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Abstract
Sequencing 16S rRNA gene amplicons is the gold standard to uncover the composition of prokaryotic communities. The
presence of multiple copies of this gene makes the community abundance data distorted and gene copy normalization (GCN)
necessary for correction. Even though GCN of 16S data provided a picture closer to the metagenome before, it should also be
compared with communities of known composition due to the fact that library preparation is prone to methodological biases.
Here, we process 16S rRNA gene amplicon data from eleven simple mock communities with DADA2 and estimate the impact of
GCN. In all cases, the mock community composition derived from the 16S sequencing differs from those expected, and GCN
fails to improve the classification for most of the analysed communities. Our approach provides empirical evidence that GCN
does not improve the 16S target sequencing analyses in real scenarios. We therefore question the use of GCN for metataxonomic
surveys until a more comprehensive catalogue of copy numbers becomes available.

Keywords 16S rRNA .Metataxonomic surveys . Gene

Amplicon sequencing of 16S rRNA gene is considered a gold
standard to evaluate the composition of prokaryotic communi-
ties due to (i) low cost, (ii) easy availability, (iii) easy practi-
cality of extraction and preparation kits, (iv) high taxonomic
resolution as deep as the level of genera (or sometimes species)
and (v) extensive databases. The concept of gold standards
implies a level of perfection never attained by any biological
test [1] which is why those are constantly challenged and re-
placed when appropriate [2]. Still, amplicon sequencing out-
competes (88,889 papers with “16S rRNA” as of June 9, 2020)

other possible techniques to describe the community structure
such as metagenomics (22,106), metaproteomics (1717) or
metatranscriptomics (2639) with many thousand publications
in recent years. The general practice as shown by the myriads
of publications does not comprise the correction of the obtain-
ed raw counts by 16S rRNA gene copy numbers per bacterial
genome even though it is known that bacteria can have multi-
ple copy numbers of the 16S rRNA gene and the normalization
of 16S rRNA amplicon data gave a picture closer to the
metagenomes [3]. However, both amplicon and shotgun se-
quencing are prone to methodological biases introduced by
extraction, PCR, sequencing and bioinformatics and could thus
similarly diverge from the real picture [4]. Recently, it was
recommended not to use GCN based on the systematic evalu-
ation of the predictability of 16S GCNs in bacteria [5], but the
validity of GCN in 16S rRNA gene amplicon sequencing has
never been shown for communities with known composition.
These so-called mock communities are defined mixtures of
microbial cells or nucleic acids created in vitro for the simula-
tion of the composition of a microbiome sample, or DNA
mixture isolated therefrom are used as a uniform benchmark
for microbiome andmetagenome technology development and
evaluation [6]. We believe that the comparison of amplicon
data to the actual relative abundances of taxonomic groups in
the community is the only way to verify the validity of GCN in
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16S rRNA gene amplicon data. Admittedly, the choice of the
mock community (from cells, DNA, RNA, proteins or metab-
olites), the sample preparation protocol, the primer pair that
targets a specific region of the 16S rRNA gene and the pro-
cessing pipeline can all bias the outcome and must all be con-
sidered moving forward.

Here, we processed nine bacterial mock communities from
purified genomic DNA and two from cloned 16S rRNA genes
in the pUC19 plasmid vector targeting the V4 region of the
16S rRNA gene provided elsewhere [7]. We used DADA2
v1.8 [8] for sequence data processing and the amplicon se-
quence variants (ASV) classification using the naïve Bayesian
classifier method and the SILVA database (version 138) as
reference [9], with or without GCN correction, based on the
information available in the Ribosomal Database Project
(RDP, Release 11, Update 5 from September 30, 2016) [10].
All applied methods are provided in detail as Supplementary
Information.

Many pipelines exist for the processing and taxonomic
annotation of 16S rRNA gene amplicon data [11, 12], but all
taxonomic assignment methods are similarly limited which is
why the use of a taxonomical assignment on a higher rank
than species ensures both better accuracy and the detection
of species without an exact match [8]. Approaches based on
machine learning such as TAGME (https://github.com/
gabrielrfernandes/tagme) can provide better assignments as
the exact matching used by DADA2 yields several
ambiguities but are as yet unpublished. The community
profile derived from ASVs [13] appeared to better the
expected profile than those based on a clustering method, as
we reported previously in a study using three of these mock
communities [14]. The strategy we used, however, harbours
issues with varying gene copy numbers within the same genus
that forces GCN to use averages. In addition to that, multiple
copies in the same gene can diverge [15] as a result of
pseudogene formation or horizontal gene transfer [16]. One
of the eleven mock communities (Mock-12) showed a poor fit
of the sequencing data to the mock community (shown in red
in Table 1) and was therefore removed from the analysis (Fig.
1, legend is shown in Supplementary Fig. S1). Interestingly,
the richness of the mock communities was overrepresented
by, on average, 27.4% (n = 10, SE = 12.1%) in the sequencing
data, but this was mainly caused by low-abundant genera,
making up 1.4% (n = 10, SE = 0.1%) of the ASV counts
(Fig. 1). Another cause of misidentification are unidentified
sequences that made up 4.0% (n = 10, SE = 3.1%). However,
DADA2with RDP seemed to annotate the amplicon data more
reliably as Escherichia was not mistakenly identified as
Klebsiella within the family Enterobacteriaceae when opera-
tional taxonomic units (OTUs) were previously annotated
using Blast [14]. Similar to the approach with blasting OTUs
[14], many genera such as Bacteroides aligned better with the
expected content of the mock community with normalization

