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ABSTRACT

In the area of system identification, the input-output Nonlinear Autoregressive Moving Average with
Exogenous Variables (NARMAX) models are of great interest. The most challenging task faced
when working with such models is to select the appropriate model structure that best represent the
underlying system in the data. This structure selection is usually made via Error Reduction Ratio
(ERR)-based algorithms. These algorithms suffer from the curse of dimensionality when high de-
gree of nonlinearity and long term dependencies are required. Further, some nonlinearities require
specific functions or terms in the model structure to be reproduced, i.e. the hysteretic behavior. The
ERR-based algorithm may leave these fundamental terms out of the selected structure. Alterna-
tively, Evolutionary Algorithms (EAs) can be used to perform the structure selection process. They
are methods that evolves a population of individuals through generations (or epochs) via selection,
mutation, and reproduction phenomena. In the case of system identification, each individual would
be a candidate model. This dissertation proposes the hybridization of an EA called Multi-Gene
Genetic Programming (MGGP) with an ERR-based algorithm to perform the identification process
even for those cases in which specific functions are required. In total, four experiments are per-
formed. The first two experiments analyse noise level and soft input problems using stochastic test
systems to generate data. As result we verify that the increment of equation noise level does not
interfere in the structure selection outcome and that the hybridization MGGP/ERR is beneficial in
comparison with the standalone MGGP for the soft input problem. The MGGP/ERR yields more
parsimonious models that perform better in free-run simulation. The third experiment is the iden-
tification of a hydraulic pumping system benchmark. It is shown that the MGGP/ERR is able to
explore a wide range in search space for which the traditional ERR-based algorithm would require
a very high computational power. And finally, the last experiment is the identification of a piezo-
electric actuator, which is characterized by the hysteretic behavior. It is included specific functions
in the search space so that the MGGP/ERR is able to identify hysteresis. A novel and easy-to-use
toolbox based on Python was developed and is available under GPL.

Keywords: Nonlinear system identification. Multi-gene genetic programming. Error reduction
ratio. NARMAX models.



RESUMO

Na área de identificação de sistemas, os modelos de entrada-saída NARMAX (Nonlinear Autore-
gressive Moving Average with Exogenous Variables) são de grande interesse. A tarefa mais de-
safiadora quando se trabalha com esses modelos é a seleção da estrutura adequada do modelo
que melhor represente o sistema subjacente aos dados. Normalmente, essa seleção de estrutura é
feita por meio de algoritmos baseados no critério ERR (Error Reduction Ratio). Esses algoritmos
sofrem com a maldição da dimensionalidade quando são requeridos alto grau de não linearidade e
dependências de longo prazo. Ademais, algumas não linearidades necessitam de funções ou termos
específicos na estrutura do modelo para serem reproduzidas, i.e., o comportamento de histerese. O
algoritmo baseado em ERR pode deixar esses termos fundamentais fora da estrutura selecionada.
Alternativamente, Algoritmos Evolucionários (AE) podem ser usados para realizar o processo de
seleção de estrutura. Eles são métodos que evoluem uma população de indivíduos através das
gerações por meio dos fenômenos de seleção, mutação e reprodução. No caso da identificação
de sistemas, cada indivíduo seria um candidato a modelo. Essa dissertação propõe a hibridização
de um EA chamado MGGP (Multi-Gene Genetic Programming) com um algoritmo baseado em
ERR para desempenhar o processo de identificação mesmo naqueles casos em que funções especí-
ficas são requeridas. No total, são realizados quatro experimentos. Os dois primeiros analisam os
problemas de nível de ruído e entrada suave utilizando sistemas de teste estocásticos para gerar os
dados. Como resultado, verificamos que o incremento do nível de ruído na equação não interfere
no resultado da seleção de estrutura e que a hibridização MGGP/ERR é benéfica em comparação
com o MGGP autônomo para o problema de entrada suave. O MGGP/ERR produz modelos mais
parcimoniosos que apresentam melhor desempenho em simulação livre. O terceiro experimento
é a identificação de um benchmark de sistema de bombeamento hidráulico. É mostrado que o
MGGP/ERR é capaz de explorar um amplo espaço de busca para o qual um método tradicional
baseado em ERR requeriria um poder computacional muito alto. E finalmente, o último exper-
imento é a identificação de um atuador piezoelétrico, que se caracteriza pelo comportamento de
histerese. São incluídas funções específicas no espaço de busca de tal forma que o MGGP/ERR
seja capaz de identificar a histerese. Uma toolbox nova e fácil de usar baseada em Python foi
desenvolvida e está disponível sob Licença Pública Geral.

