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Selenium (Se) is considered a beneficial element in higher plants when provided at
low concentrations. Recently, studies have unveiled the interactions between Se and
ethylene metabolism throughout plant growth and development. However, despite the
evidence that Se may provide longer shelf life in ethylene-sensitive flowers, its primary
action on ethylene biosynthesis and cause-effect responses are still understated. In
the present review, we discuss the likely action of Se on ethylene biosynthesis and
its consequence on postharvest physiology of cut flowers. By combining Se chemical
properties with a dissection of ethylene metabolism, we further highlighted both the
potential use of Se solutions and their downstream responses. We believe that this
report will provide the foundation for the hypothesis that Se plays a key role in the
postharvest longevity of ethylene-sensitive flowers.

Keywords: ethylene inhibitors, vase life, flower quality, preservative solutions, Se metabolism

INTRODUCTION

Selenium (Se) is an essential nutrient for humans, bacteria, and most of the chlorophyte species
(Lobanov et al., 2009; Nancharaiah and Lens, 2015). In higher plants, the beneficial effect of Se
occurs in a concentration-dependent manner (Hawrylak-Nowak et al., 2014; Saidi et al., 2014;
Boldrin et al., 2016; Sattar et al., 2019). At low concentrations, ranging from 0.1 to 1.0 mg L−1,
Se stimulates plant growth and activates components of the reactive oxygen species (ROS) scavenge
system, thereby protecting against multiple abiotic and biotic stresses (Feng et al., 2013; Ahmad
et al., 2016; Lapaz et al., 2019). On the other hand, Se can be also toxic at concentrations ranging
from 1 to 5 mg L−1, but the degree of tolerance varies among species (Freeman et al., 2010; Feng
et al., 2013). Biological functions of Se occur primarily through selenoproteins which contain this
element as part of the amino acids, selenocysteine (SeCys) and selenomethionine (SeMet) (Daniels,
1996), but also as a component of antioxidants, co-enzymes, specialized metabolites, and lipids
(Khan M.I.R. et al., 2014; Khan N.A. et al., 2014). Therefore, the multiple presence of Se in plant
metabolites evidences the unlimited possibilities of its action on plant metabolism, which has not
been entirely explored.

Ethylene is a plant hormone mainly known for its role in affecting leaf and flower senescence,
and fruit ripening. However, this simple gaseous molecule is also involved with other elemental
processes throughout the plant’s life cycle, including seed germination (Corbineau et al., 2014;
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Miransari and Smith, 2014; Wilson et al., 2014), root initiation
and development (Ivanchenko et al., 2008; Lima et al.,
2009; Huang et al., 2013), floral development (O’Neill, 1997;
Wuriyanghan et al., 2009), sexual determination (Iwahori et al.,
1970; Yamasaki et al., 2001; Salman-Minkov et al., 2008), fruit
ripening (Giovannoni, 2001; Barry and Giovannoni, 2007; Lim
et al., 2007; De Martinis et al., 2015), plant senescence (Kim
et al., 2014; De Martinis et al., 2015; Ueda and Kusaba, 2015),
and response to biotic and abiotic stresses (Morgan and Drew,
1997; Wang et al., 2007; Lin et al., 2013; Steffens, 2014). Recently,
several studies have uncovered evidence of a relationship between
Se and ethylene metabolism in plants (Malorgio et al., 2009;
Iqbal et al., 2015; Zhu et al., 2017; Hajiboland et al., 2019;
Malheiros et al., 2019). In this vein, Malheiros et al. (2019)
demonstrated that Se partially inhibits ethylene biosynthesis in
roots of rice seedlings. Likewise, Iqbal et al. (2015) evidenced that
Se inhibits 1-aminocyclopropane-1-carboxylate synthase (ACS)
activity in wheat, the main limiting step of ethylene production
in higher plants.

The production of flowers is one of the most important
segments of horticulture in the field of agroindustry in many
countries. The increased demand for high-quality products,
however, requires postharvest technologies to improve floral
vase life longevity. In recent years, the biological importance
of ethylene on ornamental plant production and development
of methods to alleviate its deleterious consequences in the
overall ornamental value have been well explored. Nevertheless,
many chemicals currently used to lessen ethylene responses
present raised environmental and public health concerns. Thus,
the development of methods that are environmentally friendly
has become crucial (Scariot et al., 2014). Selenium presents
suitable proprieties to be an eco-friendly (Cochran et al., 2018)
and inexpensive (Haug et al., 2008) alternative to composing
ethylene-sensitive flower preservative solutions. Recently, it was
demonstrated that Se (6 mg L−1) increases the vase life of
Easter Lily (Lilium longiflorum) by alleviating cell damage via
the ROS scavenging system and osmotic adjustment (Lu et al.,
2020). However, it seems that Se may have additional functions
affecting the postharvest life of cut flowers that have yet to be
investigated. Based on the current literature, herein we propose a
novel model of interaction between Se metabolism and ethylene
biosynthesis, which likely underlies positive consequences on
postharvest life of cut flowers.

