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RESUMO 

 

 

Os programas de melhoramento em estágios iniciais avaliam centenas ou milhares de genótipos 

em um ou mais locais, exigindo experimentos que geralmente apresentam genótipos com baixa 

ou nenhuma replicação. Alguns dos designs propostos são os delineamentos aumentados e 

duplamente replicados (em que todos os genótipos têm duas repetições). Neste trabalho, 

simulações em computador foram utilizadas para avaliar o desempenho de delineamentos sem 

replicação ou replicação limitada para obter estimativas de componentes de variância, 

herdabilidade, valores clonais e genéticos, e seus ganhos genéticos alcançados sob uma 
variedade de cenários genéticos e espaciais. Os resultados de todas as simulações avaliadas 

indicam que a análise espacial forneceu resultados superiores ao modelo não espacial. A 

incorporação do efeito pepita trouxe melhores precisões, mesmo quando não há pepita em 

campo. A incorporação de informações de pedigree na estimativa de valores clonais e genéticos 

resultou em ganhos de precisão com boas correlações entre valores clonais e genéticos 

verdadeiros e preditos. No entanto, os benefícios das análises espaciais foram menos relevantes 

uma vez que o pedigree foi incorporado. Delineamentos duplamente replicados apresentaram 

melhor desempenho do que os delineamentos aumentados; e esses  delineamentos  com parcelas 

de controle de 6,25% mostraram resultados semelhantes aos delineamentos aumentados  com 

parcelas de controle de 25%. Em resumo, o acréscimo de uma repetição, conferindo duas 

parcelas por genótipo fornece estimativas muito boas de valores genéticos. No entanto, ensaios 
não replicados podem fornecer estimativas razoáveis desde que seja incorporado análises 

espaciais e/ou informações de pedigree. 

 

Palavras-chave: Melhoramento genético. Experimentos de campo. Análises espaciais. 

 

 

 

 

 

 

 

 

 

 

 

  



 
 

ABSTRACT 

 

 

Early stage breeding trials evaluate hundreds or thousands of genotypes in one or more sites, 

requiring experiments which often present genotypes with low or no replication. Some of the 

proposed designs are augmented design (AD), and double replicated (DR, where all genotypes 

have two replications). In this work, computer simulations were used to evaluate the 

performance of designs with no or limited replication to be used for estimation of variance 

components, heritability, genotypic and breeding values (BV), and their achieved genetic gains 

under an array of genetical and spatial scenarios. Results from all simulation evaluated indicate 

that spatial analysis provided superior results than a no-spatial model. The incorporation of 

nugget effect brought better accuracies, even when there is no nugget on the field. Incorporation 

of pedigree information on the estimation of BV resulted on accuracy gains with good 
correlations between true and predicted BVs. However, the benefits of spatial analyses were 

less relevant once pedigree was incorporated. DR designs presented better performance than 

AD; and AD designs with 6.25% control plots showed similar results than AD with 25% control 

plots. In summary, the increase of only one replication, conferring two plots per genotype 

provided with very good estimations of genetic values. However, unreplicated trials provides 

with reasonable estimates when under spatial analyses and/or when they incorporate pedigree 

information.  

 

 Keywords: Breeding. Field trials. Spatial analysis. 
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1 INTRODUCTION 

 

Most breeding trials require the evaluation of genetic materials in one or more 

environments with the objective of estimating breeding or genotypic values. For these evaluations, 

it is necessary to choose the experimental design that optimizes resources in function of the 

objective, achieving the best possible accuracy of the tested genotypes. The design of these field 

experiments should follow three key principles: randomization, control, and replication 

(COCHRAN; COX, 1957; STEEL; TORRIE, 1980; WELHAM et al., 2014). Replication is of 

special interest, as it allows to obtain an estimate of the experimental error and its associated 

variance by sampling several microenvironments in a field trial. Replication also plays an 

important role on the accuracy of the treatment (or genotype) mean estimates, where as the number 

of replications increases, the standard errors associated with this estimate decreases (COCHRAN; 

COX, 1957).  

In most plant breeding programs, early stage trials often evaluate hundreds or thousands of 

genotypes in one or more sites, requiring challenging experiments which often present genotypes 

with low (<3) or no replication. Federer (1955) proposed a field layout capable of handling this 

sort of problem: the augmented design (AD). These designs evaluate a large set of unreplicated 

test genotypes together with a small set of replicated control genotypes used as checks. To generate 

these experiments, control genotypes are often arranged as a randomized complete block design 

(RCBD) and later, test genotypes are added to augment these blocks. One important aspect of these 

designs is the proportion of control plots to be considered, some recommendations suggest that 10 

to 25% of the plots should be with checks (KEMPTON, 1984; KEMPTON; GLEESON, 1997; 

MÜLLER et al., 2010).  

The advantage of the AD designs is the large number of genotypes that can be evaluated; 

however, one of its drawbacks is the low precision of the estimation of the genetic effects as a 

result of this lack of replication. In addition, AD designs assign to many plots to checks, limiting 
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the number of test genotypes, and leading to good estimates of control plots, which are not the 

main objective of these studies. An interesting variant of the AD that handles some of these 

drawbacks is the P-rep designs, where a proportion of the test genotypes are replicated and 

therefore, they are considered as checks in the statistical analyses. A property of these designs is 

that the increase of replications of a proportion of the test genotypes improves the efficiency of 

selection (CULLIS et al., 2006; WILLIAMS et al., 2011).  

In contrast, fully replicated designs will not present these issues, but require considerable 

amounts of plant material and space to establish all replicated plots. A possible compromise is to 

establish field experiments, where all genotypes are replicated only twice, and experiment 

identified here as double replicated (DR). This limited replication will allow for reasonable 

precision on the estimate of the genetic effects, while limiting the use of resources.  

Statistical analyses for most field experiment, not only AD, P-rep and DR, benefit from the 

incorporation of spatial correlations (GILMOUR et al., 1997) to efficiently control for 

environmental sources of variations that might be present in a trial, which are often not captured 

by the design factors (such as row, columns or incomplete blocks). In genetic analyses, modeling 

the error variance with spatial structure increases the precision of the estimates of the genotypic or 

breeding values (BURGUEÑO, 2018; GEZAN et al., 2006), leading to better selections, and 

therefore larger genetic gains. The use of the spatial matrices, such as the first order separable 

auto-regressive error variance-covariance (AR1) has proven to be effective (CULLIS et al., 1998). 

This error structure has been used broadly in agricultural (CULLIS; GLEESON, 1991; 

ZIMMERMAN; HARVILLE, 1991; GILMOUR et al., 1997; PIEPHO et al., 2015) and forestry 

trials (COSTA e SILVA et al., 2001; DUTKOWSKI et al., 2002). An important additional 

component of the AR1 error structure is the nugget (or microsite) variance, that is a parameter 

used to account for variability at short distances due to measurement errors or local random noise 
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(DALE; FORTIN, 2014). In field trials, nugget captures part of the heterogeneity of soil fertility 

and/or measurement error (PIEPHO et al., 2015).  

Selecting the best spatial model to fit is a difficult task. There are many criteria to choose, 

such as: Akaike criteria of information (AIC) (AKAIKE, 1974), Bayesian criteria of information 

(BIC) (SCHWARZ, 1978) and also the REML log-likelihood value can be used as a criterion. For 

genetic analyses, it is common to use the H²PEV (WELHAM et al., 2010), that relies on the 

predictor error variance. Data and analyses simulations present a good opportunity to evaluate 

these different criteria by comparing differences between true and predicted fixed or random 

effects.  

