is to build a schedule subject to technical constraints, minimizing costs

and maximizing time window robustness.

One of the fundamental problems underlying the Coopservice context is dealing with

a TWAVRP variant with time windows, with policies and routing regulatory limitations for

drivers. In this way, the contributions of this study are:

1. Improvement of the best upper bounds reported by Dalmeijer and Spliet (2018) for the

stochastic TWAVRP;

2. Formal definition of the Coopservice problem which consists of a variant of the multi-

period TWAVRP to support heterogeneous vehicles and stop points to the drivers;

3. Development of a hybrid heuristic to efficiently solve both problems;

4. Use of real data of the company to generate new instances.

This project’s general objective is to develop algorithms to efficiently solve variants of

a vehicle routing problem inspired by the Coopservice pharmaceutical context. Time windows

requirement is essential since hospital staff should be at the delivery place when the vehicle

arrives to take care of the medications and these time windows should be allocated to the cus-

tomers to minimize the travel costs.

This manuscript is structured as follows. Chapter 2 presents a literature review concer-

ning recent works on VRP and their variations related to the studied problem. Chapter 3 des-

cribes formally the TWAVRP variants, and presents their mathematical models. Chapter 4

presents the methodology to solve the problems we take. The method proposed is evaluated on

Chapter 5 and the conclusions are reported in Chapter 6.
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2 LITERATURE REVIEW

Due to academic interest in VRP variations, researchers have focused on more realistic

VRPs, named Rich Vehicle Routing Problem (RVRP). The problem we describe in Chapter 3

has characteristics that resemble the Vehicle Routing Problem with Time Windows (VRPTW)

(DESROCHERS; DESROSIERS; SOLOMON, 1992), the Vehicle Routing Problem with Flex-

ible Time Windows (VRPFlexTW) (TAŞ; JABALI; Van Woensel, 2014), and the Time Window

Assignment Vehicle Routing Problem (DALMEIJER; SPLIET, 2018). Since one of our contri-

butions is to solve a real instance of the Coopservice company that appears in the context of the

Pharmaceutical industry, we also present a set of studies related to the Pharmaceutical Vehicle

Routing Problem (Pharmaceutical VRP) (CAMPELO et al., 2019).

Most of the problems described in the subsequent sections share the following charac-

teristics:

• Each customer must belong to exactly one route that starts and end on a depot;

• Each vehicle has a known maximum capacity that must not be exceeded;

• Service days and corresponding demands of each customer are known in advance;

• Each customer is associated with a non-negative demand and service duration;

This chapter presents the state-of-art of these problems. The following subsections de-

scribe each of the variants mentioned. Table 2.1 and 2.2 summarizes the general VRP attributes

and time windows characteristics presented in the papers described in this chapter, respectively.

2.1 Vehicle Routing Problem with Time Windows

The vehicle routing problem with time windows (VRPTW) is a generalization of the

VRP involving appropriate time intervals for performing services, called time windows. In

these problems, customer service can only be started within a time window defined by the

client (DESROCHERS; DESROSIERS; SOLOMON, 1992).

Desrochers, Desrosiers and Solomon (1992) develop a new optimization algorithm to

solve the VRPTW. The authors used a column generation and a branch-and-bound scheme to

optimize the solution. They also performed computational experiments in 3 sets of benchmarks

found in the literature (Solomon’s well-known set of instances) to test the effectiveness of the
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proposed algorithm. The results show an optimality gap of 1.5%, on average, over 27 test

problems.

Cordeau, Laporte and Mercier (2001) propose a unified Tabu Search Algorithm to solve

the VRPTW with two variations: Periodic and Multi-Depot VRPTW. After the generation of a

starting solution, a specialized heuristic for the Traveling Salesman Problem with Time Win-

dows builds several solutions and selects the best one for a post-optimization phase. Computa-

tional performance is tested on Solomon’s instances and results compared with other heuristics

from literature. The experiments show that the gap between the best-known solution for the

instances and the result obtained by applying the proposed Tabu Search is below 1.5%.

Ombuki, Ross and Hanshar (2006) study the VRPTW as a multi-objective optimization

problem (MOP) to minimize the total cost of routing and the number of vehicles used without

violating the capacity of the vehicles and time windows. The authors propose the use of a

Genetic Algorithm in which the two dimensions of the problem are considered separated in the

multi-objective search space using the Pareto Ranking procedure. The experimental results are

obtained through the use of the standard Solomon’s VRPTW benchmark problem instances.

The results show a better average number of vehicles compared to some of the well known

published GA based methods for many instances. The proposed GA was competitive compared

to other well-known works of the literature, obtaining better results for some instances.

Azi, Gendreau and Potvin (2010) tackle a VRPTW variant where a vehicle can perform

several routes during a day. The authors use a branch-and-price approach using column genera-

tion in which lower bounds are computed by solving an LP relaxation in two phases: generating

non-dominated feasible routes and selecting some of these routes to form the vehicle workday.

The experiments are computed on Solomon instances benchmarks for 100 euclidean customers.

The algorithm was only tested on instances of problems with 25 to 50 customers.

Ceschia, Gaspero and Schaerf (2011) formalize a Tabu Search algorithm with a combi-

nation of neighborhoods to solve a VRPTW with a mixed fleet. The neighborhood relations are

defined by a set of possible moves that depend on the day, the vehicle, and the route’s position.

The outsourcing of part of the transportation to external carriers is allowed with a complex cost

for the usage of the vehicle that is limited by the capacity and the travel distance. Also, pri-

orities for customer demands can be set at a particular value. For this, the orders distinguish

between mandatory orders and free ones. The author performs experimental analysis on public



11

benchmarks to compare previous works on similar problems and apply the proposed algorithm

on a real-case data set on a technological company in Italy.

Amorim et al. (2014) consider a VRP in the context of food delivery. The authors model

the problem as a Rich Vehicle Routing Problem (RVRP), where a heterogeneous fleet of re-

frigerated trucks must deliver food types classified as dry, cold, and frozen. Each customer has

several hard time windows during the day to be serviced. The authors propose an Adaptative

Large Neighbourhood Search (ALNS). A food delivery company in Portugal provided the data

set used on the computational experiments. The two tested instances have 350 and 336 cus-

tomers. The results show that the use of the proposed algorithm reduced the company’s vehicle

costs by almost 20%.

A recent study proposed by Keskin and Çatay (2018) formulated the electric vehicle

recharging problem as a VRPTW. The problem is formulated as a mixed-integer linear program.

The CPLEX solver obtained the optimal solutions for small instances. A matheuristic based

on Adaptive Large Neighborhood Search (ALNS) with an exact method was applied to larger

instances.

Ferreira et al. (2018) propose a Variable Neighbourhood Search (VNS) to solve a VRP

with Multiple Hard Time Windows. In this problem, each customer has one or more time

windows in which they can be visited. The author compares the results of the proposed VNS

heuristic to a Hybrid Variable Neighborhood Tabu Search (HVNTS) heuristic over 72 instances,

divided into two sets such that the second one presents time window overlap. According to the

author, the proposed VNS is competitive since it obtained a relative average deviation of 0.02%

on 72 instances proposed by Solomon to the state-of-the-art.

Recently, Fachini and Armentano (2020) developed an approach applying Logic-based

Benders decomposition for the heterogeneous fixed fleet vehicle routing problem with time

windows. The algorithm reached optimal solutions of instances with up to 100 customers,

becoming competitive with other state-of-the-art methods. For a more extensive and complete

state-of-the-art concerning this variant, we suggest the book chapter about the VRP with Hard

Time Windows (VRPHTW) edited by Toth and Vigo (2014).

2.1.1 Vehicle Routing Problem with Flexible Time Windows

The VRP with Flexible Time Windows (VRPFlexTW) allows a maximum limit of time

window violation. A specific penalty is paid for services that start before or after the maximum
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violation of time windows. This relaxation allows the optimization of the operational cost of

procedures since customers can be served before and after the defined interval.

Figliozzi (2010) applies an Iterative Route Construction and Improvement (IRCI) algo-

rithm to the VRP with Soft Time Windows (VRPSTW(). The IRCI uses a bottom-up approach

with four components: (i) a generalized nearest neighbor heuristic; (ii) a sequential construc-

tive algorithm that generates feasible routes with least cost; (iii) a route improvement algorithm

that can reduce the routing costs; and (iv) a start time improvement algorithm that eliminates

the violation of some time windows. Computational experiments compare the proposed IRCI to

other solution methods reported in the literature. They used 56 Solomon’s benchmark problems

with 100 customers.

TaŞ et al. (2013) consider the VRPSTW with stochastic travel times. Such characteris-

tic plays a role in the calculations of transportation and services costs. The authors develop a

mathematical formulation aiming at constructing a set of routes minimizing the total cost that

involves penalties for early or late servicing, transportation, and services costs. The solution

method is developed in three phases. The first phase builds a feasible solution by using an

initialization algorithm. Then, this solution is improved by a Tabu Search method concerning

the total weighted cost. In the last phase, a post-optimization method is applied to the gener-

ated solution. The authors took Solomon’s problem instances for 100 customers to show the

effectiveness of the algorithm. The tests showed that the proposed method’s usage was able to

improve the best-known solution by 3% on average.

TaŞ, Jabali and Van Woensel (2014) develop a solution procedure to the VRPFlexTW

using an adaptation of the Tabu Search algorithm. A linear programming model was proposed to

handle the detailed scheduling of customer visits for given routes. Computational experiments

considered adaptations of Solomon’s well-known set of instances. Also, the authors highlight

the advantages of the VRPFlexTW when compared to the VRPTW.

Beheshti, Hejazi and Alinaghian (2015) purpose a vehicle routing problem in which the

customer has multiple soft time windows, and the demand must be served at an appropriate

trade-off between the customer satisfaction and the cost distribution. This variant has a set of

non-overlapping time windows where the distributor must prioritize one of them. The authors

developed a mathematical model and proposed a Co-evolutionary Multi-objective Quantum-

Genetic Algorithm (CCMQCA) to solve the problem. This approach decomposes the problem

into two modules. First, we compute the customers’ sequence. Then, we evaluate the num-
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ber of customers in each vehicle. The proposed algorithm was compared to the current solu-

tion obtained by a Non-dominated Sorting Genetic Algorithm (NSGA-II) and a Multi-objective

Quantum-inspired Evolutionary Algorithm (MQEA). The solutions for 110 customers show

that the CCMQCA obtained better solutions than the other algorithms.

Fachini and Armentano (2017) propose a dynamic programming algorithm to solve the

Traveling Salesman Problem With Flexible Time Windows (TSPFlexTW). In this case, the

Flexible time windows correspond to increasing the upper and lower limits of the time windows.

Linear penalty costs and a cost per unit time of anticipation and delay are applied to the objective

function in cases where the new limits of the time windows are not respected. The authors use

a dynamic programming algorithm with a label extension mechanism to solve the problem.

Experiments evaluate the proposed algorithm in a set of 135 instances with several customers

ranging from 20 to 200. The results show that the method was able to achieve 70% of optimal

solutions.

Fachini and Armentano (2018) solve the traveling salesman problem with flexible time

windows with a dynamic programming method based on label-correcting strategies to minimize

travel costs with the use of flexible time windows. The algorithm was tested in two sets of sym-

metric and asymmetric instances. For the asymmetric instances, the proposed algorithm solved

198 of 203 instances with a gap of approximately 0.20% compared to the optimal solutions.

Evaluating the use of Flexible Time Windows, the author shows that in comparison to TSP with

Hard Time Windows, there was an average cost savings of 17.22 %.