AN OVERVIEW OF Se CHEMICAL
CHARACTERISTICS AND METABOLISM

As part of the chalcogen group of chemical elements, Se is
normally found in soils at concentrations from 0.01 to 2.0 mg
kg−1 (Fordyce, 2005). This element exists in different oxidative
states in soil conditions, such as elemental selenium (Se0),
selenide (Se2−), thioselenate (Se2O3

2−), selenite (SeO3
2−), and

selenate (SeO4
2) (Neal et al., 1987; White et al., 2004). Among

the different forms of Se, selenate is the most soluble and
bioavailable for plants; additionally, it is the most predominant
form of transport through the xylem, as compared to selenite

(Asher et al., 1977; Gupta and Gupta, 2017). The essentiality
of Se in plants has not been proven, but it seems to affect
several aspects of plant metabolism. Discovered in 1817, this trace
element is actively absorbed by root cells through the sulfur (S)
transporters SULTR1;2 and SULTR1; however SULTR1;2 seems
to be the preferential transporter for the uptake of Se (Gupta and
Gupta, 2017). Once absorbed, all synthesized organoselenium
compounds are derived from pathways associated with S
metabolism (Terry et al., 2000) and accumulate in roots (Galeas
et al., 2007), leaves, stems (Liang et al., 2019), flowers (Quinn
et al., 2011), and seeds (Liang et al., 2019).

The metabolism of Se is partially dependent on chloroplast
metabolic machinery, where the reduction of selenate to
selenite occurs under the sequential action of two enzymes
that incorporate Se into amino acids (Terry et al., 2000).
The accumulation of selenoamino acids allows non-specific
incorporation of SeCys or SeMet in plant proteins since SeCys
insertion machinery has allegedly been lost through evolution
(Lobanov et al., 2009; Pilon-Smits and Quinn, 2010). Moreover,
selenoamino acids can be converted to volatile compounds
or Se0 from the action of enzymes, such as methionine S-
methyltransferase (Tagmount et al., 2002; Gupta and Gupta,
2017), SeCys methyltransferase (SMT) (Neuhierl and Boeck,
1996; Brummell et al., 2011; Chen et al., 2019) and SeCys
lyase (SCL) (Pilon-Smits and Quinn, 2010). Because of this,
most plants prevent excessive selenoamino acid accumulation
to avoid metabolic impairments, especially those that may affect
structural integrity and protein functions (Burnell, 1981; Brown
and Shrift, 1982). The presence of Se in excess causes serious
disruption at the metabolic level, including major changes in
energy metabolism and ATP production, starch mobilization, and
cell wall extension, which explains how Se causes a plant growth
reduction (Ribeiro et al., 2016).

Selenoamino acids appear to be beneficial to growth in
some conditions with an underlying influence on the oxidative
protection networks in plants (Pilon-Smits and Quinn, 2010;
Feng et al., 2013; Ahmad et al., 2016). Different strategies have
been adopted to evaluate the role of Se in response to stress,
including the application of Se as a seed priming treatment
(Hasanuzzaman and Fujita, 2011; Nawaz et al., 2013; Hussain
et al., 2016), soil fertilizer (Kumar et al., 2014; Khan et al.,
2015; Atarodi et al., 2018), and foliar drench (Iqbal et al., 2015;
Shahverdi et al., 2020). Treatment with Se at low concentrations
is known to alleviate several stresses in plants, including those
ones caused by drought (Hasanuzzaman and Fujita, 2011; Nawaz
et al., 2013), heat (Iqbal et al., 2015), arsenic (Kumar et al., 2014),
cadmium (Khan et al., 2015), low phosphorus (Jia et al., 2018),
salinity (Shahverdi et al., 2020), as well as lead and aluminum
(Feng et al., 2013). In addition to positive results in responding
to several stresses, low concentrations of Se can also induce plant
growth (Lehotai et al., 2012; Boldrin et al., 2016), via an effect on
mitochondrial metabolism (Dimkovikj and Van Hoewyk, 2014)
and molecular switches (Lehotai et al., 2012; Khan et al., 2015;
Jia et al., 2018).