The main objective of this study is to evaluate, through computer simulations, the 

performance of experimental designs with no or limited replication (i.e., AD and DR designs) to 

be used for estimation of variance components, heritability, genotypic and breeding values, and 

their achieved genetic gains under an array of genetical and spatial scenarios. The secondary 

objectives of this study are: 1) to contrast the benefits/drawbacks of the use of AD against DR  

designs, 2) to compare the effects of different levels of spatial correlation and nugget on estimation 

of genetic parameters, 3) to evaluate the goodness-of-fit statistics of an array of linear mixed 

models with and without spatial components, 4) to evaluate the accuracy of the estimation of 

breeding values under limited replication, and 5) to quantify the levels of genetic gains in terms of 

genotypic or breeding values under different scenarios for designs with no or limited replication. 

For this, an array of array of genetical and environmental scenarios were considered with different 

levels of narrow-sense heritability’s and dominance, spatial correlations, presence or absence of 

nugget effects, and selection intensities were simulated and evaluated for a scenario with the aims 

of estimating genotypic values, and another with the focus on breeding values. 
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2 MATERIAL AND METHODS 

 

2.1 Spatial Error Structure 

 

For this study all simulations were based on a field trial with 1,024 plots on a contiguous 

rectangular grid of 64×16 positions, where each plot contained a single observation. The spatial 

surface was modelled by using an autoregressive of first order error structure with and without 

nugget (AR(x)⊗AR(y) + 𝜎𝜂
2and AR(x)⊗AR(y), respectively). The AR(x)⊗AR(y) matrix 

considers two correlations, one on the x direction (𝜌𝑥) and another on the y direction (𝜌𝑦), which 

are perpendicular, and therefore this an anisotropic model. These parameters, 𝜌𝑥 and 𝜌𝑦, 

correspond to spatial error correlation between the residuals defining a patch of similar residual 

values, and the expressions for this structure for two residuals ei and ei’ is: 𝑐𝑜𝑣(𝑒𝑖 , 𝑒𝑖′) =

𝜎²𝑒𝜌𝑥
ℎ𝑥𝜌𝑦

ℎ𝑦
 for off-diagonal elements, and 𝑉𝑎𝑟(𝑒𝑖) = 𝜎²𝑒 +𝜎2

𝜂 for diagonal elements where  

ℎ𝑥 = |𝑥𝑖 − 𝑥𝑖′|, ℎ𝑦 = |𝑦𝑖 − 𝑦𝑖′| are the absolute distance between plots in row and column 

positions, respectively; 𝜎²𝑒 is the random spatial error variance and 𝜂 is the nugget or microsite 

error variance.  

Based on the autoregressive error structure specified above, two sets of 500 sites with and 

without nugget were simulated considering 𝜌𝑥 and 𝜌𝑦 values that randomly varied between 0.02 

and 0.98, and where their absolute difference was smaller than 0.85. Also, 𝜎²𝑒 + 𝜂 was considered, 

for simplicity, equal to 1, where for the sites with nugget, the proportion of the variance for 𝜂 

ranged randomly between 30% and 70%. All the above site simulations were later used to 

superimpose field experiments with different statistical designs that were then analyzed to estimate 

genotypic or breeding values. Details of these experiments are detailed below for simulation of 

genotypic and breeding values. 
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2.2 Simulation for Genotipic Values 

 

The experimental layouts considered to estimate genotypic values corresponded to three 

augmented designs (AD) all with eight blocks and four control genotypes or checks with different 

proportions of test plots out of the 1,024 total plots. The selected proportions corresponded to 

6.25%, 12.5% and 25% (thereafter identified as AD6.25, AD12.5 and AD25, respectively). For 

simplicity, the distribution of the control plots was at random, as the arrangement does not provide 

no significative differences (MÜLLER et al., 2010). These proportions of control plots were 

selected based on typical augmented experiments (PAYNE, 2006; MÜLLER et al., 2010). In 

addition, a randomized complete block design based on two blocks with no control plots but with 

all genotypes replicated twice was considered, and therefore this is identified as a double-

replication experiment (DR). Further details of the characteristics of these experiments are 

summarized in the supplementary material (TABLE S1).  

Table S1. Details of experimental designs considered specifying number of plots and genotypes 

for control and test treatments. All designs form a grid of 64×16 positions for a total of 1,024 plots. 
AD: augmented design, DR: double replicated design. 

 

 

To simulate the phenotypic response the following model was used: 𝑦𝑖𝑗𝑘 = µ + 𝑐𝑘 +

𝑒(𝑖𝑗𝑘) + 𝑒𝜂(𝑖𝑗𝑘); where 𝑦𝑖𝑗𝑘 is the response variable of the kth clone located in the ith row and jth 

column, µ is a population mean, which was arbitrarily set to 10 units; 𝑐𝑘 is the random genetic 

genotypic  effect simulated, with distribution 𝑐𝑘 ~ N(0, 𝜎²𝑐; 𝑒(𝑖𝑗𝑘) is the spatial error (or structured 

residual), with 𝑒(𝑖𝑗𝑘)~ N(0, 𝜎²𝑒; and  𝑒𝜂(𝑖𝑗𝑘) corresponds to the microsite random error (or 

Designs 
Proportion 

Control Plots  

# Plots # Genotypes 
# Blocks 

Control Test Control Test 

AD6.25 6.25% 64 960 4 960 
8 

AD12.50 12.5% 128 896 4 896 
8 

AD25 25% 256 768 4 768 
8 

DR 0% 0 512 0 512 
2 
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unstructured residual) with distribution 𝑒𝜂(𝑖𝑗𝑘)~N(0, 𝜎2
𝜂 . For all simulations, the genotypic  

variance, 𝑐𝑘 was set to 0.5 and the total error variance, 𝜎²𝑒 + 𝜂, was set to be 0.5, and therefore, 

broad-sense heritability corresponded to 𝐻2 = 𝜎2
𝑐 (𝜎2

𝑐 + 𝜎2
𝑒 + 𝜎2

𝜂)⁄ = 0.50. This scheme 

provided with a total of 4,000 simulations (4 designs × 2 surfaces × 500 sites) generated and stored 

for further statistical analyses. 

 

 

 

2.3 Simulation for Breeding Values 

 

For this section, the designs selected to assess breeding values estimation corresponded to 

a subset of the experimental layouts previously described (i.e., AD6.25, AD25 and DR) for a total 

of 960, 768 and 512 clones, respectively. These belonged to a circular diallel crossing design based 

on 42 unrelated parents (21 males and 21 females) for a total of 64 families, where each parent 

was used in 3-4 crosses (see Figure S1). Here, a total of 15, 12 and 8 clones were considered for 

each of these 64 families for the designs AD6.25, AD25 and DR, respectively conforming to a 

total of 1,024 plots (TABLE S2). Hence, this testing population is formed by half- and full-sib 

individuals that allow for partition of additive, dominance and epistasis, thanks to the diallel 

crossing structure. 

 

Table S2. Details of experimental designs considered specifying number of plots and families for 

control and test treatments. All designs form a grid of 64×16 positions for a total of 1,024 plots. 

AD: augmented design, DR: double replicated design. 

