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RESUMO

Grande parte dos fenômenos aleatórios estudados em áreas aplicadas da estatística é governada
por complexas estruturas de dependência. Negligenciar essas associações na análise estatística
quase certamente leva a resultados enganosos. É exatamente isso que torna a análise multivari-
ada de dados tão importante. Na análise de sobrevivência multivariada, por exemplo, particular-
mente quando se trata de dados agrupados, o interesse está em modelar os múltiplos tempos de
vida (ou o tempo até que um evento aconteça) de indivíduos agrupados em diferentes clusters.
Naturalmente, os tempos de vida de indivíduos dentro de um mesmo cluster tendem a estar
associados entre si (dependência intracluster), uma vez que esses indivíduos estão expostos aos
mesmos fatores, por exemplo. Além disso, os dados de sobrevivência são frequentemente cen-
surados à direita, uma condição em que indivíduos sobrevivem até certo ponto no tempo, mas
não se sabe exatamente quando experimentam o evento de interesse. Essas particularidades
tornam o estudo de dados de sobrevivência agrupados não trivial. Em geral, existem dois tipos
de modelos que são comumente utilizados para modelar esses dados: modelos de fragilidade e
cópulas. Nos modelos de fragilidade se assume que os diferentes tempos de vida em um cluster
são condicionalmente independentes dado um fator comum aleatório, o fator de fragilidade (ou
variável de fragilidade). Apesar de serem amplamente utilizados para modelar dados de sobre-
vivência agrupados em clusters, os modelos de fragilidade apresentam algumas deficiências:
o número de distribuições de fragilidade implementadas é limitado. Além disso, a interpreta-
ção do parâmetro de fragilidade não é direta, pois este representa a heterogeneidade entre os
clusters e não a associação entre os tempos de vida em um cluster. Por outro lado, a interpre-
tação dos parâmetros de uma cópula é mais simples, uma vez que estes modelos, por definição,
conseguem separar o comportamento marginal dos tempos de vida da forma com que estão as-
sociados. Ademais, é possível encontrar um grande número de famílias de cópulas paramétricas
na literatura e muitas já foram implementadas em diversos pacotes de softwares estatísticos. No
entanto, até então, o potencial das cópulas não foi totalmente explorado na modelagem de da-
dos de sobrevivência clusterizados, visto que esses modelos foram aplicados apenas em casos
de clusters de tamanho fixo e pequeno, ou com restrição no número de famílias de cópulas uti-
lizáveis. Visando superar essas deficiências, nós propomos neste trabalho uma nova classe de
modelos baseados em cópulas fatoriais para dados censurados à direita e agrupados em clusters
de tamanhos variados. O novo modelo permite, ainda, o uso de qualquer família de cópula para
modelar a dependência intracluster. Além disso, nós fornecemos as rotinas computacionais
em R para implementação de nossos métodos. Por meio de uma aplicação com dados reais e
estudos de simulação, nós mostramos que a metodologia proposta neste trabalho possui sólidas
propriedades amostrais, baixo custo computacional e fornece resultados de fácil interpretação.

Palavras-chave: Dados de sobrevivência agrupados. Cópulas fatoriais. Dados de sobrevi-
vência multivariados. Clusters de tamanhos variados.



ABSTRACT

The vast majority of the random phenomena studied by applied statisticians are governed by
complex dependence structures. Neglecting these associations in the statistical analysis often
gives rise to misleading and biased results. This is precisely what makes multivariate data
analysis so important. In multivariate survival analysis, for example, particularly when dealing
with clustered survival data, the interest lies in modelling the multiple lifetimes (time until an
event happens) of individuals grouped in clusters. The lifetimes of individuals inside a cluster
are known to be associated to each other through a complicated dependence structure, the intra-
cluster dependence. On top of this, survival data are often right-censored, a condition where a
subject survives up to a certain point in time, but the exact moment of occurrence of the event of
interest is not observed. These features make the study of right-censored clustered survival data
non-trivial. In general, there are two types of models that are commonly used to model these
forms of data: frailty models and copula models. In frailty models, we assume that the different
lifetimes in a cluster are independent of each other, conditional on a common random term,
the frailty term. Although frailty models are widely used to model clustered survival data, they
have some deficiencies: the number of frailty distributions which are implemented is limited.
Furthermore, the interpretation of the frailty parameter is not straightforward since it expresses
the heterogeneity between clusters, rather than the association between lifetimes in a cluster.
On the other hand, the interpretation of the parameters in copula models is easier since these
models are, by their form, adapted to make a clear distinction between the marginal behaviour
of a lifetime and the association between different lifetimes. Moreover, an extensive number of
parametric copula families is available and already implemented in several statistical software
packages. However, up to now, copula models have not been used to their full potential in clus-
tered survival data modelling. Their usage was restricted to settings where either the size of the
clusters is fixed, or the number of copula families implemented is limited. Considering these
shortcomings of the current methodologies, this thesis aims to make a contribution towards the
modelling of clustered survival data by copula models. In this sense, we propose a new class
of models based on the flexible factor copula models that can handle right-censored clustered
survival data grouped in variable sized clusters and allows the use of any copula family to model
intracluster dependence. Additionally, we provide the computational routines for implementa-
tions of our methods. We show, with a real data application and simulation studies, that the
newly proposed methods have solid finite sample properties, straightforward interpretation and
are not computationally expensive.

Keywords: Clustered survival data. Factor copula models. Multivariate survival data. Varying
cluster size.
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FIRST PART - OVERVIEW

1 INTRODUCTION

Dependence modelling has always been an important matter in applied statistics, since

in most of the cases the independence assumption is violated. Early multivariate models were

mostly based on Gaussianity, therefore implying a linear dependence structure and also Gauss-

ian marginals. Despite the increasing number of multivariate families of distributions over the

course of time, it was not possible, until 1959, to model dependence structure and marginals

separately, that is, the choice of a particular family of multivariate distribution implied in fixed

marginals. This scenario started to change with the groundbreaking work of Abe Sklar, entitled

Fonctions de répartition à n dimensions et leurs marges (SKLAR, 1959). In his work, Sklar

introduced copula functions and announced a theorem that made it possible to split multivariate

models in two parts: dependence structure (copulas) and marginal distributions. Hence, the

problem of multivariate modelling became much simpler, allowing for an unconstrained choice

of marginals and dependence structures (copulas), thus creating flexible models.

Since the work of Sklar, copulas have been widely used in many applied fields, speci-

ally survival analysis, economics and finance. The increasing popularity of copulas is due to

a plethora of available parametric families and the possibility to combine them with any mar-

ginal distributions, making it possible to efficiently model data with complicated dependence

structures, such as asymmetric and tail dependence.

Despite the large number of multivariate copula families, there were still some flexibility

issues, particularly in high dimensions, because the choice of a particular copula necessarily

implies a unique form of association among pairs of variables. To circumvent this problem,

Bedford and Cooke (2002) introduced the vine copula models, based on the pair-copula cons-

truction (PCC) method that uses bivariate copulas as building blocks for higher dimensional

distributions. However, the elevated number of parameters in such models is a major drawback

for inference.

As a way to reduce the number of parameters, preserving the flexible aspect of vine

copulas, Krupskii and Joe (2013) proposed the factor copula models, that, similarly to vine

copulas, are multivariate models composed of bivariate copulas, but with a significant diffe-

rence: they allow the reduction of the number of parameters from O(d2) to O(d). With this

reduction, efficient estimation methods for high dimensions can be more easily derived and the

computational costs are considerably lowered.
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In multivariate survival analysis, specially with clustered data, in which the different

event times are linked to each other through a complicated association such as a family/sibling

structure, copula models are becoming an increasingly popular alternative to the traditional

frailty models. However, significant technical restrictions have been imposed in their usage.

Dating from 1995, when Shih and Louis (1995) proposed a copula formulation for bivariate

survival data, until today, copula models in survival analysis have their use restricted to settings

where either the cluster size is fixed or the options of copula families are limited. The fine

work of Prenen, Braekers and Duchateau (2017) made it possible to use Archimedean copulas

to model survival data grouped in clusters of variable size. However, many important families

of copulas were not comprehended by their model, e.g., those of the elliptical class (Gaussian,

t), extreme-value copulas (except for the also Archimedean, Gumbel-Hougaard copula), etc. In

view of this, the possibilities for dependence modelling are still limited.

Considering the shortcomings of the current methodologies for dependence modelling

in survival analysis, this thesis aims to make a contribution towards the modelling of clustered

survival data by copula models. For this, we propose a new class of models based on the flexible

factor copulas. The challenge is to adapt the factor copula model framework to accommodate

for the special features of clustered survival data, such as right-censoring and varying cluster

size. In this sense, we hope to make our contribution to the field of multivariate survival analysis

by developing methods that impose no restrictions for dependence modelling, allowing any

copula family in their formulation and also benefiting from the reduced number of parameters

of factor copulas, while being able to handle settings where the clusters have varying size.

As an additional product of this thesis, our objective is to derive computationally effi-

cient algorithms for implementations of the proposed methods. In the attempt to do this, we

provide computational routines in R (R Core Team, 2018) along with a detailed guideline for

their usage.

This work is divided in two parts: the first consists of a technical overview on copula

models and survival analysis. In the second part, we present the paper entitled “Factor copula

models for right-censored clustered survival data”, submitted for publication (in revision after

peer review) in the journal Lifetime Data Analysis, where we tackle the main task of this thesis

by developing a new methodology for clustered survival data modelling. Some additional topics

and technical proofs related to the paper are given in Appendix A. The computational routines

in R language and a step-by-step guide for their use can be found in Appendix B.
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2 COPULAS

Before the advent of copulas, multivariate statistics mostly dealt with models based on

Gaussianity, which in many applications is a limiting condition. Also, there were not many

alternative approaches, due to the lack of flexibility of existing multivariate distribution fami-

lies in representing different bivariate dependence structures. This scenario started to change

in 1959, with the work of Abe Sklar, Fonctions de répartition à n dimensions et leurs marges

(SKLAR, 1959). According to Nelsen (2007), Sklar introduced in statistics a class of functions

named copulas, whose importance lies in a theorem stating that there exists, in every multi-

variate distribution, a function that links marginal distributions to their joint distribution. This

theorem, known as Sklar’s theorem, is the foundation for the use of copulas in statistics, since it

makes possible to split a multivariate model in two parts: marginal distributions and dependence

structure (copulas).

First applications of copulas were proposed in survival analysis (biostatistics, reliability,

actuarial science), but eventually, all applied fields began to use copulas in dependence model-

ling, specially in finance and economics, where copulas became very popular due to the variety

of families capable of dealing with nonlinear associations (FERMANIAN, 2017).

We now proceed by formally defining a bivariate copula and presenting some of its

fundamental results. The following definitions, theorems and additional results are taken from

the book “An Introduction to copulas” of Roger Nelsen (NELSEN, 2007).

Definition 2.1. A bivariate copula is a function C : [0,1]2 ! [0,1], (u,v) 7! C(u,v), with the

following properties:

1. C is grounded, i.e., for every u,v in [0,1], C(u,0) = 0 =C(0,v);

2. For every u,v in [0,1], C(u,1) = u and C(1,v) = v;

3. C is 2-increasing, i.e., for every u1,u2,v1,v2 in [0,1], such that u1  u2 and v1  v2,

C(u2,v2)�C(u2,v1)�C(u1,v2)+C(u1,v1)� 0.

As for now, we have only defined a copula as a function with some particular properties,

but its relationship with statistics is yet unclear. This connection will be shown later. Although

bivariate copulas are defined in the unit cube, the next theorem states that there is a region where

every copula is contained.
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Theorem 2.1. Let C(u,v) be a copula. Then for every (u,v) in [0,1]2,

max(u+ v�1,0)C(u,v) min(u,v). (2.1)

The above result is the copula version of the Fréchet-Hoeffding bounds and establish

lower and upper bounds for copulas. We will denote the Fréchet-Hoeffding lower bound as CL

and the Fréchet-Hoeffding upper bound as CU . It can be shown that CL(u,v) =max(u+v�1,0)

and CU(u,v) = min(u,v) are also copulas.

Owing to the Fréchet-Hoeffding bounds in (2.1), we can graphically represent the region

that contains all copulas (Figure 2.1 (c)), which is the region between CL (Figure 2.1 (b)) and

CU (Figure 2.1 (a)).

Figure 2.1 – Graphs of copulas CU (a), CL (b) and region that contains all copulas (c)

(a) CU(u,v) (b) CL(u,v) (c) Region between CL and
CU

Another fundamental copula is the product copula P(u,v) = uv (Figure 2.2). As we will

show further in this section, its importance lies on the fact that it characterises independence

between random variables.

Figure 2.2 – Graph of the copula P.
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The next two results are of great importance, because they explore the properties of

the partial derivatives of copulas. These are constantly used in copula construction methods.

Besides, in order to derive the likelihood of copula based models, it is a necessary condition

that ∂ 2

∂u∂vC(u,v) can be computed.

Theorem 2.2. Let C(u,v) be a copula. Then for every u,v in [0,1], the partial derivatives
∂
∂uC(u,v) and ∂

∂vC(u,v) exists almost everywhere in [0,1], also

0  ∂
∂u

C(u,v) 1,

0  ∂
∂v

C(u,v) 1.

Theorem 2.3. Let C(u,v) be a copula. If ∂
∂vC(u,v) and ∂ 2

∂u∂vC(u,v) are continuous on [0,1]2

and ∂
∂uC(u,v) exists for all u 2 (0,1) when v = 0, then ∂

∂uC(u,v) and ∂ 2

∂v∂uC(u,v) exist in (0,1)2

and ∂ 2

∂u∂vC(u,v) = ∂ 2

∂v∂uC(u,v).

We are now able to explain how copula functions were introduced in statistics. The next

section gives an overview on copulas as statistical models, beginning with the most important

theorem that made it possible to use copula functions in a statistical context.

2.1 Sklar’s theorem: copulas in statistics

Before baptised as copulas, the class of functions defined previously was already being

studied from a mathematical perspective. However, it was only after the work of Sklar (1959)

that these functions became popular in the scientific community (NELSEN, 2007).

Abe Sklar showed that a multivariate distribution can be written in terms of their margi-

nal distributions and a function that joins the latter to their multivariate form. These functions

were named copulas (from the Latin copulæ), due to their role in establishing the link between

marginal distributions and their joint distribution, as it is presented in the theorem below, which

now bears Sklar’s name.

Theorem 2.4 (Sklar’s Theorem). Let X and Y be continuous random variables with joint distri-

bution FX ,Y (x,y) and cumulated marginals FX(x) and FY (x). Then there exists a unique copula

C such that, for all x,y 2 R,

FX ,Y (x,y) =C(FX(x),FY (y)). (2.2)
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Conversely, if C is a copula and FX(x), FY (y) are continuous distribution functions, then FX ,Y (x,y)

as defined in (2.2) is a joint distribution function and it is unique.

Sklar’s theorem elucidates how copulas are related to statistics/probability, by joining

multivariate distributions to their univariate margins. In other words, Sklar’s theorem makes

possible to split a multivariate joint distribution in two parts: marginal distributions and a co-

pula, the former representing individual behaviour of the random variables (RVs) and the latter

as a model for the dependence structure of the RVs. Henceforth, we will often refer to the copula

of X and Y as CX ,Y . Copulas can also be defined as joint distributions with standard uniform

marginal distributions, that is C(u,v) = P(U  u,V  v), where U and V ⇠ Uniform[0,1].

From a practical point of view, given a set of random variables with fixed marginals,

one can build a plethora of joint distributions by using different copula functions. These can be

chosen from several parametric families or even constructed as a semi or nonparametric models.

Conversely, a copula can be obtained if the joint distribution and its marginals are known:

Corollary 2.1. Let X, Y , FX ,Y , FX , FY and C be such as defined in Sklar’s theorem. Then, for

all (u,v) 2 [0,1]2,

CX ,Y (u,v) = FX ,Y (F�1
X (u),F�1

Y (v)).

We show next how the copula P(u,v) = uv characterises independence between random

variables.

Theorem 2.5. Continuous random variables X and Y are independent if and only if CX ,Y (u,v)=

P(u,v)

Proof. If X and Y are independent, their joint distribution is FX ,Y (x,y) = FX(x)FY (y), then, by

Corollary 2.1

CX ,Y (u,v) = FX ,Y (F�1
X (u),F�1

Y (v)) = FX(F�1
X (u))FY (F�1

Y (v))

= uv = P(u,v).

Conversely, if CX ,Y (u,v) = P(u,v) = uv, then, by Sklar’s theorem, their joint distribution is

FX ,Y (x,y) =C(FX(x),FY (y)) = FX(x)FY (y).
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Since the joint distribution of X and Y is the product of their marginals, then, by definition, X

and Y are independent.

A useful property of a copula is its invariance under strictly increasing transformations.

In general, under strictly monotone transformations, it is possible and rather simple to obtain

the copula of the transformed variables if the original copula is known.

Theorem 2.6. Let X and Y be continuous RVs with copula CX ,Y . Also, let a and b be strictly

monotone transformations.

1. If a and b are both strictly crescent transformations,

Ca(X),b (Y ) =CX ,Y .

2. If a and b are both strictly decreasing,

Ca(X),b (Y )(u,v) = u+ v�1+CX ,Y (1�u,1� v).

3. If a is strictly crescent and b is strictly decreasing,

Ca(X),b (Y )(u,v) = u�CX ,Y (u,1� v).

4. If a is strictly decreasing and b is strictly crescent,

Ca(X),b (Y )(u,v) = v�CX ,Y (1�u,v).

Proof. We will proof only the first two statements, since the other two cases can be similarly

proved. Let FX ,FY ,Fa(X) and Fb (Y ) be the distribution functions of X ,Y,a(X) and b (Y ), res-

pectively.

1. If a(X) is a strictly increasing transformation, then

Fa(X)(x) = P[a(X) x] = P[X  a�1(x)] = FX(a�1(x)).
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The same goes for Fb (Y ) = FY (b�1(y)). This way,

Ca(X),b (Y )(Fa(X)(x),Fb (Y )(y)) = Fa(X),b (Y )(x,y) = P[a(X)6 x,b (Y )6 y]

= P[X 6 a�1(x),Y 6 b�1(y))] = FX ,Y (a�1(x),b�1(y))

=CX ,Y (FX(a�1(x)),FY (b�1(y)))

=CX ,Y (Fa(X)(x),Fb (Y )(y))

)Ca(X),b (Y )(u,v) =CX ,Y (u,v).

2. For a(X) and b (Y ) strictly decreasing,

Ca(X),b (Y )(Fa(X)(x),Fb (Y )(y)) = Fa(X),b (Y )(x,y) = P[a(X)6 x,b (Y )6 y]

= P[X > a�1(x),Y > b�1(y)) = 1�P[X 6 a�1(x)]

�P[Y 6 b�1(y)]+P[X 6 a�1(x),Y 6 b�1(y)]

= 1�FX(a�1(x))�FY (b�1(y))+FX ,Y (a�1(x),b�1(y))

= 1�Fa(X)(x)�Fb (Y )(y)+CX ,Y (Fa(X)(x),Fb (Y )(y))

)Ca(X),b (Y )(u,v) = 1�u� v+CX ,Y (u,v).

It was already discussed why copulas are models for dependence structures of random

variables, but how the intensity of the dependence can be measured? We will show next that

this can be done through the parameters of the copula, by establishing a direct relationship to

some measures of association, in particular, the Kendall’s t .

Definition 2.2. Let (X1,Y1) and (X2,Y2) be independent copies of a random vector (X ,Y ) whose

joint cumulative distribution function is FX ,Y . The Kendall’s t of the pair (X ,Y ) is defined as

tX ,Y = P[(X1 �X2)(Y1 �Y2)> 0]�P[(X1 �X2)(Y1 �Y2)< 0].