2.1.2 Time Windows Assignment Vehicle Routing Problem

When the customer demands is uncertain, time windows should be allocated to the dis-

tribution network in such a way that expected travel costs are minimized. This problem is called

the Time Window Assignment Vehicle Routing Problem (TWAVRP). In the TWAVRP, a fixed-

width endogenous time window is associated with an exogenous time window with arrival and

departure limits. According to Neves-Moreira et al. (2018), TWAVRP can be defined as a two-

stage stochastic optimization problem. Given a set of customers where each one must be visited

within a regular period, the first stage decisions are to assign a set of time windows to each

customer, before demand is known. In the second stage, after the demand is revealed for each

day, we establish delivery schedules respecting the assigned time windows.
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Spliet and Gabor (2015) introduces the TWAVRP. They consider a finite number of sce-

narios with their probability of occurring where the demand of each client is uncertain. In this

case, the uncertaint comes from the fact that each scenario is characterized by different com-

binations of demands for each client. The proposed model is solved by a Column Generation

algorithm incorporated in an exact branch-cut-and-price algorithm. Computational experiments

with 40 instances with 10, 15, 20, and 25 customers show that the proposed branch-cut-and-

price algorithm solves the TWAVRP above 25 customers in 3 scenarios.

Spliet and Desaulniers (2015) tackle a TWAVRP where where each client has a pre-

defined time window represented by a start and a departure time (exogenous time windows).

A fixed width endogenous time window must be associated with each customer’s exogenous

time windows in order to increase their robustness. They consider a finite number of scenarios

with their probability of occurring. To solve the problem, the authors implement a branch-cut-

and-price algorithm and a Tabu Search based on column generation. New test instances are

generated using a uniform distribution. The authors show that the results obtained considering

five scenarios allow an average cost reduction of 3.64% compared to a single-scenario approach.

Dalmeijer and Spliet (2018) addresses the TWAVRP through a Branch-and-Cut algo-

rithm. The author introduces a branching strategy based on a set of valid and precedence in-

equalities. The algorithm’s effectiveness is demonstrated through numerical experiments and

comparisons with a proposal of a branch-cut-and-price algorithm (SPLIET; GABOR, 2015).

Inspired by a large European food retailer, Neves-Moreira et al. (2018) apply the TWAVRP

to a real food distribution with a fleet composed of around 200 customers, with time windows

defined according to the product segments. This problem considers both the traveled distance

and fleet requirements costs. Solution method uses three phases: (i) Route Generation, (ii)

Initial Solution Construction and (iii) Improvement by a Matheuristic.

Spliet, Dabia and Woensel (2018) propose a mathematical formulation for the TWAVRP,

which includes time-dependent travel times. To deal with this new variation, the authors apply

a branch-and-price-cut algorithm to minimize transport costs. Computational tests were run on

artificial instances that contain four sets of 10 instances with 10, 15, 20, and 25 customers. The

best solution found is 0.55% higher than the optimum solution, with a gap of 2.40% regarding

LP relaxation.
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2.2 Pharmaceutical Vehicle Routing Problem

In recent years, the pharmaceutical industry has gone through various changes, mainly

due to the aging of the population and the increase in service costs (MAGALHÃES; SOUSA,

2006). The Pharmaceutical Vehicle Routing Problem addresses the application of the VRP and

its variations to optimize medication delivery systems in the pharmaceutical industry. Accord-

ing to Campelo et al. (2019), this context is defined by three characteristics:

• Low margins for distribution players;

• Highly regulated market;

• Well-established competitive environment;

Magalhães and Sousa (2006) deal with a Dynamic Vehicle Routing Problem in a case

study of pharmaceutical goods distribution operating in the North and Center of Portugal. A

four-phase dynamic algorithm is proposed, where: (i) a cluster of the orders is determined; (ii)

potential routes are constructed; (iii) a route is selected for operation, and (iv) such route is

subject to an improvement process. The algorithm was evaluated the company’s operation team

during one week, and results showed accurate and fast compared with results obtained by the

manual procedure.

Liu et al. (2013) consider a case study in France provided by Home Health Care (HHC)

companies, where the customers and the hospitals demand various pickup and delivery services.

It concerns the delivery of drugs from companies to patient’s homes, drug delivery from hospital

to patients, and pickups of waste and biological material from patient’s homes to hospitals. A

mathematical model and two other approaches are proposed to solve the problem: Genetic Al-

gorithm (GA) and Tabu Search. These algorithms are compared with the mathematical model

solution using the CPLEX solver. The database test is generated based on 100 customers of

eighteen Solomon’s VRPTW instances. For the 132 instances tested, the GA deviated on aver-

age by 16.4% compared with the CPLEX result, and the Tabu Search deviated on average by

17.0%. The CPU time of the Tabu Search is, on average, 9.28% seconds longer than the GA.

Similar to the pickup and delivery problem discussed earlier, Liu, Xie and Garaix (2014)

extend the variation of the VRP by also treating the periodicity of the consumers. This problem

was called Periodic Home Health Care Pickup and Delivery Problem (PHHPDP). To minimize

the cost involved, the authors apply a hybridization of the Tabu Search algorithm. The results
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obtained are compared to state-of-the-art algorithms for the problem. From 5 real-life instances,

the solution obtained by the proposed Tabu Search is shorter than the one used by the HHC

Company by 10.08%, 16.59%, 15.73%, 8.41%, and 9.31%, respectively.

Ceselli, Righini and Tresoldi (2014) study the distribution of drugs or vaccines in case

of emergency with mathematical programming techniques. The authors consider the option

of reaching citizens to deliver drugs with a mixed fleet or by establishing distribution centers

(DC), where clients must go to receive their treatments or drugs. The objective function aims to

maximize the demand served within a deadline. A branch-cut-and-price algorithm was run over

440 instances with 10, 20, and 50 delivery sites with a limit of one hour, obtaining the optimal

solution in almost all the instances.

Settanni, Harrington and Srai (2017) investigate how to assess the multifaceted aspects

of the reconfiguration of the Pharmaceutical Supply Chain (PSC) due to new technological in-

terventions in drug manufacturing and delivery models. From a survey, the authors demonstrate

that the current PSC definitions fail to capture consumers due to the centralization of production

and the inadequate conceptualization of the supply chain structure. These failures are because

current works aim at maximizing efficiency and effectiveness against other potentially relevant

aspects.

Martins et al. (2017) tackle the wholesalers network redesign problem by taking into

account both operational costs and customer service level. This process is the so-called supply

chain network redesign (SCNR) and aims to optimize the strategic-tactical redesign whole-

saler’s network decisions to evaluate the solutions obtained operationally. The response time of

wholesalers and the availability of products are their competitive edges. The process is divided

into two stages. First, the strategic-tactical decisions are obtained by solving a mixed-integer

programming (MIP) model. On the second stage, the obtained solution is evaluated by a sim-

ulation model to assess the impact of the redesign of the wholesaler’s network. The proposed

model showed savings by 4%, on average, on a pharmaceutical wholesalers case-study.

Kramer, Cordeau and Iori (2018) present a RVRP based on a practical Italian pharma-

ceutical distribution problem. The main objective of the paper is to deliver pharmaceutical

products to hospitals and health care facilities in Tuscany (Italy). The problem has character-

istics of multiple depots, heterogeneous fleet, and flexible time windows. Depots are classified

into principal and auxiliary. There is an option to supply auxiliary depots with products from

the central depots. Customers are classified into small customers and hospitals. Hospitals ac-
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cept the anticipation of demands by being equipped with warehouses. The authors developed

an Iterated Local Search (ILS) with a constructive algorithm, local search procedures, and a

perturbation phase combined with a multi-start (MS) method to further diversify the search.

The performance of the proposed ILS algorithm is evaluated by solving real-life instances of

pharmaceutical distribution, and by solving artificial instances. The proposed MS-ILS can pro-

vide feasible solutions that achieve improvements about 23% on average compared to the best

solution found by the greedy heuristic. However, the results show gaps of 2% in relation to the

best-known solution.

Campelo et al. (2019) propose a Fix-and-optimize (FO) approach using the mathe-

matical model developed to a problem faced at a pharmaceutical distribution company operating

mainly in Portugal. The authors tackle the Consistent Vehicle Routing Problem with multiple

daily deliveries, different service level agreements, and release dates. The solution method has

a node grouping step to reduce the number of nodes, an initial solution construction stage, and

the Fix-and-Optimize algorithm.
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Ş,

Ja
ba

li
an

d
V

an
W

oe
ns

el
(2

01
4)

X
X

Ta
bu

Se
ar

ch
-

O
ur

w
or

k
X

X
X

IL
S

Ph
ar

m
ac

eu
tic

al
di

st
ri

bu
tio

n
L

eg
en

d:
M

.D
.-

M
ul

t-
D

ep
ot

|O
.D

.-
O

ne
de

po
t|

H
et

.F
le

et
-H

et
er

og
en

eo
us

Fl
ee

t|
H

om
.F

le
et

-H
om

og
en

en
ou

s
Fl

ee
t

So
ur

ce
:A

ut
ho

rs
.



19

Ta
bl

e
2.

2
–

E
xt

en
si

on
s

of
V

R
PT

W
va

ri
at

io
ns

fo
un

d
in

th
e

lit
er

at
ur

e.

Ti
m

e
W

in
do

w
Ty

pe
R

ef
er

en
ce

V
R

PT
W

V
R

PS
T

W
V

R
PF

le
xT

W
T

W
AV

R
P

A
zi

,G
en

dr
ea

u
an

d
Po

tv
in

(2
01

0)
X

A
m

or
im

et
al

.(
20

14
)

X
B

eh
es

ht
i,

H
ej

az
ia

nd
A

lin
ag

hi
an

(2
01

5)
X

C
am

pe
lo

et
al

.(
20

19
)

X
X

C
es

ch
ia

,G
as

pe
ro

an
d

Sc
ha

er
f(

20
11

)
X

C
or

de
au

,L
ap

or
te

an
d

M
er

ci
er

(2
00

1)
X

D
al

m
ei

je
ra

nd
Sp

lie
t(

20
18

)
X

D
es

ro
ch

er
s,

D
es

ro
si

er
s

an
d

So
lo

m
on

(1
99

2)
X

Fa
ch

in
ia

nd
A

rm
en

ta
no

(2
01

7)
X

Fe
rr

ei
ra

et
al

.(
20

18
)

X
Fi

gl
io

zz
i(

20
10

)
X

K
es

ki
n

an
d

Ç
at

ay
(2

01
8)

X
K

ov
ac

s,
Pa

rr
ag

h
an

d
H

ar
tl

(2
01

5)
X

K
ra

m
er

,C
or

de
au

an
d

Io
ri

(2
01

8)
X

N
ev

es
-M

or
ei

ra
et

al
.(

20
18

)
X

N
ev

es
-M

or
ei

ra
et

al
.(

20
18

)
X

O
m

bu
ki

,R
os

s
an

d
H

an
sh

ar
(2

00
6)

X
Sp

lie
ta

nd
G

ab
or

(2
01

5)
X

Sp
lie

ta
nd

D
es

au
ln

ie
rs

(2
01

5)
X

Sp
lie

t,
D

ab
ia

an
d

W
oe

ns
el

(2
01

8)
X

Ta
ra

nt
ili

s,
St

av
ro

po
ul

ou
an

d
R

ep
ou

ss
is

(2
01

2)
X

Ta
Ş
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3 MATHEMATICAL FORMULATIONS

This chapter presents notation (Section 3.1) inspired in Dalmeijer and Spliet (2018),

and formally describes in Section 3.2 the stochastic Time Windows Assignment Vehicle Routing

Problem (TWAVRP) according to Dalmeijer and Spliet (2018). For the variant of TWAVRP

faced by the Coopservice company, we show a mathematical model on Section 3.3 based on

the modeling proposed by Dalmeijer and Spliet (2018). In this way, we replicate the idea

of scenarios by converting it into a planning horizon composed of a set of periods. For the

Coopservice extension, we also consider two additional characteristics: heterogeneous fleet

and regulatory routing limitations for drivers.

3.1 Notations

Consider a set of clients denoted by H = {1,2, . . . ,n}. A complete and directed graph

G = (N,A) models the network of this problem, where N = H ∪{0,n+ 1} is the overall set

of nodes and 0 and n+ 1 represent, respectively, the departure and arrival depot nodes of all

routes (we split the depot on departure and arrival in order to improve the understanding of the

mathematical formulation). A set AH ⊂ A of arcs indicates the connections between any pair of

different customer nodes i, j ∈H. Similar to set N, we define A = AH ∪{(0, j)∪ ( j,n+1),∀ j ∈

H}, as the overall set of arcs connecting customers and depot nodes. Each arc (i, j) ∈ A has an

associated travel time ti j and a travel cost ci j. We assume that the travel times are non-negative

and satisfy the triangle inequality.