 

Designs 
# Plots #Family 

# Blocks 

Control Test Families Clones per family 

AD6.25 64 960 8 15 8 

AD25 256 768 8 12 8 

DR 0 512 8 8 2 
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As before, to simulate the phenotypic response the following linear model was used: 

𝑦𝑖𝑗𝑘𝑙𝑚 = µ + 𝑎𝑘 + 𝑑𝑘 + 𝑖𝑘 + 𝑒(𝑖𝑗𝑘)+𝑒𝜂(𝑖𝑗𝑘); where 𝑎𝑘 is the additive effect with distribution 𝑎𝑘~ 

N(0, 𝜎2
𝑎) represents the dominance effect with 𝑑𝑘 ~ N(0, 𝜎2

𝑑);𝑖𝑘 is the epistatic effect for the kth 

individual with 𝑖𝑘~ N(0, 𝜎2
𝑖); and all other terms were previously described. The variance-

covariance of the 𝑎𝑘and 𝑑𝑘 effects were modelled by considering the pedigree-based numerator 

relationship (A) and dominance (D) matrix, respectively (SCHAEFFER et al., 1989; MRODE, 

1996).  

Two distinct genetic scenarios were simulated with different proportion of additive 

variance in relation to non-additive variance; one with high proportion (E1: h² = 0.40, d² = 0.05 

and i2 = 0.05) and another with low proportion (E2: h² = 0.20, d² = 0.15 and i² = 0.15). For these 

scenarios the total genetic variance (h² + d² + i2) and error variance (𝜎2
𝑒 + 𝜎2

𝜂) were both set to 

0.50, corresponding to a total phenotypic variance of 1.0. For this subset of simulations only sites 

with nugget were evaluated; therefore, a total of 3,000 simulated datasets (3 designs × 1 surface × 

500 sites x 2 genetic scenarios) were available. 

 

2.4 Statistical Models 

 

The linear mixed models to evaluate each of the simulated datasets for the three or four 

experimental designs considered the following options: non-spatial (M1), spatial without nugget 

(M2), and spatial with nugget (M3).  

The fitted model for the simulations for genotypic values was: 

𝑦 = 1µ + 𝑍1𝑏 + 𝑍2𝑔 + 𝑒 

where µ is the overall mean; b is a vector of random effects for blocks, with b ~ MVN(0, 

𝜎𝑏
2Ib); g is a vector of random effects for the genotypes, with g ~ MVN(0,𝜎𝑔

2𝐼𝑔; e is the vector of 
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random residuals, with e ~ MVN(0, R). 1 is a vector of ones; I is an identity matrix of its 

corresponding size; X, Z1 and Z2 are incidence matrices for their respective factors. The residual 

variance-covariance matrix R was specified for each of the models with R1 = 𝜎𝑒
2In, R2 = 

AR(x)⊗AR(y), and R3 = AR(x)⊗AR(y) + 𝜎𝜂
2In, for models M1, M2 and M3, respectively. Here, 

In is an identity matrix of dimension n, where n is the total number of observations; AR(·) are 

autoregressive order 1 correlation matrices for x- and y-directions; and 𝜎𝜂
2is a nugget variance 

term.  

Equivalently, the fitted generic model for the simulations for breeding values was: 

𝑦 = 1µ + 𝑋𝛽 + 𝑍1𝑏 + 𝑍2𝑎 + 𝑍3𝑓 + 𝑍4𝑐 + 𝑒 

where β is the fixed effect of checks; b is a vector of random effects for blocks, with b ~ 

MVN(0, 𝜎𝑏
2Ib); a is a vector of individual additive effects for each genotypes, with a ~ 

MVN(0,𝜎𝑎
2𝐴; f is a vector of random effects of family, with f ~ MVN(0,𝜎𝑓

2𝐼𝑓; c is a vector of 

random effects clone within a family, with c ~ MVN(0,𝜎𝑐
2𝐼𝑐; e is the vector of random residuals, 

with e ~ MVN(0, R). A corresponds to the numerator relationship matrix obtained from pedigree, 

and R was identical to R1, R2 or R3, as described earlier for models M1, M2 and M3, respectively. 

All other terms were previously defined. The above model was fitted for all simulations for the 

DR datasets; however, for the unreplicated experiments AD6.25 and AD25 the same model was 

fitted but here the term f was dropped to facilitate model fitting, and therefore the variance 

associated with this term is contained (confounded) within the genotypic factor c. In summary, 

there were 12,000 analyses for genotypic values (4 × 2 × 500 × 3) and 9,000 for breeding values 

(3 × 1 × 500 × 2 × 3) to be run.  

 

2.5 Statistical Comparisons 

 

Each of the analyses were used to obtain summary statistics for comparisons. First, for each 

of the estimated variance components means and standard deviations were calculated, together 
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with the REML log-likelihood for each analysis (logREML). For genotypic values plot-level 

broad-sense heritability was estimated as: 𝐻𝑐
2 = 𝜎𝑔

2 (𝜎𝑔
2 +𝜎𝑒

2)⁄ . For breeding values analyses, the 

narrow-sense heritability (h²), dominance ratio (d²), epistatic ratio (i²), and broad-sense heritability 

(𝐻𝑐
2) were estimated using the following expressions: ℎ2 = 𝜎𝑎

2 (𝜎𝑎
2 +𝜎𝑓

2 + 𝜎𝑐
2 + 𝜎𝑏

2 + 𝜎𝑒
2 + 𝜎𝜂

2)⁄ , 

𝑑2 = 4𝜎𝑓
2 (𝜎𝑎

2 + 𝜎𝑓
2 +𝜎𝑐

2 + 𝜎𝑏
2 + 𝜎𝑒

2 +𝜎𝜂
2)⁄ , 𝑖2 =

(𝜎𝑐
2−3𝜎𝑓

2) (𝜎𝑎
2 + 𝜎𝑓

2 + 𝜎𝑐
2 +𝜎𝑏

2 + 𝜎𝑒
2 + 𝜎𝜂

2)⁄ , and 𝐻𝑐
2 =

(𝜎𝑎
2 + 𝜎𝑓

2 + 𝜎𝑐
2) (𝜎𝑎

2 +𝜎𝑓
2 + 𝜎𝑐

2 + 𝜎𝑏
2 +𝜎𝑒

2 + 𝜎𝜂
2)⁄ . 

Recall that for the AD6.25 and AD25 experiments 𝜎𝑓
2 is confounded within 𝜎𝑐

2. In addition, 

a different expression of heritability, H2
PEV and h2

PEV, was used corresponding to: 𝐻²𝑃𝐸𝑉 = 1 −

𝑃𝐸𝑉 𝜎𝑔
2⁄  and ℎ²𝑃𝐸𝑉 = 1 − 𝑃𝐸𝑉 𝜎𝑎

2⁄   (Welham et al. 2010), where 𝑃𝐸𝑉 corresponds to the average 

predictor error variance from each genotypic  (or additive) random effects, and 𝜎𝑔
2 (or 𝜎𝑎

2) is the 

variance component associated with the specific random effect. This expression is a generalized 

definition of heritability proposed by Cullis et al. (2006) and it represents the genotype mean 

broad-sense heritability (for genotypic values) and the mean narrow-sense heritability (for 

breeding values). 

Finally, other statistics were calculated in order to assess the quality of the predictions for 

each of the fitted datasets and models in relation to the true genetic (genotypic) or breeding values. 

Pearson product-moment correlation was obtained between the predicted and the true values, for 

genotypic values (CorPc) and breeding values (CorPa). For each simulation, an estimation of the 

selection efficiency (SEF) was obtained by selecting the top 10, 40 and 100 clones based on their 

estimated BLUPs (i.e., using incomplete information), and a ratio was calculated based on the 

average true genetic value of these selection against the genetic values from the actual 10, 40 and 

100 top individuals. Hence, for example, a value of 82% indicates that a given selection of 

genotypes provides with 82% of the maximum potential genetic gain. For the breeding values 
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evaluations, selection efficiency was calculated only the top 40 individuals (SEF40) according to 

their estimated breeding values. Another statistic used corresponded to the genetic gain achieved 

by selecting the top 40 individuals based on their true genetic value (PM40); hence, the larger these 

values the greater the realized genetic gains based on the selections.  