The Kendall’s t is a measure of association based on the concepts of concordance and

discordance of pairs. For example, two pairs (xi,yi) and (x j,y j) are said to be concordant if

(xi � x j)(yi � y j)> 0 and discordant if (xi � x j)(yi � y j)< 0. Note that, indeed, the Kendall’s t

in the above definition measures the probability of concordance, PC =P[(X1�X2)(Y1�Y2)> 0],

minus the probability of discordance, PD = P[(X1 �X2)(Y1 �Y2) < 0]. In this sense, a random



17

pair (X ,Y ) has a high value of Kendall’s t if it is also high the probability of concordance,

PC = P[X2 > X1,Y2 > Y1] +P[X2 < X1,Y2 < Y1]. In other words, the Kendall’s tX ,Y is a value

between �1 (perfect discordance) and +1 (perfect concordance) that measures the strength of

monotonic association between X and Y . It is important to note that, if X and Y are independent,

then tX ,Y = 0, but the the converse is not necessarily true.

Theorem 2.7. Let X and Y be continuous RVs with copula C. Then, the Kendall’s tau of X and

Y (tX ,Y ) can be expressed as

tX ,Y = 4
Z 1

0

Z 1

0
C(u,v)dC(u,v)�1. (2.3)

Proof. From Definition 2.2, we have that

tX ,Y = PC �PD = P[(X1 �X2)(Y1 �Y2)> 0]�P[(X1 �X2)(Y1 �Y2)< 0],

where (X1,Y1) and (X2,Y2) are independent copies of (X ,Y ). Also, the probability of discor-

dance can be expressed as PD = 1�PC. Then

tX ,Y = 2PC �1.

The probability of concordance

PC = P[(X1 �X2)(Y1 �Y2)> 0] = P[X1 < X2,Y1 < Y2]+P[X1 > X2,Y1 > Y2]

can be rewritten as

PC = 2P[X1 < X2,Y1 < Y2],

since P[X1 > X2,Y1 > Y2] = P[X2 > X1,Y2 > Y1]. Therefore,

tX ,Y = 4P[X1 < X2,Y1 < Y2]�1.
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Furthermore, by expressing P[X1 < X2,Y1 < Y2] in terms of the copula of X and Y , we get

P[X1 < X2,Y1 < Y2] =
Z +•

�•

Z +•

�•

Z x2

�•

Z y2

�•
fX1,Y1,X2,Y2(x1,y1,x2,y2)dx1dy1dx2dy2

=
Z +•

�•

Z +•

�•

Z x2

�•

Z y2

�•
fX1,Y1(x1,y1) fX2,Y2(x2,y2)dx2dy2dx1dy1

=
ZZ

R2

FX ,Y (x,y) fX ,Y (x,y)dxdy

=
ZZ

R2

FX ,Y (x,y)dFX ,Y (x,y)

=
ZZ

R2

C(FX(x),FY (y))dC(FX(x),FY (y))

=
Z 1

0

Z 1

0
C(u,v)dC(u,v)

Hence tX ,Y = 4
R 1

0
R 1

0 C(u,v)dC(u,v)�1.

The above result states that copulas, besides representing different types of dependence

structures, also contains the information of the strength of association between random variables

(Kendall’s tau). Moreover, both the dependence structure and the strength of association are

represented by the copula alone.

2.2 Some important parametric copula families

In this section we give a brief overview on some of the most popular bivariate copula

families in the literature, namely: Gaussian copulas, Student’s t copulas, Archimedean copulas

and extreme-value copulas. These models have been extensively used in practical applications

due to their good properties and simple formulations.

2.2.1 Gaussian copulas

The Gaussian copula, or normal copula, is a model for linear dependence between ran-

dom variables. It can be obtained by using the result in Corollary 2.1 on a bivariate normal
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distribution, i.e.,

CGa(u,v) = F2(F�1(u),F�1(v);q)

=
1

2p
p

1�q 2

F�1(u)Z

�•

F�1(v)Z

�•

exp
✓
�s2 �2qst + t2

2(1�q 2)

◆
dsdt, �1  q +1.

It is easy to see that the Gaussian copula’s parameter q is, in fact, the Pearson’s correlation

coefficient r . Hence, it represents the strength of linear dependence between the random varia-

bles U and V . In Figure 2.3, we illustrate the shape of the dependence imposed by the Gaussian

copula under different parametric settings.

Figure 2.3 – Scatterplots from samples of size 1000 taken from a Gaussian copula with q = 0.5 (a),
q = 0.85 (b), q =�0.5 (c) and q =�0.85 (d).
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By using Sklar’s theorem with the Gaussian copula it is possible to derive the standard

bivariate normal distribution. This can be done by setting u = F(x) and v = F(y) in CGa(u,v).

Moreover, a different choice of copula with the same standard normal marginals would build a

different joint distribution, that is, we can create several joint distributions with standard normal

marginals that are not the bivariate standard normal distribution. For C = P we also end up with

a bivariate standard normal distribution but with independent margins:

P(F(x),F(y)) = F(x)F(y)

=
1

2p
e�

(x2+y2)
2 .

2.2.2 Student’s t copulas

This family of copulas can be obtained through a procedure similar to the Gaussian’s.

Let tn ,q be the bivariate Student’s t distribution with central Student’s t margins, tn . Then, by

using Corollary 2.1, the Student’s t copula is given by

Ct(u,v;n ,q) = tn ,q (t�1
n (u), t�1

n (v))

=
1

2p
p

1�q 2

t�1
n (u)Z

�•

t�1
n (v)Z

�•

✓
1+

s2 �2qst + t2

n(1�q 2)

◆� n+2
2

dsdt, �1  q +1,n > 0.

The dependence structure imposed by the Student’s t copula, or simply t copula, is

shown in Figure 2.4 under different values of q . This copula differs from the Gaussian due to

an increased association in the tails, that is, it represents a dependence structure in which the

probability of joint occurrence of large/small values of the RVs is higher than in the Gaussian

copula case. This can be noticed by comparing the concentration of data points in the tails in

Figure 2.4 and Figure 2.3.

2.2.3 Archimedean copulas

Archimedean copulas are a general class that comprehends several copula families.

These families are constructed via a generator f , a continuous and decreasing convex func-

tion f : [0,1] ! [0,+•], satisfying f(1) = 0. If f(0) = +•, f is a strict generator and has



21

Figure 2.4 – Scatterplots from samples of size 1000 taken from a t copula (n = 4) with q = 0.5 (a),
q = 0.85 (b), q =�0.5 (c) and q =�0.85 (d).
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inverse f�1. For f(0)<+•, we have to define a pseudo-inverse (NELSEN, 2007)

f [�1] =

8
><

>:

f�1 , 0  t  f(0)

0 , f(0) t +•
, (2.4)

such that f [�1](f(t)) = t, 8t 2 [0,1].

Definition 2.3. Let f be a generator function and q 2 R. An Archimedean copula is defined as

CA(u,v;q) = f [�1]
q (fq (u)+fq (v)). (2.5)
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The use of the generator function in the construction of Archimedean copulas makes

possible to create more simple relations to some quantities, such as the Kendall’s tau. Indeed,

Genest and MacKay (1986) showed that the expression in 2.3 can be written in the form

tCA = 4
1Z

0

f(t)
f 0(t)

dt +1.

Some of the most popular Archimedean copula families are given in Table 2.1. For

more details on Archimedean copulas and an extensive list of families of such class, the reader

is referred to Nelsen (2007).

Table 2.1 – Some important Archimedean copulas and their generators.

Family fq (t) q 2 Cq (u,v)
Gumbel-Hougaard (� ln t)q [1,+•) exp{�[(� lnu)q +(� lnv)q ]

1
q }

Clayton 1
q (t

�q �1) [�1,+•)\{0} [max(u�q + v�q �1,0)]�
1
q

Ali-Mikhail-Haq ln 1�q(1�t)
t [�1,1) uv

1�q(1�u)(1�v)

Frank � ln
⇣

e�q t�1
e�q�1

⌘
(�•,•)\{0} � 1

q ln
⇣

1+ (e�qu�1)(e�qv�1)
e�q�1

⌘

It is possible to find a reasonable number of families in the class of Archimedean copulas

with distinct dependence structures. In Figure 2.5, we illustrate this feature by providing the

scatterplots from samples of different Archimedean copulas. One can see (Figure 2.5), for

example, that the Gumbel-Hougaard copula induces a more accentuated association at the upper

tail in comparison to the Frank and Clayton. Indeed, as we show in the next section, the Gumbel-

Hougaard copula also belongs to the family of extreme-value copulas, which characterises its

particular feature. The Clayton copula on the other hand imposes a stronger association at the

lower tail.

2.2.4 Extreme-value copulas

Extreme-value copulas are one of the most popular in the fields of finance and actuarial

risk analysis. They arise naturally as the limits of copulas of componentwise maxima in inde-

pendent random samples and represent dependence structures for rare events (GUDENDORF;

SEGERS, 2010).

Definition 2.4. A copula C is an extreme-value copula if there exists a copula C⇤ such that

C(u,v) = lim
n!+•

h
C⇤(u1/n,v1/n)

in
, 8(u,v) 2 [0,1]2. (2.6)
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Figure 2.5 – Scatterplots from samples of size 1000 taken from three different Archimedean copulas
under the same level of dependence (t = 0.6): Clayton copula with q = 3 (a), Frank copula
with q = 8 (b) and Gumbel-Hougaard copula with q = 2.5 (c).
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It is said that C⇤ is in the domain of attraction of C.

The importance of extreme-value copulas lies in their capability of modelling rare (ex-

treme) events that are dependent on each other (higher probability of joint occurrence of unu-

sually large values). The use of correct models for these type of events in finance and actuarial

risk management, for example, is extremely important, since their effects could be catastrophic,

e.g., large financial losses.

Two examples of extreme-value copulas are the Gumbel-Hougaard and the Galambos

copulas, with the former also belonging to the class of Archimedean copulas (see Table 2.1).
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The Galambos copula is defined as (JOE, 2014)

C(u,v;q) = uvexp
⇢h

(� logu)�q +(� logv)�q
i�1/q

�
, 0  q <+•.

For the sake of illustration, we give in Figure 2.6 the scatterplots of samples taken from the

Gumbel-Hougaard and the Galambos copulas. As is the characteristic of extreme-value copulas,

one can note that the sample points are more concentrated in the upper tails.

Figure 2.6 – Scatterplots from samples of size 1000 taken from the Gumbel-Hougaard copula with q = 3
(a) and the Galambos copula with q = 2.3 (b) under the same level of dependence (t = 2/3).
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2.3 Multivariate copulas

So far, we have defined copulas as two-dimensional functions, but it is possible to natu-

rally extend the definition to d dimensions Nelsen (2007):

Definition 2.5. A multivariate copula is a function C : [0,1]d ! [0,1], (u1, ...,ud) 7!C(u1, ...,ud),

with the following properties:

1. C is grounded, i.e., if at least one u j = 0 j = 1,2, ...,d, then C(u1, ...,u j�1,0,u j+1, ...,ud) = 0;

2. For every u1, ...,ud in [0,1], C(1, ...,u j, ...,1) = u j;

3. C is d-increasing, i.e., for every hyperrectangle [u1,v1]⇥ [u2,v2]⇥ ...⇥ [ud,vd] 2 [0,1]d, such

that u j  u j�1 and v j  v j�1 j = 2,3, ...,d,

Dvd
ud

Dvd�1
ud�1 ...D

v1
u1

C(t1, ..., td)> 0,
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where Dv j
u jC(t1, ..., td) =C(t1, ...,v j, ..., td)�C(t1, ...,u j, ..., td).

Sklar’s theorem is also valid for multivariate copulas. Let X1, ...,Xd be continuous ran-

dom variables with cumulative distribution functions FX1 , ...,FXd , respectively, and joint distri-

bution FX1,...,Xd . There is a unique copula C such that FX1,...,Xd(x1, ...,xd)=C(FX1(x1), ...,FXd(xd)).

Besides Sklar’s theorem, many other theorems and definitions have analogous multiva-

riate versions, although, not all do. For a detailed study on multivariate copulas, Nelsen (2007)

and Joe (2014) can be consulted.

The reason why we have focused more on bivariate copulas, instead of their d-dimensional

formulation, is due to the lack of parametric families of multivariate copulas with flexible depen-

dence structures. While there is a plethora of parametric bivariate copula families, the options

of parametric multivariate copulas are limited (COOKE; JOE; AAS, 2011). Moreover, multi-

variate copulas impose the dependence structure for pairs in a random vector. For this reason,

they are not widely used for dependence modelling. Instead, construction methods based on

bivariate copulas are preferred for multivariate dependence modelling, as we show in the next

sections.

2.4 Vine copulas

Vine copulas are models based on pair-copula construction (PCC) methods that allow

high-dimensional models to be built using a cascade of bivariate copulas. This is done by de-

composing a joint probability density function in a product of univariate marginals and bivariate

copulas (pair-copulas). Hence, the flexibility of such models comes from the possibility of cho-

osing any bivariate copula family to model the pairwise dependencies in a multivariate context.

The number of combinations unfolded by the pair-copula construction method is abundant, e.g.,

it is possible to create a model by combining extreme-value copulas, elliptical copulas (Gauss-

ian and t), Archimedean copulas and so on (COOKE; JOE; AAS, 2011).

Before defining vine copula, we will present some basic definitions and results that will

be needed henceforth.

Definition 2.6. Let C12(u1,u2) be a copula. Its corresponding density is given by

c12(u1,u2) =
∂ 2

∂u1∂u2
C12(u1,u2).
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Proposition 2.1. Let X1 ⇠ F1 and X2 ⇠ F2 be RVs with joint cumulative distribution function

(CDF) F12(x1,x2) and copula C12. Then

(1) The joint probability density function (pdf) of X1,X2 is given by

f12(x1,x2) = c12(F1(x1),F2(x2)) f1(x1) f2(x2).

(2) The conditional pdf of X2 given X1 is

f2|1(x2|x1) = c12(F1(x1),F2(x2)) f2(x2).

Proof. (1) By Sklar’s theorem, F12(x1,x2) =C12(F1(x1),F2(x2)), thus

f12(x1,x2) =
∂ 2F12

∂x1∂x2
=

∂
∂x1

✓
∂F12

∂x2

◆
=

∂
∂x1

✓
∂C12

∂F2

dF2

dx2

◆
=

dF1

dx1

dF2

dx2

∂ 2C12

∂F1∂F2

= f1(x1) f2(x2)
∂ 2C12

∂F1∂F2
= c12(F1(x1),F2(x2)) f1(x1) f2(x2).

(2) It follows from (1) and the definition of conditional pdf that

f2|1(x2|x1) =
f12(x1,x2)

f1(x1)
= c12(F1(x1),F2(x2)) f2(x2).

We now proceed by giving an example of how the pair-copula construction method (vine

copulas) works. Let (X1,X2,X3) be a random vector with joint pdf f1,2,3(x1,x2,x3). The idea is

to decompose the joint pdf f1,2,3 into a product of univariate marginals and bivariate copulas.

First, note that

f123(x1,x2,x3) = f3|12(x1|x2,x3) f2|1(x2|x1) f1(x1).

Using part (2) of Proposition 2.1:

f2|1(x2|x1) = c12(F1(x1),F2(x2)) f2(x2).

The density f3|12(x1|x2,x3) can also be expressed as

f3|12(x3|x1,x2) =
f123(x1,x2,x3)

f12(x1,x2)
=

f13|2(x1,x3|x2) f2(x2)

f1|2(x1,x2) f2(x2)
=

f13|2(x1,x3|x2)

f1|2(x1,x2)
.
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Before proceeding with the demonstration, we will need some additional notation for the copula

that joins conditional CDFs, usually called conditional copula. For example, in F13|2(x1,x3|x2)=

C(F1|2(x1|x2),F3|2(x3|x2)), the copula C is joining F1|2(x1|x2) and F3|2(x3|x2) to F13|2, thus we

will denote it as C13|2. This way,

f13|2(x1,x3|x2) = c13|2(F1|2(x1|x2),F3|2(x3|x2)) f1|2(x1|x2) f3|2(x3|x2).

Hence

f3|12(x3|x1,x2) =
f13|2(x1,x3|x2)

f1|2(x1,x2)
= c13|2(F1|2(x1|x2),F3|2(x3|x2)) f3|2(x3|x2),

but, since f3|2(x3|x2) = c23(F2(x2),F3(x3)) f3(x3), it follows that

f123(x1,x2,x3) = c13|2(F1|2(x1|x2),F3|2(x3|x2))

⇥ c23(F2(x2),F3(x3)) f3(x3)c12(F1(x1),F2(x2))

⇥ f3(x3) f2(x2) f1(x1). (2.7)

This factorisation of the joint density f123 is called a pair-copula construction and represents a

vine copula model, that is, an expression (not unique!) of a multivariate model as products of

marginal densities and bivariate conditional and unconditional copulas. The choices for these

copulas are unconstrained, giving high flexibility in the dependence modelling.

Two other possible decompositions for f123 would be using C12|3 or C23|1 instead of

C13|2, resulting in a total of 3 different vine copulas. For d = 4 variables, the number of pos-

sible decompositions is 24 and, for d variables, the number is d!
2 ⇥ 2(n�2)(n�3)/2 (MORALES-

NAPOLES, 2011). As the number of vines grows large for higher dimensions, in order to help

organizing them, Bedford and Cooke (2002) introduced a graphical model called regular vine. It

allows to represent every pair-copula decomposition by a nested set of connected trees (acyclic

connected simple graphs).

Definition 2.7. A regular vine or R-vine V on d elements is a graph organised as a nested set

of d �1 trees such that

1. Tj ( j = 1, ...,d �1) is a connected tree;

2. T1 has nodes N1 = {1, ...,d}, and edge set E1. The nodes of Tj ( j = 2, ...,d�1) are the edges

of tree Tj�1, i.e., Nj = E j�1;



28

3. Two nodes in Tj ( j = 2, ...,d � 1) are connected if the corresponding edges share a node in

Tj�1.

In Figure 2.7 we give an example of a regular vine representing the decomposition in 2.7

for 3 variables. This particular form of vine is called D-vine (drawable vine), where every node

is connected to no more than 2 edges. For the case of 4 variables, two possible vine copulas

are illustrated: in Figure 2.8, a D-vine and in Figure 2.9, a C-vine (canonical vine), which is

another type of regular vine that, in each tree Tj, a unique node (root of the vine) is connected

to exactly d� j edges. This type of vine copula is related to cases where a particular variable is

known to govern interactions in the dataset (KJERSTI et al., 2009).

Figure 2.7 – A D-vine with 3 variables.
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Figure 2.8 – A D-vine with 4 variables.

12 23

13_2

1 2 3

12 23

71

72

34

24_3

4

34

13_2 24_3
14_23

73

One major drawback of vine copulas is in the full estimation of the model, consisting of

three parts: the first is the specification of the general structure of dependence, or the form of

the regular vine, which, according to Kjersti et al. (2009) is, in practice, infeasible for higher

dimensions; the second consists of selecting each of the d(d�1)/2 (number of edges) bivariate

copulas from a plethora of families; the third being the parameter estimation of all d(d �1)/2

copulas, another problem due to the elevated number of parameters (of order O(d2)). An al-

ternative approach is to use factor copula models, which are closely related to vine copulas but

considerably simpler in terms of estimation.
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Figure 2.9 – A C-vine with 4 variables.
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2.5 Factor copula models

In multivariate analysis it is usual to build models under the assumption of normality,

i.e., correlation-based models. Despite being relatively easy to deal with, those models have the

shortcoming of neglecting nonlinear dependencies, such as tail dependencies (OH; PATTON,

2017). Copulas can easily overcome these drawbacks, since they are very general dependence

models that embrace both linear (e.g., Gaussian copula) and nonlinear cases.