Concerning specific organs, several studies have
demonstrated that this element delays fruit ripening (Zhu
et al., 2017; Choudhary and Jain, 2018) and senescence
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(Pezzarossa et al., 2012, 2014), leading to reductions in
postharvest losses. Its ability to alter these processes is related to
increased glutathione peroxidase (GSH-Px) activity (Rayman,
2002; Hasanuzzaman et al., 2010; Feng et al., 2013), neutralization
of oxidative stress through the inhibition of lipid peroxidation
(Cartes et al., 2005), and ethylene biosynthesis downregulation
(Pezzarossa et al., 2014). However, despite some studies had
examined the effect of Se on postharvest vase life in cut flowers
(Tognon et al., 2016; Lu et al., 2020), none of them investigated
yet the relationship between Se and ethylene biosynthesis directly.

ETHYLENE METABOLISM AND ITS
INHIBITORS

As a simple gaseous hormone, ethylene acts in many fundamental
processes in the plant’s life cycle, including regulation of leaf and
root development, senescence, fruit ripening, and germination.
Ethylene also acts in response to several abiotic stresses such
as heat (Savada et al., 2017), heavy metals damage (Thao et al.,
2015), salinity (Zhang et al., 2016; Silva et al., 2018), low
soil pH (Brito et al., 2018; Ribeiro et al., 2018), and water
deficiency (Dubois et al., 2017), triggering adaptive responses
(Wang et al., 2002).

The complete elucidation of the ethylene biosynthetic
pathway by Yang and Hoffman (1984) was a notable episode
for the progress of studies of this hormone in higher
plants. Ethylene is synthesized from carbons C3 and C4
of methionine (Met) through three key enzymatic reactions:
(i) conversion of Met into S-adenosyl-L-methionine (SAM)
by the enzyme SAM synthetase (SAMS); (ii) conversion of
SAM to 1-aminocyclopropane-1-carboxylic acid (ACC) by the
enzyme ACC synthase (ACS); and (iii) conversion of ACC
to ethylene by the enzyme ACC oxidase (ACO). The 2nd
step in this process, i.e., the formation of ACC from SAM
is considered the rate-limiting step, since the formation of
ethylene is strongly controlled by the ACS enzyme (Yang
and Hoffman, 1984; Alonso and Ecker, 2001; Pattyn et al.,
2020). The final conversion of ACC to ethylene is oxygen-
dependent (Kende, 1993) and yields CO2 and cyanide as by-
products. Once it is synthesized and perceived, the ethylene
signaling pathway involves both positive and negative regulators,
with the initial steps of signal transduction occurring at the
endoplasmic reticulum membrane. The signal transduction
involves ethylene receptors and transcription factors, with
negative regulators inhibiting downstream responses via protein
phosphorylation under the absence of ethylene (Azhar et al.,
2019; Binder, 2020).

Ethylene biosynthesis/action inhibitors and ethylene removal
technologies can mitigate premature senescence and abscission
caused by exposure to exogenous or endogenous ethylene
(Martínez-Romero et al., 2007). Interference in ethylene
biosynthesis in ornamental plants can be achieved by blocking
components of the ethylene synthesis pathway. Inhibition
of the conversion of SAM to ACC by the compounds
1-aminoethoxyvinylglicine (AVG) and aminooxy acetic acid
(AOA) effectively blocks the increase in ethylene production that

accompanies senescence in a variety of ethylene sensitive flowers
(Broun and Mayak, 1981; Serek and Andersen, 1993).