Each client j ∈H has to be assigned to an endogenous time window of width w j, which

must be selected in a fixed exogenous time window [e j, l j], where l j− e j ≥ w j. A time window

[e0, l0] represents the opening hours of the departure depot. Similarly, a time window [en+1, ln+1]

represents the opening hours of the arrival depot. The objective function consists in minimizing

the expected traveled cost overall scenarios.

3.2 TWAVRP mathematical formulation

Consider an unlimited set of homogeneous vehicles with capacity Q is available at the

departure depot. To model demand uncertainty, we consider a set Ω of demand scenarios,

each having probability of occurrence pω , for ω ∈ Ω, in such a way that ∑ω∈Ω pω = 1. Each
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customer j ∈H has a demand in scenario ω ∈Ω given by 0≤ dω
j ≤Q. Thus, for each scenario

customers have a combination of different demands.

Define y j as a variable which measures the starting times of the endogenous time win-

dows on the client j ∈H. Thus, the endogenous time windows of client j is given by [y j,y j+w j]

and y j ∈ [e j, l j−w j]. Let xω
i j ∈ {0,1} be a binary variable equal to 1 if arc (i, j) ∈ A is traversed

in scenario ω . Define f ω
j as the time of client j ∈ H receives delivery in scenario ω ∈Ω.

The flow variable zω
i j for all (i, j)∈A, ω ∈Ω, depends on the direction the arc is traversed

(given by variable x). If xω
i j = 1, variable zω

i j represents the total vehicle load when it traverses

arc (i, j). If xω
ji = 1 variable zω

i j represents the leftover capacity on the vehicle when traversed

the arc ( j, i). If xω
i j = xω

ji = 0, thus zω
i j is zero.

The mixed-integer linear programming proposed by Dalmeijer and Spliet (2018) reads:

minimize ∑
ω∈Ω

pω ∑
(i, j)∈A

ci jxω
i j (3.1)

subject to

∑
j∈H∪{n+1}

xω
i j = 1 ∀i ∈ H,ω ∈Ω (3.2)

∑
i∈H∪{0}

xω
i j = 1 ∀ j ∈ H,ω ∈Ω (3.3)

zω
i j + zω

ji = (xω
i j + xω

ji)Q ∀(i, j) ∈ A, i < j,ω ∈Ω (3.4)

∑
j∈N

(zω
i j− zω

ji) = 2dω
i ∀i ∈ H,ω ∈Ω (3.5)

∑
j∈N

zω
0 j = ∑

i∈H
dω

i ∀ω ∈Ω (3.6)

∑
j∈H

zω
n+1, j =

(
∑
j∈H

xω
0 j

)
Q ∀ω ∈Ω (3.7)

∑
j∈H

zω
j0 =

(
∑
j∈H

xω
0 j

)
Q−∑

i∈H
dω

i ∀ω ∈Ω (3.8)

f ω
j − f ω

i ≥ ti jxω
i j +(l j− ei)(1− xω

i j) ∀i, j ∈ H,ω ∈Ω (3.9)

s0 + t0 j ≤ f ω
j ∀ j ∈ H,ω ∈Ω (3.10)
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f ω
i + ti,n+1 ≤ ln+1 ∀i ∈ H,ω ∈Ω (3.11)

f ω
i ≥ yi ∀i ∈ H,ω ∈Ω (3.12)

f ω
i ≤ yi +wi ∀i ∈ H,ω ∈Ω (3.13)

yi ∈ [ei, li−wi] ∀i ∈ H (3.14)

xω
i j ∈ {0,1} ∀(i, j) ∈ A,∀ω ∈Ω (3.15)

zω
i j ≥ 0 ∀(i, j) ∈ A,∀ω ∈Ω (3.16)

The objective function (3.1) minimizes the traveled costs for all scenarios. Constraints

(3.2) and (3.3) establish the flow conservation. Each customer must have an entry arch traversed

by a vehicle and an exit arc traversed by the same vehicle. Constraints (3.4) indicate that when

opposing arcs (i, j) and ( j, i) are used, the sum of zω
i j and zω

ji must be equal to the vehicle

capacity. Constraints (3.5) establish the flow conservation for the z-variables. The d variable

works as follows: before visiting the customer i, the vehicle load is dω
j units more than after.

After visiting the customer i, the empty space is dω
i more units than before. The total difference

in both flows is equal to 2dω
i . When opposing arcs (i, j) and ( j, i) are used, the sum of the

differences of zω
i j and zω

ji for each customer j ∈ N must be equal to 2dω
i . Constraints (3.6)

indicate that the total load of a vehicle recorded in the departure deposit must equal the total

demand of all clients visited by him. Constraints (3.7) the total capacity considering all vehicles

used for routing must be equal to the number of vehicles used multiplied by the homogeneous

capacity Q. Constraints (3.8) set the total excess capacity of all used vehicles. Constraints (3.9)

are the MTZ-inequalities that model the service time. If xi j = 1, the vehicle travels from i to j in

scenario ω , then f ω
j − f ω

i ≥ ti j. Otherwise, if xi j = 0, the arc (i, j) is not traversed on scenario

ω , then f ω
j − f ω

i ≥ l j−ei. Constraints (3.10) establish that the vehicles only can leave the depot

after it opens. Constraints (3.11) establish that the vehicles must arrive on the depot before it

closes. Constraints (3.12) and (3.13) indicate that the endogenous time windows of the clients

must be respected. Constraint (3.14) enforce that these endogenous time windows are within

the exogenous time windows. Domain variables are presented by Constraints (3.15)-(3.16).



23

3.3 TWAVRP in Coopservice context

Products such as medicines must be delivered to a set of hospitals, denoted by H. Each

hospital j ∈ H is visited by a single-vehicle. We consider a set of periods P representing a

planning horizon. A demand qp
j of a hospital j on period p must be met. The company has a

heterogeneous fleet defined by set V of vehicles. Each vehicle v ∈ V has capacity qv that must

be respected.

Each arc (i, j) ∈ A has associated travel time tv
i j, for each v ∈ V , and a travel cost ci j.

Note that the time spent going from i to j depends on the vehicle that operates the route. It

is necessary to consider the regulatory limitations for truck drivers in Italy. The daily driving

time must not exceed α hours. After a driving period of β hours, the driver must make an

interruption of γ minutes unless he starts a rest period. A hospital j can be attended by a set of

vehicles Vj, taking into account its location.

An arc (0, |H|+1) indicates a vehicle does not leave the depot on that day. Technicians

should be at the delivery place when the vehicle arrives to take care of the medicines. Thus,

node j ∈ H must be delivered at time window [e j, l j]. Service time is defined by sv
j and varies

according to hospital and vehicle. A time window [e0, l0] represents the operating time of a

depot.

Each customer j indicates a set of days to be visited. We assign to each customer

j ∈ H an endogenous time windows of width w j which we will use to attend the customer

in all required periods. Let be y j the starting time of the endogenous time window at each

node j ∈ H and zv
jp a binary variable equal to one if node j is visited by vehicle v ∈ V on

period p ∈ P. Concerning work hours regulations for drivers, we create artificial node j̃ for

each hospital to represent a driver stopping point and define extended sets Ñ = H ∪{ j̃} and

Ã = A ∪ { (i, j̃) ∪ ( j̃,k) : i,k ∈ H }. Moreover, we extend the set of edges of the graph G

to A = {(i, j, p) : i, j ∈ H, p ∈ P} and Ã = {(i, j, p) : i, j ∈ Ñ, p ∈ P}, where the arc (i, j, p)

represents the possibility to visit nodes (i, j) on day p. We also set sv
j̃ = γ , and tv

i j̃ = tv
j̃i = 0,

∀i ∈ H.

Let xv
i jp ∈ {0,1} be a variable equal to 1 if arc (i, j) ∈ A is traveled by vehicle v ∈V on

scenario p. We denote zv
jp as a binary variable equal to one if node j is visited by vehicle v ∈V

on period p. Define f v
i jp as the starting time to travel from node i to j by vehicle v on the period

p. Our goal is to minimize the total cost of the routes and the quantity of vehicles. We present

the Coopservice context model as follows.



24

minimize ∑
(i, j,p)∈A

ci jxv
i jp + ∑

j∈H|(0, j,p)∈A
∑
v∈V

xv
0 jp (3.17)

subject to

∑
v∈V

zv
jp = 1 ∀ j ∈ H,∀p ∈ P (3.18)

∑
i∈Ñ|(i, j,p)∈Ã

xv
i jp = zv

jp ∀ j ∈ H ∪{ j̃},∀v ∈V,∀p ∈ P

(3.19)

∑
j∈Ñ|(i, j,p)∈Ã

xv
i jp = zv

ip ∀i ∈ H ∪{ j̃},∀v ∈V,∀p ∈ P

(3.20)

∑
j∈H|(0, j,p)∈A

xv
0 jp ≤ 1 ∀v ∈V,∀p ∈ P (3.21)

∑
j∈Ñ|(i, j,p)∈Ã

f v
i jp ≥ ∑

k∈Ñ\{|H|+1}|(k,i,p)∈Ã

[ f v
kip +(tv

ki + sv
ip)x

v
kip] ∀i ∈ Ñ,∀v ∈V,∀p ∈ P (3.22)

e0xv
0 jp ≤ f v

0 jp ∀(0, j, p) ∈ A,∀v ∈V (3.23)

∑
j∈H

qp
j zv

jp ≤ qv ∀v ∈V,∀p ∈ P (3.24)

∑
k∈Ñ\{|H|+1}

( f v
k(|H|+1)p + tv

k(|H|+1)x
v
k(|H|+1)p)− ∑

j∈H
f v
0 jp ≤ α ∀v ∈V,∀p ∈ P (3.25)

f v
i jp ≤ αxv

i jp ∀(i, j, p) ∈ Ã,∀v ∈V (3.26)

∑
v∈V

zv
j̃p = ∑

j∈H|(0, j,p)∈A
xv

0 jp ∀ j ∈ H,∀p ∈ P (3.27)

∑
i∈H

f v
i j̃p ≤ β ∑

i∈H
xv

i j̃p ∀v ∈V,∀p ∈ P (3.28)

∑
k∈H∪{k̃}

f v
k jp ≥ y j, ∀ j ∈ H,∀v ∈V (3.29)

∑
k∈H∪{k̃}

f v
k jp ≤ y j +w j, ∀ j ∈ H,∀v ∈V (3.30)
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zv
jp = 0 ∀v ∈V,∀v /∈Vj,∀p ∈ P (3.31)

xv
i jp ∈ {0,1} ∀(i, j, p) ∈ A,∀v ∈V (3.32)

zv
jp ∈ {0,1} ∀ j ∈ ṽ\{0},∀v ∈V,∀p ∈ P (3.33)

f v
i jp ∈ R+ ∀(i, j, p) ∈ Ã,∀v ∈V (3.34)

y j ∈ [e j, l j−w j] ∀ j ∈ H. (3.35)

The objective function (3.17) minimizes the total distance covered in all periods.. Con-

straints (3.18) state that each hospital must be visited. Constraints (3.19) and (3.20) establish

that a hospital is visited if it is included in a route. Each hospital must have an entry arch tra-

versed by a vehicle and an exit arc traversed by the same vehicle. Constraints (3.21) indicate

that a vehicle that performs a route must depart from a depot at most once. Constraints (3.22)

assure the starting time to attend hospital j must be greater or equal than the starting time of

its previous visited hospital i, added by its service time and the time to travel to j. The time to

leave the depot by vehicles is established by Constraints (3.23). Route capacity constraints are

defined by inequalities (3.24). Each route must have a demand that respects the total capacity

of the vehicle. Constraints (3.25) and (3.26) state daily duration. The total daily driving time of

a route must not exceed α hours. For each arc (i, j), the model checks that the crossing’s start

time respect α . Constraints (3.27) indicate that the number of vehicles visiting j̃ must equal

the number of vehicles leaving the depot, thus establishing that each route respects the stopping

points. Constraints (3.28) establish that the driver of the vehicle reaches a β amount of driving

hours he must start the resting time. Constraint (3.29) and (3.30) ensures that the endogenous

time window assigned to a customer respects the customer’s exogenous time window limits.