In many applications, one has to deal with high-dimensional data. In these situations,

multivariate copula models may be used to model the dependence structure. However, the

number of parametric multivariate copulas is limited, and one major drawback is that they

can become inflexible in high dimensions, due to not allowing the specification of pairwise

dependence.

Vine copulas are flexible models for high-dimensional data mainly because they allow

pairwise modelling of a d-variate dependence structure via d(d � 1)/2 bivariate copulas. One

shortcoming of these models is the high number of dependence parameters (of order O(d2)),

which considerably hinders estimations.

Truncated vine copulas or t-truncated vine copulas are an alternative to reduce the num-

ber of parameters, since the pair-copulas starting from tree Tt+1 are all considered to be P (pro-

duct copula). Therefore diminishing the number of parametric copulas (JOE, 2014). Another

way is to uncover p latent variables V1,V2, ...,Vp, with p considerably lower than d, such that

the d observable variables U1,U2, ...,Ud are independent given V1,V2, ...,Vp, that is,

FU1,...,Ud |V =
d

’
j=1

FUj |V.
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Hence, the number of parameters in the multivariate model reduces from O(d2) to O(d) as we

detail next.

Let U1,U2, ...,Ud be dependent Uniform[0,1] random variables and V1,V2, ...,Vp inde-

pendent and identically distributed (i.i.d.) Uniform[0,1] latent variables. We assume that the

observable random variables U1,U2, ...,Ud are conditionally independent given the latent varia-

bles V1,V2, ...,Vp. Let cU,V be the joint density of U1,U2, ...,Ud and V1,V2, ...,Vp. Then,

cU =
Z

[0,1]p
cU,V dv1...dvp

∂ d

∂u1...∂ud
CU =

Z

[0,1]p
∂ d+p

∂u1...∂ud∂v1...∂vp
CU,V dv1...dvp

Z

[0,u j]d

∂ d

∂u1...∂ud
CU du1...dud =

Z

[0,u j]d

Z

[0,1]p
∂ d+p

∂u1...∂ud∂v1...∂vp
CU,V dv1...dvp du1...dud

CU(u) =
Z

[0,u j]d

∂ d

∂u1...∂ud

Z

[0,1]p
∂ p

∂v1...∂vp
CU,V dv1...dvp

�
du1...dud

=
Z

[0,1]p
∂ p

∂v1...∂vp
CU,V dv1...dvp

=
Z

[0,1]p
CU|V dv1...dvp

CU(u) =
Z

[0,1]p

d

’
j=1

CUj|V dv1...dvp. (2.8)

The joint CDF of U1,U2, ...,Ud , i.e., the copula of U1,U2, ...,Ud , as represented in (2.8)

was denominated factor copula model by Krupskii and Joe (2013).

Factor copulas are conditional independence models, since U1,U2, ...,Ud are conditi-

onally independent given V1,V2, ...,Vp. Considering this, any conditional independence mo-

del based on d + p variables can be converted into a factor copula after transformations to

Uniform[0,1] random variables (JOE, 2014).

The dependence structure of U, consisting of d conditional CDFs of the form

CUj|V1,...,Vp = Cj|V, can be expressed in terms of a sequence of bivariate copulas linking the

observable variables Uj ( j = 1, ...,d) to the latent variables Vk (k = 1, ..., p). This way, as we

will show in the next section for p = 1 and p = 2 latent variables, the resulting factor copula

model will be composed of pd bivariate copulas. Hence, for one-parameter copulas, the factor

copula of U will have pd parameters.
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2.5.1 One- and two-factor copulas

For the case of p = 1 latent variable, V1, let Cj,V1 and c j,V1 be, respectively, the joint CDF

and density of (Uj,V1), for j = 1,2, ...,d, that is, all copulas are absolutely continuous. Then,

Eq. (2.8) becomes

CU(u) =
Z 1

0

d

’
j=1

Cj |V1(u j|v1)dv1. (2.9)

Since ∂
∂v1

Cj,V1(u j,v1) =Cj |V1(u j|v1), under regularity conditions (differentiation under the in-

tegral sign) we have that

c(u) = ∂ d

∂u1...∂ud
C(u) = ∂ d

∂u1...∂ud

Z 1

0

d

’
j=1

∂
∂v1

Cj,V1(u j,v1)dv1

=
Z 1

0

d

’
j=1

∂ 2

∂u j∂v1
Cj,V1(u j,v1)dv1

=
Z 1

0

d

’
j=1

c j,V1(u j,v1)dv1.

Therefore, the dependence structure of U is modelled by d bivariate copulas linking the

observable variables Uj to the latent variable V1. The model expressed in Eq. (2.9) is called

one-factor copula (JOE, 2014).

As stated by Krupskii and Joe (2013), factor copulas can be nicely interpreted. An

example in finance, for one-factor copula, refers to the prices of stocks (observable random

variables) in a common sector that are affected by the state (latent variable) of this sector. The

sector index (measurable) on the other hand, might not entirely explain the dependence in the

stock prices, justifying the use of a factor copula model.

A special case of one-factor copula model is derived when Cj,V1 is a Gaussian copula for

all j = 1,2, ...,d. Then, (2.9) becomes the multivariate Gaussian distribution with a one-factor

correlation matrix, as we show next.

Let Cj,V1 be a Gaussian copula with correlation q j1,

Cj,V1(u j,v1) = F2(F�1(u j),F�1(v1);q j1). (2.10)

It is known that, if Z and W are standard normal random variables with correlation q ,

the conditional distribution of Z given W = w is also normal, with mean µ = qw and variance
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s2 = (1�q 2). This way, by setting u j = F(z j) and v1 = F(w1) in (2.10), we obtain

FZ j,W1(z j,w1) :=Cj,V1(F(z j),F(w1)) = F2(z j,w1;q j1).

Hence, FZ j |W1(z j|w1) =Cj |V1(F(z j)|F(w1)) is normal with mean q j1w1 and variance (1�q 2
j1)

and

Cj |V1(F(z j)|F(w1)) = F

0

@z j �q j1w1q
1�q 2

j1

1

A . (2.11)

Combining (2.11) with (2.9) and remembering that v1 = F(w1) so dv1 = f(w1)dw1, results in

F(z1,z2, ...,zd) :=C(F(z1),F(z2), ...,F(zd)) =
Z +•

�•

2

4
d

’
j=1

F

0

@z j �q j1w1q
1�q 2

j1

1

A

3

5f(w1)dw1.

(2.12)

Model (2.12) can also be derived from the classical factor model representation

Z j �µ = l j1W +✏ j, j = 1, ...,d,

where W is a factor, or latent variable, ✏1, ...,✏d are error terms and W,✏1, ...,✏d are i.i.d. stan-

dard normal random variables. Let µ = 0 and express Z as

Z j = q j1W +
p

1�q j1✏ j, j = 1, ...,d, (2.13)

so that E(Z j) = 0, Var(Z j) = 1 and Cov(Z j,Zi) = q j1qi1, i 6= j.

Proposition 2.1. The joint pdf of Z1, ...,Zd may be written in the form (2.12).

Proof. Let Z1,Z2, ...,Zd be as in (2.13) and Z0 = W . Since the variables W,✏1,✏2, ...,✏d are

i.i.d. standard normal RVs, their joint density is fW,✏1,...,✏d = f(w)f(✏1)...f(✏d). Given the set

of transformation functions g0,g1,g2, ...,gd

Z0 = g0(W,✏1, ...,✏d) =W

Z1 = g1(W,✏1, ...,✏d) = q11W +
q

1�q 2
11✏1

Z2 = g2(W,✏1, ...,✏d) = q21W +
q

1�q 2
21✏2

...

Zd = gd(W,✏1, ...,✏d) = qd1W +
q

1�q 2
d1✏d,
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take the set of inverse transformation functions g�1
0 ,g�1

1 , ...,g�1
d

W = g�1
0 (Z0,Z1, ...,Zd) = Z0

✏1 = g�1
1 (Z0,Z1, ...,Zd) =

Z1 �q11Z0q
1�q 2

11

✏2 = g�1
2 (Z0,Z1, ...,Zd) =

Z2 �q11Z0q
1�q 2

21

...

✏d = g�1
d (Z0,Z1, ...,Zd) =

Zd �q11Z0q
1�q 2

d1

.

The Jacobian of the transformation can be computed by taking the determinant of the matrix of

partial derivatives

DZ =

0

BBBBBB@

∂W
∂Z0

∂W
∂Z1

. . . ∂W
∂Zd

∂✏1
∂Z0

∂✏1
∂Z1

· · · ∂✏1
∂Zd

...
... . . . ...

∂✏d
∂Z0

∂✏d
∂Z1

· · · ∂✏d
∂Zd

1

CCCCCCA
=

0

BBBBBBBBB@

1 0 0 . . . 0

�q11/
p

1�q 2
11

1/
p

1�q 2
11 0 · · · 0

�q21/
p

1�q 2
11 0 1/

p
1�q 2

21

...
...

... . . .

�qd1/
p

1�q 2
d1

0 0 · · · 1/
p

1�q 2
d1

1

CCCCCCCCCA

J = |DZ|=
d

’
j=1

1q
1�q 2

j1

.

Hence the joint density of Z0,Z1, ...,Zd is

fZ0,Z1,...,Zd = f(z0)

2

4
d

’
j=1

f

0

@z1 �q j1z0q
1�q 2

j1

1

A

3

5

2

4
d

’
i=1

1q
1�q 2

i1

3

5 .

Integrating with respect to z0

fZ1,...,Zd =
Z +•

�•
f(z0)

2

4
d

’
j=1

f

0

@z1 �q j1z0q
1�q 2

j1

1

A

3

5

2

4
d

’
i=1

1q
1�q 2

i1

3

5 dz0

FZ1,...,Zd =
Z +•

�•

Z z1

�•
· · ·

Z zd

�•

2

4
d

’
j=1

f

0

@s j �q j1z0q
1�q 2

j1

1

A

3

5

2

4
d

’
i=1

1q
1�q 2

i1

3

5 f(z0)ds1...dsd dz0.
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Therefore, by making x j = (s j �q j1z0)/(
q

1�q 2
j1), ds j =

q
1�q 2

j1 dx j and

FZ1,...,Zd =
Z +•

�•

(Z z1�q11z0p
1�q2

11
�•

· · ·
Z zd�qd1z0p

1�q2
d1

�•

"
d

’
j=1

f
�
x j
�
#

dx1...dxd

)
f(z0)dz0.

Finally, by setting z0 = w1 we get

FZ1,...,Zd =
Z +•

�•

2

4
d

’
j=1

F

0

@z j �q j1w1q
1�q 2

j1

1

A

3

5f(w1)dw1.

If another factor is introduced in the model, i.e., for the case of p = 2 factors, the resul-

ting two-factor copula model is of the form

C(u) =
Z 1

0

Z 1

0

d

’
j=1

Cj |V1,V2(u j|v1,v2)dv1dv2. (2.14)

The conditional distribution Cj |V1,V2(u j|v1,v2) can be written as

Cj |V1,V2(u j|v1,v2) = P[Uj 6 u j|V1 = v1,V2 = v2] =
∂

∂v2
P[Uj 6 u j,V2 6 v2|V1 = v1]

=
∂

∂v2
Cj,V2|V1(Cj |V1(u j|v1),CV2 |V1(v2|v1)),

where Cj,V2|V1 is the conditional copula for margins Cj |V1 and CV2 |V1 and has density c j,V2|V1 .

Since the factors V1 and V2 are independent Uniform[0,1] random variables, CV2 |V1(v2|v1) =

CV2(v2) = v2. Therefore

Cj |V1,V2(u j|v1,v2) =
∂

∂v2
Cj,V2|V1(Cj |V1(u j|v1),CV2 |V1(v2|v1)) =

∂
∂v2

Cj,V2|V1(Cj |V1(u j|v1),v2)

=C
j |V1

��V2
(Cj |V1(u j|v1)|v2). (2.15)

Following the simplifying assumption on vine copulas (HAFF; AAS; FRIGESSI, 2010) it is

assumed here that the copula Cj,V2|V1 does not depend on v1, that is

Cj,V2|V1(Cj |V1(u j|v1),v2;v1) =Cj,V2|V1(Cj |V1(u j|v1),v2),

in other words, Cj,V2|V1(Cj |V1(u j|v1),v2) depends on v1 only through its marginal Cj |V1(u j|v1).

According to Joe (2014), this assumption is not strong in the case of the factor copula model,
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due to the nature of the factors (latent variables). Combining (2.15) with (2.14) we have

C(u) =
Z 1

0

Z 1

0

d

’
j=1

C
j |V1

��V2
(Cj |V1(u j|v1)|v2)dv1dv2 (2.16)

and by differentiating with respect to u1, ...,ud ,

c(u) =
Z 1

0

Z 1

0

d

’
j=1

c j,V2|V1(Cj|V1(u j|v1),v2)c j,V1(u j,v1)dv1dv2,

the density of the two-factor copula. This way, the dependence structure of U is defined by

2d bivariate copulas: d linking V1 to each Uj and d linking V2 to Uj, conditioned on V1, i.e.,

CU1,V1 ,CU2,V1 , ...,CUd ,V1 and CU1,V2|V1 ,CU2,V2|V1 , ...,CUd ,V2|V1 , respectively.

The multivariate Gaussian distribution with a two-factor correlation matrix can be de-

rived as a special case of a two-factor copula model, when the 2d bivariate copulas CUj,V1 ,

CUj,V2|V1 ( j = 1, ...,d) are all Gaussian with parameters q j1 = a j1 and q j2 = a j2

.q
1�a2

j1,

respectively. Also, U1, ...,Ud need to be transformed to standard normal random variables and

V1 and V2 to independent standard normal RVs, say Z1, ...,Zd and W1 and W2, respectively. In

this case, a j1 is the correlation between Z j and W1, a j2 is the correlation between Z j and W2

and q j2 the partial correlation between Z j and W2 given W1 = w1 (JOE, 2014).

If Cj,V1 is a Gaussian copula, then Cj,V1(u j,v1) = F2(F�1(u j),F�1(v1);q j1). Setting

u j = F(z j), w1 = F(v1) and w2 = F(v2), by Sklar’s theorem,

Cj,V1(F(z j),F(w1)) =Cj,W1(F(z j),F(w1))

= F2(z j,w1;q j1).

We now need to obtain Cj|V1 , or Cj|W1 , that is, the conditional distribution of Z j given W1, for

all j = 1, ...,d. Since Z j and W1 are both standard normal RVs with correlation q j1, it is known

that the conditional CDF of Z j given W1 is also normal with mean q j1w1 and variance (1�q 2
j1).

Therefore,

Cj |W1(F(z j)|w1) = F

0

@z j �q j1w1q
1�q 2

j1

1

A .

Also, if Cj,V2|V1 is a Gaussian copula,

Cj,V2|V1(u j,v2) = F2(F�1(u j),F�1(v2);q j2).
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We can now retrieve C
j |W1

��W2
(Cj |W1(F(z j)|w1)|w2). In view of Z j|W1 ⇠Cj |W1(F(z j)|w1) being

normally distributed with mean q j1w1 and variance (1�q 2
j1), or equivalently,

z j �q j1w1q
1�q 2

j1

⇠ Normal(0,1),

it follows that the conditional CDF of Z j|W1 given W2 ⇠ Normal(0,1), C
j |W1

��W2
(Cj |W1(F(z j)|w1)|w2),

is also normal with mean q j1w1 +q j2w2

q
1�q 2

j1 and variance (1�q 2
j1)(1�q 2

j2), that is,

C
j |W1

��W2
(Cj |W1(F(z j)|w1)|w2) = F

0

@
z j �q j1w1 �

q
1�q 2

j1 q j2w2
q

(1�q 2
j1)(1�q 2

j2)

1

A . (2.17)

Therefore, by plugging (2.17) in (2.16), remembering that dv1dv2 = f(w1)f(w2)dw1dw2, we

get

C(F(z1), ...,F(zd)) := FZ1,...,Zd(z1, ...,zd)

=
Z +•

�•

Z +•

�•

d

’
j=1

F

0

@
z j �q j1w1 �

q
1�q 2

j1 q j2w2
q

(1�q 2
j1)(1�q 2

j2)

1

A f(w1)f(w2)dw1dw2,

the multivariate Gaussian model with a two-factor correlation structure, that, as we have shown

for p = 1, can also be derived from the classical factor model representation

Z j = a j1W1 +a j2W2 +

vuut
⇣

1�a2
j1

⌘ 
1�

a j2

1�a2
j1

!
✏ j, j = 1, ...,d,

where W1, W2 are factors, or latent variables, ✏1, ...,✏d are error terms and W1,W2,✏1, ...,✏d are

i.i.d. standard normal. Also, E(Z j) = 0, Var(Z j) = 1 and Cov(Z j,Zi) =a j1ai1+a j2ai2, i 6= j.

In fact, the multivariate Gaussian model with a p-factor correlation structure given by S =

AAT +YYY2, where Ad⇥ p is a matrix of loadings and YYY2 is a diagonal matrix of residual varian-

ces, can be seen as a special case of factor copula model (JOE, 2014).

The multivariate Gaussian model with a p-factor correlation structure is just one exam-

ple of many other possible models that can be achieved with factor copulas. Consider the case

of d-dimensional one-factor copulas, for instance. If each of the d bivariate copulas in the

model is chosen from a list with r different families (any bivariate copula can be used!), then
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the number of possible constructions is rd , each with only d parameters to be estimated (assu-

ming one-parameter families). That is why factor copulas are adequate models for dependence

modelling when the number of variables is large.
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3 SURVIVAL ANALYSIS

It is often the case in statistical modelling that data are specified as the time until an

event happens. This event could be death, recovery from some disease, failure of an electronic

component, etc. There are some particular features that make the analysis of such data non-

trivial, the most important and common being right censoring. This kind of censoring arises

when the event of interest does not occur during the observation time, i.e., we only know that

the individual survived up to a certain point in time, but we have no information about the oc-

currence of the event of interest. There are several reasons that lead to right censoring, and,

in most cases, these are not under the control of the researcher, e.g., the study ends before the

event occurs, the subject leaves the study or any kind of lost to follow-up happens. Standard

statistical techniques are not suitable to analyse such types of data, also known as time-to-event

data or survival data, hence a collection of techniques was developed to this end, giving rise to

a branch of statistics called survival analysis.

In this chapter, we present some basic concepts and terminology of survival analysis,

along with some fundamental estimation techniques for right-censored time-to-event data. The

main reference used in this chapter is Klein and Moeschberger (2006). Another fine works on

survival analysis are David and Kleinbaum (2016) and Hougaard (2012).

3.1 Basic concepts and terminology

Our interest hereon is to give a statistical modelling perspective on time-to-event phe-

nomena so, firstly, let T be a nonnegative random variable describing the time until an event

happens. As discussed earlier, this event could be anything from death, to recovery from a parti-

cular disease, or it may be related to the failure of a mechanical or electronic system/component.

It could be the case that right censoring is present in the data. In this case, let C denote the cen-

soring time variable (independent of T ) and d = I(T  C) a dichotomous variable assuming

0 or 1, indicating if the individual is right-censored or not, respectively. In practice, what we

observe, under a right censoring scheme, is a realisation of the random variable X = min(T,C).

The basic quantity used to describe the probability that an individual survives up to

a certain period of time T is the survival function. Let F(t) = P[T  t] be the cumulative

probability function of T with density f (t). Then its survival function is given by

S(t) = P[T > t] = 1�F(t) =
Z +•

t
f (u)du,
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such that

f (t) =�dS
dt

.