All the statistical analyses, simulations and calculations were done using the package R 

version 3.4.4 (R CORE TEAM 2018). The fitting of the linear mixed models was done using 

ASReml-R (BUTLER et al., 2009) as implanted in the package R. The package AGHmatrix 

(AMADEU et al., 2016) was used to obtain the relationship matrix for simulations. Code is 

available upon request from the authors. 
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3 RESULTS 

 

3.1 Genotypic Values 

 

For the genotypic value simulations, in all scenarios, the genetic variance component (σ²g) 

estimates were unbiased, with their average value close to its true value of 0.5, with the exception 

of the analyses of the models M2 for the sites with nugget that presented some overestimation, 

with the highest average values for AD6.25, but this bias was still present for all designs for model 

M2 (TABLE 1). This genetic variance bias was followed by an important underestimation of the 

spatial correlations (ρx, ρy) for the same model M2 and across all designs resulting in an average 

spatial correlation estimate of 0.264 instead of 0.5. However, variance component estimations 

under the sites without nugget presented minimal bias in genetic variance and spatial correlation 

estimates for model M2, with a small overestimation of these correlations for model M3. For the 

replicate variance component (σ²b), bias values ranging from 0.004 to 0.043 were observed where 

its true value is 0; this bias was more relevant under M1 model for all designs, with the exception 

of DR design. This is likely to occur because the REML variance component estimates are 

constrained to be positive.  

Table 1. Variance components, spatial correlations and heritability estimates for the four designs 

using the three statistic models analyzed for sites with and without nugget for genotypic value 
simulations. 

 

Sites with Nugget 

Designs Models σ²b σ²g σ²e σ²η ρx ρy  

AD6.25 

M1 0.020 0.505 0.477 - - -  

M2 0.011 0.562 0.443 - 0.298 0.301  

M3 0.005 0.502 0.275 0.223 0.496 0.494  

AD12.5 
M1 0.020 0.504 0.480 - - -  

M2 0.012 0.544 0.463 - 0.271 0.270  
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M3 0.004 0.506 0.272 0.228 0.499 0.499  

AD25 

M1 0.021 0.496 0.484 - - -  

M2 0.014 0.523 0.479 - 0.243 0.245  

M3 0.004 0.497 0.272 0.232 0.497 0.495  

DR 

M1 0.008 0.503 0.494 - - -  

M2 0.007 0.512 0.492 - 0.245 0.242  

M3 0.004 0.504 0.268 0.237 0.511 0.504  

Sites without Nugget 

Designs Models σ²b σ²g σ²e σ²η ρx ρy  

AD6.25 

M1 0.043 0.497 0.465 - - -  

M2 0.007 0.495 0.514 - 0.507 0.500  

M3 0.007 0.484 0.494 0.030 0.525 0.514  

AD12.5 

M1 0.040 0.504 0.461 - - -  

M2 0.006 0.503 0.506 - 0.511 0.503  

M3 0.006 0.497 0.489 0.022 0.528 0.515  

AD25 

M1 0.040 0.500 0.465 - - -  

M2 0.007 0.498 0.512 - 0.507 0.505  

M3 0.006 0.495 0.496 0.019 0.523 0.519  

DR 

M1 0.016 0.502 0.490 - - -  

M2 0.006 0.501 0.512 - 0.512 0.504  

M3 0.006 0.500 0.499 0.015 0.526 0.513  

† AD6.25, AD12.5 and AD25 represents augmented designs with 6.25%, 12.5% and 25% of replicates 

respectively and DR is the double-replication design. M1 is the no-spatial model, M2 is the spatial model 

AR(x)⊗AR(y) and M3 is the spatial model AR(x)⊗AR(y) +𝜎𝜂
2; σ²b, σ²g, σ²e and σ²η represents the variance 

components for block, clone, residual and nugget, and ρx and ρy are the spatial correlations for row and 

column. 

 

The fitting statistic logREML for the case of sites with nugget indicated that, as expected, 

the best model is the model that included this component, i.e., M3; and this model was clearly 

superior to M2 and M1 (TABLE 2). In contrast, for those sites without nugget, minimal differences 

were detected in logREML between M2 and M3, but interestingly, model M3 resulted marginally 

better. The estimation of the broad-sense heritability (H²c), as expected, presented a similar pattern 
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to the estimate of the genotype variance component, with some bias only for the M2 model for 

sites with nugget (TABLE 2). A boxplot generated with the H2
c estimates (Figure 1a) indicates 

that under the no-spatial model (M1) for AD6.25 there was a large range of estimates; however, 

this range gets reduced once spatial analyses (M2) were performed. Across designs, for the no-

spatial analyses, AD25 and DR present much smaller range of H2
c estimates. 

Table 2. Summary statistics for the three designs using the three statistic models analyzed 

for sites with and without nugget for genotypic value simulations. Numbers in bold 

corresponds to the best model for a given statistics within a design. 

Sites with Nugget 

Designs Models logREML H²c H²PEV CorPc SEF40 PM40 

AD6.25 

M1 -490.32 0.503 0.507 0.711 71.1% 11.52 

M2 -465.42 0.552 0.612 0.736 73.6% 11.57 

M3 -460.15 0.499 0.544 0.740 74.0% 11.58 

AD12.5 

M1 -470.13 0.501 0.504 0.713 71.1% 11.50 

M2 -443.35 0.533 0.590 0.737 73.4% 11.55 

M3 -436.42 0.501 0.548 0.743 74.0% 11.56 

AD25 

M1 -425.56 0.494 0.498 0.711 71.0% 11.45 

M2 -395.66 0.514 0.567 0.738 73.7% 11.51 

M3 -386.28 0.493 0.542 0.744 74.3% 11.52 

DR 

M1 -437.55 0.499 0.660 0.817 81.8% 11.76 

M2 -396.98 0.506 0.713 0.840 83.8% 11.81 

M3 -384.62 0.497 0.705 0.845 84.6% 11.82 

Sites without Nugget 

Designs Models logREML H²c H²PEV CorPc SEF40 PM40 

AD6.25 

M1 -481.43 0.493 0.503 0.719 72.4% 11.55 

M2 -381.78 0.488 0.652 0.821 82.2% 11.76 

M3 -381.54 0.478 0.637 0.821 82.2% 11.76 

AD12.5 

M1 -460.42 0.500 0.509 0.718 72.3% 11.52 

M2 -343.55 0.496 0.672 0.826 82.9% 11.75 

M3 -343.31 0.491 0.663 0.826 82.8% 11.75 

AD25 

M1 -415.93 0.496 0.505 0.719 71.9% 11.47 

M2 -261.13 0.490 0.684 0.837 83.6% 11.71 

M3 -260.90 0.487 0.680 0.837 83.6% 11.71 

DR 

M1 -434.64 0.497 0.654 0.818 81.7% 11.76 

M2 -204.60 0.493 0.811 0.914 91.3% 11.97 

M3 -204.36 0.491 0.808 0.914 91.3% 11.97 
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† AD6.25, AD12.5 and AD25 represents augmented designs with 6.25%, 12.5% and 25% of replicates 

respectively and DR is the double-replication design. M1 is the no-spatial model, M2 is the spatial model 

AR(x)⊗AR(y) and M3 is the spatial model AR(x)⊗AR(y) +𝜎𝜂
2; logREML is the log-likelihood REML 

value, H²c is the broad-sense heritability, H²PEV is the predictor-error-variance heritability, CorPc is the 

correlation between true and estimated genotypic values, SEF40 is the selection efficiency of selecting the 

top 40 individuals based on genotypic values, and PM40 is the genetic gain achieved by selecting the top 40 

individuals. 