The inhibition of ethylene action is achieved by the use
of antagonist molecules that bind to ethylene receptors,
thus preventing downstream signaling. Among them, 2,5-
norbornadiene (2,5-NBD) (Wang and Woodson, 1989),
diazocyclopentadiene (DACP) (Blankenship and Sisler, 1993;
Sisler et al., 1993; Serek et al., 1994), silver thiosulphate (Veen,
1979; Celikel and Reid, 2002), and 1-methyl cyclopropane
(1-MCP) (Serek et al., 1995, 2006a; Sisler et al., 1999) are
the most commonly studied and exploited. 1-MCP is the
most commonly-used compound to control ethylene action
during postharvest handling of fruits, flowers and vegetables
commercially (Sisler and Serek, 1997). Its inhibitory mechanism
is a result of competitive interaction with the ethylene receptors,
since the ligand-binding site affinity is higher for 1-MCP than
that of the gaseous hormone itself (Blankenship and Dole,
2006; Serek et al., 2006a). Nevertheless, it is thought that the
development of new receptors recovers tissue sensitivity to
ethylene in some plant materials, which can be treated with
multiple applications of 1-MCP (Feng et al., 2004; Blankenship
and Dole, 2006; In et al., 2013). On the other hand, 2,5-NBD
also competes with ethylene for binding to ethylene receptors;
however, high concentrations of ethylene can overcome the
inhibitory effect of 2,5-NBD (Sisler and Yang, 1984). Moreover,
2,5-NBD is limitedly useful commercially as an ethylene
inhibitor since it requires continuous exposure to be effective,
and presents a strong and disagreeable odor (Sisler et al.,
1990). Similarly, DACP is unlikely to be used commercially
due to its instability and hazardous characteristics (Serek et al.,
2006b). Finally, silver ions (Ag+) may also block ethylene
action, perhaps by replacing the metal component in the
receptor. However, commercial use of silver is limited due to
its heavy metal toxicity (Atta-Aly et al., 1987). Furthermore,
the use of solutions containing silver íon by florists has raised
environmental concerns, mostly regarding disposal issues
(Sisler and Serek, 1997).

MODEL FOR Se-INDUCED
DOWNREGULATION OF ETHYLENE
BIOSYNTHESIS IN CUT FLOWER

Recently, a direct interaction between Se and ethylene was
elegantly demonstrated in experiments involving cadmium stress
alleviation in wheat (Iqbal et al., 2015), tomato fruit ripening
(Zhu et al., 2017), and control of primary root growth in
the rice system (Malheiros et al., 2019). These independent
but complementary studies generated shreds of evidence that
such responses were a consequence of an ethylene biosynthesis
downregulation induced by Se. In close agreement with this, Se
was also reported to improve minimally processed vegetable life
span through ethylene depletion (Malorgio et al., 2009).

In this review, we propose the action of Se on ethylene
biosynthesis in a cut flower model system through selenate
(Figure 1) – the main form of Se to be transported in
the xylem (Asher et al., 1977; Terry et al., 2000). The first
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FIGURE 1 | Model for Se-induced ethylene biosynthesis downregulation in a cut flower system. Firstly, Se is provided as selenate – the main transported form in the
xylem. In petal cells, selenate is converted to selenite and subsequently to Se-homocysteine by a series of enzymatic reactions. In a third stage, Se-homocysteine
forms SeMet, reducing free Met levels toward to biosynthesis ethylene pathway. This event affects subsequently SAMS and ACS activities by reducing substrate
(Met) availability to sustain ethylene biosynthesis pathway. Finally, the decreased ethylene biosynthesis may lead to the maintenance of overall quality on the
postharvest life of cut flowers. Ethylene biosynthesis pathway: ACC, 1-aminocyclopropane-1-carboxylate; ACS, ACC synthase; MTR, S-methyl-5-thio-D-ribose;
MTA, S-methyl-5′-this adenosine; KMB, 2-keto-4-methylthiobutyrate; Se, Selenium; SAM, S-adenosylmethionine; SAM synthetase, SAMS; HCN, Hydrogen cyanide;
CO2, Carbon dioxide; O2, Oxygen; Met, Methionine; Pi, inorganic phosphate; and PPi, inorganic pyrophosphate. Se metabolism: Se, Selenium; SeCys,
selenocysteine; SeMet, selenomethionine. *Enzymatic reaction.

step of Se metabolism in the cells involves the reduction of
selenate to selenite under the sequential action of two enzymes,
ATP sulfurylase (ATPS) and APS reductase (APR) (Shaw and
Anderson, 1972; Sors et al., 2005; Pilon-Smits and Quinn, 2010;
Quinn et al., 2011; Gupta and Gupta, 2017). ATPS catalyzes the
hydrolysis of ATP, coupling ATP to selenate to form adenosine
phosphoselenate (APSe), being subsequently reduced to selenite
by APR (Sors et al., 2005; Pilon-Smits and Quinn, 2010). Both
enzymes are present in the cytosol and plastids, but this process
occurs primarily in the plastids, as observed in S metabolism
(Kolosova et al., 2001). The reduction from selenite to selenide
is also carried out in an enzyme-independent way by reduced
glutathione (GSH) (Terry et al., 2000; Wallenberg et al., 2010). In
the presence of the cysteine synthase (CS) enzyme, selenide can
be converted into SeCys by coupling with O-acetylserine (OAS)
(Ng and Anderson, 1978).