Palavras-chave: Identificação de sistemas não lineares. Programação genética multi-gene. Taxa
de redução de erro. Modelos NARMAX
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1 INTRODUCTION

Dynamic models can be built directly from input and output data through a process known

as system identification. A model allows the comprehension and prediction of a system’s behav-

ior. To complete an identification problem, one must perform the following steps: i) dynamic

tests, ii) choice of mathematical representation, iii) model structure determination, iv) parame-

ter estimation, and v) model validation (AGUIRRE, 2015). Generally, most of the real systems

of interest are nonlinear. In this sense, Nonlinear Autoregressive Moving Average with Exogenous

Variables (NARMAX) models (LEONTARITIS; BILLINGS, 1985) are of great interest in this area

due to their flexibility and representation capacity. The main problem encountered in working with

NARMAX models is the selection of the appropriate model structure, that is, the determination of

the regressors that together best represent the system. The key point of structure selection is to

choose a model structure as simple as possible but sufficiently complex to capture the dynamics

underlying the data (AGUIRRE; LETELLIER, 2009).

A widely used criterion for NARMAX model structure selection is the Error Reduction Ra-

tio (ERR) (BILLINGS; CHEN, 1989), which evaluates how good each single model term is at ex-

plaining the output data variance. It is considered a one-step-ahead Prediction Error Minimization

(PEM) technique. Some algorithms were built based on the ERR criterion for structure selection,

such as the Forward Regression Orthogonal Estimator (FROE) (BILLINGS; CHEN, 1989) and

other Orthogonal Least Squares (OLS)-based methods (CHEN; BILLINGS; LUO, 1989). Piroddi

and Spinelli (2003) discuss the limitations of ERR-based algorithms, mainly regarding training

data with the presence of certain input characteristics (soft input) and the use of Simulation Er-

ror Minimization (SEM) techniques. Another issue is that such techniques suffer from the curse of

dimensionality with the increment of the degree of nonlinearity and higher long-term dependencies.

Alternative methods for solving the structure selection problem can be derived from Evo-

lutionary Algorithms (EAs), such as Genetic Algorithms (GAs) (GOLDBERG; HOLLAND, 1988;

HOLLAND, 1975) and Genetic Programming (GP) (KOZA, 1992). Some examples of these meth-

ods can be seen in Chen et al. (2007), Li and Jeon (1993), Madar, Abonyi and Szeifert (2005).

However, these methods depend on the assembly of a full regressor matrix for the given maxi-

mum delays and nonlinearity degrees, which may become computationally impracticable. One

very flexible algorithm for use in system identification is the Multigene Genetic Programming
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(MGGP) (HINCHLIFFE et al., 1996; HINCHLIFFE, 2001; HINCHLIFFE; WILLIS, 2003). In

the NARMAX context, each locus of an MGGP individual is a model term represented by a ge-

netic program. Its features allow the population size to fluctuate and facilitate automatic time lag

determination, which eliminates the need for a regressor matrix with all possible terms.

Recently, several modeling and forecasting works have been developed with the use of

MGGP (such as Ghareeb and Saadany (2013), Mehr and Kahya (2017), Riahi-Madvar et al. (2019),

Safari and Mehr (2018)). The algorithm has been shown to be very flexible and to present good

performance in building rational models. In the algorithm, the user is able to define the set of

functions to be used in the modeling (such as multiplication and exponentiation) and it is possible to

change this set without any modification in the algorithm itself. This flexibility of MGGP individual

representation is the main feature explored in this work.