 

Figure 1. Box plots for the broad-sense heritability H2
c  (a), correlation between true and estimated 

genotypic values (CorPc ) (b), selection efficiency of selecting the top 40 individuals (SEF40) 

(c)and genetic gain from the top 40 individuals (PM40) (d) for no-spatial model (M1) and spatial 

model AR(x)⊗AR(y) (M2) for the sites without nugget for genotypic values simulation. 

 

The average of the H2
PEV values indicated that the best model, for both site surfaces, is M2; 

this is more noticeable for AD6.25 and with almost null differences for DR (TABLE 2). This 

appears to be a bias resulting by having overestimated genetic variance components as indicated 

earlier. Also, higher values of H2
PEV were found for the sites without nugget with an average of 

  

  

 

𝑯𝒄
𝟐 𝑪𝒐𝒓𝑷𝒄 

CorPc 

𝑺𝑬𝑭𝟒𝟎 𝑷𝑴𝟒𝟎 

a b 

c d 
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0.648 against 0.582. Interestingly, in the sites without nugget for any design, the fitting of a model 

that considers spatial analysis produced a relevant increase of 0.16 on H2
PEV. As a result of having 

replication, an increase of 0.15 was noted between the use of a DR design instead of any augmented 

design, for all models.  

Promising correlations between true and predicted genotypic values (CorPc) were found in 

this study with values ranging from 0.711 to 0.914 (average of 0.785), with larger values for sites 

without nugget, models M2 and M3, and for the DR design (TABLE 2). The average CorPc values 

for sites without nugget across all models were 0.787, 0.790, 0.797, 0.882 for AD6.25, AD12.5, 

AD25 and DR, respectively. Overall, fitting spatial analyses models (M2 or M3) provided with an 

increase of the CorPc from 0.743 to 0.850 in relation to the no-spatial analyses (M1). However, 

these benefits vary considerably according to the level of spatial correlations (i.e., ρx and ρy).  

In Figure 2, the CorPc for different spatial correlations values are presented as contour 

plots. Here, narrow ranges of CorPc values were observed for the no-spatial analyses indicating 

little or no sensitivity to spatial correlations. In contrast, for the M2 analyses a clear trend was 

noted with increasing values of CorPc as the spatial correlations get closer to 1. The highest CorPc 

for any of the designs were found when both spatial correlations ranged approximately between 

0.75 and 0.98. A similar trend is noted for H2
PEV with a clear increase of these values on the spatial 

correlations range of 0.67 to 0.98 (see Supplementary Figure S2). Interestingly, the results for 

CorPc and H2
PEV (Figure 2 and Figure S2, respectively) show that high values of these statistics 

were achieved even when only one of the spatial correlations is high (> 0.75). In terms of CorPc, 

the spatial analysis for the different designs, as indicated above, yielded higher average 

correlations between true and predicted; however, the spatial analyses present larger estimate 

ranges in comparison to the no-spatial analyses (Figure 2b). This increase in variability is likely to 

be due to the fact that spatial analyses provide with improvements on the genotypic estimation for 

some sites and no improvement for other sites.  
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Figure 2. Contour plots for CorPc obtained by using the true row and column spatial correlations 

for the designs AD6.25, AD25 and DR fitted with no-spatial model (M1) and spatial model 
AR(x)⊗AR(y) (M2) for the sites without nugget for genotypic values simulation. 

 

M1 – AD6.25 M2 - AD6.25 

M1 – AD25 M2 – AD25 

M1 – DR M2 – DR 
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In relation to the statistic selection efficiency for AD6.25 the selection of the top 40 

genotypes resulted in an average SEF40 of ~72% and ~83% for the no-spatial and spatial analyses, 

respectively. Also, as expected, the best results were obtained from the DR design with spatial 

analysis resulting in an SEF40 of ~91%. (Figure 2c) Hence, the use of spatial analyses results in 

~11% increase in SEF40 for any design. Similar trends were observed for the top 10 and 100 

individuals with SEF10 and SEF100 (TABLE S3). Under the spatial models, the consequences of 

low (≤ 0.5), or high (> 0.5) spatial correlations are shown in Figure 3 for SEF40. Here, for AD6.25 

and AD25 under model M2, larger values of spatial correlation yield to important increases on 

SEF40 changing from ~76% to ~89%; nevertheless, this effect is almost null under the DR design, 

where for the no-spatial and spatial analyses the SEF40 values are both approximately 92%. As 

expected, small differences were noted between low and high spatial correlations for model M1, 

regardless of the design.  

 

Table S3. Summary statistics for the three designs using the three statistic models analyzed for 
sites with and without nugget for genotypic value simulations. Numbers in bold corresponds to the 

best model for a given statistics within a design. 

 

Designs Models 
WITH NUGGET WITHOUT NUGGET 

SEF10 SEF100 SEF10 SEF100 

AD6.25 

M1 0.716 0.711 0.719 0.719 

M2 0.737 0.735 0.820 0.822 

M3 0.742 0.739 0.820 0.821 

AD12.5 

M1 0.711 0.712 0.717 0.721 

M2 0.733 0.738 0.825 0.826 

M3 0.742 0.743 0.826 0.826 

AD25 

M1 0.708 0.711 0.721 0.720 

M2 0.735 0.736 0.838 0.835 

M3 0.743 0.743 0.838 0.835 

DR 

M1 0.818 0.817 0.826 0.818 

M2 0.841 0.841 0.911 0.914 

M3 0.843 0.846 0.911 0.914 
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† AD6.25 and AD25 represents augmented designs with 6.25% and 25% of replicates respectively and DR 

is the double-replication design. M1 is the no-spatial model, M2 is the spatial model AR(x)⊗AR(y) and 

M3 is the spatial model AR(x)⊗AR(y) +𝜎𝜂
2; where SEF10 and SEF100 represents the efficiency selection 

for the top 10 and top 100 individuals, respectively. 

 

 In terms of genetic gain calculated based on the true genetic values of selecting the 

top 40 individuals, as measured by PM40, spatial analyses of any of the designs yielded higher 

genetic gains (2% on average) with similar ranges (Figure 2d). Interestingly, the DR design 

presented, for no-spatial and spatial models, the highest PM40 values, even that this design has 

only 512 genotypes evaluated, in contrast with AD6.25 that has 960 test genotypes evaluated.  

 

Figure 3. Box plots for SEF40 for no-spatial model (M1) (a) and spatial model AR(x)⊗AR(y) 
(M2) (b)for the sites without nugget for genotypic values simulation separated for low and high 

spatial correlations. 