One common parametric survival model is the Weibull, with survival function S(t)= exp(�l tr),

where r 2 (0,+•) is the shape parameter and l 2 (0,+•) the scale parameter. The well known

exponential model is a particular case of the Weibull when the shape parameter is equal to 1,

i.e., the Weibull is a very reasonable generalisation of the exponential model that can assume a

variety of forms due to its shape parameter r 2 (0,+•). We exemplify this characteristic of the

Weibull model by giving the graph of its survival functions under different parametric settings

in Figure 3.1.

Figure 3.1 – Survival curves of Weibull model with l = 0.3 and r = 2.5 (solid); l = 1.7 and r = 1
(dashed); l = 3 and r = 0.4 (dotted).
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As opposed to the cumulative probability function, the survival function is monotone

decreasing, meaning that for any two t1  t2, the survival probabilities are non-increasing,

S(t1) S(t2). Although being an important quantity to compare the survival probabilities of in-

dividuals, there are other insightful ways of doing so rather than using only the survival function.

One classical example of this is the hazard function, h(t), defined as the risk of experiencing

the event immediately after time t given survival up to t. The hazard function is mathematically

defined as

h(t) = lim
Dt!0

P[t  T  t +Dt|T � t]
Dt

.



40

By further working on the above expression, one gets

h(t) = lim
Dt!0

P[t  T  t +Dt]
P[T � t]Dt

= lim
Dt!0

P[t  T  t +Dt]
S(t)Dt

=
f (t)
S(t)

,

such that the hazard function is written in terms of the survival function and its density. The

cumulative version of the hazard function is simply defined as

H(t) =
Z t

0
h(u)du,

analogously to the cumulative distribution function and its density.

It is also possible to derive some useful identities involving the hazard function (cumu-

lative hazard function) and the survival function. As a matter of fact, one is fully determined

by the other, i.e., the hazard function can be obtained from the survival function alone, and vice

versa, e.g.,

S(t) = exp
⇢
�
Z t

0
h(u)du

�
= exp{�H(t)} ,

h(t) =�dS(t)/dt
S(t)

=�d logS(t)
dt

,

H(t) =� logS(t).

The hazard function carries useful information about how an individual experiences the event

of interest over time. It can assume a varied range of shapes, with the only restriction of being

nonnegative. Take for example the Weibull model, its hazard function is given by

h(t) = rl tr�1.

For r = 1 (exponential model), the Weibull hazard function is constant over time, h(t) = l , for

r > 1 it is an increasing function of t and for 0 < r < 1, it is a decreasing function. This feature

is better observed in Figure 3.2, under the same settings used in Figure 3.1.
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Figure 3.2 – Hazard rates of Weibull model with l = 0.3 and r = 2.5 (solid); l = 1.7 and r = 1 (dashed);
l = 3 and r = 0.4 (dotted).
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3.2 Maximum likelihood estimation under right censoring

When right censoring is present in the data, the likelihood function assumes a different

form from the classical approach, this is because we do not observe the actual realisations of the

random variable T , but rather from X = min(T,C) and d = I(T C). This way, each individual

contributes to the likelihood in a different way. If it is not censored, the procedure is as usual,

i.e., its contribution is the density evaluated at the realised value of T . For a right-censored

observation, the contribution is the survival function evaluated at the observed value of X . The

reason for this is detailed below.

Let T1, ...,Tn be a random sample from a population with survival function ST (t;q)= 1�

FT (t;q) and density fT (t;q). Due to a potential right censoring, we may not observe the true re-

alisations of T1, ...,Tn, instead, we observe the realisations of the random pairs

(X1,d1), ...,(Xn,dn), where Xi = min(Ti,Ci) and di = I(Ti  Ci), for i = 1, ...,n, with C1, ...,Cn

being independent and identically distributed censoring times coming from an unknown cu-

mulative distribution function FC(c;f). We are now interested in deriving the joint density of

(X ,d ) in order to determine the contributions to the likelihood. For this, we will split the pro-

cess in two situations, the first being the case when the true survival time is known, that is, when

d = 1, and the other when the individual is right-censored, i.e., d = 0.
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For the case of d = 1, the joint density of (X ,d ), namely g(x,d ), can be regarded as

g(x,d = 1). Hence, by assuming C independent of T , the joint density can be rewritten as

(DUCHATEAU; JANSSEN, 2008)

g(x,d = 1) = lim
✏!0

1
2✏

P(x�✏ X  x+✏,d = 1)

= lim
✏!0

1
2✏

P(x�✏ T  x+✏,T C)

= lim
✏!0

1
2✏

Z x+✏

x�✏

Z +•

t
dFC(c)dFT (t)

= lim
✏!0

1
2✏

Z x+✏

x�✏
SC(t)dFT (t)

= SC(x;f) fT (x;q), (3.1)

where SC(x;f) = 1�FC(x;f).

When d = 0, i.e., the individual is right-censored, the joint density of (X ,d ), assuming

C independent of T , is given by

g(x,d = 0) = lim
✏!0

1
2✏

P(x�✏ X  x+✏,d = 0)

= lim
✏!0

1
2✏

P(x�✏C  x+✏,T >C)

= ST (x;q) fC(x;f), (3.2)

where fC(x;f) is the probability density function of C.

The joint density of (X ,d ) can now be obtained by joining parts (3.1) and (3.2) together

h(x,d ;q ,f) = [ fT (x;q)SC(x;f)]d [ fC(x;f)ST (x;q)]1�d ,

such that the likelihood for (q ,f) takes the form

L(q ,f |(x1,d1), ...,(xn,dn)) =
n

’
i=1

[ fT (xi;q)SC(xi;f)]di [ fC(xi;f)ST (xi;q)]1�di .

Since the parameters q and f are not related to each other (T independent of C), the quantities

SC(xi;f) and fC(xi;f) (i = 1, ...,n) can be regarded as constants and ruled out of the likelihood
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function. Hence

L(q) =
n

’
i=1

[ fT (xi;q)]di [ST (xi;q)]1�di (3.3)

=
n

’
i=1

[hT (xi;q)]diST (xi;q),

where hT is the hazard function of T . We are now able to make inference only on q , our main

objective at first.

3.2.1 Non-parametric estimation of the survival function - The Kaplan-Meier estimator

Using a non-parametric estimator can be a viable option when one does not want to make

any assumptions on the form of the survival function. One classical example of non-parametric

estimator of the survival function that takes censoring into consideration is the Kaplan-Meier

estimator (KAPLAN; MEIER, 1958), also called product limit estimator.

In order to define the Kaplan-Meier estimator, first let t1 < ... < tk be all the k distinct

observed survival times from a random sample T1, ...,Tn, with k  n. At time ti (i = 1, ...,n)

there are Yi individuals who are said to be at risk, that is, they have not experienced the event of

interest prior to ti, and di will experience the event at ti. Also, let t0 = 0 and d0 = 0. Hence, the

Kaplan-Meier estimator is defined as (KOROSTELEVA, 2008):

Ŝ(t) = ’
i : tit

✓
1� di

Yi

◆
.

The estimated survival curve produced by the Kaplan-Meier estimator is a step function, with

jumps on the observed survival times (right-continuous). One advantage of this estimator is

precisely its flexibility on not having to assume any particular parametric model as correct, on

top of allowing for censored data. On the other hand, a major drawback is that the hazard

function cannot be estimated and the estimated survival curve is not well defined beyond tk if

there are censored observations beyond that time (HOUGAARD, 2012).

3.3 Regression models for survival data

In many applications, it is common to use explanatory variables when dealing with time-

to-event data. This has not been the case so far, since we dealt with data coming from homoge-

neous populations, that is, we were only able to assess time-to-event data with no explanatory
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variables. We will present in this section two common regression methods to make inference on

time-to-event data coming from a random variable T that depends on a vector of covariates, or

explanatory variables, Z = (Z1, ...,Zp). This set of covariates can be quantitative (blood pres-

sure, body fat percentage, doses of a drug, temperature, age, height, weight, etc.), qualitative

(gender, treatment, marital status, etc.), or even time-varying Z(t) = (Z1(t), ...,Zp(t)). These

time dependent covariates can arise, for example, in a situation where a particular quantity is

measured several times over time in the experiment (KLEIN; MOESCHBERGER, 2006).

3.3.1 The accelerated failure-time model

One of the most common parametric models for regression analysis with survival data

is the accelerated failure time-model (AFT). In this model, the natural logarithm of the survival

time is modelled as a function of the covariates, such that we have a transformation of T to the

real line:

logT = b0 +b1Z1 + ...+bpZp +sW, (3.4)

where (b0,b1, ...,bp) are the parameters for the vector of covariates Z = (Z1, ...,Zp), with b0

being the intercept; s is a real constant and W is the random error.

The two most classical distributions for the survival time T are the Weibull and expo-

nential, the last being a particular case of the first. These distributions of T arise when the error

term W follows the extreme-value distribution with density

fW (w) = exp{w� ew} , w 2 R. (3.5)

If it is the case that s = 1 and W follows an extreme-value distribution with the above density,

then T will follow an exponential distribution. For s 6= 1, T will follow a Weibull distribution

(KOROSTELEVA, 2008).

The reason why this model is called the accelerated failure-time model (AFT) can be

understood by doing the follow: let S0(t) denote the survival function of T when all the covari-

ates are set to zero, that is, S0(t) is the baseline survival function of exp(b0 +sW ). Then, also
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note that

P[T > t|Z] = P[logT > log t|Z]

= P[b0 +b1Z1 + ...+bpZp +sW > log t|Z]

= P[b0 +sW > log t � (b1Z1 + ...+bpZp)|Z]

= P[exp{b0 +sW}> exp
�

log t � (b1Z1 + ...+bpZp)
 
|Z]

= P[exp{b0 +sW}> t exp
�
�(b1Z1 + ...+bpZp)

 
|Z]

= S0(t exp
�
�(b1Z1 + ...+bpZp)

 
).

In other words, depending on the sign of (b1Z1 + ...+ bpZp) the effect of the covariates on

the baseline survival time (original time scale) will be to either shift it up (accelerate) or down

(KLEIN; MOESCHBERGER, 2006).

As previously discussed, when the error term W follows an extreme-value distribution

with density defined as in (3.5), the distribution of the survival time T will be Weibull. The

survival function ST (t) in this case will have a modified scale (parameter l ) structure. Its form

is given by

ST (t) = exp
�
�tr exp[�(b0 +b1Z1 + ...+bpZp)/s ]

 
,

where s = 1/r comes from the definition of the accelerated failure time model in (3.4). Esti-

mation of the parameters in the accelerated failure time model can be carried out via maximum

likelihood estimation, and, for example, by making use of the likelihood formula given in (3.3),

right-censored observations can also be admitted in the estimation process.

3.3.2 Cox proportional hazards model

Another widely used regression model for time-to-event data is the semiparametric Cox

proportional hazards model, proposed by Cox (1972). This procedure is focused on modelling

the hazard function adjusted for a set of covariates, such that the effects of those explanatory

variables can be compared in terms of their hazard.

Let Z= (Z1, ...,Zp) be a vector of covariates (possibly time dependent) which may affect

the survival time T . The Cox proportional hazards model is defined as

h(t|Z) = h0(t)exp(b1Z1 + ...+bpZp), (3.6)
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where h0(t) is the baseline hazard function, i.e., the hazard function of an hypothetical indivi-

dual whose covariate values are all equal to zero, and (b1, ...,bp) are the effects (parameters) of

the covariate vector.

The reason why the Cox proportional hazards is a semiparametric model is that the

baseline hazard function h0(t) is estimated non-parametrically, whereas the covariate effects

are treated parametrically in the form exp(b1Z1 + ...+bpZp).

When comparing the ratio between the hazard rates of two individuals with covariate

values Z⇤ and Z, we get

h(t|Z⇤)

h(t|Z) =
h0(t)exp(b T Z⇤)

h0(t)exp(b T Z)

=
exp(b T Z⇤)

exp(b T Z)
= exp(b T (Z⇤ �Z)), (3.7)

that is, since the ratio of their hazards is constant over time, they are proportional. Hence

the proportional hazards in the name of the model. The hazard ratio as in (3.7) quantifies

the relative risk of an individual with covariate value Z⇤ experience the event of interest as

compared to another individual with covariate value Z. This is the main interest when using the

Cox proportional hazards model (KLEIN; MOESCHBERGER, 2006). For example, suppose

that we are interested in assessing the effect of a particular drug on the time to recovery of a

disease. An experiment is conducted with two groups of subjects afflicted by the hypothetical

disease, such that one group receives the drug (Z = 1) and the other, a placebo (Z = 0). A Cox

proportional hazards model is adjusted in order to quantify the relative risk of recovery (drug vs

placebo) and the estimated (assuming it is significant) b was 1.2. This means that the relative

risk is equal to exp(1.2)⇡ 3.32, indicating that the drug is effective on treating the hypothetical

disease.

Due to its semiparametric nature, usual maximum likelihood estimation cannot be used

in Cox’s model. Instead, a different approach based on the partial likelihood is taken. Let

(Xj,d j,Z j), j = 1, ...,n, be the observed quantities in a sample of size n, with censoring times

independent of the survival times. Also, assuming that there are no ties in the data, let t1 <

... < tk denote the ordered survival times (k  n) and Z = (Z1, ...,Zp) be the vector of covariates

that may explain the survival time, with associated parametric vector bbb = (b1, ...,bp). Let R(ti)

denote the set of individuals who are at risk at time ti, that is, the collection of individuals who

did not experience the event just prior to ti. The partial likelihood of the parametric vector bbb is
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defined as (KLEIN; MOESCHBERGER, 2006)

L(bbb ) =
k

’
i=1

exp(bbb T Zi)

Â j2R(ti) exp(bbb T Z j)
,

where the parametric vector is estimated by finding the maxima of L(bbb ).

In the presence of ties in the data, estimation in the Cox model can be carried out by

using the methods proposed by Breslow (1974) or Efron (1977).

3.4 Multivariate survival analysis

There are several circumstances in which the hypothesis of independence between the

survival times of individuals may be misleading. Take for example time-to-event data observed

from twins, couples, livestock herds, groups of patients from different hospitals, or even from

a single subject that suffers from a chronic condition that has subsequent periods of remission

and relapse. These are typical situation where the survival times may be dependent. Multivari-

ate survival analysis arises from settings like as the ones aforementioned, where an additional

information has to be taken into account: the dependence between the survival times (KLEIN;

MOESCHBERGER, 2006).

Multivariate survival data come in a variety of settings, which are generated by diffe-

rent dependence mechanisms. Here the focus will be on clustered time-to-event data. A more

detailed study on multivariate survival data can be found in Hougaard (2012).

Clustered survival data arise, for example, when individuals in a group share a common

characteristic, and/or are affected by the same environment. In these scenarios, there may be

a common risk factor, usually unknown or unmeasurable, that is shared among the subjects

in a same group/cluster, hence making their hazard rates similar in some sense. Two popular

models that deals with clustered time-to-event data are the frailty and the copula models. We

give an overview on frailty models next. Copula models are discussed in the first chapter, from

a technical perspective and a new copula model for clustered survival data is presented in the

second part of this thesis.

3.4.1 Frailty model

A frailty model is a conditional hazard model in which the information about the hetero-

geneity between clusters is incorporated in its formulation as a multiplicative term coming from
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a given distribution with unit mean and unknown variance. This multiplicative term is called

the frailty factor and receives such name because it can affect the hazard rate of individuals

within a cluster in two different ways. If the frailty factor is greater than 1 in a given cluster,

it will increase the hazard, i.e., individuals belonging to that cluster will have a greater risk of

experiencing the event if compared to those with a frailty factor equal to 1. For this reason,

these individuals are considered more frail. On the other hand, a frailty factor between 0 and

1 decreases the hazard rate, and individuals will have a lesser risk of experiencing the event

(DUCHATEAU; JANSSEN, 2008; KLEIN; MOESCHBERGER, 2006).

The most simple and common frailty model is the shared frailty model, which can be

seen as an extension of the Cox proportional hazards model. It is defined as follows:

hi j(t) = h0(t)ui exp(bbb T Zi j), (3.8)

where hi j(t) is the conditional hazard rate of individual j ( j = 1, ...,ni) within cluster i (i =

1, ...,K) given the frailty factor ui. h0(t) is an arbitrary baseline hazard function and Zi j =

(Zi j1, ...,Zi jp) is the vector of covariates with associated parametric vector bbb of dimension p.

This frailty model is called shared frailty because the frailty factor is common to all individuals

belonging to the same cluster.

One feature of frailty models is that the frailty factor U is treated as a random variable

following a particular distribution (the frailty distribution) with mean E[U ] = 1 and variance

var[U] = q . It is precisely the variance of the frailty distribution that is estimated from the data

and carries the information of the heterogeneity between the clusters. There are several models

that can be assumed for the frailty distribution, the most populars being the gamma and the

lognormal (DUCHATEAU; JANSSEN, 2008).

Two possible ways of modelling the baseline hazard h0(t) in (3.8) are either nonpara-

metrically or parametrically, with the latter being much easier to be handled in the estimation

process. A formulation of the shared frailty model with a one-parameter gamma frailty factor

and parametric baseline hazard, for example, simplifies the estimation by making it possible to

integrate out the frailties from the conditional likelihoods of each cluster

Li(xxx ,bbb |ui) =
ni

’
j=1

h
h0(xi j)ui exp(bbb T Zi j)

idi j
exp

h
�H0(xi j)ui exp(bbb T Zi j)

i
,
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where di j is the event indicator, xxx contains the parameters of the baseline hazard and xi j is

the observed event (or censoring) time from the jth individual of the ith cluster. Just like in

the specification of the likelihood function in (3.3), we assume that the censoring times are

independent of the survival times. This results in a simple marginal likelihood:

Lmarg,i(zzz ) =
Z +•

0

ni

’
j=1

h
h0(xi j)ui exp(bbb T Zi j)

idi j
exp

h
�H0(xi j)ui exp(bbb T Zi j)

i
fU(ui)dui

=
G(di +q�1)’ni

j=1

h
h0(xi j)ui exp(bbb T Zi j)

idi j

h
q�1 +Âni

j=1 H0(xi j)ui exp(bbb T Zi j)
i1/q+di

q 1/q G(1/q)
, (3.9)

where zzz = (q ,xxx ,bbb ), di = Âni
j=1 di j and

fU(u) =
u1/q�1 exp(�u/q)

q 1/q G(1/q)

is the probability density function of the one-parameter gamma distribution, with G being the

gamma function. Note that E[U ] = 1 and var[U] = q . The cluster contributions to the likelihood

in (3.9) can then be combined into the general marginal likelihood by taking their products:

Lmarg(zzz ) =
K

’
i=1

Lmarg,i(zzz ). (3.10)

Finally, because of the parametric baseline hazard and the gamma frailty factor, the marginal

likelihood in (3.10) can be maximised with respect to zzz .

Although coming with some drawbacks, which we discuss in the second part of this

thesis, frailty models are able to handle a great variety of settings of multivariate time-to-event

data, and the different techniques and extensions of such models are manifold. For a more

thorough study on frailty models, the reader is referred to the works of Duchateau and Janssen

(2008) and Wienke (2011).
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4 CONCLUSIONS AND PERSPECTIVES

As we have shown in the first chapter, copula models are great tools for dependence

modelling and they come in many shapes and forms. A reasonable number of copula cons-

tructions methods and copula-based models have been proposed to deal with high-dimensional

data, offering unique possibilities to be used in several fields of application of statistics. In mul-

tivariate survival analysis, particularly in clustered survival data modelling, the challenge is to

use copula models to their full potential, accommodating for the special features of such data,

e.g., censoring, clusters with variable size (possibly large). The factor copula models stands

out as a significant candidate for this task, although, from a computational perspective, the high

complexity of such models and the possible large clusters impose a formidable problem.
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1 Introduction

In many applications involving survival data analysis, there is a concomitant interest
in assessing both covariate effect and the relationship between failure times. Mul-
tivariate survival analysis arises from this class of problems. In these settings, the
independence assumption is often misleading, since failure times can be governed by
an unknown dependence structure. Moreover, when subjects are allocated in clusters,
we expect dependence to be more prominent within clusters rather than among clus-
ters. This is an intuitive assumption, because subjects in a same cluster are affected by
the environment in a similar fashion and tend to share some characteristics. Clustered
survival data analysis is crucial in many areas. For example, in biomedical studies,
when dealing with multicenter clinical trials, where patients are clustered according
to their treatment center. In agriculture, when analyzing infectious disease data of
livestock grouped in herds. In finance, when assessing time to default over different
portfolios. Copula models and frailty models are two techniques commonly used to
analyze these types of clustered event time data.