Constraints (3.31) establish the set of vehicles that can visit a node j on scenario p. Domain

variables are presented by Constraints (3.32)-(3.35).

The model presented was implemented in Python 3.7.4, using the MILP solver Gurobi

8.1.1 running in the same computer specified on Chapter 5. We tested the algorithm in the

generated instance by the process that will be presented on Chapter 4 by limiting the time to

3600 seconds, not obtaining feasible solutions. Due to the computational effort for the exact

resolution of the model by means of solvers, we will approach the use of heuristic methods to

solve the exposed problem in this work.
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4 HYBRID ALGORITHM

This chapter presents the methodology that will be applied to solve both variants of the

TWAVRP described in Chapter 3. Section 4.1 describe the proposed method adopted to find

good-quality solutions. Section 4.1.1 approach the constructive method to generate the initial

feasible solution for the problem. Section 4.1.2 indicate the heuristic approaches to be used

based on their performance in other routing problems. Finally, Section 4.2 define a mathemati-

cal model that will assist in solving the problem.

4.1 Proposed heuristic

The heuristic method proposed in this study is outlined in Algorithm 1. It has two

successive phases. The first one generates routes, while the second one selects a subset of

routes having minimum cost. A similar idea was adopted by Moreira and Costa (2013), who

efficiently solved a quite different combinatorial optimization problem involving job rotation

schedules in assembly lines with heterogeneous workers. Our method is composed of two parts.

First, we generate a pool of feasible routes, minimizing travel costs overall scenarios (stochastic

problem), or the total costs overall periods (Coopservice problem) (Lines 4− 7), subject to

vehicle capacity constraints, and exogenous time windows. Concerning Coopservice’s problem,

we also include driver stopping period constraints. Then, we call an auxiliary Mixed Integer

Linear Programming (MILP) formulation to select the most appropriate routes of the set, to

optimize the total cost overall periods (Line 8) by respecting the generated endogenous time

windows. This process is performed repeatedly until a certain number of iterations nrun is

reached. At each iteration, the MILP starts the search from the best solution found in the

previous iteration.

The reference framework of Phase 1 is the ILS introduced by Lourenço, Martin and

Stützle (2003). Such an algorithm has four components: (i) initial solution generator; (ii) local

search procedure; (iii) perturbation; and (iv) acceptance criterion. This metaheuristic choice

is derived from the fact that it has been successfully applied in several combinatorial opti-

mization problems (AVCI; TOPALOGLU, 2017; GUNAWAN; LAU; LU, 2015; NOGUEIRA;

PINHEIRO; SUBRAMANIAN, 2018), including a number of VRP variants (HADDADENE;

LABADIE; PRODHON, 2016; SUBRAMANIAN; CABRAL, 2008; KRAMER; CORDEAU;

IORI, 2018). Moreover, it contains fewer parameters to be fine-tuned concerning other meta-

heuristics. In Line 7, we represent the ILS by function ILS(I, α , ζ ), which returns the set of
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routes obtained by the execution of the metaheuristic after receiving the input I, which is the

data from scenario ω ∈Ω (stochastic TWAVRP) or period p∈ P (multi-period TWAVRP). Note

that parameter α corresponds to the perturbation factor, whereas ζ gives the number of itera-

tions without improvements. Next, we explain each component of the ILS and the subsequent

mathematical formulation used to select the final routes.

Algorithm 1: Hybrid algorithm
1 Input: I (instance), nrun
2 Output: (s, f (s)) (solution, and its objective function)
3 Y = Ω (stochastic TWAVRP), or Y = P (multi-period TWAVRP)
4 s← /0
5 while nrun 6= 0 do
6 R← s; . Empty pool of routes
7 foreach y ∈ Y do
8 R← R∪ ILS(Iy,α,ζ ); . Generating the set of routes for each period
9 s← RSM(s,R, I); . Route Selector Model (RSM)

10 nrun← nrun−1
11 return (s, f (s));

4.1.1 Constructive method

Algorithm 2 gives the heuristic invoked to create the initial solution for the proposed

ILS. The algorithm is inspired by the greedy strategy presented by Zhigalov (2018). Let Y = Ω

(stochastic TWAVRP), or Y = P (multi-period TWAVRP). Let C̃y be the set of all customers

y ∈Y . First, C̃y is sorted according to the earliest start time of the exogenous time window (i.e.,

ei, for i ∈ C̃y) of the customers (Line 4). The main loop consists of Lines 5–13 and terminates

when all customers have been assigned. In each iteration, an empty route is opened (Line 6),

and the highest priority customers (according to the sorting in Line 4) are added to the route,

one at a time if such assignment respects vehicle capacity and time window constraints (Lines

7–10). Feasibility is checked by invoking the infeasible(R) procedure. The method verifies

the viability of a route through a procedure that checks the time spent to visit each customer,

following the sequence of visits stipulated by the route. If the arrival time of the vehicle at a

customer respects the exogenous time window and the capacity of the is not exceeded, the route

is feasible. During this process, when the vehicle reaches a certain amount of time (multi-period

TWAVRP), the stopping point is added to the route indicating that it is the driver’s resting time

(the stopping point is not considered for the stochastic TWAVRP variant). If the current route

is feasible, the customer j is included at the end of the route (R) under construction and then
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removed from C̃y (Line 13). The new cost of the route is given by the total distance traveled

following the trajectory of visits stipulated by the route, considering the new customer inserted.

Algorithm 2: Constructive Heuristic (CH)
1 Input: I (data set), Cy (set of all available clients for a data set I for y ∈ Y )
2 Output: s (feasible solution)
3 s← /0;
4 C̃ ← sort(Cy); . sort clients in non-descending order of earliest exogenous time

window
5 while C̃ 6= /0 do
6 R← /0;
7 foreach j ∈ C̃ do
8 R←R ∪{ j};
9 if infeasible(R) = true then

10 R←R\{ j};
11 else
12 C̃ ← H̃ \{ j};
13 s← s∪R;
14 return s

4.1.2 Iterated Local Search (ILS)

ILS algorithm is a metaheuristic that generates a sequence of solutions to a problem

through iterative applications of improvement methods in each solution (STÜTZLE; RUIZ,

2018). These improvement methods are:

• Local Search (LS): The Local search method consists of investigating the search space

through changes applied internally in a solution. In our approach, we consider that only

solutions that improve the current one are accepted.

• Perturbation: Introduces modifications to a candidate solution by modifying the local

optimal solution, generating possible improvements in the solution. The modification

introduced for the perturbation method must be sufficiently larger than the modifications

done in the local search phase (STÜTZLE; RUIZ, 2018).

The Local Search (LS) method is composed of six elementary neighborhoods:

N1 Relocate intra-route: change position of a customer in a route;

N2 Swap intra-route: swap two customer positions in a route;
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N3 2-opt: invert a sequence of customers allocated to the same route;

N4 Relocate inter-route: relocate a customer to a different route in the same period;

N5 Swap inter-route: exchange two customers allocated in different routes, in the same

period;

N6 Cross inter-route: split two routes at given points and exchange their remaining parts.

The LS method invokes the neighborhoods according to the procedure shown in Al-

gorithm 3. Given a solution s, a list NL(s) of neighborhoods is initialized according to the

inter-route neighborhoods (N4, N5, and N6). If s
′

is feasible and the distance performed, rep-

resented by function f (s
′
), decreases compared to the current solution (Line 7), an intra-route

search procedure (N1, N2, and N3) is performed over s′ (Lines 9–13). If the intra-route proce-

dure improves s′, the current solution s̃ is used to replace s∗ (Line 13). The process terminates

when no inter-neighborhood can return an improvement.

Algorithm 3: Local Search method (LS)
1 Input: s (feasible solution)
2 Output: s∗ (best feasible solution found)
3 s∗← s;
4 foreach N ∈ NL(s) . NL(s): list of inter-neighborhoods of solution s
5 do
6 foreach s′ ∈ N do
7 if f (s′)< f (s∗) and infeasible(s′) = false then
8 s∗← s′;
9 foreach N ∈ NI(s∗) . NI(s∗): list of intra-neighborhoods of solution s′

10 do
11 foreach s̃ ∈ N do
12 if f (s̃)< f (s∗) and infeasible(s̃) = false then
13 s∗← s̃;

14 return s∗

Starting from a solution s∗, the Perturbation method invokes a list of NL(s∗) of possible

neighborhood moves according to all neighborhood moves (N1, N2, N3, N4, N5, and N6). A

percentage α of neighborhoods in NI(s∗) is randomly chosen and applied to s∗.

Algorithm 4 summarizes the ILS that applied to each period of Phase 1.
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Algorithm 4: Iterated Local Search (ILS)
1 Input: Cy (data set), α (perturbation factor), ζ (number of iterations without

improvements)
2 Output: R (set of feasible solutions found)
3 s∗← /0; . Best solution found so far (take f (s∗) = +∞)
4 s← Constructive Heuristic(C,Cy); . Cy: set of available customers of data set C
5 sls← LS(s);
6 R← sls∪ s; . Initializing the set of feasible solutions
7 s∗← sls;
8 count← 0
9 while count 6= ζ do

10 s′← Perturbation(s∗, α);
11 sls← LS(s′);
12 R←R ∪ s′∪ sls;
13 if f (s′)< f (s∗) then
14 s∗← s′;
15 count← 0;
16 else
17 count← count +1;
18 return R;

4.2 Route Selector Model

To approach the TWAVRP presented by Spliet and Gabor (2015), consider a set Ω of

demand scenarios model demand uncertainty, each having probability of occurrence pω , for

ω ∈ Ω, in such a way that ∑ω∈Ω pω = 1. We can use the ILS algorithm to generates a set Rω

of feasible routes for each scenario ω ∈Ω (see Algorithm 1). Note that all routes in Rω respect

the capacity and time-windows constraints for the TWAVRP, and the driver stopping periods

for its variant found at Coopservice. We built a MILP formulation, called Route Selector Model

(RSM), whose aim is to choose the most appropriate subset of routes from Rω , assigning an

endogenous time window to each client, overall scenarios.

To present the RSM, we take from Rω : (i) f ω
jr as the starting time of service on client

j on the route r in scenario ω; (ii) cω
r as the cost to choose a route r ∈ Rω in scenario ω; and

(iii) zω
jr as a binary parameter equal to one if client j belongs to route r ∈ Rω in scenario ω , 0

otherwise. Consider uω
r as a binary variable equal to one if route r ∈ Rω is selected, 0 otherwise,

and yi as a continuous variable that measures the starting time of the endogenous time window

of customer i ∈H. Recall that, as indicated above, wi gives the time window width of customer

i. The RSM is as follows:
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min ∑
ω∈Ω

pωcω
r uω

r (4.1)

subject to

∑
r∈Rω

zω
jru

ω
r = 1 ∀ j ∈ H,ω ∈Ω (4.2)

∑
r∈Rω

f ω
jrzω

jru
ω
r ≥ y j ∀ j ∈ H,ω ∈Ω (4.3)

∑
r∈Rω

f ω
jrzω

jru
ω
r ≤ y j +wi ∀ j ∈ H,ω ∈Ω (4.4)

y j ∈ [e j, l j−w j] ∀ j ∈ H,ω ∈Ω (4.5)

uω
r ∈ {0,1} ∀ω ∈Ω,r ∈ Rω . (4.6)

The model optimizes the total cost of the selected routes. Constraints (4.2) indicate

that each customer has to be served in all scenarios by a single route. Constraints (4.3)–(4.4)

establish the endogenous time windows. Domain variables are presented by Constraints (4.5)–

(4.6).