 

3.2 Breeding Values 

 

For the breeding value simulations, the additive variance, σ²a, was closer to its true value 

for the scenario with high additive proportion (E1) in all designs (TABLE 3); however, an 

overestimation was noted for the scenario with low additive proportion (E2) in both the AD6.25 

and AD25 designs with values close to 0.254 when its real value was 0.2; interestingly, no bias 

was noted for this component in the DR design. The analyses of the AD6.25 and AD25, with a 

model that does not separate dominance from epistasis, presented an overestimation for the σ²c that 

 

 

M1 M2 

a 

b 
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is due to this confounding between the family and the genotypic effects (TABLE 3). The value for 

E1 was close to its expected value of d² + i² = 0.10, but for E2 this value was smaller (~0.25) than 

the true value of 0.30 (TABLE 4); hence, the difference appears to be contained as a bias in the 

additive variance. For the DR design, the partition of dominance and epistasis was possible, and 

their average estimated values were close to its true values for both E1 and E2 (TABLE 4). These 

results indicate that for higher proportions of non-additive variance with respect to additive 

variance it is difficult to properly partition the genetic components for the AD designs, but the DR 

design provides with reasonable and unbiased estimates. As with the genotypic value simulations, 

σ²b also presented values larger than its true value of 0, but these were no larger than 0.02 (TABLE 

3). Unbiased estimates of spatial correlations (ρx, ρy) were found for the M3 model in all designs; 

however, an important underestimation of these correlations was reported by the model M2 on 

those sites with nugget (TABLE 3); a comparable finding that the one detected on genotypic value 

simulations (TABLE 1).  

Table 3. Variance components, spatial correlations and heritability estimates for three designs 
using the three statistic models analyzed for sites with nugget for breeding value simulations for 

scenario E1 with high proportion of additive variance (h² = 0.40, d² = 0.05 and i2 = 0.05) and 

scenario E2 with low proportion (h² = 0.20, d² = 0.15 and i² = 0.15). 

 
Scenario E1 

Designs Models σ²b σ²a σ²f σ²c σ²e σ²η ρx ρy 

AD6.25 

M1 0.020 0.407 - 0.101 0.474 - - - 

M2 0.010 0.412 - 0.166 0.428 - 0.306 0.301 

M3 0.004 0.408 - 0.097 0.265 0.231 0.501 0.495 

AD25 

M1 0.019 0.402 - 0.094 0.481 - - - 

M2 0.012 0.406 - 0.116 0.475 - 0.249 0.246 

M3 0.003 0.403 - 0.090 0.274 0.230 0.501 0.503 

DR 

M1 0.008 0.397 0.016 0.088 0.495 0.000 0.000 0.000 

M2 0.006 0.401 0.015 0.097 0.491 0.000 0.243 0.239 

M3 0.003 0.399 0.015 0.088 0.263 0.241 0.512 0.510 

Scenario E2 

Designs Models σ²b σ²a σ²f σ²c σ²e σ²η ρx ρy 

AD6.25 
M1 0.020 0.256 - 0.251 0.482 - - - 

M2 0.010 0.258 - 0.320 0.436 - 0.310 0.302 
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M3 0.004 0.258 - 0.251 0.273 0.229 0.504 0.496 

AD25 

M1 0.020 0.250  0.251 0.486 - - - 

M2 0.013 0.250 - 0.279 0.478 - 0.247 0.252 

M3 0.004 0.250 - 0.253 0.269 0.237 0.504 0.503 

DR 

M1 0.009 0.209 0.037 0.258 0.495 0.000 0.000 0.000 

M2 0.007 0.208 0.037 0.268 0.492 0.000 0.241 0.241 

M3 0.004 0.208 0.037 0.259 0.277 0.230 0.501 0.495 

 

† AD6.25 and AD25 represents augmented designs with 6.25% and 25% of replicates respectively and DR 

is the double-replication design. M1 is the no-spatial model, M2 is the spatial model AR(x)⊗AR(y) and 

M3 is the spatial model AR(x)⊗AR(y) +𝜎𝜂
2; σ²b, σ²a, σ²f, σ²c, σ²e and σ²η represents the variance components 

for block, individual (additive), family, clone, residual and nugget, and ρx and ρy are the spatial correlations 

for row and column. 

 

In a similar way as with the genotypic value simulation, the broad-sense heritability (Hc²) 

for the M2 model with the AD6.25 and AD25 was always higher than its true value, but for all 

other analyses its value was close to its true value of 0.5 (TABLE 4). As indicated earlier, 

overestimation of narrow-sense heritability was found for scenario E2 for both of the AD designs 

but not for the DR design. 

Table 4. Summary statistics for the three designs using the three statistic models analyzed for sites 

with nugget for breeding value simulations for scenario E1 with high proportion of additive 

variance (h² = 0.40, d² = 0.05 and i2 = 0.05) and scenario E2 with low proportion (h² = 0.20, d² = 

0.15 and i² = 0.15). Numbers in bold corresponds to the best model for a given statistics within a 

design. 

 
Scenario E1 

Designs Models 
logREM

L 
h² d² i² d²+i² H²c h²PEV CorPa SEF40 PM40 

 

AD6.25 

M1 -413.477 0.403 - - 0.102 0.505 0.569 0.748 73.9% 11.56  

M2 -379.623 0.401 - - 0.165 0.566 0.592 0.760 75.1% 11.58  

M3 -372.732 0.402 - - 0.098 0.500 0.593 0.762 75.3% 11.58  

AD25 

M1 -366.454 0.400 - - 0.096 0.496 0.560 0.742 72.9% 11.47  

M2 -327.722 0.399 - - 0.116 0.515 0.583 0.754 74.1% 11.49  

M3 -316.959 0.400 - - 0.092 0.491 0.587 0.757 74.5% 11.49  

DR 

M1 -386.214 0.392 0.062 0.04 0.105 0.497 0.607 0.788 77.7% 11.66  

M2 -341.244 0.392 0.061 0.05 0.114 0.506 0.630 0.801 79.1% 11.69  

M3 -328.288 0.392 0.060 0.04 0.105 0.496 0.635 0.804 79.5% 11.69  



30 

 

5 

Scenario E2 

Designs 
Model

s 

logREM

L 
h² d² i² d²+i² H²c h²PEV CorPc SEF40 PM40 

 

AD6.25 

M1 -453.743 0.251 - - 0.250 0.501 0.472 0.627 61.7% 11.31  

M2 -425.080 0.250 - - 0.313 0.562 0.488 0.635 62.6% 11.32  

M3 -418.964 0.252 - - 0.248 0.501 0.491 0.636 62.8% 11.33  

AD25 

M1 -399.221 0.246 - - 0.250 0.496 0.455 0.616 60.6% 11.23  

M2 -364.351 0.243 - - 0.274 0.517 0.470 0.626 61.5% 11.25  

M3 -354.502 0.245 - - 0.250 0.495 0.474 0.628 61.7% 11.25  

DR 

M1 -413.458 0.205 0.148 0.14 0.294 0.499 0.405 0.648 63.5% 11.38  

M2 -370.898 0.203 0.147 0.15 0.302 0.506 0.416 0.656 64.3% 11.39  

M3 -358.246 0.203 0.147 0.14 0.293 0.497 0.420 0.658 64.6% 11.40  

 

† AD6.25 and AD25 represents augmented designs with 6.25% and 25% of replicates respectively and DR 

is the double-replication design. M1 is the no-spatial model, M2 is the spatial model AR(x)⊗AR(y) and 

M3 is the spatial model AR(x)⊗AR(y) +𝜎𝜂
2; logREML is the log-likelihood REML value, h², d², i² and H²c 

represents the narrow-sense heritability, dominance ratio, epistatic ratio and broad-sense heritability. Also, 

h²PEV is the predictor-error-variance heritability, CorPa is the correlation between true and estimated 

breeding values, SEF40 is the selection efficiency of selecting the top 40 individuals based on breeding 

values, and PM40 is the genetic gain achieved by selecting the top 40 individuals. 