In frailty models, it is assumed that failure times within a cluster are condition-
ally independent given the frailty. This frailty is incorporated in the model as a mul-
tiplicative term represented by ui, the frailty effect for the ith cluster, and is an actual
realization of a latent variable U following a particular distribution (the frailty dis-
tribution) with unit mean and finite variance. In this sense, individuals with ui > 1
are considered frail, due to an increased hazard, i.e., higher risk of failure, whereas
individuals with ui < 1 have a lower risk of failure. In these models, the interest lies
in obtaining the hazard function of an individual given the frailty effect. A thorough
study of frailty models can be found in Duchateau and Janssen (2008) and Wienke
(2011).

Frailty models have the advantage of allowing clusters to have different sizes.
However, a major drawback is in the fact that association is not captured directly,
since the frailty parameter (variance of the frailty distribution) only represents the
heterogeneity between clusters and not how the individuals are linked to each other
within a cluster. Also, it can be shown that this parameter is exclusively contained in
the marginal survival functions (Goethals et al., 2008). In other words, it is not possi-
ble to explicitly model the intracluster dependence, but rather show how different are
the clusters. Moreover, the estimation of the frailty parameter is only reliable when
there is overdispersion in the data (Prenen et al., 2017a).

Owing to the groundbreaking work of Sklar (1959), copula-based models can
easily overcome the fundamental issues in frailty models. This follows from the role
that copulas play in multivariate models by working (in a survival analysis context) as
a link between the marginal survival functions and the joint survival function for sub-
jects. That is, copulas can be seen as dependence models separated from the margins.
In view of this, it is possible to explicitly estimate the association between subjects,
in our case, intracluster dependence.

Parametric estimation in copula models is usually done by taking either a fre-
quentist or Bayesian approach. Frequentist approaches typically rely on maximum
likelihood estimation methods, e.g., one-stage and two-stage. The first is the classical
maximum likelihood, where the parameters from the copula and marginal survival
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functions are simultaneously estimated; while in the second method, commonly re-
ferred to as inference functions for margins (Xu, 1996), estimation is done in two
stages: parameters from the margins are estimated first, by assuming independence,
and, in a second stage, the association parameter of the copula is obtained by maxi-
mizing the likelihood function with the parameters from the marginal survival func-
tions fixed at the estimates from the first stage. Although less reliable, the two-stage
method is preferred over the one-stage when estimation is computationally expensive.

One of the pioneer works in multivariate survival data modeling with copulas is
due to Shih and Louis (1995). The authors provided estimation methods and derived
asymptotic results for the estimators under a bivariate setting. Following their work,
Andersen (2005) incorporated covariates in the model for bivariate data. Slightly im-
proving the cluster size issue, Massonnet et al. (2009) proposed a quadrivariate copula
model to study the time until infection in the four quarters of a cow udder. Despite the
fact that clusters with a fixed size K were admissible in the model of Glidden (2000)
and with varying size in Othus and Li (2010), the choice of copulas was restricted to
the Clayton and Gaussian families, respectively.

A more flexible class of models, built with Archimedean copulas based on Laplace
transforms, was proposed by Prenen et al. (2017a). In their case, clusters were al-
lowed to have variable size, although important classes of copulas were still not com-
prehended. For example, elliptical (Gaussian, t) and extreme-value copulas (except
for the also Archimedean, Gumbel-Hougaard copula). In a similar way, Romeo et al.
(2018) proposed a model based on the two-parameter Archimedean family of Power
Variance Function (PVF) copulas, but differently from the frequentist methods em-
ployed by Prenen et al. (2017a), estimation was performed by taking a one-stage
Bayesian approach.

In this work, we extend the current techniques on clustered survival data mod-
eling to a new level by developing a comprehensive class of copula-based models
that imposes no restriction on the choice of copula families. This provides the means
to model survival data that exhibit different types of dependence behaviors, ranging
from symmetric positive to tail dependence with possible tail asymmetries. Marginal
survival functions can also be flexibly modeled using different parametric families
and covariate effects. A semiparametric formulation of the marginal survival func-
tion is also possible, with incorporation of time dependent covariates. Furthermore,
there are no restrictions on cluster sizes, which may also be variable. The new class
of models is based on the factor copula proposed by Krupskii and Joe (2013) and
broadly extends the works of Prenen et al. (2017a) and Othus and Li (2010).

We provide three estimation methods: both one- and two-stage parametric, and
a two-stage semiparametric method with marginal survival functions estimated by
using a Cox proportional hazards model (Cox, 1972). Estimators derived under all
three estimation procedures are shown to be consistent and asymptotically normally
distributed. Their finite sample behavior is investigated in simulation studies. All esti-
mation methods were implemented in R (R Core Team, 2018), and, in general, numer-
ical computations are reasonably fast. We also provide an analytical alternative to the
jackknife method employed by Othus and Li (2010) and Prenen et al. (2017a), which
drastically reduces the computational cost for estimations under the semiparametric
procedure.
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Our paper is arranged as follows: a detailed description of the model is given in
Section 2. The estimation procedures are explored in Section 3 and a simulation study
is detailed in Section 4. In Section 5 we illustrate the methodology with a real data
example. Proofs for the different asymptotic results stated in Section 3.3 can be found
in the Appendix.

2 Description of the model

We consider the case of clusters with variable sizes, but settings with fixed cluster
size are also supported by our methodology. Denote the number of clusters by K

and the lifetime of individuals by a positive random variable Ti j, with j = 1, ...,ni

representing the jth individual within cluster i (i = 1, ...,K), and ni the size of the ith

cluster. For every individual we assume an independent random censoring variable
Ci j. Considering a right censoring scheme, the observed quantities are

Xi j = min(Ti j,Ci j) and

δi j = I(Ti j !Ci j) i = 1, ...,K, j = 1, ...,ni.

Assuming that each lifetime Ti j depends on a vector Zi j of covariates (possibly time
dependent), the joint survival function for cluster i is given by

S(ti1, ..., tini |Zi1, ....,Zini) = P[Ti1 > ti1, ...,Tini > tini |Zi1, ....,Zini ]

= C(S(ti1|Zi1), ...,S(tini |Zini)), (1)

where S(ti j|Zi j) is the marginal survival function of individual j within cluster i and
C is the copula that joins the marginal survival functions to the joint survival function
of the individuals in cluster i. Even though (1) being a straightforward representation
of the joint survival function, we shall not use it as is. The main reason is that multi-
variate copulas can become inflexible for large clusters. Instead, we adopt conditional
independence as a construction method, such that the more flexible bivariate copulas
can be used as building blocks for the joint survival function in cluster i.

Let Vi (i = 1, ...,K) be Uniform[0,1] random variables. We assume that, within
cluster i, the lifetimes are conditionally independent given Vi. In other words, Vi be-
haves as a latent variable that explains the dependence in cluster i. Hence, conditional
on Vi, we can redefine (1), the joint survival function in cluster i, as

S(ti1, ..., tini |Vi,Zi1, ...,Zini) = C(S·|V (ti1|Vi,Zi1), ...,S·|V (tini |Vi,Zini))

=
ni

∏
j=1

S·|V (ti j|Vi,Zi j),

where S·|V (ti j|Vi,Zi j) is the baseline conditional survival function of Ti j|Zi j given
Vi = vi, that is, S·|V (ti j|Vi,Zi j) is the partial derivative of the bivariate copula
C·V (ui j,vi;θ) with respect to vi for ui j = S(ti j|Zi j), the baseline marginal survival
function of Ti j|Zi j

S·|V (ti j|Vi,Zi j) =
∂

∂vi
C·V (S(ti j|Zi j),vi;θ).
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Due to the direct relationship of the baseline conditional survival function
S·|V (ti j|Vi,Zi j) with the bivariate copula C·V (ui j,vi;θ), we shall denote the former
by C·|V (S(ti j|Zi j)|vi). Thus, we have that

S(ti1, ..., tini |Vi,Zi1, ...,Zini) =
ni

∏
j=1

C·|V (S(ti j|Zi j)|vi). (2)

Now we can retrieve the unconditional joint survival function of cluster i by integrat-
ing Vi out of (2)

S(ti1, ..., tini |Zi1, ...,Zini) =
∫ 1

0

ni

∏
j=1

C·|V (S(ti j|Zi j)|vi)dvi. (3)

Following Krupskii and Joe (2013), we will call (3) a one-factor copula model.
In the presence of right censoring, the contribution of cluster i to the likelihood is

obtained by taking derivatives over the uncensored observations in cluster i

Li = (−1)di
∂ di

(∂xi1)
δi1 ... (∂xini)

δini

S(xi1, ...,xini |Zi1, ....,Zini),

where di =
ni

∑
j=1

δi j. Using representation (3) and assuming that differentiation and

integration are interchangeable, the contribution to the likelihood can be expressed as

Li = (−1)di
∂ di

(∂xi1)
δi1 ... (∂xini)

δini

∫ 1

0

ni

∏
j=1

C·|V (S(xi j|Zi j)|vi)dvi

= (−1)di

∫ 1

0

∂ di

(∂xi1)
δi1 ...(∂xini)

δini

ni

∏
j=1

C·|V (S(xi j|Zi j)|vi)dvi

= (−1)di

∫ 1

0

ni

∏
j=1

{
∂

∂xi j
C·|V (S(xi j|Zi j)|vi)

}δi j

×C·|V (S(xi j|Zi j)|vi)
1−δi j dvi.

We also assume that the bivariate copula C·V is absolutely continuous, such that its

density c·V (ui j,vi) =
∂

∂ui j
C·|V (ui j|vi) =

∂ 2

∂ui j∂vi
C·V (ui j,vi) exists. Then

Li = (−1)di

∫ 1

0

ni

∏
j=1

{
c·V (S(xi j|Zi j),vi)(− f (xi j|Zi j))

}δi j ×C·|V (S(xi j|Zi j)|vi)
1−δi j dvi

=
∫ 1

0

ni

∏
j=1

{
c·V (S(xi j|Zi j),vi) f (xi j|Zi j)

}δi j×C·|V (S(xi j|Zi j)|vi)
1−δi j dvi,

where f (xi j|Zi j) =−dS/dxi j is the conditional density of the lifetime Xi j. Therefore,
by taking the product ∏K

i=1 Li, that is, combining the contribution of all clusters, we
have the likelihood function

L =
K

∏
i=1

∫ 1

0

ni

∏
j=1

{
c·V (S(xi j|Zi j),vi) f (xi j|Zi j)

}δi j×C·|V (S(xi j|Zi j)|vi)
1−δi j dvi. (4)



6 Eleanderson Campos, Roel Braekers, Devanil J. de Souza, Lucas M. Chaves

One advantage of the proposed model is that the likelihood function is only deter-
mined by the number of uncensored observations in each cluster. This follows from
the joint survival functions of the clusters having exchangeable margins. Therefore, it
is possible for clusters to have different sizes. On the other hand, a direct consequence
of these unbalanced settings is that the integrals in (4) are, in practice, infeasible. This
is because every configuration leads to a different and complicated integral. For this
reason, numerical integration methods are required to evaluate the likelihood func-
tion. One avenue is to use Gauss-Legendre quadrature, as suggested by Krupskii and
Joe (2013). In this case, the expression of the likelihood becomes

L ≈
K

∏
i=1

nq

∑
k=1

wk

ni

∏
j=1

{
c·V (S(xi j|Zi j),y

∗
k) f (xi j|Zi j)

}δi j ×C·|V (S(xi j|Zi j)|y∗k)
1−δi j ,

where wk and y∗k = 0.5yk + 0.5 are the weights and nodes of the quadrature, respec-
tively. Krupskii and Joe (2013) also pointed out that a reasonable choice for the num-
ber of points of the quadrature, nq, is around 21-25 for a one-factor copula model.
However, we find that in our case estimation results are only reliable for nq ≥ 50.
As an alternative, we also use the adaptive quadrature method of Gauss-Kronrod for
numerical integration. It can be the case that, when an elevated number of quadrature
points is needed in the Gauss-Legendre quadrature, the adaptive method tends to be
computationally more efficient. Additional details about the computational aspects
are given in Section 4.

3 Estimation

Our estimation procedures are based in two common frequentist techniques for cop-
ula models, the one- and two-stage methods. The former estimates the association
and the marginals parameters simultaneously, whereas the latter splits the estimation
procedure in two parts, first estimating the parameters of the marginal survival func-
tions and then, conditional on these estimates, the association parameter is estimated
in a second step. We investigate these two methods and, in addition, a two-stage semi-
parametric approach, where the marginal survival functions are estimated by using a
Cox proportional hazards model. Under Archimedean copula models, Prenen et al.
(2017a) studied the same estimation procedures and derived asymptotic results. We
extend their work by considering a more general factor copula model.

In a balanced design, with all clusters having a fixed size n, it is possible to order
the components within the clusters, therefore allowing the estimation of a different
baseline survival function for each element in the cluster, whilst having the same
covariate information for every subject. In our case, the clusters have different sizes,
thus making it impossible to assume a different survival function for each individual.
For this reason, we proceed by defining a unique baseline survival function for all
individuals, allowing for subject-specific covariate information.
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3.1 One-stage procedure

The one-stage procedure is the classical maximum likelihood approach, where the
association and the marginal survival function’s parameters are simultaneously esti-
mated by finding the maxima of the likelihood function. Let βββ be the p-dimensional
parametric vector for the baseline survival function S, containing distribution and co-
variate information. Also, let θ be the association parameter for individuals within
every cluster, i.e., the parameter of the underlying copula C. Let L(βββ ,θ) be the like-

lihood function as derived in (4). The maximum likelihood estimators β̂ββ and θ̂ are
yielded by solving the score equations

{
Uβββ (βββ ,θ) = 000

Uθ (βββ ,θ) = 0,

where Uβββ (βββ ,θ) =
∂

∂βββ logL(βββ ,θ) and Uθ (βββ ,θ) =
∂

∂θ logL(βββ ,θ). It is known from

maximum likelihood theory (Cox and Hinkley, 1974; Lehmann and Casella, 1998)

that, under customary regularity conditions,
√

K
(

β̂ββ −βββ , θ̂ −θ
)

converges to a mul-

tivariate normal distribution with mean vector 000 and variance-covariance matrix I−1.
We partition the Fisher information matrix I = Eηηη

[
−∇2 logL(ηηη)

]
, ηηη = (βββ ,θ) with

size (p+1) as follows

I =

(
Iββββββ Iβββθ

Iθβββ Iθθ

)
.

Using that the inverse of a block matrix (Henderson and Searle, 1981)

A =

(
A11 A12

A21 A22

)

is

A−1 =

( (
A11 −A12A−1

22 A21

)−1 −A11A12(A22 −A21A−1
11 A12)

−1

−A−1
22 A21(A11 −A12A−1

22 A21)
−1

(A22 −A21A−1
11 A12)

−1

)

,

we get the expression for the asymptotic variance of θ̂ , the lower right element of
I−1,

var(θ̂) =
(

Iθθ − Iθβββ I−1
ββββββ Iβββθ

)−1
,

which, by the identity

(A22 −A21A−1
11 A12)

−1 = A−1
22 +A−1

22 A21

(
A−1

22 −A12A−1
22 A21

)−1
A12A−1

22

can be rewritten as

var(θ̂) =
1

Iθθ
+

Iθβββ

(
Iββββββ −

Iβββθ IT
βββθ

Iθθ

)−1

Iβββθ

I2
θθ

.

Considering that the information matrix I depends on the unknown quantities βββ and
θ , in practical applications standard errors for parameter estimates are given by the

square root of the diagonal of the inverse of the Hessian matrix evaluated at βββ = β̂ββ
and θ = θ̂ .
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3.2 Two-stage parametric estimation

In the two-stage procedure, we use the method of inference functions for margins
(IFM), proposed by Xu (1996). Differently from the one-stage procedure, estimation
now is carried out in two steps. The first stage consists in estimating the marginal
survival function’s parameters alone, not taking into account the intracluster depen-
dence. In the second stage we estimate the copula’s association parameter whilst fix-
ing the likelihood for the estimates of the first stage. This method is preferred over the
one-stage procedure when full likelihood estimation is computationally expensive.

Formally: Let βββ and θ be defined as in Section 3.1. In the first stage, βββ is esti-
mated considering the lifetimes Ti j as independent and identically distributed random
variables, i.e., by solving

U∗
βββ (βββ ) =

K

∑
i=1

ni

∑
j=1

(
δi j

∂ log f (xi j|Zi j)

∂βββ
+(1−δi j)

∂ logS(xi j|Zi j)

∂βββ

)

=
K

∑
i=1

U∗
i,βββ (βββ ) =

K

∑
i=1

ni

∑
j=1

U∗
i, j,βββ (βββ ) = 000. (5)

Let β̄ββ be the estimator obtained from (5). Under regularity conditions,
√

K(β̄ββ −βββ )
converges to a multivariate normal distribution with mean 000 and variance-covariance
matrix (I∗)−1V(I∗)−1, where V is the variance-covariance matrix of the score func-
tions U∗

βββ (βββ );

V = E[U∗
i,βββ (βββ 0)U

∗
i,βββ (βββ 0)

T ]

and I∗ is the Fisher information matrix of U∗
βββ (βββ );

I∗ = E

[
−

∂

∂βββ
U∗

i,βββ (βββ 0)

]
.

βββ 0 is the true parametric vector.
Due to misspecification of the model, i.e., assuming independence between the

random variables Ti j when they are actually dependent, the usual inverse of the
Fisher information, (I∗)−1, is not a consistent estimator of the asymptotic variance-
covariance matrix. Hence, we use the robust sandwich estimator (I∗)−1V(I∗)−1.

In the second stage, the association parameter θ is estimated by plugging β̄ββ , ob-
tained in the first stage, in the full likelihood (4) and solving

Uθ (β̄ββ ,θ) =
∂

∂θ
logL(β̄ββ ,θ) = 0

for θ . Thus, obtaining the two-stage estimator for θ .

Theorem 1 Let θ̄ be the two-stage estimator for θ , obtained from Uθ (β̄ββ ,θ) = 0.

Under regularity conditions (see Xu, 1996),
√

K(θ̄ − θ) converges to a normal dis-

tribution with mean 0 and variance

var(θ̄) =
1

Iθθ
+

Iθβββ (I
∗)−1V(I∗)−1Iβββθ

I2
θθ

. (6)
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A proof of this theorem is given in Prenen et al. (2017a) for Archimedean copulas,
but it holds all the same in our context.

We estimate the variance term in (6) by replacing (I∗)−1V(I∗)−1 with(
Î∗
)−1

V̂
(

Î∗
)−1

, where

Î∗ =
K

∑
i=1

ni

∑
j=1

−
∂

∂βββ
U∗

i, j,βββ (βββ )

∣∣∣∣
βββ=β̄ββ

and

V̂ =
K

∑
i=1

(
ni

∑
j=1

U∗
i, j,βββ (βββ )

∣∣∣∣
βββ=β̄ββ

)(
ni

∑
j=1

U∗
i, j,βββ (βββ )

∣∣∣∣
βββ=β̄ββ

)T

.