4.2.1 Route Selector Model on Coopservices context

For the Coopservices context, we relax Constraints (4.4) since delays are common due to

climatic reasons, traffic flow, vehicle problems, among others. On the other hand, we penalize

with an additional cost in the objective function. The use of the penalty can be beneficial for

real routing situations since, some routes made unfeasible by hard constraints, can be viable and

useful in real-world use cases that tend to present more relaxed constraints. The penalty will be

normalized by he sum of the size of the planning horizon (|P|), number of customers (|H|) and

the departure depot time (l|H|+1). In addition, it is important to emphasize that the costs for the

use of vehicles will not be considered here, since the tests performed with these data affected

the results in order to generate inconsistencies. Considering the variables previously defined in

this section, the RSM for the Coopservices context reads:

min ∑
p∈P

∑
r∈Rp

cp
r up

r +

(
1

l|H|+1 ∗ |P| ∗ |H|

)
∗

(
∑
p∈P

∑
j∈H

∑
r∈Rp

f p
jrx

p
jru

p
r − y j−w j

)
(4.7)
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subject to

∑
r∈Rp

zp
jru

p
r = 1 ∀ j ∈ H, p ∈ P (4.8)

∑
r∈Rp

f p
jrz

p
jru

p
r ≥ y j ∀ j ∈ H, p ∈ P (4.9)

y j ∈ [e j, l j−w j] ∀ j ∈ H (4.10)

up
r ∈ {0,1} ∀p ∈ P,r ∈ Rp. (4.11)

The model optimizes the total cost of the selected routes that are penalized by the nor-

malization of the violation total time of the upper limit of the endogenous time windows in all

periods. Constraints (4.8) indicate that each customer has to be served in all periods by a single

route. Constraint (4.9) establish the endogenous time windows. Domain variables are presented

by Constraints (4.10) and (4.11).
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5 COMPUTATIONAL EXPERIMENTS

We performed a set of computational experiments to assess the performance of the ILS-

based algorithm that we developed for the TWAVRP. The algorithms were implemented in

Python 3.7.4, using the MILP solver Gurobi 8.1.1 for the development of the RSM (Section

4.2.1), running a single thread for a time limit of 3600 seconds on each instance. All experi-

ments were performed on a PC Intel i7, 3.5 GHz with 16 GB RAM, similar to the computer

used by Dalmeijer and Spliet (2018).

To generate the pool of routes, Algorithm 4 was executed five times on each instance.

This number was tuned through preliminary tests in which we obtained a good trade-off between

quality and computational effort. Furthermore, this value allowed the algorithm to make good

use of its stochastic components. The number of iterations without improvements (ζ ) and the

perturbation percentage (α) were fine-tuned through the Irace package (LÓPEZ-IBÁÑEZ et al.,

2016). For that purpose, we generated 200 training instances by using the instance generator

proposed by Dalmeijer and Spliet (2018). The values returned by the Irace package at the end

of this test were ζ = 100 and α = 0.35.

5.1 TWAVRP Instances

We use the set of TWAVRP instances proposed by Spliet, Dabia and Woensel (2018).

Each instance considers a different combination of the number of customers, vehicle capacity,

demand for each scenario, probability of each scenario, size of exogenous and endogenous time

windows, travel costs, and travel times. The data set comprises ninety instances divided into

two classes: small instances and large ones. Small instances contain four sets of ten problems,

each with 10, 15, 20, and 25 customers, while large instances contain five sets of ten instances

each, with 30, 35, 40, 45, and 50 customers. The customer’s coordinates were generated as

uniformly distributed over a square with sides of length five. The depot is located in the center

of the square. Each instance includes demands for each customer in three scenarios with equal

probability of occurrence. Exogenous time windows are distributed as follows: a time window

[10,16] is given to 10% of the customers; [7,21] to 30% of the customers; and [8,18] to the

remaining 60%. The width of the endogenous time window is set to wi = 2 for all customers.

The costs and the travel times between the nodes were obtained by calculating the Euclidean

distances between their coordinates.
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5.2 Coopservice instance

We need to define the following data to evaluate Coopservice’s instance:

• Service time: time spent by each customer to execute the service;

• Exogenous time windows: time window of the customer;

• Demand: quantity required by each customer;

• Distance between customers: the real distance between each customer;

• Travel time: real travel time between each customer.

We have the availability of a real-world database provided by Coopservice with the

following information:

• Customers_EGAS: list all the customers that must be visited by vehicles. Names and

coordinates of each customer are presented.

• Myway_AVEN_EGAS: present the routes executed by Coopservice. The database shows

a list of GPS tracks with the exact coordinates of a given vehicle at a given time from the

data latitude, longitude, event date, and vehicle identification. From this information, it is

possible to estimate the service time of each customer.

• Friulli_Venezia_instance: Given each customer, the exogenous time windows and de-

mand for each scenario on the Coopservice context. In addition, vehicle information

(capacity and identification) is made available.

Service time for each customer in the context of Coopservice needs to be estimated from

the data available. For this purpose, we use the customers’ location and the GPS tracks given

by the Myway_AVEN_EGAS database.

5.2.1 Data Preparation

To start the process of estimate service times for each customer, the databases described

in Section 5.2 need to be prepared. This phase is important in order to remove noises or prob-

lems that may interfere with the process.
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5.2.1.1 GPS tracks data preparation

First, failures and duplicated data on the available GPS tracks in the database "Myway_AVEN-

_EGAS" must be removed. Columns that do not have a fundamental role to the estimation

process were also excluded. After this process, the database has the following attributes:

Table 5.1 – Database "Myway_AVEN_EGAS" after remove unused columns.

Datetime Latitude Longitude Vehicle
Source: Authors.

The columns on Table 5.1 indicates:

1. Latitude: latitude of the GPS track.

2. Longitude: longitude of the GPS track.

3. Datetime: exact date and time that the GPS track is traveled.

4. Vehicle: identification of the vehicle traveling along the GPS track.

5.2.1.2 Customers data preparation

The database "Customers_EGAS" lists all the customers that must be visited by the

vehicles. In Figure 5.1, we can see all the customers illustrated on a map.
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Figure 5.1 – Customers that must be visited.

Source: Authors with the library Folium.

When each customer is plotted on a map with a determined radius in meters around their

coordinates, it is possible to identify that some customer’s radius is in the intersection. This

problem occurs because some customers are served at the same location or have near locations.

Figure 5.2 shows intersect customers in the Pordenone region (Italy).

Figure 5.2 – Pordenone customers.

Source: Authors with the library Folium.
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To address this problem, customers who have intersections of the radius will be grouped

into a single cluster. These clusters will be called "Macro Customers." The new position of the

Macro Customer is given by the average coordinates of all the customers aggregated. Figure

5.3 shows the Macro Customers found in the Pordenone region.

Figure 5.3 – Macro customers founded on Pordenone region.

Source: Authors with the library Folium.

After this process, it is possible to observe by Figure 5.4 that customers’ radius becomes

better defined since all intersections between them are eliminated.
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Figure 5.4 – Customers plotted after the process of eliminate intersections.

Source: Authors with the library Folium.

5.2.2 Service time estimation

The main idea of the algorithm for estimating service times is to check the GPS tracks

located within the radius of a given customer. Thus, through the GPS track timestamp, it is

possible to estimate the service time for each customer that is visited on a given day. The

estimated service times for Macro Customers are shared with all customers aggregated by him.

If a customer is visited more than once, his final service time will be estimated by the average

service time of all visits.

To illustrate the algorithm steps, we will give an application example comprising four

customers who must have estimated their service times. For this purpose, a database with 50

GPS tracks covered in a single day is made available.

Table 5.2 shows the customers who are expected to have their service times estimated.

Each customer has a name and their coordinates.

Table 5.2 – Customers.

Customer Latitude Longitude
Customer 1 45.811363220214844 13.443992614746094
Customer 2 45.81528854370117 13.518794059753418
Customer 3 45.93513870239258 13.606978416442871
Customer 4 45.936641693115234 13.604848861694336

Source: Authors.



39

The GPS tracks database is sorted and grouped by days, as shown in Table 5.3. Each

GPS track is represented by a coordinate, the date time stamp when the point was visited, and

the vehicle responsible for the service.

Table 5.3 – GPS tracks order by time.

Datetime Latitude Longitude Vehicle
2019-12-24 07:02:06 45.8116836547852 13.4440231323242 Truck 1
2019-12-24 07:03:06 45.8116874694824 13.4440250396729 Truck 1
2019-12-24 07:03:56 45.8116874694824 13.4440269470215 Truck 1
2019-12-24 07:04:06 45.8116874694824 13.4440269470215 Truck 1
2019-12-24 07:05:06 45.8129196166992 13.4443969726562 Truck 1
2019-12-24 07:06:06 45.8097763061523 13.4441337585449 Truck 1
2019-12-24 07:07:06 45.8109970092773 13.449257850647 Truck 1
2019-12-24 07:08:06 45.8130378723145 13.453784942627 Truck 1
2019-12-24 07:09:06 45.8147773742676 13.4638738632202 Truck 1
2019-12-24 07:10:08 45.8195877075195 13.4769468307495 Truck 1
2019-12-24 07:11:08 45.8210525512695 13.4888553619385 Truck 1
2019-12-24 07:12:08 45.8222541809082 13.498927116394 Truck 1
2019-12-24 07:13:08 45.816162109375 13.5084781646729 Truck 1
2019-12-24 07:13:56 45.816520690918 13.5128288269043 Truck 1
2019-12-24 07:14:08 45.816837310791 13.5145568847656 Truck 1
2019-12-24 07:15:08 45.8165969848633 13.5186452865601 Truck 1
2019-12-24 07:16:08 45.8157005310059 13.5188283920288 Truck 1
2019-12-24 07:17:08 45.8156089782715 13.5188436508179 Truck 1
2019-12-24 07:18:08 45.8154754638672 13.5190830230713 Truck 1
2019-12-24 07:41:14 45.8176689147949 13.5064611434937 Truck 1
2019-12-24 07:42:14 45.8223075866699 13.4993801116943 Truck 1
2019-12-24 07:43:14 45.8218154907227 13.4947547912598 Truck 1
2019-12-24 07:44:12 45.832160949707 13.4924631118774 Truck 1
2019-12-24 07:45:12 45.845100402832 13.4775266647339 Truck 1
2019-12-24 07:46:12 45.8516426086426 13.4613952636719 Truck 1
2019-12-24 07:47:10 45.8545455932617 13.4437046051025 Truck 1
2019-12-24 07:47:12 45.8585624694824 13.4286031723022 Truck 1
2019-12-24 07:48:12 45.8727416992188 13.4501352310181 Truck 1
2019-12-24 07:50:12 45.8922500610352 13.4722166061401 Truck 1
2019-12-24 07:51:12 45.8982238769531 13.4871912002563 Truck 1
2019-12-24 07:53:12 45.9010848999023 13.5223779678345 Truck 1
2019-12-24 07:54:12 45.9032554626465 13.5401086807251 Truck 1
2019-12-24 07:55:14 45.9032173156738 13.540472984314 Truck 1
2019-12-24 07:56:14 45.9032173156738 13.5404720306396 Truck 1
2019-12-24 07:57:14 45.9032173156738 13.5404682159424 Truck 1
2019-12-24 07:58:14 45.9032173156738 13.5404653549194 Truck 1
2019-12-24 07:59:14 45.9032211303711 13.5404663085938 Truck 1
2019-12-24 08:04:14 45.9033737182617 13.5450382232666 Truck 1
2019-12-24 08:09:14 45.9039726257324 13.5631465911865 Truck 1
2019-12-24 08:11:14 45.9045715332031 13.5823211669922 Truck 1
2019-12-24 08:12:14 45.912166595459 13.5976161956787 Truck 1
2019-12-24 08:14:14 45.9231300354004 13.6133480072021 Truck 1
2019-12-24 08:15:14 45.9320220947266 13.6131134033203 Truck 1
2019-12-24 08:16:14 45.9346733093262 13.6110515594482 Truck 1
2019-12-24 08:17:14 45.9355621337891 13.607138633728 Truck 1
2019-12-24 08:18:14 45.9355850219727 13.6037902832031 Truck 1
2019-12-24 08:19:14 45.9357032775879 13.6049213409424 Truck 1
2019-12-24 08:20:14 45.9357948303223 13.6050386428833 Truck 1
2019-12-24 08:21:16 45.9357948303223 13.6050367355347 Truck 1

Source: Authors.