 

For all the combinations of designs, models and scenarios, model M3 (spatial with nugget) 

always presented the best goodness-of-fit statistics of logREML, CorPa and SEF40; however, 

differences were negligible with model M2, particularly in relation to CorPa and SEF40 (TABLE 

4). It is important to note that CorPa values for model M1 (no spatial) are, on average across all 

combinations, only 1% lower than the values found for models M2 and M3. Hence, for DR design, 

even a no-spatial model can provide with reasonable estimates of breeding values. Also, note that 

the difference between the CorPa for the augmented designs AD6.25 and AD25 against the DR 

design are 2-4%, a small difference that contrasts with the 8-10% found for genotypic value 

estimations (CorPc from TABLE 2). In general, the use of DR designs results in an increase of 

~3% in the correlation between true and predicted breeding values against the AD designs. Also, 
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for those simulations that include pedigree information, the incorporation of spatial correlations in 

the statistical analyses increases correlation marginally in ~2%. Again, a small difference 

compared to the ~10% that was found for the genotypic value estimations (CorPc from TABLE 2), 

reflecting the benefits of including pedigree information. 

Similar trends of those found for CorPa were detected for SEF40 with values ranging 

between 72.9-79.5% and 60.6-64.6% for E1 and E2 scenarios, respectively. Hence, better results 

are obtained, as expected, for the case with larger additive variance. In addition, marginally better 

selection efficiency values were found for DR designs, where these benefits were more relevant 

in E2 than in E1. Finally, small differences were obtained with PM40, with similar trend of those 

found for genotypic values where, even with small number of genotypes tested, the DR design 

provided with marginally larger genetic gain achieved. 
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4 DISCUSSION 

 

4.1 Reliability of Variance Component and Genetic Parameters 

 

Genotypic value simulations showed that, as expected, model M2 provided with better 

variance component estimates for sites without nugget, and model M3 was better for sites with 

nugget, indicating that using the correct model for its corresponding site structure will lead to 

negligible bias on estimation of variance components. Model M2, in sites with nugget, for both, 

genotypic and breeding value simulations presented an important bias on the estimation of the 

variance components associated with the spatial components. Interestingly, model M3 was always 

adequate on sites with or without nugget, showing equivalent statistics with model M2 under the 

without nugget simulations.  

The simulations for breeding value estimations (i.e., those that incorporate pedigree 

information) under both E1 and E2 scenarios provided with reasonable variance component 

estimates for models M2 and M3; however, important differences were noted between 

experiments. The analyses of the AD design showed that this design has some difficulty separating 

the non-additive from the additive components (TABLE 3), particularly when the additive 

component is relatively low (E2), producing upwardly biased heritabilities of ~0.25 instead of 

0.20. Nevertheless, this bias was not almost completely absent when the additive component was 

relatively high (E1). These overestimations were not observed for the DR design analyses, where 

all genetic parameters, in both scenarios and for all models, were close to its true value, indicating 

that, for the conditions evaluated in this study, this is a better experimental design to separate 

additive, dominance and epistatic effects.  
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4.2 Incorporation of Spatial Correlations and Nugget Effect 

 

For the analyses considered under sites without nugget, correlation between true and 

predicted genotypic values were all higher than 0.71, even for AD designs without spatial analyses. 

However, spatial analyses provided with an increase of this correlation to an average value of 0.85, 

with better results for models without nugget. The improvements on this correlation for the DR 

design were lower but still relevant with an increase from 0.82 to 0.88. These differences were 

much smaller in the case of breeding value simulations, with an increase of only ~0.02 for any 

scenario. This is probably the results of incorporating the pedigree information that allows for 

more accurate estimation of BLUP values. Interestingly, the effects of having large spatial 

components seems to be more relevant for AD designs, and once there is some replication, as with 

DR, these benefits are greatly diminished (Figure 1). Hence, this gain in precision on genetic value 

prediction is achieved by performing spatial analyses of field data, which agrees with the general 

recommendation of using spatial analysis for modelling the residual variance by Gilmour et al. 

(1997). 

Interestingly, correlations between true and predicted values (and other goodness-of-fit 

statistics) reported almost null differences between models M2 and M3, on both sets of simulations 

with or without nugget. Therefore, it seems appropriate to always incorporate the nugget effect 

into the fitted linear model when spatial analyses are performed, but our study indicated that its 

beneficial effects are expected to be minimal. Similar results were indicated by GILMOUR et al. 

(1997) and MÜLLER et al. (2010) were the addition of the nugget effect on these studies resulted 

in better analyses in contrast to models without this effect. 
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4.3 Model Selection with Goodness-of-fit-Statistics 

 

A goodness-of-fit statistics used to select a genetic linear model should identify the model 

that provides with the best correlation between true and predicted genotypic or breeding values. In 

this study, logREML resulted to be the most appropriate goodness-of-fit statistic to identify the 

adequate model for both genotypic and breeding value simulations under the array of conditions 

evaluated. This is reflected in the strong agreement between logREML and CorPc (or CorPa) for 

sites with and without nugget (TABLES 2 and 4), justifying its use. The logREML as a goodness-

of-fit statistics has been also widely used to select models in other genetic studies (COSTA e 

SILVA et al., 2001; GEZAN et al., 2006). 

In contrast, H2
PEV or h2

PEV, a goodness-of-fit statistic often recommended to select the best 

models (CULLIS et al., 2006; WELHAM et al., 2014), appears to not completely agree with 

logREML, and therefore CorPc (or CorPa) often selecting incorrectly model M2 for the genotypic 

simulations. However, for breeding value simulations this disagreement is not present, and all 

fitting statistics selected as best model M3. For the present study, it appears that this statistic was 

affected by the presence of the upward bias found on the estimation of the genotypic variance that 

is occurring in model M2, and therefore it should be used with caution, and further evaluations 

should be performed to determine the most adequate goodness-of-fit statistic for genetic analyses. 

 

4.4 Augmented Design versus Double-Replicated Design 

 

As expected, the use of DR designs, in comparison to any AD design, translated into better 

fittings. For example, producing an increase of the correlation between true and predicted values 

from 0.79 to 0.88 for genotypic values and from 0.69 to 0.73 for breeding values. An interesting 

result from this study was that the differences in goodness-of-fit statistics between DR and AD 

were lower in the simulations for breeding values, indicating that, for the conditions evaluated in 
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this study, AD designs were able to estimate breeding values almost as efficiently as replicated 

experiments. However, given the presence of confounding between family and genotypic effects 

in the AD design it might be useful to favor DR designs as these will be able to partition the 

additive, dominance and epistatic components for a given trait. This aspect is critical to assist 

breeders on implementing more efficient breeding strategies, where non-additive effects are 

relevant. 

Under the same space and genetic material resources, one drawback of the DR design is 

the lower number of genotypes that can be evaluated. For example, the DR designs for genotypic 

experiments evaluated in our simulations a total of 512 test genotypes, in contrast to the AD6.25 

that evaluated 960 genotypes (i.e., 87.5% more entries). This smaller set of genotypes translates 

into a reduction of selection intensity given that the pool of genotypes to make selection is smaller 

for DR than for AD designs. However, for the conditions evaluated in this study, the genetic gains 

achieved (in this case by selecting the top 40 individuals) based on their true genetic value (PM40) 

still resulted in higher efficiencies for DR designs in genotypic or breeding values (TABLES 2 

and 4) due to better identification of the top genotypes. This is a strong indication that the increase 

in replication at the cost of a reduced selection intensity, it is not greater than the benefits of 

increased precision of selection achieved by using double replication. 