The quantities Iθθ , Iθβββ and Iβββθ are obtained from the Hessian matrix by perform-

ing one iteration of the one-stage procedure with βββ fixed at β̄ββ and θ at θ̄ .

3.3 Two-stage semiparametric estimation

If a more flexible setting for the margins is desired, rather than using fully parametric
models, it is possible to estimate the margins by taking a semiparametric approach.
In this case, we use the Cox proportional hazards model (Cox, 1972). Estimation

now consists in obtaining, for the first stage, β̌ββ and Λ̌ , the estimated covariate effects
and cumulative hazard function, respectively. As in the two-stage parametric method,
it is assumed that the subjects are independent in the first stage, the so-called inde-
pendence working assumption. Also, a common baseline hazard function is assumed
for all individuals, but allowing for subject-specific covariate information, which can
also depend on time. Estimators for βββ and Λ along with formulas for their standard
errors can be found in Spiekerman and Lin (1998).

In the second stage, the estimate θ̌ of the copula’s association parameter is re-
trieved by maximizing the likelihood for θ whilst fixing for the first stage estimates,

i.e., by solving maxθ

{
L
(

θ , β̌ββ ,Λ̌
)}

.

Theorem 2 Under regularity conditions 1-8 in the Appendix,
(

θ̌ , β̌ββ ,Λ̌
)

are consis-

tent estimators for (θ0,βββ 0,Λ0), the true parameters.

The proof for the consistency of
(

β̌ββ ,Λ̌
)

can be found in Spiekerman and Lin

(1998) whereas the consistency of θ̌ is proved in the Appendix, following ideas from
Prenen et al. (2017a) and Othus and Li (2010).

Theorem 3 Under regularity conditions 1-8 in the Appendix,
√

K
(
θ̌ −θ0

)
converges

to a normal distribution with mean 0 and variance equal to

var(Ξ)/W (θ0)
2. (7)
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A proof for Theorem 3 and the formal definitions of Ξ and W (θ0) are presented
in the Appendix. We derive this proof by extending the results in Prenen et al. (2017a)
from Archimedean copulas to the more general factor copula models. We also provide
the formulae to compute estimates for the standard error of θ̌ . This drastically reduces
the computational cost when compared to the jackknife alternative used by Prenen
et al. (2017a).

4 Simulation study

In order to assess the finite sample behavior of the estimators, we simulate 1000
data sets under different settings. For the number of clusters, we use K = 50, 200
and 500, with each cluster having size varying uniformly from 2 to 50. We use the
Clayton (θ = 1.07, 2.383, 4.816), Gaussian (θ = 0.556, 0.767, 0.899) and Galam-
bos (θ = 0.866, 1.538, 2.78) copulas to simulate intracluster dependence, such that
we have representatives from different classes (Archimedean, elliptical and extreme-
value copulas, respectively) and three levels of dependence for each case (Kendall’s
τ ≈ 0.35, 0.55, 0.7). Individual lifetimes are generated from a Weibull distribution,
with survival function given by S(t|Z) = exp{−λ exp(β z) tρ} and choosing λ = 0.5,
ρ = 1.6 and Z a dichotomous covariate with effect β = 2. Data are generated using
the sampling algorithm proposed by Joe (2014). We consider three different cen-
soring scenarios: 25%, 50% and no censoring. Censoring times are obtained from a
Weibull distribution with parameters λC = 0.425, ρC = 1.6, for 25% of censoring and
λC = 2.241, ρC = 1.6, for 50%.

Simulation results for the three estimation methods are summarized in Tables 1, 2
and 3 for K = 50,200 and 500 clusters, respectively. In all three scenarios, we provide,
for the Clayton, Gaussian and Galambos copulas, the mean estimated values of θ̂ , θ̄
and θ̌ in the first rows, along with their mean estimated standard errors and coverage
of 95% confidence intervals in the second rows. In the parametric one-stage method,
standard errors are retrieved from the inverse of the Hessian matrix, whereas in the
parametric and semiparametric two-stage, we obtain the estimates of the standard er-
rors via formulas (6) and (7), respectively. Moreover, by using the plug-in estimator of
the standard error in the semiparametric two-stage method, we noticeably reduce the
computing time if compared to the grouped jackknife alternative employed by Pre-
nen et al. (2017a) and Othus and Li (2010). We deal with the infeasible integrals in
the likelihood expressions by using a Gauss-Legendre quadrature rule with nq = 50
points, resulting in reasonable accuracy at a small computational cost for the para-
metric and semiparametric two-stage methods. In contrast, the parametric one-stage
estimator is highly sensible (specially for high values of Kendall’s τ) to the num-
ber of quadrature points, thus making necessary to use at least nq = 200 points when
K = 50. This effect is magnified for larger values of K, therefore making the paramet-
ric one-stage computationally expensive. However, by using the adaptive quadrature
of Gauss-Kronrod we were able to mitigate this issue in the one-stage method. Nev-
ertheless, the two-stage methods are still the better option regarding computational
time. As evidenced in Tables 2 and 3, the parametric and semiparametric two-stage
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methods perform well when K ≥ 200, yielding small biases and appropriate coverage
probabilities at a much lower computational cost.

Censoring affects the performance of the estimators in different ways for the
Clayton, Gaussian and Galambos copulas, although standard errors systematically
increase as the censoring percentage increases (as expected). Due to the opposite
nature of the Clayton and Galambos copulas (lower tail dependence versus upper
tail dependence), we notice that, as the censoring percentage increases, coverage
probabilities also increase for the Clayton copula, while the opposite happens for
the Galambos copula. This can be seen for K = 50, 200, and, to a lesser extent, for
K = 500 clusters. Coverage probabilities for the Gaussian copula are not significantly
affected by censoring percentage, owing to its symmetrical dependence structure. As
can be seen in Tables 1, 2 and 3, the strength of association, represented by the three
values of Kendall’s τ , has an intuitive impact on the estimators, i.e., higher values
of Kendall’s τ impose inferior results, while the results tend to be better for smaller
values of Kendall’s τ . This is specially perceivable for K = 50, and for the semipara-
metric two-stage method when K ≤ 200. It is important to note that for samples with
a small number of clusters (K around 50 clusters), the two-stage methods are not
much reliable (Table 1). The parametric one-stage is recommended in these scenar-
ios, as it gives better results in terms of bias and coverage probability. Fortunately, for
K ≥ 200, the two-stage methods have a good performance and a low computational
cost.

5 Real data example - Insemination dataset

One possible application of the proposed methods is to model the time to first insemi-
nation after calving in dairy cattle clustered in herds. For this, we use the insemination
dataset, available in the R package Sunclarco (Prenen et al., 2017b). This dataset
consists of 181 clusters (farms) of different sizes, containing 10513 cows in total. The
cluster sizes range from 1 to 174 cows and the times to first insemination are subject
to right censoring, which makes this dataset suited for our purposes. Despite repre-
senting only 5.5% of the data, right censoring is still present, making it necessary to
be considered in the modeling. This right censoring is due to no insemination of a
cow within 330 days or if it is culled before insemination. The insemination dataset
also contains covariate information, represented by the dichotomous covariate parity,
which is 0 for multiparous cows and 1 for primiparous cows.

According to Duchateau and Janssen (2004), the time from parturition until first
insemination is one of the main factors that determines the calving interval, which
should be optimally between 12 and 13 months in order to maximize milk produc-
tion. Usually, insemination is done by the farmer, relying only on his experience. By
modeling the association between insemination times, we can get more insight into
this process.

We use three different factor copulas to model the association between times to
first insemination: the first built with a bivariate Clayton copula; the second using a
bivariate Gaussian copula; and the third built with a bivariate Galambos copula. In all
three settings, we use a baseline Weibull survival function (one- and two-stage para-
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metric estimation) to model the times to first insemination and a Cox proportional
hazards model for the two-stage semiparametric method, allowing for covariate in-
formation (parity of the cow). The expression for the Weibull survival function used
is

S(t|Z) = exp{−λ exp(β z) tρ} ,

where β is the parity effect for the dichotomous covariate Z.

Using the one- and two-stage procedures for estimation, we provide results for the
parity effect and association parameters for all three factor copula settings considered,
along with their Akaike information criterion (AIC) (see Table 4). It is important to
note that, since the parametric and semiparametric models are different in nature, one
must be careful not to use the AIC to compare them.

Table 4 Estimation results for the insemination dataset.

Results for Clayton copula Results for Gaussian copula Results for Galambos copula

Weibull
one

stage

Weibull
two

stage
Semiparametric

two-stage
Weibull

one
stage

Weibull
two

stage
Semiparametric

two-stage
Weibull

one
stage

Weibull
two

stage
Semiparametric

two-stage

β −0.138
(0.016)

−0.066
(0.022)

−0.060
(0.021)

−0.135
(0.019)

−0.066
(0.022)

−0.060
(0.021)

−0.100
(0.015)

−0.066
(0.022)

−0.060
(0.021)

θ 0.779
(0.023)

0.829
(0.126)

0.985
(0.098)

0.624
(0.029)

0.575
(0.034)

0.510
(0.021)

1.302
(0.048)

0.916
(0.038)

0.753
(0.035)

AIC −705.0 −700.8 154.2 −703.8 −700.4 520.7 −690.3 −673.2 1072.4

The parity of the cow has a similar and coherent effect for all settings, with prim-
iparous cows having a significantly lower hazard of experiencing the event (insem-
ination). Indeed, for the one-stage method, hazard ratios are 0.87 (95% confidence
interval (CI) [0.84,0.91]), 0.87 (95% confidence interval (CI) [0.84,0.90]) and 0.90
(95% confidence interval (CI) [0.88,0.93]) for the Gaussian, Clayton and Galambos
factor copulas, respectively. For the two-stage parametric method, all models lead
to a hazard ratio of 0.94 (95% confidence interval (CI) [0.89,0.98]). The hazard ra-
tio for the semiparametric method is 0.94 (95% confidence interval (CI) [0.90,0.98])
under all three copula models. According to the AIC, the Clayton factor copula pre-
sented the best fit among the three models for every estimation procedure. Consid-
ering that the Clayton copula has lower tail dependence, it can be inferred, in this
context, that later times of insemination have a stronger association and lower values
are weakly correlated. Moreover, under the one-stage method, the estimation results
show that the times until insemination are significantly affected by the farm (aggre-
gate of many exogenous variables). The strength of this association can be measured
by the estimate of the association parameter (0.779 with 95% confidence interval (CI)
[0.734,0.824]), which is equivalent to a Kendall’s τ of 0.28. This means that the new
methodology is not only capable of controlling for cluster effect, but to assess the
shape of intracluster dependence (any copula family can be used) and its strength.

As can be seen in Figure 1, for the Weibull-Clayton model, the estimated survival
curve for primiparous cows is greater than the one from multiparous cows, meaning
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Fig. 1 (a) Estimated survival curves for multiparous (continuous) and primiparous
(dashed) cows (Clayton model under one-stage estimation) and (b) estimated uncon-
ditional survival curves for the Clayton (continuous), Gaussian (dashed) and Galam-
bos (dotted) factor copula models under one-stage estimation.

that multiparous cows are inseminated earlier than primiparous cows, with approx-
imately 50% of the multiparous cows being inseminated before 86 days, while for
primiparous cows, the estimated median is 96 days. This difference in the median
time is more accentuated when comparing the estimated marginal survival curves
for the three models (see Figure 1). Due to the upper tail dependence feature of the
Galambos copula (stronger association for lower times of insemination), the esti-
mated survival curve for the Weibull-Galambos model is notably less than the other
two for lower values of the variable time until insemination. Indeed, estimated me-
dian survival times for the Gaussian and Clayton factor copulas are approximately
91 days, while for the Galambos it is 63 days. It is also possible to verify that the
Clayton factor copula is more suited to the data by checking the sample median time
until first insemination, which is 90 days for multiparous cows. This value is closest
to the estimated median survival time in the Weibull-Clayton model.

6 Discussion

Current methodologies restrict clustered survival data modeling to settings where ei-
ther cluster sizes are small and fixed or the number of copula families implemented
is limited. This work aims to overcome these limitations. By using factor copulas,
we developed a comprehensive class of models that allow for clusters to be large
and with variable size, altogether with the flexibility of supporting any copula family
in its structure. Owing to clusters having different sizes, we assume exchangeabil-
ity between lifetimes within a cluster and proceed by estimating a common baseline
survival function using the whole data set. Nonetheless, subject-specific covariate in-
formation is introduced (possibly time dependent). One drawback of the proposed
models is the lack of analytical expressions for the likelihood, a consequence of the
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infeasible integral in its definition. However, we can still obtain reliable results by
using Gauss-Legendre integration with an appropriate number of quadrature points,
or even adaptive methods, such as the Gauss-Kronrod quadrature. Three estimation
methods were investigated: parametric one-stage and two-stage along with a semi-
parametric two-stage approach. Additionally, we derived estimators and proved their
consistency and asymptotic normality for all the three methods. Simulation results
showed that the three methods behave reasonably well under different settings, with
the one-stage procedure being, in general, more reliable for samples with a small
number of clusters. On the other hand, the one-stage method is computationally de-
manding for a large number of clusters (K ≥ 200). This is not an issue for both the
parametric and semiparametric two-stage methods, since they yielded up to standard
results for settings with a large number of clusters (K ≥ 200). Moreover, the com-
putational cost in the two-stage procedures is substantially reduced. This paper is an
extension of the works of Prenen et al. (2017a), who investigated similar estimation
methods under Archimedean copula based models, and Othus and Li (2010), who ex-
plored a semiparametric two-stage approach using Gaussian copulas. We also men-
tion the foundational work of Shih and Louis (1995), who derived essential results
for bivariate data.

Acknowledgements This research was supported by the Brazilian Federal Agency for Support and Eval-
uation of Graduate Education (CAPES - PDSE; Process 88881.190074/2018-01). We would also like to
express our gratitude to our colleagues from the Department of Statistics at the Federal University of
Lavras (DES-UFLA) and I-BioStat at Universiteit Hasselt, who greatly assisted this work.

Appendix

For convenience, we first introduce some notations and definitions adapted from Pre-
nen et al. (2017a) and Othus and Li (2010).

Yi j(t) = I{Xi j≥t}

Λ̌(t) =
∫ t

0

d
K

∑
i=1

ni

∑
j=1

δi jI{Xi j≤u}
K

∑
i=1

ni

∑
j=1

Yi j(u)exp
{

β̌ββ
′
Zi j(u)

} =
K

∑
i=1

ni

∑
j=1

δi jI{Xi j≤t}
K

∑
k=1

nk

∑
l=1

I{Xkl≤Xi j} exp
{

β̌ββ
′
Zkl(Xi j)

} ,

Hi j = exp

[
−
∫ τ

0
Yi j(u)exp

{
βββ ′

Zi j(u)
}

dΛ(u)

]
,

H0
i j = exp

[
−
∫ τ

0
Yi j(u)exp

{
βββ ′

0Zi j(u)
}

dΛ0(u)

]
,

Ȟi j = exp

[
−
∫ τ

0
Yi j(u)exp

{
β̌ββ
′
Zi j(u)

}
dΛ̌(u)

]
,

Hi j(t) = exp

[
−
∫ τ

0
Yi j(u)exp

{
βββ ′

Zi j(u)
}

d {Λ + t (Γ −Λ)}(u)
]
.
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Note that Hi j = Hi j(0).

L(θ ,βββ ,Λ) =
K

∏
i=1

Li(θ ,βββ ,Λ)

=
K

∏
i=1

∫ 1

0

ni

∏
j=1

c·V (Hi j,vi)
δi j×C·|V (Hi j|vi)

1−δi j dvi

=
K

∏
i=1

∫ 1

0
exp

{
ni

∑
j=1

log
(

c·V (Hi j,vi)
δi j ×C·|V (Hi j|vi)

1−δi j

)}

dvi

=
K

∏
i=1

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi;θ)

}

dvi,

where CCC(Hi j,vi,θ) = c·V (Hi j,vi;θ)δi j ×C·|V (Hi j|vi;θ)1−δi j .

lK(θ) = K−1 log{L(θ ,βββ ,Λ)} ,

lK0(θ) = K−1 log{L(θ ,βββ 0,Λ0)} ,

ľK(θ) = K−1 log
{

L
(

θ , β̌ββ ,Λ̌
)}

,

UK(θ) =
∂ lK(θ)

∂θ
= K−1 ∂ log{L(θ ,βββ ,Λ)}

∂θ

= K−1
K

∑
i=1

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}{
ni

∑
j=1

∂

∂θ
logCCC(Hi j,vi,θ)

}

dvi

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}

dvi

,

UK0(θ) =
∂ lK0(θ)

∂θ
= K−1 ∂ log{L(θ ,βββ 0,Λ0)}

∂θ
,

ǓK(θ) =
∂ ľK(θ)

∂θ
= K−1

∂ log
{

L
(

θ , β̌ββ ,Λ̌
)}

∂θ
.
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The following notation is copied from Spiekerman and Lin (1998). Let a⊗0 =
1, a⊗1 = a, a⊗2 = a′a and r = 0,1,2:

S(r) (βββ , t) = K−1
K

∑
i=1

ni

∑
j=1

Yi j(t)exp
{

βββ ′
Zi j(t)

}
Zi j(t)

⊗r, s(r) = E
[
S(r) (βββ , t)

]
,

E(βββ , t) =
S(1) (βββ , t)

S(0) (βββ , t)
,

e(βββ , t) =
s(1) (βββ , t)

s(0) (βββ , t)
,

V(βββ , t) =
S(2) (βββ , t)

S(0) (βββ , t)
−E(βββ , t)⊗2,

v(βββ , t) =
s(2) (βββ , t)

s(0) (βββ , t)
− e(βββ , t)⊗2.

Assume the following regularity conditions, where τ > 0 is a constant denoting the
last survival time of the uncensored subjects:

Condition 1 βββ is in a compact subset of Rp.

Condition 2 Λ(t)< ∞.

Condition 3 θ ∈ ν , where ν is a compact subset of Θ .

Condition 4 P(Ci j ≥ t, ∀t ∈ [0,τ])> δc > 0 for i = 1, ...,K and j = 1, ...,ni.

Condition 5 Let Zi j(t) =
{

Zi j1(t), ...,Zi jp(t)
}

. For i = 1, ...,K, j = 1, ...,ni and k =
1, ..., p,

∣∣Zi jk(0)
∣∣+
∫ τ

0

∣∣dZi jk(t)
∣∣≤ BZ < ∞ almost surely for some constant Bz.

Condition 6 E[log{Li(θ1,βββ ,Λ)/Li(θ2,βββ ,Λ)} exists for all θ1,θ2 ∈Θ , i = 1, ...,K.

Condition 7 A =
∫ τ

0 v(βββ 0,u)s
(0)(βββ 0,u)dΛ0(u) is positive definite.

Condition 8 The bivariate copula C·V (ui j,vi;θ) is absolutely continuous.

Proof of Theorem 2

Since the consistency of β̌ββ and Λ̌ was already proved in Spiekerman and Lin (1998),
we only show the consistency of θ̌ . This is done by extending the results in Prenen
et al. (2017a) and Othus and Li (2010).

Accounting for the fact that we use plug-in estimators for βββ and Λ , we pro-
ceed by taking a Taylor series expansion of the log-likelihood of θ in the neigh-
bourhood of βββ and Λ . In view of Λ being an unspecified function, we need to
include a functional expansion term. The concept of Hadamard differentiability is
suitable in this case. In order to use this approach, we must first verify that the log-
likelihood l(θ) is Hadamard differentiable with respect to Λ : By condition 5, the
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term
∫ τ

0 Yi j(u)exp
{

βββ ′
Zi j(u)

}
dΛ(u) in Hi j is Hadamard differentiable. Furthermore,

by the chain rule for Hadamard derivatives (Van der Vaart, 2000), we conclude that
l(θ) is Hadamard differentiable with respect to Λ .