Some nonlinearities are known to be challenging for system identification techniques. One

of them is hysteresis behavior, which presents a memory effect. Several works have investigated

which features must be present in a model to reproduce hysteresis (ABREU et al., 2020; DENG;

TAN, 2009; MARTINS; AGUIRRE, 2016; MORRIS, 2011). However, finding algorithms that can

capture all this features automatically and deal with very large search spaces is challenging due to

curse of dimensionality.

1.1 Objectives

The main objective of this work is to develop a system identification approach able to deal

with large search spaces, automatic time lag determination and easy inclusion of specific functions

to model nonlinear systems.

Specific objectives consist of:

1. analyse the algorithm performance under Output Error and Equation Error problems;

2. analyse the algorithm performance under different cost functions for distinct input charac-

teristics;

3. implement and analyse a hybridization approach between MGGP and OLS/ERR in order to

find parsimonious models;
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4. analyse the inclusion of specific functions into the algorithm’s primitive set that allow the

algorithm to model hysteresis.

5. develop a toolbox in python that implements the proposed MGGP/ERR algorithm. We

sought to develop a friendly interface that allows the users to build and test their own fitness

functions.

1.2 Contributions of this Dissertation

This dissertation proposes the use of a hybrid MGGP/ERR algorithm to solve the struc-

ture selection problem of NARMAX models. Both algorithms (MGGP and OLS/ERR) work in

a symbiotic way. On the one hand, the MGGP algorithm selects groups of terms from the candi-

date regressor space. Over those groups the OLS/ERR structure selection algorithm is applied, and

the resultant models are assessed by a cost function. This interaction is supposed to facilitate the

OLS/ERR task in a "divide and conquer" manner when the search space is very large, it avoids the

curse of dimensionality. On the other hand, the OLS/ERR algorithm works as a pruning method

over the MGGP individuals. It leaves only relevant terms in all models. Therefore, this interaction

is supposed to guide the population evolution towards a promising region in the search space.

First, the algorithm is applied in the identification of some test systems. We address the

Equation Error (EE) problem, and analyse the influence of OLS/ERR probability over model errors

for systems exited by soft input. Then, we use a hydraulic pumping data benchmark and finally

perform hysteretic system identification. Some specific functions are included into the primitive

set to allow models to reproduce hysteresis. The results show that: the algorithm explores a wide

search space in which traditional OLS algorithms would require high computational power and

memory; the hybridization of MGGP with OLS/ERR is beneficial for the identification of systems

excited by soft input; and that with the inclusion of specific functions in the primitive set of the

MGGP individuals, the algorithm is able to model hysteresis.

Most of these results can be found in the following published papers:

• CASTRO, H. C.; BARBOSA, B. H. G.. Multi-gene Genetic Programming for Structure Selection of

Polynomial NARMAX models. Anais da Sociedade Brasileira de Automática, v. 2, n. 1, 2020.
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Other papers related to system identification published during the development of this dis-

sertation are:

• CASTRO, H. C.; BARBOSA, B. H. G.. Algoritmos Multi-Objetivos para Detecção de Estruturas

em Modelos NARX utilizando técnicas PEM e SEM. Em: Anais do 14o Simpósio Brasileiro de

Automação Inteligente. Campinas : Galoá. 2019.

• MOTA, F. L. O., CARVALHO, G. S., CASTRO, H. C., BARBOSA, B. H. G. Identificação de um Sis-

tema de Bombeamento Hidráulico com Algoritmo Evolucionário Multi-objetivo. Anais da Sociedade

Brasileira de Automática, v. 2, n. 1, 2020.