For all simulations evaluated in this study, the comparison of AD designs with 6.25% and 

25% of control plots, according to the majority of the goodness-of-fit statistics, indicated that these 

two designs present minimal differences. Hence, AD designs with as little as 6.25% controls 

should be favored as these will require fewer control plots, and therefore increasing selection 

intensity (from 768 to 960 test genotypes). Burgueño et al. (2018) showed similar results for the 

proportion of control plots, where ~11% of check plots were adequate. Other authors suggest using 

between 10 and 25% of control plots (MARTIN et al., 2006; MÜLLER et al., 2010). 
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4.5 Varying Design Parameters 

 

The conditions evaluated in this study for genotypic simulations considered a broad-sense 

heritability of 0.5; however, this value will vary depending on the trait and field characteristics. It 

is possible to evaluate the effect of different levels of genetic control, replication and spatial 

correlation on the accuracy of genotypic value estimation mathematically. This was done by 

calculating the correlations between true and predicted genotypic values (CorPc) as the square root 

of the genotypic mean heritability estimated with the expression: 𝐻𝑐
2 =

𝜎𝑔
2 (𝜎𝑔

2 + 𝜎𝑒
2 [𝑟(1 + 𝜌 2⁄ )]⁄ )⁄ , where r is the replication, ρ is the average spatial correlation for 

rows and columns, and the other are the variance components previously defined. Note that this 

expression translates the benefit of spatial correlation in terms of increased replication, and it can 

be written as 𝐻𝑐
2 = 𝐻2 (𝐻2 + (1 − 𝐻2) [𝑟(1 + 𝜌 2⁄ )]⁄ )⁄  when 𝜎𝑔

2 + 𝜎𝑒
2 = 1. Hence, for the model 

without spatial correlation (M1), ρ = 0, and therefore there are no benefits of the use of spatial 

correlation, and for a model with ρ = 1, there will be exactly doubling of the replication. Also, note 

that the nugget effect was not considered in this case, but it can be easily incorporated. 

Based on the above expression different levels of broad-sense heritability (0.2 to 0.9) and 

replication (1, 2 and 3) were evaluated for models without and with spatial analyses (M1 and M2, 

respectively). These calculations are presented in Figure 4, and, as expected, the increase in the 

number of replications has a positive effect on the CorPc, but this effect gets reduced once 

replications are greater than three, and its effect is more relevant under low heritability values. As 

this heritability increases, the differences between any of the conditions diminishes considerably, 

particularly on levels of heritability of 0.75 or higher. There is always an improvement on these 

correlations when model M2 is used instead of model M1. Again, a difference that gets smaller 

under higher heritability levels. A similar plot can be obtained for correlations for breeding value 
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estimations with similar trends, which is not presented here. In summary, this figure can be used 

to guide some decisions in terms of replications and desired levels of accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Correlation between true and predicted genotypic values (CorPc) for different levels of 

broad-sense heritability (H2) for no-spatial model (M1) and spatial model AR(x)⊗AR(y) (M2) on 

sites without nugget for varying replications (r). 

 

4.6 Final Remarks 

 

In this study, all spatial simulations and analyses were made considering the two-

dimensional autoregressive error structure with and without nugget (AR(x)⊗AR(y) + 𝜎𝜂
2 and 

AR(x)⊗AR(y), respectively) suggested by Cullis and Gleeson (1991). However, several other 

spatial error structures could have been considered (HU; SPILKE, 2009), and a different approach 

to model spatial variation, for examples based on cubic Splines, could also have been followed 

(VELAZCO et. al., 2017). Nevertheless, it is expected that similar trends will be found with any 

spatial approach, as long as it exploits information related to field correlations. 
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The interaction genotypes by environments (GE) was not the focus of this paper but some 

of the findings presented here can be easily extrapolated for multi-environmental trial (MET) 

analyses, particularly those with reference to accuracy achieved and effects of replication. For 

more details on this aspect we recommend revising literature on spatial analysis in MET (CULLIS 

et al., 1998; SMITH et al., 2006), and on effects of unreplicated designs in a MET (MOEHRING 

et al., 2014). 

The designs evaluated in the present study focused on two specific contrasting designs: AD 

and DR. However, the use of P-rep designs is also very common in many agronomical field 

experiments designs (CULLIS et al., 2006). In these designs some test genotypes are replicated 

two or more times, and the rest are unreplicated. Here, replicated genotypes act as control plots 

helping to exploit and estimate spatial variability. Results from our current study can easily be 

extrapolated to P-rep designs as this design is intermediate between DR and AD designs, where 

for P-rep designs there will be two tiers of results: those that apply for the replicated genotypes 

and those for unreplicated genotypes.  

Finally, it was shown in the simulations for breeding values presented here the tremendous 

benefit of considering the pedigree information to connect data, and therefore to improve the 

accuracy of breeding value estimation, as noted by the statistic CorPa. This benefit was more 

relevant for the AD designs where, in some cases, results were almost equivalent to DR designs. 

Therefore, the use of a relationship matrix for estimation of additive effects is critical to maximize 

the information extracted from both of these designs. In a similar way, the use of molecular 

information (e.g., SNP markers) to obtain genomic relationship matrices (VANRADEN, 2008) 

could increase genetic gains due to improved accuracy on the determination of the relationship 

between individuals. Even further, the use of this information on relatedness can be incorporated 

not only for the analysis stage but also for the randomization of the field experiments, as illustrated 

by Mramba et al. (2018).  



39 

 

5 CONCLUSIONS 

 

Moderate to large values of field spatial correlation, in at least one coordinate, increases 

the accuracy of the spatial analyses for any design. It was found that, in all simulation conditions 

evaluated, the use of spatial analysis provided with superior results than a no-spatial model. Even 

when there is no nugget on the experimental field, its incorporation on the model fit brings better, 

or at least equivalent, accuracies in most situations.  

The incorporation of the pedigree information by obtaining a relationship matrix on the 

estimation of breeding values resulted on important gains in accuracy with good correlations 

between true and predicted breeding value. Interesting, the benefits of the spatial analyses were 

less relevant once pedigree information was incorporated into the model. 

Based on the evaluated goodness-of-fit statistics it was determined, for the simulations 

performed, that the use of double replication (DR) designs presents better performance than 

augmented designs (AD). The use of AD with 6.25% control plots showed similar results than the 

AD designs with 25% of control plots, but the former has the benefit of fewer control plots; 

therefore, allowing for an increase number of test genotypes translating into better selection 

intensity. 

In summary, it is always recommended the use replication, whenever possible. The 

simulations presented in this study indicated that a replication of only two plots per genotype 

provides with very good estimations of genotypic and breeding values. However, unreplicated 

trials, also provide with reasonable estimates of these genetic values, but these are particularly 

good under spatial analyses and when they incorporate pedigree information.  
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ATTACHMENTS 

 

 

 

M \ F F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15 F16 F17 F18 F19 F20 F21 

M1 x x x                   

M2  x x x                  

M3   x x x                 

M4    x x x                

M5     x x x               

M6      x x x              

M7       x x x             

M8        x x x            

M9         x x x           

M10          x x x          

M11           x x x         

M12            x x x        

M13             x x x       

M14              x x x      

M15               x x x     

M16                x x x    

M17                 x x x   

M18                  x x x  

M19                   x x x 

M20 x                   x x 

M21 x x x                  x 

 

Figure S1. Crossing arrangement for the breeding value simulations based on a circular diallel 

with 42 parents for a total of 64 families. 
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Figure S2. Contour plots for H²PEV obtained by using the true row and column spatial correlations 

for the designs AD6.25, AD25 and DR fitted with no-spatial model (M1) and spatial model 

AR(x)⊗AR(y) (M2) for the sites without nugget for genotypic values simulation. 

M1 – 

AD6.25 

M1 – 

AD25 

M1 – 

DR 

M2 – 

AD6.25 
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AD25 
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DR 