Let BV [0,τ] denote the class of functions with bounded total variation on [0,τ].
The Hadamard derivative of l(θ) with respect to Λ at Γ −Λ ∈ BV [0,τ] can be ob-
tained by taking the derivative of K−1 log [L{θ ,βββ ,Λ + t (Γ −Λ)}] with respect to t

and then making t = 0:

d

dt

(
K−1 log [L{θ ,βββ ,Λ + t (Γ −Λ)}]

)∣∣∣∣
t=0

=
∫ τ

0
ζK(θ ,Λ)(u)d(Γ −Λ)(u),

where ζK (θ ,Λ)(u) is equal to

K−1
K

∑
i=1

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}[
ni

∑
j=1

{(
∂

∂Hi j
logCCC(Hi j,vi,θ)

)
DΛ

i j

}]

dvi

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}

dvi

= K−1
K

∑
i=1

∫ 1

0
P(vi|Hi·,θ)

[
ni

∑
j=1

{(
∂

∂Hi j
logCCC(Hi j,vi,θ)

)
DΛ

i j

}]

dvi

= K−1
K

∑
i=1

ni

∑
j=1

DΛ
i j E

[
∂

∂Hi j
logCCC(Hi j,vi,θ)

]
,

DΛ
i j = (−Hi j)Yi j(u)exp

{
βββ ′

Zi j(u)
}
,

and

P(vi|Hi·,θ) =

exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}

∫ 1

0
exp

{
ni

∑
j=1

logCCC(Hi j,vi,θ)

}

dvi

(8)

is a probability density function of a random variable Vi assuming values in [0,1].
Similarly, the derivative of l(θ) with respect to βββ is

ζK(θ ,βββ ) = K−1
K

∑
i=1

∫ 1

0
P(vi|Hi·,θ)

[
ni

∑
j=1

{(
∂

∂Hi j
logCCC(Hi j,vi,θ)

)
D

βββ
i j

}]

dvi

= K−1
K

∑
i=1

ni

∑
j=1

D
βββ
i j E

[
∂

∂Hi j
logCCC(Hi j,vi,θ)

]
,

where

D
βββ
i j = (−Hi j)

∫ τ

0
Yi j(u)Zi j(u)exp

{
βββ ′

Zi j(u)
}

dΛ(u).

Let ‖ ·‖ denote the Euclidean norm and let ‖ ·‖∞ denote the supremum norm
on [0,τ]. To prove the consistency of θ̌ , we need ‖ζK(θ ,Λ)‖∞ and ‖ζK(θ ,βββ )‖ to be
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bounded. Note that, by the definition of Hi j and conditions 2 and 5, the terms
∥∥∥DΛ

i j

∥∥∥
∞

and
∥∥∥D

βββ
i j

∥∥∥ are bounded. Therefore, in order to satisfy the boundedness condition of

‖ζK(θ ,Λ)‖∞ and ‖ζK(θ ,βββ )‖, we shall require the expectations in their formulae to
be finite.

We now continue with the proof by taking an expansion of ľK(θ) around βββ 0 and
Λ0, given by

ľK(θ) = lK0(θ)+ζK(θ ,βββ 0)(β̌ββ −βββ 0)+
∫ τ

0
ζK(θ ,Λ0)(t)d(Λ̌ −Λ0)(t)+R.

Another (intuitive) notation is

lK,θ (β̌ββ ,Λ̌)= lK,θ (βββ 0,Λ0)+
∂

∂βββ
lK,θ (βββ 0,Λ0)(β̌ββ −βββ 0)+

∂

∂Λ
lK,θ (βββ 0,Λ0)(Λ̌ −Λ0)+R.

The remainder term R is of order op

(
max

{∥∥∥β̌ββ −βββ 0

∥∥∥ ,
∥∥Λ̌ −Λ0

∥∥
∞

})
. This can be

seen from the definition of Hadamard differentiability, since
∥∥∥∥∥

lK,θ
{

βββ ,Λ0 + t(Λ̌ −Λ0)
}
− lK,θ (βββ ,Λ̌)

t
−

∂

∂Λ
lK,θ (βββ ,Λ0)(Λ̌ −Λ0)

∥∥∥∥∥
∞

→ 0, as t ↓ 0

uniformly in Λ̌ −Λ0 in all compact subsets of D, the space of cumulative hazard

functions. Since β̌ββ is consistent and Λ̌ is uniformly consistent (Spiekerman and Lin,
1998), R = op(1). To prove that θ̌ is consistent we need to verify the uniform con-
vergence of the log-likelihood with the plug-in estimate of Λ to the expected value of
the log-likelihood evaluated at the true value of Λ , denoted lK0(θ):

sup
θ∈ν

∣∣ľK(θ)−E[lK0(θ)]
∣∣= oP(1). (9)

This can be shown as follows:

ľK(θ)−E[lK0(θ)] = lK0(θ)−E[lK0(θ)]+ζK(θ ,βββ 0)(β̌ββ −βββ 0)

+
∫ τ

0
ζK(θ ,Λ0)(t)d(Λ̌ −Λ0)(t)+R.

By the law of large numbers, for fixed θ

lK0(θ)−E[lK0(θ)]
p→0. (10)

Since ‖ζK(θ ,βββ )‖ and ‖ζK(θ ,Λ)(u)‖∞ are bounded, say ‖ζK(θ ,βββ )‖ ≤ M1 and
‖ζK(θ ,Λ)(u)‖∞ ≤ M2, we have

sup
θ∈ν

∣∣∣ζK(θ ,βββ 0)(β̌ββ −βββ 0)
∣∣∣≤ M1

∥∥∥β̌ββ −βββ 0

∥∥∥ ,

sup
θ∈ν

∣∣∣∣
∫ τ

0
ζK(θ ,Λ0)(t)d(Λ̌ −Λ0)(t)

∣∣∣∣≤ M2

∥∥Λ̌ −Λ0

∥∥
∞
.
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For this reason,

sup
θ∈ν

∣∣ľK(θ)−E[lK0(θ)]
∣∣≤ sup

θ∈ν
|lK0(θ)−E[lK0(θ)]|+M1

∥∥∥β̌ββ −βββ 0

∥∥∥

+M2

∥∥Λ̌ −Λ0

∥∥
∞
+R.

Using result (10), the consistency of β̌ββ and the uniform consistency of Λ̌ and the fact
that R = op(1), we obtain

sup
θ∈ν

∣∣ľK(θ)−E[lK0(θ)]
∣∣= op(1).

Finally, to verify that θ̌ is consistent, we need to show that the expected log-likelihood
is maximized at the true value:

E[lK0(θ)]−E[lK0(θ0)]< 0. (11)

Since clusters are independent, the log-likelihood lK(θ) can be written as a sum of
independent and identically distributed random variables:

K−1
K

∑
i=1

log{Li(θ ,βββ ,Λ)},

with

Li = (−1)di
∂ di

(∂xi1)
δi1 ... (∂xini)

δini

S(xi1, ...,xini)

=
K

∏
i=1

∫ 1

0
exp

{
ni

∑
j=1

log
(

c·V (exp{−Λ(xi j)},vi)
δi j

×C·|V (exp{−Λ(xi j)}|vi)
1−δi j

)}
dvi.

Take θ /= θ0. The law of large numbers, Jensen’s inequality and condition 6 imply
that

lim
K→∞

lK0(θ)− lK0(θ0) = E[lK0(θ)]−E[lK0(θ0)]

= E

[

K−1
K

∑
i=1

log{Li(θ ,βββ 0,Λ0)}

]

−E

[

K−1
K

∑
i=1

log{Li(θ0,βββ 0,Λ0)}

]

= E [log{Li(θ ,βββ 0,Λ0)}− log{Li(θ0,βββ 0,Λ0)}]
= E [log{Li(θ ,βββ 0,Λ0)/Li(θ0,βββ 0,Λ0)}]
≤ log(E [log{Li(θ ,βββ 0,Λ0)/Li(θ0,βββ 0,Λ0)}])
≤ log(E [log{Li(θ ,βββ 0,Λ0)/Li(θ0,βββ 0,Λ0)}])
= log(1) = 0.
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Since θ̌ maximizes ľ(θ), equation (9) implies that

0 ≤ ľK
(
θ̌
)
− ľK (θ0)+E [lK0 (θ0)]−E [lK0 (θ0)] = ľK

(
θ̌
)
−E [lK0 (θ0)]+op(1)

=⇒ E [lK0 (θ0)]≤ ľK
(
θ̌
)
+op(1).

Subtracting E
[
lK0

(
θ̌
)]

from each side of the inequality we get

E [lK0 (θ0)]−E
[
lK0

(
θ̌
)]

≤ ľK
(
θ̌
)
−E

[
lK0

(
θ̌
)]

+op(1)

≤ sup
θ∈Θ

∣∣ľK (θ)−E [lK0 (θ)]
∣∣+op(1) = op(1). (12)

Now take θ such that |θ −θ0|≥ ε for any fixed ε > 0. By inequality (11), there must
be some γε > 0 such that

E
[
lK0

(
θ̌
)]

+ γε < E [lK0 (θ0)] .

It follows that

P(|θ̌ −θ0|≥ ε)≤ P
{

E
[
lK0

(
θ̌
)]

+ γε < E [lK0 (θ0)]
}
.

Equation (12) implies that

P
{

E
[
lK0

(
θ̌
)]

+ γε < E [lK0 (θ0)]
}
→ 0 as K → ∞.

Therefore

P(|θ̌ −θ0|≥ ε)→ 0 as K → ∞.

Proof of Theorem 3

Take a first order Taylor series expansion of ǓK(θ̌) around θ0:

ǓK(θ̌) = ǓK(θ0)+
(
θ̌ −θ0

) ∂ǓK

∂θ

∣∣∣∣
θ=θ∗

,

where θ ∗ is between θ̌ and θ0. It must be that ǓK(θ̌) = 0 since θ̌ was taken to be the

maximum of L(θ , β̌ββ ,Λ̌). For this reason

√
K
(
θ̌ −θ0

)
=

√
KǓK (θ0)

−∂ǓK/∂θ
∣∣
θ=θ∗

. (13)

We already showed that θ̌ consistently estimates θ0, so the law of large numbers
implies that

∂ǓK

∂θ

∣∣∣∣
θ=θ∗

→W (θ0) = lim
K→∞

∂ǓK

∂θ

∣∣∣∣
θ=θ0

.

We shall show that the score equation ǓK(θ0) in the numerator of equation (13) fol-
lows a normal distribution. Hereto, we need a Taylor series expansion of ǓK(θ0) in
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the neighbourhood of βββ 0 and Λ0. Because Λ0 is an unspecified function, we shall use
the Hadamard derivative of UK(θ0) with respect to Λ at Γ −Λ ∈ BV [0,τ]:

d

dt

(
K−1 ∂ log [L{θ ,βββ ,Λ + t(Γ −Λ)}]

∂θ

)∣∣∣∣
t=0

=
∫ τ

0
ξK(θ ,Λ)(u)d(Γ −Λ)(u),

where ξK(θ ,Λ)(u) is equal to

K−1
K

∑
i=1

[∫ 1

0
P(vi|Hi·,θ)

{
ni

∑
j=1

∂ 2 logCCC(Hi j,vi,θ)

∂θ∂Hi j
DΛ

i j +
ni

∑
j=1

∂ logCCC(Hi j,vi,θ)

∂θ

×
ni

∑
j=1

∂ logCCC(Hi j,vi,θ)

∂Hi j
DΛ

i j

}

dvi −
∫ 1

0
P(vi|Hi·,θ)

{
ni

∑
j=1

∂ logCCC(Hi j,vi,θ)

∂θ

}

dvi

×
∫ 1

0
P(vi|Hi·,θ)

{
ni

∑
j=1

∂ logCCC(Hi j,vi,θ)

∂Hi j
DΛ

i j

}

dvi

]

= K−1
K

∑
i=1

ni

∑
j=1

DΛ
i j

{
E

[
∂ 2 logCCC(Hi j,vi,θ)

∂θ∂Hi j

]

+
ni

∑
k=1

Cov

[
∂ logCCC(Hi j,vi,θ)

∂θ
,

∂ logCCC(Hik,vi,θ)

∂Hik

]}

,

DΛ
i j = (−Hi j)Yi j(u)exp

{
βββ ′

Zi j(u)
}
,

and P(vi|Hi·,θ) has the same definition as in expression (8). The derivative of UK(θ0)
with respect to βββ is given by the same expression as ξK(θ ,Λ)(u), replacing DΛ

i j for

D
βββ
i j = (−Hi j)

∫ τ

0
Yi j(u)Zi j(u)exp

{
βββ ′

Zi j(u)
}

dΛ(u).

By the same arguments used to show the consistency of θ̌ , we also need ‖ξK(θ ,Λ)‖∞

and ‖ξK(θ ,βββ )‖ to be bounded. For this reason, we shall require the expectation and
covariance in their formulae to be finite. Hence, we proceed by taking a Taylor series
expansion of ǓK(θ0) in the neighbourhood of βββ 0 and Λ0 which gives

ǓK(θ0) =UK0(θ0)+ξK(θ0,βββ 0)(β̌ββ −βββ 0)+
∫ τ

0
ξK(θ0,Λ0)(t)d

{
Λ̌(t)−Λ0(t)

}
+GK ,

where GK is the remainder term for the Taylor series. Since Λ̌ is
√

K consistent,
it can be shown that GK = op(K−1/2). Define the pointwise limit of ξK(θ ,Λ)(t) as
ξ (θ ,Λ)(t) and denote ξ (θ ,βββ ) = E[ξK(θ ,βββ )]. Since ‖ξK(θ ,Λ)‖∞ and ‖ξK(θ ,βββ )‖
are bounded, ‖ξ (θ ,Λ)‖∞ and ‖ξ (θ ,βββ )‖ are also. Therefore

√
KǓK(θ0) =

√
K
[
UK0(θ0)+ξK(θ0,βββ 0)(β̌ββ −βββ 0)

+
∫ τ

0
ξK(θ0,Λ0)(t)d

{
Λ̌(t)−Λ0(t)

}]
+op(1).
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By Spiekerman and Lin (1998)

√
K(β̌ββ −βββ 0)→ A−1

K

∑
i=1

wi.,

where wi. is the ith component of the score function for βββ under the independence
working assumption, evaluated at βββ 0:

wi. =
ni

∑
j=1

∫ τ

0

{
Zi j(u)−E [βββ 0,u]

}
dMi j(u),

with

Mi j(t) = δi jYi j(t)−
∫ t

0
Yi j(u)exp

{
βββ ′

0Zi j(u)
}

dΛ0(u).

They also showed that

√
K
{

Λ̌0(t, β̌ββ )−Λ0(t)
}
→W(t) = K−1/2

K

∑
i=1

Ψi(t),

where W(t) is a zero mean Gaussian process with variance function

E
[
Ψi(t)

2
]
,

with

Ψi(t) =
∫ t

0

dMi.(u)

s(0) (βββ 0,u)
+hT (t)A−1wi.

and

h(t) =−
∫ t

0
e(βββ 0,u)dΛ0(u).

That is why

√
K

[
UK0(θ0)+ξK(θ0,βββ 0)(β̌ββ −βββ 0)+

∫ τ

0
ξK(θ0,Λ0)(t)d

{
Λ̌(t)−Λ0(t)

}]

=
√

K

[

K−1
K

∑
i=1

φi(θ0)+ξK(θ0,βββ 0)K
−1/2A−1

K

∑
i=1

wi.

+K−1/2
∫ τ

0
ξK(θ0,Λ0)(t)d

{

K−1/2
K

∑
i=1

Ψi(t)

}]

=
√

K
K

∑
i=1

[
K−1φi(θ0)+ξK(θ0,βββ 0)K

−1/2A−1wi.+K−1
∫ τ

0
ξK(θ0,Λ0)(t)dΨi(t)

]

= K−1/2
K

∑
i=1

[
φi(θ0)+ξK(θ0,βββ 0)

√
KA−1wi.+

∫ τ

0
ξK(θ0,Λ0)(t)dΨi(t)

]

= K−1/2
K

∑
i=1

Ξi
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The central limit theorem implies that
√

KǓK(θ0) converges to a normally distributed
random variable with mean 0 and variance equal to the variance of Ξ . Thus we have

√
K
(
θ̌ −θ0

)
=

√
KǓK(θ0)

−∂ǓK/∂θ
∣∣
θ=θ∗

,

where √
KǓK(θ0)

D→N {0,var(Ξ)}

and

∂ǓK/∂θ
∣∣
θ=θ∗

P→W (θ0) .

By Slutsky’s theorem,
√

K
(
θ̌ −θ0

)
converges to a normal distribution with mean 0

and variance
var(Ξ)/W (θ0)

2.

The variance of Ξ (note that var[Ξ ] = E[Ξ 2]) can be estimated by K−1 ∑K
i=1 Ξ̌ 2,

where Ξ̌ is obtained from Ξ replacing parameter values by their estimates. W (θ0) can
be estimated by the (minus) derivative of the pseudoscore function ǓK(θ) evaluated
at θ̌ .
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APPENDIX A – Additional topics and proofs

Some details on the properties of the model

If compared to other models for clustered survival data, the proposed factor copula based

model has the advantage of allowing flexible dependence structures. This is due to the many

options of bivariate copulas that can be used in its formulation. These are not constrained to a

specific family or class, as opposed to the models of Prenen et al. (2017), Romeo et al. (2017)

and Othus and Li (2010). This feature of factor copulas makes possible to achieve a wide range

of dependence structures (see Section 3 of Krupskii and Joe (2013)). The Archimedean copula

model of Prenen et al. (2017), for example, has the limitation of only supporting a few positive

dependence structures. This is due to a very limited number of existing generators from the

class j 2 L•, used to yield the bivariate Archimedean copulas in their model.

As we show next, our factor copula based model can be seen as a generalisation of the

Archimedean copula model of Prenen et al. (2017).

Proposition. Let jq 2 L• be a generator function from the class of Laplace transforms of

non-negative random variables with no mass at 0 (see Chapter 4 of Nelsen (2007)). Then, there

exists C···|V (u j|v), such that for all u j 2 [0,1] ( j = 1, ...,n),

Z 1

0

n

’
j=1

C···|V (u j|v)dv =
Z +•

0

n

’
j=1

exp
�
�xj�1

q (u j)
 

dGq (x). (1)

That is, the model of Prenen et al. (2017) (right-hand side of (1)) is a subclass of the herein

proposed model (left-hand side of (1)).

Proof. Assuming that Gq (x) is differentiable, such that gq (x) = d
dxGq (x), we can make x =

G�1
q (v) with dx = dv

gq (G�1
q (v))

= dv
gq (x)

. This way, we can rewrite equation (1) as

Z 1

0

n

’
j=1

C···|V (u j|v)dv =
Z 1

0

n

’
j=1

exp
�
�G�1

q (v)j�1
q (u j)

 
dv, (2)

where jq : [0,+•) ! [0,1], the generator of an Archimedean copula, is a continuous

strictly decreasing function with jq (0) = 1, jq (+•) = 0 and inverse j�1
q . The function jq is

also the Laplace transform of a distribution function Gq (x) with inverse G�1
q (x) and Gq (0) = 0.
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By subtracting
R 1

0
n
’
j=1

exp
�
�G�1

q (v)j�1
q (u j)

 
dv from both sides of Equation (2), we

get

Z 1

0

n

’
j=1

C···|V (u j|v)dv�
Z 1

0

n

’
j=1

exp
�
�G�1

q (v)j�1
q (u j)

 
dv = 0

()
Z 1

0

 
n

’
j=1

C···|V (u j|v)�
n

’
j=1

exp
�
�G�1

q (v)j�1
q (u j)

 
!

dv = 0.