1.3 Organization

This dissertation is organized as follows: Chapter 2 presents an introductory material on

system identification; Chapter 3 introduces basic concepts of evolutionary algorithms and some

works on its application in system identification, Chapter 4 presents the proposed algorithm, Chap-

ter 5 describes and discusses the performed experiments, and Chapter 6 concludes the work with

final considerations. The Appendix A consists of a tutorial on how to use the toolbox developed in

this dissertation.
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2 SYSTEM IDENTIFICATION

Systems modeling is the research area that aims at developing mathematical models that

represent real dynamic systems. There are several techniques that can be used to obtain those

models and they are classified as follows (AGUIRRE, 2015; SJÖBERG et al., 1995):

• white-box modeling: models are obtained from mathematical relations that describe the phe-

nomena involved in the process. Thus, it is necessary a deep knowledge of the system;

• gray-box modeling (or identification): models are obtained from input-output data in addition

to prior information about the process;

• black-box modeling (or identification): models are obtained from dynamic input-output data

with no prior information.

Due to difficulties faced to accomplish white-box modeling, system identification offers

alternative techniques that only need dynamic input-output data. The main steps of an identification

problem are (AGUIRRE, 2015):

1. dynamic tests and data acquisition;

2. choice of mathematical representation;

3. model structure selection;

4. parameter estimation; and

5. model validation.

2.1 Dynamic Tests and Data Acquisition

In this step, the experimental data are acquired. The input signal must be designed in order

to extract representative dynamical information. This signal should be able to excite all dynam-

ical and static characteristics of the system. For nonlinear system identification, random number

generators are normally used to build high order persistently exciting input signals (AGUIRRE,

2015).
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The sampling period must be chosen carefully. Under-sampled data, in which the sampling

time is excessively large, may cause a bad representation of the real system. Whereas over-sampled

data, in which the sampling time is very short, may cause numerical instability and high computa-

tional cost, which hinders the model structure determination (BILLINGS; AGUIRRE, 1995).

2.2 Choice of Mathematical Representation

There are several mathematical representations that can be chosen. It is worth to highlight

the artificial neural networks (BRAGA; CARVALHO; LUDERMIR, 2000; HAYKIN, 2001), the

Volterra series (RUGH, 1983), the interconnected block models (COELHO, 2002; PEARSON;

POTTMANN, 2000; WIENER, 1966; WIGREN, 1993) and the polynomial and rational models

(CORRÊA, 2001; BILLINGS; CHEN, 1989; BILLINGS; TAO, 1991; BILLINGS; ZHU, 1994).

The NARMAX models (LEONTARITIS; BILLINGS, 1985) are of great interest in the area

of system identification due to its flexibility and representation capabilities. These models are

extensions of NARX models, in which residual terms are included to remove parameters’ bias. In

NARMAX models, the current output is obtained from past input-output and residual signals, as

follows:

y[k] =Fl(y[k−1], ...,y[k−ny],u[k−1], ...,

u[k−nu],ξ [k−1]...ξ [k−nξ ])+ξ [k],
(2.1)

where F [·] is a nonlinear function; y[k], u[k] and ξ [k] are the output signal, input signal and residual

vector, respectively; and ny, nu and nξ are their respective maximum lags. In the case of polynomial

models, the nonlinear function is a polynomial function of degree l (F l).

Note that the number of terms, or regressors, of the model increases exponentially with the

augmentation of the nonlinearity degree and input and output maximum lags. Moreover, an over-

parameterized model can lead to numerical instability in parameter estimation, unnecessary com-

putational cost and the representation of dynamics that do not exist in the real system (AGUIRRE;

BILLINGS, 1995). The aforementioned issues justify the importance of the structure selection step

in system identification.



20

2.2.1 A NARMAX model for a White Noise Output Error Problem

According to Aguirre (2015), a white noise is a signal characterized by an autocorrelation

function that satisfies rξ ξ (k) = 0, ∀k 6= 0. Its power spectrum contains energy at all frequencies,

which are all equally important. On the other hand, in colored noise, the frequencies are not all

equally important. It can be modeled, for instance, by an Autoregressive (AR) process excited by

white noise. The power spectrum of colored noise does not have energy at all frequencies, and its

power density is concentrated in a relatively narrow range of frequencies.