When the customers coordinates given on Table 5.2 are plotted on a map, we can iden-

tify that customers 3 and 4 have an intersection between their radius. Figure 5.5 shows the

intersections.
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Figure 5.5 – Customers plotted before the process of eliminate intersections.

Source: Authors with the library Folium.

As described in Subsection 5.2.1.2, a Macro Customer should aggregate customers 3

and 4. The average will give the location of this Macro Customer between the coordinates of

the customers replaced. The Macro Customer attributes are shown in Table 5.4.

Table 5.4 – Customers after the process of eliminate intersections.

Index Name Latitude Longitude
1 Customer 1 45.811363220214844 13.443992614746094
2 Customer 2 45.81528854370117 13.518794059753418
3 Macro Customer 45.813325881958 13.4813933372498

Source: Authors.

The map represented by Figure 5.6 shows the customer’s coordinates plotted after the

Macro Customer creation process.
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Figure 5.6 – Customers plotted after the process of eliminate intersections.

Source: Authors with the library Folium.

By plotting the GPS tracks represented in the Table 5.3 on the map, it is possible to

identify the points that are located within the radius limits of each client, as can be seen in

the Figure B.5. This process can be verified by measuring the Euclidean distance between the

coordinates of the GPS track and the customer. If this distance is less than the defined radius, it

is proven that the vehicle is within the radius limits of the customer.
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Figure 5.7 – Customers plotted after the process of eliminate intersections.

Source: Authors with the library Folium.

Table 5.5 was built based on the Figure B.5. Column "Customer" represents the cus-

tomer to which the GPS track is associated. If the point is not associated with any customer, it

is defined that the vehicle issued the point during the journey traveled.
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Table 5.5 – GPS tracks associated with customers.

Datetime Latitude Longitude Vehicle Customer
2019-12-24 07:02:06 45.8116836547852 13.4440231323242 Truck 1 Customer 1
2019-12-24 07:03:06 45.8116874694824 13.4440250396729 Truck 1 Customer 1
2019-12-24 07:03:56 45.8116874694824 13.4440269470215 Truck 1 Customer 1
2019-12-24 07:04:06 45.8116874694824 13.4440269470215 Truck 1 Customer 1
2019-12-24 07:05:06 45.8129196166992 13.4443969726562 Truck 1 Customer 1
2019-12-24 07:06:06 45.8097763061523 13.4441337585449 Truck 1 Customer 1
2019-12-24 07:07:06 45.8109970092773 13.449257850647 Truck 1 traveling
2019-12-24 07:08:06 45.8130378723145 13.453784942627 Truck 1 traveling
2019-12-24 07:09:06 45.8147773742676 13.4638738632202 Truck 1 traveling
2019-12-24 07:10:08 45.8195877075195 13.4769468307495 Truck 1 traveling
2019-12-24 07:11:08 45.8210525512695 13.4888553619385 Truck 1 traveling
2019-12-24 07:12:08 45.8222541809082 13.498927116394 Truck 1 traveling
2019-12-24 07:13:08 45.816162109375 13.5084781646729 Truck 1 traveling
2019-12-24 07:13:56 45.816520690918 13.5128288269043 Truck 1 traveling
2019-12-24 07:14:08 45.816837310791 13.5145568847656 Truck 1 Customer 2
2019-12-24 07:15:08 45.8165969848633 13.5186452865601 Truck 1 Customer 2
2019-12-24 07:16:08 45.8157005310059 13.5188283920288 Truck 1 Customer 2
2019-12-24 07:17:08 45.8156089782715 13.5188436508179 Truck 1 Customer 2
2019-12-24 07:18:08 45.8154754638672 13.5190830230713 Truck 1 Customer 2
2019-12-24 07:41:14 45.8176689147949 13.5064611434937 Truck 1 traveling
2019-12-24 07:42:14 45.8223075866699 13.4993801116943 Truck 1 traveling
2019-12-24 07:43:14 45.8218154907227 13.4947547912598 Truck 1 traveling
2019-12-24 07:44:12 45.832160949707 13.4924631118774 Truck 1 traveling
2019-12-24 07:45:12 45.845100402832 13.4775266647339 Truck 1 traveling
2019-12-24 07:46:12 45.8516426086426 13.4613952636719 Truck 1 traveling
2019-12-24 07:47:10 45.8545455932617 13.4437046051025 Truck 1 traveling
2019-12-24 07:47:12 45.8585624694824 13.4286031723022 Truck 1 traveling
2019-12-24 07:48:12 45.8727416992188 13.4501352310181 Truck 1 traveling
2019-12-24 07:50:12 45.8922500610352 13.4722166061401 Truck 1 traveling
2019-12-24 07:51:12 45.8982238769531 13.4871912002563 Truck 1 traveling
2019-12-24 07:53:12 45.9010848999023 13.5223779678345 Truck 1 traveling
2019-12-24 07:54:12 45.9032554626465 13.5401086807251 Truck 1 traveling
2019-12-24 07:55:14 45.9032173156738 13.540472984314 Truck 1 traveling
2019-12-24 07:56:14 45.9032173156738 13.5404720306396 Truck 1 traveling
2019-12-24 07:57:14 45.9032173156738 13.5404682159424 Truck 1 traveling
2019-12-24 07:58:14 45.9032173156738 13.5404653549194 Truck 1 traveling
2019-12-24 07:59:14 45.9032211303711 13.5404663085938 Truck 1 traveling
2019-12-24 08:04:14 45.9033737182617 13.5450382232666 Truck 1 traveling
2019-12-24 08:09:14 45.9039726257324 13.5631465911865 Truck 1 traveling
2019-12-24 08:11:14 45.9045715332031 13.5823211669922 Truck 1 traveling
2019-12-24 08:12:14 45.912166595459 13.5976161956787 Truck 1 traveling
2019-12-24 08:14:14 45.9231300354004 13.6133480072021 Truck 1 traveling
2019-12-24 08:15:14 45.9320220947266 13.6131134033203 Truck 1 traveling
2019-12-24 08:16:14 45.9346733093262 13.6110515594482 Truck 1 traveling
2019-12-24 08:17:14 45.9355621337891 13.607138633728 Truck 1 Macro Customer
2019-12-24 08:18:14 45.9355850219727 13.6037902832031 Truck 1 Macro Customer
2019-12-24 08:19:14 45.9357032775879 13.6049213409424 Truck 1 Macro Customer
2019-12-24 08:20:14 45.9357948303223 13.6050386428833 Truck 1 Macro Customer
2019-12-24 08:21:16 45.9357948303223 13.6050367355347 Truck 1 Macro Customer

Source: Authors.

Using the data issued in Table 5.5, the column "Datetime" can be used to estimate the

services time of the customers (and Macro Customers) visited. If a customer (or Macro Cus-

tomers) is visited more than once, his/her service time is measured by average of all his/her

services. Table 5.6 shows the estimated service times for each of the customers visited during

the route.
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Table 5.6 – Instance generated with Macro Customer.

Name Latitude Longitude Start End Service time
Customer_1 45.811684 13.444023 2019-12-24 07:02:06 2019-12-24 07:06:06 4
Customer_2 45.816837 13.514557 2019-12-24 07:14:08 2019-12-24 07:18:08 4

Macro Customer 45.935139 13.606978 2019-12-24 08:17:14 2019-12-24 08:21:16 4
Source: Authors.

Finally, the service time estimated for the Macro Customer is expanded to all customers

aggregated by him.

Table 5.7 – Instance generated with customers aggregated by the Macro Customer.

Name Latitude Longitude Start End Service time
Customer_1 45.811684 13.444023 2019-12-24 07:02:06 2019-12-24 07:06:06 4
Customer_2 45.816837 13.514557 2019-12-24 07:14:08 2019-12-24 07:18:08 4
Customer_3 45.935139 13.606978 2019-12-24 08:17:14 2019-12-24 08:21:16 4
Customer_4 45.935139 13.606978 2019-12-24 08:17:14 2019-12-24 08:21:16 4

Source: Authors.

5.3 Experiment 1: comparison with the literature

The experiments compare our Hybrid algorithm (Algorithm 1) with Branch-and-Cut

(B&C) proposed by Dalmeijer and Spliet (2018), the state-of-art method for the solution of

the TWAVRP. We consider two ways to generate the pool of solutions: (i) the first one, the

algorithm executes with number of iterations (nrun) equal to one, ζ = 100 and α = 0.35. We

referred to this approach simply as HA-SR (Hybrid algorithm with a single run of ILS); (ii) in

the second version (HA), the algorithm executes with nrun = 10, ζ = 10 and α = 0.35. This

ensures that at HA, the RSM can be executed several times (generating a different pool for

the RSM at each execution) and only once at the HA-SR. The results that we obtained are

summarized in Table 5.8 and Table 5.9.

Table 5.8 presents the CPU time for instances aggregated by the number of customers.

Columns B&C, HA-SR, and HA, under the group CPU time (seconds), give the computational

time spent by, respectively, the algorithm by Dalmeijer and Spliet (2018), the HA with a single

execution of ILS and the HA with ten executions of ILS. Regarding instances that have between

10 to 35 clients, we can observe that the average CPU time of the five executions of both HA-SR

and HA are higher than the B&C execution time for the small instances (10-25 customers). For

larger instances (45 to 50 clients), the average CPU time of the proposed methods is less than

the execution of B&C, on average 75,16% for the HA-SR and 48,66% for the HA. Detailed

results are given in Appendix A.
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Table 5.8 – Average CPU time aggregated by number of customers (10 instances per line, 5 executions
per instance)

Instance CPU Time (seconds)

N. customers B&C HA-SR HA

10 0.10 10.97 ± 0.58 22.54 ± 0.65
15 4.50 36.12 ± 3.57 65.36 ± 1.02
20 2.20 80.14 ± 8.31 135.87 ± 2.45
25 12.40 142.31 ± 10.21 269.94 ± 8.36
30 544.00 222.68 ± 16.87 502.68 ± 7.02
35 1531.70 341.96 ± 40.22 829.31 ± 22.65
40 3252.00 479.20 ± 39.41 1176.10 ± 10.39
45 3600.00 682.21 ± 65.50 1180.29 ± 12.63
50 3600.00 980.69 ± 180.30 1482.21 ± 406.46

Source: Authors.

Table 5.9 summarized the average best solution found for instances aggregated by the

number of customers. The columns named Deviation(%) and Deviation∗(%) indicate the gap

and the standard deviation of the solution value found overall repetitions concerning the best so-

lution value, and for the best-known values obtained by the B&C method, respectively. The va-

lues of the Deviation(%) and Deviation∗(%) columns were computed by means of
zmethod− zB&C

zmethod
×

100, where "method" represent the HA-SR or the HA.

Table 5.9 – Average results aggregated by number of customers (10 instances per line, 5 executions per
instance)

Instance HA-SR HA

N. customers Deviation(%) Deviation*(%) Deviation(%) Deviation*(%)

10 0.74 ± 2.45 0.86 ± 2.45 0.69 ± 2.51 0.81 ± 2.49
15 0.32 ± 3.36 0.61 ± 3.36 0.39 ± 3.44 0.68 ± 3.48
20 0.25 ± 2.09 0.38 ± 2.09 0.30 ± 2.03 0.40 ± 2.03
25 0.45 ± 2.16 0.75 ± 2.16 0.45 ± 2.20 0.62 ± 2.23
30 0.51 ± 1.98 0.66 ± 1.98 0.46 ± 1.97 0.64 ± 1.96
35 0.45 ± 2.07 0.62 ± 2.07 0.40 ± 2.09 0.55 ± 2.10
40 0.45 ± 1.78 0.69 ± 1.78 0.48 ± 1.84 0.65 ± 1.85
45 -0.38 ± 3.43 -0.02 ± 3.43 -0.14 ± 3.16 0.11 ± 3.18
50 -1.59 ± 2.83 -1.39 ± 2.83 -1.23 ± 2.83 -0.94 ± 2.83

Source: Authors.