by GCN but other genera such as Escherichia or
Nitrosomonas aligned better without GCN. Altogether, the
16S sequencing data without GCN fitted the mock community
composition 7.1% (n = 10, SE = 3.6%) better than with GCN
(Fig. 1). This was driven by Mock-18 where Nitrosomonas
and Desulfovibrio were misidentified and by Mock-19 where
the unidentified ASVs decreased the fitness GCN as the aver-
age copy number of bacteria was applied. Both mock commu-
nities derived from cloned 16S rRNA genes in the pUC19
plasmid vector while the mock communities from purified
DNA showed smaller RSS to the actual community composi-
tion. As expected, unidentified ASVs will be overrepresented
in the normalized data, while the bacteria with known gene
copy numbers could have more, in this case, an average of 6.6
(n = 7, SE = 0.9) in Mock-19. The misrepresentation of the
mock community increases with an increasing number of un-
identified ASVs, which can further be improved as soon as
better classification methods arise.

The average gene copy number in bacteria in the database
using 152 bacterial genera was threefold higher with 5.29
(SE = 0.21) than the previously determined average for bacte-
ria of 1.8. Using the higher average gene copy number would
result in a similar representation of Mock-19 compared with
the raw sequencing data (data not shown). We therefore sug-
gest the reconsideration of 1.8 16S gene copies in bacteria as
standard for unidentified sequences. Otherwise, GCN provid-
ed a picture closer to reality in the mock communities of
lowest Shannon diversity (Mock-21 and Mock-23) with
Mock-14 being the only exception with high diversity and a
better fit with GCN. In Mock-14, all of the 18 genera from the
mock community have a known gene copy number (available
in the RDP GCN database), and both unidentified ASVs
(0.04%) and ASVs assigned to other genera than present in
the mock community (1.02%) make up a small proportion of
the total ASV counts. The scenarios where GCN provides a
better picture than the raw sequencing data therefore seemed
artificial, given that the α-diversity in environmental samples
is much higher than in our mock communities in both terres-
trial [17–20] and aquatic ecosystems [21, 22], and it appears
unreasonable to assume perfect sequencing data as found for
Mock-14 (Fig. 2).

Correcting for 16S rRNA gene copy numbers in
microbiome surveys still an unsolved problem [5]. The plas-
ticity of the bacterial ribosome able to accommodate foreign
16S rRNA from diverse organisms as shown by horizontal
gene transfer [23–27] also makes the use of GCN question-
able. Our comparison of 16S amplicon data with the known
structure of mock communities from purified DNA and plas-
mid vectors suggests that GCN only provided a better picture
in artificial scenarios, e.g. low α-diversity or perfect sequenc-
ing data. However, different mock communities (from cells,
RNA, proteins or metabolites), different primer pairs that tar-
get another region of the 16S rRNA gene and different
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processing pipeline may all yield different results.
Importantly, predicting the as yet unknown 16S rRNA gene
copy numbers [5, 28, 29] could be a viable approach to in-
crease the fitness of GCN in amplicon sequencing. However,
accounting for variance, e.g. by latent variable models, seems
to be a more promising approach to understand the drivers of
diversity [30] than correcting GCN sequence data.
Noteworthy, we highlight the importance of quality checking
publicly available mock community data to ensure high qual-
ity of future meta-analysis surveys.

Supplementary Materials and Methods

Data Generation

The community data was obtained from the mockrobiata da-
tabase [7]. In total, 12 mock communities with known

composition (as “taxonomy.csv” within “source” from
https://github.com/caporaso-lab/mockrobiota/tree/master/
data) containing both forward and reverse sequencing reads
that target the 16S rRNA gene were obtained. The raw
sequencing data was processed with DADA2 v1.8 [8] using
the R software to yield an ASV table that provides higher
resolution than the traditional OTU table and records the
number of times each exact ASV was observed in each
sample (more information on the R script can be found in
the Supplementary Material). The reads were truncated at
position 230 for the forward and position 160 for the reverse
read, respectively. The recovery of reads through the pipeline
was tracked for each step in each sample (Supplementary
Table S1). Mock-17 failed processing in the pipeline with
our parameters and was removed from the analysis. For five
communities (Mock-16, Mock-18, Mock-19, Mock-22 and
Mock-23), many reads were lost after chimera removal
(shown in red in Supplementary Table S1). In almost all cases,