Consider a general system of the form:

ỹ[k] = F(ỹ[k−1], ..., ỹ[k−ny],u[k−1], ...,u[k−nu])+ v[k]

y[k] = ỹ[k]+ e[k],
(2.2)

where v[k] represents the EE and e[k] represents the OE.

A white noise output error problem consists of (2.2) with v[k] = 0 and e[k] as white noise.

The white noise OE becomes a colored EE noise. To exemplify this statement, consider the system

Sex:

Sex :

ỹ[k] = θ1ỹ[k−2]+θ2u[k−1]+θ3ỹ[k−2]u[k−1]+ v[k]

y[k] = ỹ[k]+ e[k].
(2.3)

By isolating ỹ[k] from the second equation of (2.3) and replacing it in the first equation, the follow-

ing NARMAX model is obtained:

y[k] =θ1y[k−2]+θ2u[k−1]+θ3y[k−2]u[k−1]

−θ1e[k−2]−θ3e[k−2]u[k−1]+ e[k].
(2.4)

2.3 Model Structure Selection

One of the most used criteria for structure selection of NARMAX models is the ERR

(BILLINGS; CHEN; KORENBERG, 1989). It evaluates the relevance of a regressor candidate

regarding its capacity to explain the output variance. ERR-based algorithms are considered as

PEM algorithms. For instance, in the FROE algorithm (BILLINGS; CHEN; KORENBERG, 1989)

the model structure is incremented iteratively until a certain precision of one-step-ahead prediction
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is achieved. In FROE, the model parameters are estimated via the OLS method. These orthogo-

nalization techniques are designed in such a way that, at each step, the relevance of each regressor

candidate can be assessed separately via the ERR:

[ERR]i =
ĝ2

i ∑
N
k=1 w2

i [k]

∑
N
k=1 y2[k]

, (2.5)

where wi is the ith auxiliary orthogonal regressor and ĝi is its corresponding estimated parameter.

Regressors with higher ERR are included in the model. Some similar techniques are proposed in

the literature to accomplish structure selection and parameter estimation at the same time (CHEN;

BILLINGS; LUO, 1989), and they are referred to as OLS/ERR in this work.

However, Piroddi and Spinelli (2003) presented some limitations of the FROE algorithm

. It is shown that, in the presence of certain characteristics of noise or of input signals, FROE

may find incorrect or redundant models. In such cases, FROE is considered a local search tech-

nique with great probability of finding sub-optimal solutions (FALSONE; PIRODDI; PRANDINI,

2015), and models can be extremely imprecise and even unstable. Thus, to circumvent such limi-

tations, Piroddi and Spinelli (2003) proposed to replace the ERR criterion by the Simulation Error

Reduction Ratio (SRR) criterion, which is defined by the reduction of the Mean Squared Simulation

Error (MSSE) normalized by the variance of the system output signal:

[SRR] j =
MSSE(Mi)−MSSE(Mi+1)

1
N ∑

N
k=1 y2[k]

(2.6)

where Mi is the model structure in the ith iteration and Mi+1 is the candidate model for the subse-

quent iteration with the inclusion of the jth regressor. Hence the model structure selection operation

is performed based on the minimization of simulation error, and the algorithm is considered to be

a SEM technique.

Another criterion for structure selection is the Akaike’s Information Criterion (AIC)

(AKAIKE, 1974), defined as:

AIC
(
θ̂
)
=−2ln

(
f
(
y|θ̂
))

+2p, (2.7)
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where y is the system output vector, f
(
y|θ̂
)

is a probability function, and p is the number of

independently adjusted parameters to get θ̂ . AIC can be used to compare a set of candidate models

and select the number of terms. Models with the lowest AIC are optima.