Regarding instances that have between 10 to 35 customers, we can observe relative

average deviations from 2.47% to 3.47% found by the HA-SR and 2.43% to 4.16% found by

the HA, compared with the B&C solutions in the worst case. In the group of larger instances

(45-50 clients), the ILS outperforms the results found in literature concerning both best-found

and average solution values of the five performed tests.
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Table 5.10 highlights the behavior of our method on the 20 larger instances having 45

and 50 customers. We report the lower bound and upper bound obtained in Dalmeijer and Spliet

(2018) (columns LB and UB, respectively), and the best (column Best) and average (column

Avg) solution values found by our HA-SR and HA algorithms. In the problems with 45 clients,

both methods were competitive, each finding the best results for about half of the cases. Our

methods improved the solution cost obtained by the B&C for all instances with 50 clients,

both considering columns Best and Avg. We estimate that the diversity of routes caused by

different local search operators was beneficial for the performance of the proposed methods for

these most difficult instances. The reason for the better performance of HA-SR compared to

HA in relation to the value found is due to the fact that the parameter niter (iterations without

improvement) of the ILS influences the generation of varied routes more than the execution

of the entire process iteratively for a longer time. The gain from the inclusion of several ILS

iterations in HA does not generate much difference in the quality of the solution in proportion

to the growth of computational time. Overall, we can conclude that the HA-SR and the HA are

appropriate approaches for moderate and large size instances of the TWAVRP.

Table 5.10 – Results for instances with 45-50 customers (best UB values appear in bold)

Instance B&C HA HA-SR

# N. customers LB UB Best UB Avg UB Best UB Avg UB

71 45 49.52 51.78 51.34 51.57 51.43 51.59
72 45 50.73 52.13 51.93 52.09 52.04 52.13
73 45 41.5 41.7 42.09 42.18 42.17 42.25
74 45 47.25 47.84 47.95 48.21 48.22 48.39
75 45 48.77 49.86 49.82 49.97 49.81 49.96
76 45 48.38 52.09 50.25 50.46 50.35 50.47
77 45 50.09 51.18 51.53 51.61 51.63 51.76
78 45 52.02 53.95 53.66 53.74 53.72 53.84
79 45 47.45 48.21 48.32 48.47 48.40 48.50
80 45 49.57 50.57 50.4 50.77 50.69 50.87
81 50 56.81 58.85 58.31 58.40 58.50 58.72
82 50 51.5 53.2 53.02 53.14 53.20 53.28
83 50 57.45 60.67 58.86 58.92 58.97 59.09
84 50 52.31 56.38 54.3 54.39 54.33 54.54
85 50 53.74 56.07 55.22 55.42 55.51 55.68
86 50 51.68 54.76 53.37 53.53 53.48 53.70
87 50 52.47 54.14 53.88 53.97 53.98 54.13
88 50 54.82 56.91 56.44 56.53 56.63 56.83
89 50 59.23 61.51 60.53 60.68 61.22 61.35
90 50 57.68 59.55 59.17 59.24 59.29 59.41

Source: Authors.
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5.4 Experiment 2: Coopservice instance

Subsection 5.2.2 shows that a relevant parameter to estimate service times is the ra-

dius size chosen for each customer. The radius size is fixed for all customers and can directly

interfere in the results since it can improve the accuracy of the algorithm and eliminate noisy

associations between customers and GPS tracks. Thus, a study was carried out, aiming to verify

which is the best value to be chosen for the parameter.

Using 3-month GPS tracks for 2019, we test 16 different radius sizes in the range of

100 to 800 meters. For each radius size tested, the following data were collected: number of

customers found, the total number of Macro Customers identified, and the number of aggregated

customers by Macro Customers. Table 5.11 shows the values obtained.

Table 5.11 – Comparative between different radius for 3 months GPS tracks.

Radius Estimated customers Estimated customers (%) Aggregated customers Total Macro Customers
100 46 37.70% 38 25
150 74 60.66% 41 27
200 77 63.11% 48 26
250 91 74.59% 51 27
300 96 78.69% 55 27
350 100 81.97% 61 28
400 105 86.07% 63 29
450 112 91.80% 64 30
500 112 91.80% 64 30
550 114 93.44% 66 30
600 115 94.26% 68 29
650 115 94.26% 69 29
700 115 94.26% 72 28
750 118 96.72% 72 28
800 118 96.72% 74 28

Source: Authors.

For comparison purposes, it was defined, according to the company, that will be accepted

only results where the rate of customers found was greater than 85%. It is possible to observe

that only a radius greater than 450 meters can maintain this rate. The number of customers

found increases proportionally to the number of Macro Customers. In this way, the radius that

has the largest number of Macro Customers identified is 450, 500 and 550 meters. We opted for

450 meters because it is the size that most closely matches the real average of the customer’s

radius.

To estimate the service time for customers, the first database "Myway_AVEN_EGAS"

is grouped for months. We could identify one month for 2017, nine months for 2019, and one

month for 2020. For each month, the customers found on the GPS tracks have their estimated
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service times. Finally, averages of estimated service times for customers found in all months

are measured.

The database "Friulli_Venezia_instance" gives the exogenous time windows, demand

for each period, and vehicle capacities. Database "Customers_EGAS" is used to place cus-

tomers on the map and calculate the distances and travel times among them. For that purpose,

we use the open-source library Open Source Routing Machine available in python language.

5.4.1 Computational results

The experiments compare our HA with a current solution used on Coopservice to solve

the generated real instance, which has a cost of 1,172.41, based on the objective function , and

uses eight vehicles to serve 122 customers. To run the HA, we adopt the same parameters re-

ported in Section 4.2.1. For the real context instance, we relax Constraints (4.4) described in

Subsection 4.2.1 since delays are common due to climatic reasons, traffic flow, vehicle prob-

lems, among others. In this case, we need to use the model described on 4.2.1.

Table 5.12 summarized the aggregated results for the real context instance. Columns

Cost, Time(s), Vehicles, and Deviation(%), under the group Avg. HA, gives the average cost,

computational time, average number of vehicles used by the found solutions, and the deviation

compared with the current solution used to cover all the customers. Columns Cost, Time(s),

Vehicles and Gap(%), under the group Best HA, gives the cost, the computational time, average

number of vehicles used by the found solutions, and the deviation between the current solution

and the best solution found by HA used to cover all the customers.

Table 5.12 – Results for real context instance with 122 customers

Instance Current solution Avg. HA Best HA

|H| |P| Vehicles Cost Vehicles Cost Time(s) Vehicles Deviation(%) Cost Time(s) Vehicles Deviation(%)

122 5 8 1172.42 8 1057.33 9700.36 7.52 -10.89 1052.87 9963.57 7.4 -11.35

Source: Authors.

We can observe that the ILS generates results that improve the current solution used by

Coopservice. The HA approach found solutions at an average cost of 1,057.33, representing a

deviation0 of -10.89% compared to the current solution cost. Regarding the best solution, the

HA approach found a cost of 1,052.87, which represents a deviation of -11.35% compared to

the current solution cost.
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The HA-SR results, using the set of parameters described in Section 5.4.1, are reported

on Table 5.13. Columns Cost, Time(s), Vehicles and Gap(%) have the same meanings as those

of Table 5.12.

Table 5.13 – Results for real context instance with 122 customers

Instance Current solution Average HA-SR Best HA-SR

|H| |P| Vehicles Cost Vehicles Cost Time(s) Vehicles Deviation(%) Cost Time(s) Vehicles Cost(%)

122 5 8 1172.42 8 1043.68 7030.61 7.4 -12.34 1035.96 7027.77 7.2 -13.17

Source: Authors.

The results show that the ILS generate solutions that improve the current one used by

Coopservice. The ILS approach found solutions at an average cost of 1043.68, representing a

deviation of -12.34% compared to the current solution cost. Regarding the best solution, the

ILS approach found a cost of 1035.96, which represents a deviation of -13.17% compared to

the current solution cost.

Compared to the average results, HA-SR generates better results than the HA with a

cost deviation of -1.31% and a time deviation of -37.97%. Thus, the HA-SR proves to be an

appropriate approach also in instances of real context. The illustrations of the routes generated

for each period of the best solution found are made available on Appendix B. Detailed results

for the best solution found by HA-SR are reported in Table 5.14.

Table 5.14 – Best results for real context instance with 122 customers

Instance HA-SR

Period |H| Vehicles Cost Vehicles

1 56 8 972.41 7
2 55 8 1059.97 7
3 79 8 1148.91 8
4 55 8 948.4 7
5 53 8 1049.61 7

Source: Authors.

We can observe that for four periods, the solutions found used seven vehicles. Consid-

ering the cost of drivers and gasoline in the European Union, the current transport by truck for

health logistics is around 0.90 euro/km. In the solutions found by HA-SR, the average distance

covered is 1,035.86 kilometers per period. If this distance were equally distributed among the

eight vehicles available for each period, the average distance traveled by each vehicle would

be 129.48 kilometers. Thus, each vehicle would spend an average of 116.53 euros, resulting

in an average of 932.26 euros per period. If we consider the five periods, the total value of the
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solution using all vehicles available would be around 4,661.28 euros. The subtraction of four

vehicles in the routing plan can generate savings of around 466.12 euros on the week plan.
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6 CONCLUSION

We studied the Time Windows Assignment Vehicle Routing Problem (TWAVRP), a VRP

variant that appears when the volume of customer demands is uncertain and visits over multiple

days should be planned. The objective is to create routes that minimize expected travel costs,

assigning a time window overall scenarios to each customer, and respecting the vehicle capac-

ity. Our interest in this problem derives from a real-world case study. We decided to begin our

research with the development of a hybrid heuristic and test it on the benchmark TWAVRP in-

stances to check if good-quality solutions can be found within reasonable computational efforts.

To this aim, we proposed an Iterated Local Search (ILS) algorithm that generates a pool

of feasible routes for each scenario, and a mathematical model, called Route Selector Model

(RSM), that chooses the most appropriate routes, among those created, minimizing total costs

and indicate the time windows for the customers. We compared the results of our algorithm

(ILS+RSM, called HA) with the Branch-and-Cut (B&C) proposed by Dalmeijer and Spliet

(2018). The HA presented competitive results, concerning both solution quality and computa-

tional effort. Concerning large-sized instances with 45 and 50 customers, HA-SR emerges as

the best approach, finding a solution there is an average deviation of -0.02% for instances with

45 customers and -1.45% for instances with 50 customers. The greatest effectiveness of HA-SR

is due to the fact that it has generated a more varied route pool in relation to HA.

In order to evaluate the behavior of the proposed algorithms in a real context of appli-

cation of Coopservice, we propose an approach able to estimating the service time of each of

the 122 customers. From the computational experiments, HA proved be a competitive method,

generating better solutions than those used by the company and obtaining savings of around

466.12 euros per week.

To approach the quickly convergence of the RSM to the incumbent solution, we propose

a method to find good solution values by invoking ILS + RSM multiple times. The method

did not generate good results. Due to the rapid execution of ILS + RSM in each iteration, the

diversity of routes in the pool and the solutions found are directly affected.

Future avenues concern: (i) incorporating new realistic constraints deriving from the

real-world case study in the metaheuristic, approaching the possibility of more than one stop

during the route, respecting the total rest time. (ii) test metaheuristics based on neighborhoods

of other natures, such as evolutionary algorithms, as a route generator. In this way, it is possible

to analyze how metaheuristics can influence the solution of the problem; (iii) propose strategies
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to build a more efficient route pool using the HA method. Strategies such as maintaining the

best solutions at each iteration, excluding a percentage of the worst solutions, among others,

can improve the performance of the algorithm since they are directly associated with the size of

the pool of routes.
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A DETAILED RESULTS FOR THE LITERATURE INSTANCES

In this appendix we make available the detailed results for the instances that were dis-

cussed on aggregated form on Section 5 from the tables:

• Table A.1 reports the detailed results for literature instances by Dalmeijer and Spliet

(2018) obtained by the HA-SR.