Hence, for the above condition to hold, it is sufficient that

n

’
j=1

C···|V (u j|v)�
n

’
j=1

exp
�
�G�1

q (v)j�1
q (u j)

 
= 0,

or, equivalently,

C···|V (u j|v) = exp
�
�G�1

q (v)j�1
q (u j)

 
,

which is the conditional distribution derived from

C···V (u j,v) =
Z v

0
exp

�
�G�1

q (t)j�1
q (u j)

 
dt

=
Z G�1

q (v)

0
exp

�
�sj�1

q (u j)
 

dGq (s),

a bivariate function with the following properties:

1) C···V (u j,v) is grounded

C···V (0,v) =
Z v

0
exp

�
�G�1

q (t)j�1
q (0)

 
dt =

Z v

0
0dt = 0

C···V (u j,0) =
Z 0

0
exp

�
�G�1

q (t)j�1
q (u j)

 
dt = 0.

2) C···V (u j,v) has margins u j and v

C···V (1,v) =
Z v

0
exp

�
�G�1

q (t)j�1
q (1)

 
dt =

Z v

0
dt = v

C···V (u j,1) =
Z G�1

q (1)

0
exp

�
�sj�1

q (u j)
 

dGq (s) =
Z +•

0
exp

�
�sj�1

q (u j)
 

dGq (s)

= jq
�
j�1

q (u j)
�
= u j.
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3) C···V (u j,v) is 2-increasing, i.e., 8u j,u⇤j ,v,v
⇤ 2 [0,1] with u j  u⇤j , v  v⇤, it follows that

C···V (u⇤j ,v
⇤)�C···V (u j,v⇤)�C···V (u⇤j ,v)+C···V (u j,v)> 0

Z v⇤

0

⇥
exp

�
�G�1

q (t)jq (u⇤j)
 
� exp

�
�G�1

q (t)jq (u j)
 ⇤

dt

�
Z v

0

⇥
exp

�
�G�1

q (t)jq (u⇤j)
 
� exp

�
�G�1

q (t)jq (u j)
 ⇤

dt > 0

()
Z v⇤

v

⇥
exp

�
�G�1

q (t)jq (u⇤j)
 
� exp

�
�G�1

q (t)jq (u j)
 ⇤

dt > 0.

Therefore, C···V (u j,v) is a bivariate copula.

The Kendall’s t in a one-factor copula model

It is important to note that, while dependence is explicitly determined between two ran-

dom variables in a classic bivariate copula, within our one-factor copula model framework,

intracluster relationships are shaped implicitly through a latent variable V (the common factor)

in an exchangeable fashion. Therefore, in order to compute the Kendall’s tau for any given pair

of individuals (free of V ) inside a cluster, the following must be done: let U1 and U2 denote

the lifetimes of two individuals belonging to the same cluster, such that they are conditionally

independent given a latent variable V . Then, without loss of generality, we have that the factor

copula of (U1,U2) for a cluster with size two is given by

CU1,U2(u1,u2;q) =
Z 1

0
C···|V (u1|v;q)C···|V (u2|v;q)dv. (3)

Following a well known result (see page 164 of Nelsen (2007)), we can write the Kendall’s tau

of U1 and U2 as

t = 1�4
Z 1

0

Z 1

0
C2|1(u2|u1)C1|2(u1|u2)du1du2.

Hence, we must obtain C2|1(u2|u1) and C1|2(u1|u2) from (3):

C2|1(u2|u1) =
∂

∂u1

Z 1

0
C···|V (u1|v)C···|V (u2|v)dv

=
Z 1

0
c···V (u1,v)C···|V (u2|v)dv.

Similarly,

C1|2(u1|u2) =
Z 1

0
C···|V (u1|v)c···V (u2,v)dv.
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Therefore, the Kendall’s tau for the pair (U1,U2) in a one-factor copula model is given by

t1,2 = 1�4
Z 1

0

Z 1

0

✓Z 1

0
c···V (u1,v)C···|V (u2|v)dv

◆✓Z 1

0
C···|V (u1|v)c···V (u2,v)dv

◆
du1du2. (4)

This expression cannot be evaluated analytically, but it can be easily computed with

numerical integral methods for any given expression of C···|V together with the value of its para-

meter q .

From the perspective of our model, the Kendall’s tau as computed by (4) can be regarded

as an exchangeable measure for the intracluster associations, that is, every subject in a cluster is

equally affected by the common factor V , so they all share the same Kendall’s tau with respect

to V (tUj,V ) and, as a consequence, the same measure of association between each other, i.e.,

tUj,Uk is the same for every j,k = 1, ...,n with j 6= k and n being the cluster size.

We now give three examples to illustrate the flexible nature of the factor copula model.

Example 1. In a factor copula model, when Cj|V1 comes from a Gaussian copula with parameter

q 2 [�1,1] for all j = 1,2, ...,d, then the resulting factor copula model is of the form

C(u1, ...,ud) =
Z 1

0

d

’
j=1

F

 
F�1(u j)�qF�1(v)

(1�q 2)1/2

!
dv.

Under a right censoring scheme, the likelihood expression for the Gaussian factor copula model

is

L =
K

’
i=1

Z 1

0

ni

’
j=1


f2(F�1(ui j),F�1(vi);q) f (xi j|Zi j)

f(F�1(ui j))f(F�1(vi))

�di j

⇥
"

F

 
F�1(ui j)�qF�1(vi)

(1�q 2)1/2

!#1�di j

dvi,

where ui j = S(xi j|Zi j).

The factor copula model built with Gaussian bivariate copulas has the properties of

reflection symmetry and weak/intermediate tail dependence, as can be seen in Figure 1 for the

bivariate case.
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Figure 1 – Scatterplots from samples taken from a Gaussian Factor copula with q = 0 (Independence
(a)), 0.556 (t = 0.2 (b)), 0.767 (t = 0.4 (c)) and 0.899 (t = 0.6 (d)).
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Example 2. When all bivariate copulas in a factor copula model are Clayton with parameter

q 2 [0,+•), the resulting factor copula model is of the form

C(u1, ...,ud) =
Z 1

0

d

’
j=1

h
1+ vq (u�q

j �1)
i�1�1/q

dv.

Under a right censoring scheme, the likelihood expression is given by

L =
K

’
i=1

Z 1

0

ni

’
j=1

h
(1+q)(ui jvi)

�q�1(u�q
i j + v�q

i �1)
�2�1/q

f (xi j|Zi j)
idi j

⇥
⇣

1+ vq (u�q �1)
⌘�2�1/q

�1�di j

dvi.
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The Clayton factor copula model has strong lower tail dependence and weak upper tail depen-

dence, as can be seen in Figure 2 for the bivariate case.

Figure 2 – Scatterplots from samples taken from a Clayton Factor copula with q = 0 (Independence (a)),
1.07 (t = 0.2 (b)), 2.383 (t = 0.4 (c)) and 4.816 (t = 0.6 (d)).
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Example 3. When using bivariate Galambos copulas (q 2 [0,+•)) as building blocks for a

factor copula model, the resulting distribution is of the form

C(u1, ...,ud) =
Z 1

0

d

’
j=1

⇢
u�u

h
1+(logv/ logu j)

q
i�1�1/q

�

⇥ exp
⇢h�

� logu j
��q

+(� logv)�q
i�1/q

�
dv.
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Under a right censoring scheme, the formula for the likelihood is as follows

L =
K

’
i=1

Z 1

0

ni

’
j=1

⇥
A(ui j,vi) f (xi j|Zi j)

⇤di j ⇥
⇥
B(ui j,vi)

⇤1�di jdvi,

where

A(si j, ti) =


1�
h
s�q

i j + t�q
i

i�1�1/q
⇥
h
s�q�1

i j + t�q�1
i

i
+
h
s�q

i j + t�q
i

i�2�1/q

⇥ (st)�2�1/q
⇢

1+q +
h
s�q

i j + t�q
i

i�1/q
��

exp
⇢h

s�q
i j + t�q

i

i�1/q
�
,

B(ui j,vi) =

⇢
ui j �ui j

h
1+(logvi/ logu ji)

q
i�1�1/q

�

⇥ exp
⇢h�

� logui j
��q

+(� logvi)
�q
i�1/q

�
,

and si j =� logS(xi j|Zi j), ti =� logvi.

Owing to its extreme-value feature, the Galambos factor copula model has a positive

dependence structure with strong upper tail dependence, as can be seen in Figure 3.

Regularity conditions for the two-stage parametric procedure and proof of Theorem 1

(Paper)

The regularity conditions for the two-stage parametric procedure are adapted from Cox

and Hinkley (1974), Lehmann and Casella (1998) and Xu (1996), and are as follows:

Condition 1. The parameter space WWW1 of the marginal parameters bbb has finite dimension, is

closed and compact, and bbb 0, the true parameter vector, lies in the interior of WWW1.

Condition 2. E
h
U⇤

bbb (bbb 0)
i
= 0, where bbb = (bbb 1, ...,bbb p)

0.

Condition 3. The Fisher information matrix

I⇤ = E

� ∂

∂bbb
U⇤

bbb (bbb )
�

is positive definite for all bbb 2 WWW1.

Condition 4. Second order partial derivatives of U⇤
bbb (bbb ) are bounded integrable, i.e.,

����
∂ 2U⇤

bbb i
(bbb )

∂bbb j∂bbb k

����<

Mi jk for all bbb 2 WWW1, where E
⇥
Mi jk

⇤
< • for i, j, k = 1, ..., p.
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Figure 3 – Scatterplots from samples taken from a Galambos factor copula with q = 0 (Independence
(a)), 0.866 (t = 0.2 (b)), 1.538 (t = 0.4 (c)) and 2.78 (t = 0.6 (d)).
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Condition 5. The parameter space W2 of the copula’s parameter q is closed and compact, and

the true value q0 lies in the interior of W2.

Condition 6. E [Uq (bbb 0,q0)] = 0.

Condition 7. E
⇥
U2

q (bbb 0,q0)
⇤
= E

h
�∂Uq (bbb 0,q0)

∂q

i
.

Condition 8. The Fisher information

Iqq = E

�∂Uq (bbb 0,q0)

∂q

�

is greater than zero for all q 2 W2.
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Condition 9. Second order partial derivatives of Uq (bbb ,q) are bounded integrable, i.e.,
���∂ 2Uq (bbb ,q)

∂q 2

���<

M for all q 2 W2, where E[M]< •.

Condition 10. The support of Ti j (i = 1, ...,K and j = 1, ...,ni) does not depend on any (bbb ,q)2

WWW1 ⇥W2.

Proof of Theorem 1

Let bbb 0 denote the true parameter vector for the margins. Expanding the score function

U⇤
bbb (bbb ) in a Taylor series around bbb 0 and evaluating it at bbb = b̄bb , we obtain, under regularity

conditions 1-10,

U⇤
bbb

⇣
b̄bb
⌘
= 0 = U⇤

bbb (bbb 0)+
∂U⇤

bbb
∂bbb

����
bbb=bbb 0

⇣
b̄bb �bbb 0

⌘
+op

⇣p
K
⌘
.

Similarly,

Uq

⇣
b̄bb , q̄

⌘
= 0 =Uq (bbb 0,q0)+

∂Uq
∂bbb

����
(bbb ,q)=(bbb 0,q0)

⇣
b̄bb �bbb 0

⌘
+

∂Uq
∂q

����
(bbb ,q)=(bbb 0,q0)

�
q̄ �q0

�

+op

⇣p
K
⌘
.

By the law of large numbers, as K ! •,

�K�1
∂U⇤

bbb
∂bbb

����
bbb=bbb 0

= K�1
K

Â
i=1

�
∂U⇤

i,bbb (bbb 0)

∂bbb
! I⇤ = E

"
�

∂U⇤
bbb (bbb 0)

∂bbb

#
,

�K�1 ∂Uq
∂bbb

����
(bbb ,q)=(bbb 0,q0)

= K�1
K

Â
i=1

�
∂Ui,q (bbb 0,q0)

∂bbb
! Iqbbb

�K�1 ∂Uq
∂q

����
(bbb ,q)=(bbb 0,q0)

= K�1
K

Â
i=1

�
∂Ui,q (bbb 0,q0)

∂q
! Iqq .

Hence

K�1/2

0

@ U⇤
bbb (bbb 0)

Uq (bbb 0,q0)

1

A!
p

K

0

@ I⇤ 000

Iqbbb Iqq

1

A

0

@ bbb �bbb 0

q �q0

1

A .

By the central limit theorem,

K�1/2

0

@ U⇤
bbb (bbb 0)

Uq (bbb 0,q0)

1

A
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converges to a multivariate normal distribution with mean

0

@ 0

0

1

A and variance-covariance ma-

trix 0

@ V 000

000 Iqq

1

A

with V = var
h
U⇤

bbb (bbb 0)
i
= E

h
U⇤

bbb (bbb 0)
2
i
. Thus,

p
K

0

@ bbb �bbb 0

q �q0

1

A

converges to a multivariate normal distribution with mean vector 0 and variance-covariance

matrix

0

@ I⇤ 0

Iqbbb Iqq

1

A
�10

@V 0

0 Iqq

1

A

0

@ I⇤ 0

Iqbbb Iqq

1

A
�1T

=

0

B@
(I⇤)�1V(I⇤)�1T (I⇤)�1V(I⇤)�1T

Ibbbq
Iqq

�Iqbbb (I⇤)
�1V(I⇤)�1T

Iqq
1

Iqq
+

Iqbbb (I⇤)
�1V(I⇤)�1T

Iqbbb
I2
qq

1

CA.

The lower right-hand element of this matrix is the asymptotic variance of
p

K
�
q �q0

�
.

The references for this section can be found in the reference list of the paper (Second

part of the thesis).
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APPENDIX B – R routines

In this section we describe how to implement the proposed methods in the R language.

The source code, with all necessary functions, will be incorporated in the R package Sunclarco

in the near future. Until there, they can be requested via e-mail to the author (eleandersoncam-

pos@estudante.ufla.br). Required additional packages are reported in the header of the source

code. The usage of the functions is straightforward, as we detail next with an example of esti-

mation using the three procedures.

For the sake of illustration, we simulate the data to be modeled. This can be done by

using the function Data, available in the source code. The call for this command is as follows:

set.seed(1)

sim_data <- Data(nclusters = 20, copula = "clayton", theta = 1.5, rho = 1.4,

lambda = .4, beta = 2, percens = .25)

where the argument nclusters determines the number of clusters (K), each with size varying

uniformly from 2 to 50. copula indicates the bivariate copula family (“gaussian", “clayton"or

“galambos") to be used as intracluster dependence structure, with parameter theta. We stress

that any parametric bivariate copula family can be used in our model, but we have implemented

so far the Clayton, Gaussian and Galambos families, representing the class of Archimedean,

elliptical and extreme-value copulas. The arguments rho, lambda and beta represents the

parameters of the Weibull baseline marginal survival function, S(t|Z) = exp{�l exp(b z) tr},

where Z is a dichotomous covariate. The censoring distribution is also Weibull, with the argu-

ment percens 2 [0,1] indicating the approximate percentage of right censoring in the data. The

data frame sim_data will have the following form:

Cluster Cov X delta

1 1 1 0.2599620 0

2 1 0 0.5813684 1

3 1 1 0.4204703 1

...

15 1 0 0.5567494 1

16 2 0 0.7760581 1

17 2 0 0.6878404 0
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...

574 20 0 0.8925011 1

575 20 0 2.2655296 1

576 20 1 0.1338729 1

where Cluster denotes the number i of the cluster (i = 1, ...,K) which contains subject j ( j =

1, ...,ni, with ni being the size of cluster i). The values of the dichotomous covariate Zi j, Xi j =

min(Ti j,Ci j) and di j are indicated by Cov, X and delta, respectively, such that in line 16, for

example, Z2,1 = 0, X2,1 = 0.776 and d2,1 = 1 (di j = 0 if the survival time is censored).

We now proceed by using the function twostageP to fit a Weibull-Clayton model using

the two-stage parametric procedure:

TSP_results <- twostageP(data = sim_data, copula = "clayton",

start = c(0,1,1,1), nq = 50)

where the argument data receives the data frame containing the data in the same format as ge-

nerated by the function Data. Intracluster dependence structure is determined by the argument

copula, with available options “gaussian", “clayton"or “galambos"as the bivariate copula mo-

dels. Starting values for minimization of the likelihood are supplied as a vector (g,r,l ,b ) in the

argument start. If there is no prior knowledge for starting values, a reasonable guess would

be start = c(0,1,1,1). We start with g = 0 because we optimize the likelihood either for

g = log(q) (Clayton and Galambos copulas) or g =� log(1/q �1) (Gaussian copula). Further-

more, the number of Gauss-Legendre quadrature points is defined by the argument nq. We

recommend using 50 quadrature points for sufficient accuracy. The output of TSP_results

gives us

$estimates

[1] 1.6269760 1.4417907 0.3506424 1.9389392

$stderr_robust

[1] 0.47634720 0.11841220 0.06516016 0.23204626

$stderr_naive

[1] 0.19279228 0.05466236 0.02823527 0.12206452

$z_values

[1] 3.415525 12.176032 5.381239 8.355831
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$AIC

[1] 600.1981

where $estimates represents the estimated values of (q ,r,l ,b ) and $stderr_robust their

standard errors derived from the sandwich estimator. Naive standard errors are also provided

for illustrational purposes and are represented by $stderr_naive. These are obtained from

the diagonal of the inverse of the Hessian matrix. Z values and the AIC are also provided.

If we use, for example, copula = "galambos" or "gaussian" as arguments of twostageP

for the same data set, we would get an AIC of 688 and 654, respectively. These values are

coherent, because the data was simulated using a Clayton copula, meaning that the AIC could

be a reasonable tool for comparing the models in this context. The average computing time

for two-stage parametric estimation under the settings described above is 0.83 seconds using a

2.5 GHz Intel(R) Core(TM) i5 computer running macOS Catalina. For K = 200 clusters, the

average time is 9.1 seconds.

We now can use the estimated values from the two-stage procedure as starting values for

one-stage estimation by running

OSP_results <- onestageP(data = sim_data, copula = "clayton",

start = TSP_results$estimates)

The arguments of onestageP are the same as in twostageP, except for nq, since we have

implemented adaptive Gauss-Kronrod integration instead of Gauss-Legendre. The output is

$estimates

[1] 1.5213726 1.4515814 0.3687886 1.9295434

$stderr

[1] 0.36822983 0.07191544 0.06018928 0.11222566

$z_values

[1] 4.131584 20.184557 6.127146 17.193425

$AIC

[1] 599.993

and the average running time is 10.6 seconds. Although the computing time is somewhat higher,

results yielded by this method are more reliable (specially for a small number of clusters).

Two-stage semiparametric estimation can be performed with the following command
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TSS_results <- twostageS(data = sim_data, copula = "clayton",

start = TSP_results$estimates[1], nq = 50)

where the argument start only receives a starting value of g . The average computing time is

1.28 seconds. Reported results are

$theta_estimate

[1] 1.537098

$theta_stderr

[1] 0.5957812

$AIC

[1] -1.89

$coxPH

Call:

coxph(formula = Surv(X, delta) ~ Cov + cluster(Cluster), data = samp,

method = "efron")

coef exp(coef) se(coef) robust se z p

Cov 2.0054 7.4288 0.1324 0.2494 8.042 8.84e-16

Likelihood ratio test=242.2 on 1 df, p=< 2.2e-16

n= 576, number of events= 411

This method makes use of the function coxph (from the R package survival) to fit a Cox pro-

portional hazards model to the marginal survival functions. In view of this, the output $coxPH

is a coxph.object.
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