Selenocysteine may be incorporated into proteins, thereby
impairing their activities (Burnell, 1981; Brown and Shrift,
1982; Terry et al., 2000). On the other hand, SeCys can be
also transferred to Met, forming MeSeCys by selenocysteine
methyltransferase (SMT) (Sors et al., 2005; Gupta and Gupta,
2017). In this case, a critical point arises since Met is shared
with the ethylene biosynthesis pathway (Figure 1). For such
convergences, it has been suggested that SeMet reduces free Met,
which in turn diminishes internal ethylene levels by limiting the
substrate for SAMS and ACS activities (Konze and Kende, 1979;

Malorgio et al., 2009; Iqbal et al., 2013, 2015). The improvement
of cut flowers vase life by manipulating ethylene biosynthesis
has been addressed in several previous studies (Baker et al.,
1977; Wang et al., 1977; Reid and Wu, 1992; Zeng et al.,
2012). Kosugi et al. (2002), for instance, demonstrated that the
suppression of ethylene biosynthesis in the ACO antisense line
prolonged the vase life of carnation by 1.6-fold, as compared
to its counterpart. In our proposed model (Figure 1), we
hypothesize that Se diminishes ethylene levels in cut flowers by
reducing the presence of free precursor Met to sustain ethylene
biosynthesis, leading to extended postharvest life in ethylene-
sensitive species.

DOWNSTREAM RESPONSES
ASSOCIATED WITH Se USE IN VASE
SOLUTION

Senescence is a complex, critical, and coordinated event that
determines the longevity of cut flowers (Wu et al., 2017; Aalifar
et al., 2020). The final phase of flower vase life, for instance, is
characterized by time-dependent petal wilting, flower withering
(Su et al., 2019), and flower or petal abscission (Van Doorn,
2001). Some flowers usually show symptoms of color change
and desiccation of petals before abscission (Ma et al., 2005;
Shibuya et al., 2016).
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Ethylene is one of the most important hormones involved
in the regulation of flower senescence (Ma et al., 2018; Wang
et al., 2020) and elicits responses at concentrations as low
as 0.1 µL L−1 in highly sensitive flowers (Macnish et al.,
2011). Sensitivity to ethylene differs between species and
cultivars (Macnish et al., 2010; Costa and Finger, 2016; Wu
et al., 2017). In ethylene-sensitive species, ethylene induces
endogenous and autocatalytic ethylene biosynthesis that triggers
petal and flower senescence. Ethylene causes petal and flower
wilting during senescence by inhibiting cell expansion through
the regulation of aquaporins (Ma et al., 2008), proteins
that promote water transport through biological membranes
(Xue et al., 2020). This causes subsequently a negative water
balance, a key limiting event in the vase life of cut flowers
(Van Meeteren and Aliniaeifard, 2016).

High rates of respiration are also one of the main causes
of short vase life in cut flowers (Jones et al., 2009). Ethylene
is known to induce respiratory activity, thereby depleting
carbohydrates levels (Gonzalez-Candelas et al., 2010; John-
Karuppiah and Burns, 2010). On the other hand, ethylene is
also involved with flower abscission by triggering abscission
zone formation (Van Doorn, 2002) and by oxidative stress
promoted by ROS, including the overproduction of superoxide
anion (O2

−) and hydrogen peroxide (H2O2) (Rogers and
Munné-Bosch, 2016; Ren et al., 2017; Jędrzejuk et al., 2018;
Bayanati et al., 2019).

Therefore, we suggest that Se increases vase life directly by
downregulating ethylene synthesis and indirectly by reducing
flower senescence-related events, such as respiration rate, sugar
starvation, petal and flower wilting and abscission, and oxidative
stress (Figure 1).

CONCLUSION AND BROADER
PERSPECTIVES

Herein, we have proposed a new model of interaction between
Se metabolism and ethylene biosynthesis, and pointed out the
positive effects of this event on the postharvest life of cut flowers.
We believe the use of Se can provide a commercially viable and
environmentally friendly alternative to current methods applied
to ethylene-sensitive cut flowers. Practical aspects such as doses
and standard use methods should be further investigated for each
species under study.
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