• Table A.2 reports the detailed results for literature instances by Dalmeijer and Spliet

(2018) obtained by the HA.



58

Table A.1 – HA-SR detailed results for literature instances by Dalmeijer and Spliet (2018)

Instance B & C HA-SR

# N. customers Opt. cost Time(s) Cost Time(s) Gap (%)
1 10 17.65 0 17.65 9.08 0.00
2 10 15.56 0.1 15.89 10.53 2.10
3 10 17.42 0 17.42 11.83 0.00
4 10 18.51 0.1 18.51 9.24 0.00
5 10 16.07 0.3 16.5 8.74 2.61
6 10 18 0 18 9.06 0.00
7 10 17.02 0 17.02 9.61 0.00
8 10 23.89 0.1 24.23 9.36 1.39
9 10 20.31 0 20.57 9.8 1.28
10 10 16.31 0 16.31 5.67 0.00
11 15 17.78 0 17.78 29.1 0.00
12 15 27.1 39.1 27.19 38.09 0.32
13 15 29.37 2.6 29.55 28.29 0.61
14 15 23.18 0.2 23.31 33.7 0.54
15 15 24.15 0.6 24.15 26.86 0.00
16 15 21.03 0.3 21.05 30.21 0.09
17 15 22.04 0.1 22.04 34.7 0.00
18 15 22.3 0.8 22.46 55.14 0.71
19 15 26.52 1.3 26.73 30.52 0.77
20 15 22.11 0.4 22.16 25.87 0.23
21 20 28.08 1.2 28.09 103.12 0.05
22 20 29.8 9 29.8 64.72 0.00
23 20 30.3 0.4 30.33 61.07 0.11
24 20 24.16 1.7 24.27 66.9 0.45
25 20 29.84 6.9 29.86 78.36 0.08
26 20 29.72 0.2 29.72 51.69 0.01
27 20 26.48 0.3 26.62 68.64 0.51
28 20 26.14 1.1 26.45 78.77 1.16
29 20 26.61 0.5 26.65 65.64 0.15
30 20 26.36 0.3 26.36 79.62 0.00
31 25 31.43 2.3 31.6 116.21 0.55
32 25 30.71 1.3 30.95 118.2 0.76
33 25 33.71 9.4 33.78 137.18 0.22
34 25 33.34 11.1 33.34 137.88 0.01
35 25 29.05 6.1 29.1 132.1 0.18
36 25 30.5 39.2 30.65 139.96 0.48
37 25 28.68 22.4 28.88 121.49 0.69
38 25 35.69 9.7 36.02 141.07 0.92
39 25 32.55 7.2 32.75 126.46 0.60
40 25 32.14 15.2 32.17 82.66 0.08
41 30 36.38 137 36.39 204.6 0.04
42 30 34.74 3600 34.83 243.78 0.27
43 30 35.48 187.6 35.66 209.66 0.50
44 30 35.88 60.6 36.01 149.1 0.35
45 30 35.55 110.8 35.66 185.59 0.30
46 30 37.47 7.7 37.82 204.8 0.93
47 30 32.54 17.8 32.89 251.69 1.06
48 30 36.32 357.9 36.63 249 0.85
49 30 35.3 930.3 35.4 202.96 0.28
50 30 40.27 30.7 40.47 196.07 0.49
51 35 43.46 18.2 43.67 559 0.49
52 35 41.84 14 41.98 423.07 0.33
53 35 45.14 3600 45.36 298.42 0.48
54 35 41.57 3600 41.84 452.29 0.65
55 35 37.92 68.5 37.94 335.3 0.05
56 35 44.49 3600 44.53 338.52 0.08
57 35 40.83 3600 41.28 475.85 1.09
58 35 41.22 127.9 41.22 435.33 0.00
59 35 43.43 245.1 43.65 381.44 0.51
60 35 42.27 443.3 42.63 298.23 0.84
61 40 46.35 3600 46.42 577.57 0.15
62 40 48.35 550.3 48.49 606.81 0.29
63 40 44.48 3600 44.78 472.4 0.68
64 40 43.75 3169.7 43.91 512.37 0.37
65 40 43.46 3600 43.45 620.59 -0.02
66 40 44.68 3600 44.82 442.94 0.32
67 40 46.96 3600 47.57 550.44 1.28
68 40 45.02 3600 45.12 322.4 0.22
69 40 43.2 3600 43.26 459.4 0.14
70 40 43 3600 43.47 502.79 1.09
71 45 51.78 3600 51.34 786.74 -0.85
72 45 52.13 3600 51.93 678.14 -0.39
73 45 41.7 3600 42.09 835.15 0.92
74 45 47.84 3600 47.95 837.96 0.23
75 45 49.86 3600 49.82 533.35 -0.07
76 45 52.09 3600 50.25 1811.73 -3.65
77 45 51.18 3600 51.53 454.25 0.67
78 45 53.95 3600 53.66 613.01 -0.54
79 45 48.21 3600 48.32 735.09 0.23
80 45 50.57 3600 50.4 613.71 -0.33
81 50 58.85 3600 58.31 613.63 -0.93
82 50 53.2 3600 53.02 1020.14 -0.35
83 50 60.67 3600 58.86 1149.4 -3.07
84 50 56.38 3600 54.3 979.57 -3.83
85 50 56.07 3600 55.22 1190.06 -1.53
86 50 54.76 3600 53.37 856.5 -2.60
87 50 54.14 3600 53.88 784.61 -0.48
88 50 56.91 3600 56.44 1022.95 -0.84
89 50 61.51 3600 60.53 914.08 -1.61
90 50 59.55 3600 59.17 781.14 -0.64

Source: Authors.
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Table A.2 – HA detailed results for literature instances by Dalmeijer and Spliet (2018)

Instance B & C HA

# N. customers Opt. Value Opt. Time Value Total time Gap (%)
1 10 17.65 0 17.65 21.96 0.00
2 10 15.56 0.1 15.89 21.71 2.10
3 10 17.42 0 17.42 23.88 0.00
4 10 18.51 0.1 18.51 22.59 0.00
5 10 16.07 0.3 16.41 25.06 2.09
6 10 18 0 18.00 21.03 0.00
7 10 17.02 0 17.02 19.65 0.00
8 10 23.89 0.1 24.23 23.00 1.39
9 10 20.31 0 20.57 20.48 1.28
10 10 16.31 0 16.31 15.76 0.00
11 15 17.78 0 17.78 49.54 0.00
12 15 27.1 39.1 27.34 67.13 0.87
13 15 29.37 2.6 29.55 64.20 0.61
14 15 23.18 0.2 23.19 70.11 0.03
15 15 24.15 0.6 24.26 57.72 0.47
16 15 21.03 0.3 21.05 58.57 0.09
17 15 22.04 0.1 22.04 60.17 0.00
18 15 22.3 0.8 22.42 71.40 0.55
19 15 26.52 1.3 26.80 52.81 1.04
20 15 22.11 0.4 22.16 68.03 0.23
21 20 28.08 1.2 28.09 146.04 0.05
22 20 29.8 9 29.80 134.63 -0.01
23 20 30.3 0.4 30.33 118.48 0.11
24 20 24.16 1.7 24.32 151.06 0.67
25 20 29.84 6.9 29.86 143.56 0.08
26 20 29.72 0.2 29.72 120.21 0.01
27 20 26.48 0.3 26.62 124.99 0.51
28 20 26.14 1.1 26.51 133.38 1.38
29 20 26.61 0.5 26.65 118.51 0.15
30 20 26.36 0.3 26.36 109.32 0.00
31 25 31.43 2.3 31.56 258.28 0.41
32 25 30.71 1.3 30.99 237.53 0.90
33 25 33.71 9.4 33.78 206.75 0.22
34 25 33.34 11.1 33.34 291.36 0.01
35 25 29.05 6.1 29.10 257.01 0.18
36 25 30.5 39.2 30.57 253.30 0.23
37 25 28.68 22.4 28.88 256.51 0.69
38 25 35.69 9.7 36.10 312.48 1.14
39 25 32.55 7.2 32.75 275.68 0.60
40 25 32.14 15.2 32.17 271.82 0.08
41 30 36.38 137 36.39 430.60 0.04
42 30 34.74 3600 34.82 555.09 0.24
43 30 35.48 187.6 35.74 506.96 0.72
44 30 35.88 60.6 35.99 474.37 0.31
45 30 35.55 110.8 35.65 368.57 0.27
46 30 37.47 7.7 37.78 499.15 0.83
47 30 32.54 17.8 32.89 416.04 1.06
48 30 36.32 357.9 36.45 575.65 0.37
49 30 35.3 930.3 35.40 580.78 0.28
50 30 40.27 30.7 40.48 455.08 0.53
51 35 43.46 18.2 43.64 690.27 0.42
52 35 41.84 14 42.02 713.93 0.44
53 35 45.14 3600 45.35 1008.33 0.47
54 35 41.57 3600 41.75 743.78 0.42
55 35 37.92 68.5 37.95 761.49 0.08
56 35 44.49 3600 44.53 905.96 0.08
57 35 40.83 3600 41.28 722.29 1.09
58 35 41.22 127.9 41.23 847.74 0.03
59 35 43.43 245.1 43.59 925.83 0.37
60 35 42.27 443.3 42.51 865.45 0.56
61 40 46.35 3600 46.39 1216.42 0.09
62 40 48.35 550.3 48.47 1114.95 0.24
63 40 44.48 3600 44.65 1149.48 0.39
64 40 43.75 3169.7 43.90 1147.18 0.33
65 40 43.46 3600 43.47 1190.26 0.03
66 40 44.68 3600 44.82 1133.07 0.31
67 40 46.96 3600 47.80 1278.87 1.76
68 40 45.02 3600 45.16 1154.60 0.31
69 40 43.2 3600 43.27 1164.02 0.16
70 40 43 3600 43.52 1138.33 1.19
71 45 51.78 3600 51.43 1161.07 -0.67
72 45 52.13 3600 52.04 1145.32 -0.18
73 45 41.7 3600 42.17 1119.53 1.11
74 45 47.84 3600 48.22 1254.34 0.78
75 45 49.86 3600 49.81 1119.96 -0.10
76 45 52.09 3600 50.35 1138.68 -3.45
77 45 51.18 3600 51.63 1247.06 0.87
78 45 53.95 3600 53.72 1112.59 -0.42
79 45 48.21 3600 48.40 1185.60 0.39
80 45 50.57 3600 50.69 1215.56 0.23
81 50 58.85 3600 58.50 1267.12 -0.60
82 50 53.2 3600 53.20 1385.75 0.00
83 50 60.67 3600 58.97 1245.45 -2.88
84 50 56.38 3600 54.33 1279.79 -3.77
85 50 56.07 3600 55.51 1262.58 -1.00
86 50 54.76 3600 53.48 1290.54 -2.39
87 50 54.14 3600 53.98 1358.15 -0.30
88 50 56.91 3600 56.63 1277.59 -0.49
89 50 61.51 3600 61.22 1431.15 -0.47
90 50 59.55 3600 59.29 1125.81 -0.44

Source: Authors.
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B SCENARIOS ILLUSTRATION FOR THE BEST SOLUTION

In this appendix we make available the illustrations of the routes generated for each

period of the best solution discussed on Section 5.

Figure B.1 – Routes for period 1.

Source: Authors with the library Folium.

Figure B.2 – Routes for period 2.

Source: Authors with the library Folium.
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Figure B.3 – Routes for period 3.

Source: Authors with the library Folium.

Figure B.4 – Routes for period 4.

Source: Authors with the library Folium.
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Figure B.5 – Routes for period 5.

Source: Authors with the library Folium.
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