Table 1 Misidentification as
unidentified ASVs (NA) and
ASVs assigned to other genera,
the Shannon diversity and rich-
ness of bacterial genera as well as
the residual sum of squares (RSS)
as discrepancy of the sequenced
community composition and the
structure of the mock community
on genus level

Community Misidentification Shannon diversity Richness RSS to Mock

NA Other genera Mock Raw GCN Mock Raw Raw GCN

Mock-12 0.0003 0.0461 2.0736 0.3926 0.5765 11 13 1.3138 1.3274

Mock-13 0.0005 0.0057 2.8216 2.6968 2.7120 18 32 0.5198 0.5258

Mock-14 0.0003 0.0103 2.8216 2.7039 2.7456 18 35 0.5245 0.4991

Mock-15 0.0001 0.0038 2.8216 2.6950 2.6591 18 30 0.5447 0.5823

Mock-16 0.0853 0.0913 3.7543 3.1574 3.0887 46 54 0.8441 0.9053

Mock-18 0.0019 0.0000 2.7081 2.6027 2.4329 15 15 0.3089 0.5965

Mock-19 0.3074 0.0000 2.3581 2.4581 2.1697 15 15 0.8829 1.1353

Mock-20 0.0000 0.0001 2.7616 2.5335 2.4519 17 17 0.5107 0.5766

Mock-21 0.0000 0.0000 1.6901 1.5246 1.5091 17 14 0.4041 0.3534

Mock-22 0.0004 0.0292 2.7616 2.7212 2.7024 17 20 0.2978 0.4075

Mock-23 0.0008 0.0017 1.6901 1.7205 1.7214 17 20 0.1938 0.1566

The mock community (Mock) was compared with the 16S amplicon sequencing data without (raw) or with gene
copy normalization (GCN). Mock-12 was removed from the analysis due to the low Shannon diversity of the
sequencing data, accounting for only 20% of the real diversity (shown in red). The best fit of the sequencing data
with or without GCN using RSS compared with the mock composition is shown in bold

Fig. 1 Microbial community
structure as relative abundance of
microbial genera (legend shown
in Supplementary Fig. S1) and the
difference between the residual
sum squares (RSS) between 16S
rRNA sequencing data without
(raw) and with gene copy number
normalization (GCN) compared
with the mock community struc-
ture (Mock)
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this is caused by primer sequences with ambiguous nucleo-
tides that were not removed prior to data processing with
DADA2 [8]. Indeed, after removing the primers using the con-
stant length of the forward primer 515f (n = 19) and the re-
verse primer 515f (n = 20) with the function trimLeft =
c(19,20) within the function filterAndTrim, most of the se-
quences were retained after chimera removal, and the most
abundant ASV length was 253. The taxonomy was assigned
using the naïve Bayesian classifier method using the 16S da-
tabase Silva (version 138 fromMay 6, 2020) and species level
assignments based on exact matching between ASVs and se-
quenced reference strain [31, 32].

Gene Copy Number Normalization and Statistical
Analysis

The absolute ASV counts were divided by known 16S rRNA
gene copy numbers from bacterial genomes obtained from the
Ribosomal Database Project (RDP, Release 11, Update 5 from
September 30, 2016) [10]. For bacterial genera without report-
ed gene copy number, unidentified bacteria and other bacteria
than present in the mock community, the average 16S rRNA
gene copy number of 1.8 (n = 45, SE = 0.13) was used. For
both with and without gene GCN, the absolute ASV counts
were divided by the total number of recovered reads to obtain
relative ASV abundances. The pipeline with the best fitting
sequencing data was determined by residual sum squares
(RSS) as deviation of the predicted abundance derived from
the mock community composition from the empirical values
of the 16S rRNA gene amplicon data from the difference of
the ith value between the mock community as yi and the 16S
rRNA gene sequencing without (raw) and with normalization
(GCN) both as f(xi) given by Eq. 1. The relative amount of
unidentified ASVs and ASVs assigned to genera that are not
present in the mock community were estimated. Taxonomic

richness was calculated as the number of different genera in
each sample. Alpha diversity, as Shannon diversity, was cal-
culated on the level of bacterial genera. Mock-12 was re-
moved from the data analysis as the raw sequencing data
was dominated by Bacteroides making up 90.7% of all reads
while only present at 29.6% in the mock community and tre-
mendously changing the evenness and thereby not only
impacting the Shannon diversity of the community but also
showing the highest RSS of all communities (shown in red in
Table 1), which deemed the comparison with the other mock
communities unreliable. Visualization was carried out in R
using the package ggplot2 [33].

RSS ¼ ∑
n

i¼1
yi− f xið Þð Þ2 ð1Þ
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