2.4 Parameter Estimation

As NARX models are linear-in-parameters, the parameter estimation can be done by the

least squares (LS) estimator as follows:

θ̂LS = [ΨT
Ψ]−1

Ψ
T y (2.8)

where Ψ is the regressor matrix, y is the output data vector and θ̂LS represents the parameters

estimated via LS.

For problems with output error, LS yields a biased parameter for NARX models. In these

cases, it is recommended to identify a noise model. The NARX model becomes a NARMAX

model, whose parameters cannot be estimated via the traditional LS estimator. A method that

can be used to estimate these parameters is the Extended Least Squares (ELS) (AGUIRRE, 2015;

YOUNG, 1968) method. For this case, consider that the prediction residuals (ξ = y−Ψθ̂LS) can

be modeled as:

ξ [k] = ciυ [k− i]+υ [k], (2.9)

where υ [k] is white noise and ci is the parameter of the corresponding noise model term. The

υ [k−1] term is included in the regressor matrix:

Ψ
∗ =



υ [k−1]

υ [k]

Ψ υ [k+1]

...

υ [k+N−2]


, (2.10)
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which is called an extended matrix. A new vector of parameters is defined as θ ∗ =
[

θ ci

]
, and

its values are to be estimated via LS. As υ [k] is unknown, the process must be iterative, and the

residual vector must be calculated at each iteration.

2.5 Model Validation

In this step, the model’s capability to generalize is assessed. Aguirre (2015) highlights the

importance of using different data sets to identify and validate the model. There are many criteria

that can be used to assess the model’s adequacy. The most commonly used measure is the Mean

Squared Error (MSE), that is defined by:

MSE =
1
N

N

∑
k=1

(y[k]− ŷ[k])2, (2.11)

where y(k) is the measured data, ŷ(k) is the model’s estimated values. Other relevant measures are:

the Root Mean Squared Error (RMSE), defined by:

RMSE =

√
∑

N
k=1(y[k]− ŷ[k])2√
∑

N
k=1(y[k]− ȳ)2

, (2.12)

where ȳ is the mean value of the signal y(k); and the Mean Absolute Percentage Error (MAPE)

measure:

MAPE =
100
N

N

∑
k=1

∣∣∣∣y[k]− ŷ[k]
y[k]

∣∣∣∣ . (2.13)

2.5.1 Simulation Methods

Note that NARX/NARMAX models can be simulated in different ways. They yield pre-

diction error estimations that have different properties and capabilities that can be used to assess

model generalization. Figure 2.1 presents a graphical representation of these methods.
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2.5.1.1 One-step-ahead Prediction

Predictions are obtained using the available information up to and including step [k− 1].

Therefore, the model’s estimate is a function of lagged input and system output, such that

ŷ[k] = F(y[k−1], ...,y[k−ny],u[k−1], ...,u[k−nu]) = Ψ
T
yuθ̂ , (2.14)

where y is the system output data vector, ΨT
yu the regressor matrix and θ̂ the estimated parameters.

The subscript yu indicates that the matrix is composed of output and input regressors. As a general

rule, one-step-ahead predictions are not good indicators of a model’s capability to explain system

dynamics (AGUIRRE, 2015). The error that this estimator yields is called the Prediction Error

(PE).

2.5.1.2 Free-run Simulation

The free-run simulation is a recursive estimator that predicts infinite steps ahead using the

input signal and the model’s previous estimated values. Thus, from a certain initial condition

(ŷ0 = y0), the estimation is defined by:

ŷ[k] = F(ŷ[k−1], ..., ŷ[k−ny],u[k−1], ...,u[k−nu]) = Ψ
T
ŷu[k−1]θ̂ , (2.15)

for k = max(ny,nu), ...,N, where ΨT
ŷu[k−1] is a regressor vector and the subscript ŷu indicates that

it is composed of output estimation and input regressors, max(ny,nu) refers to the initial condition

vector size. This estimator is considered a good method for assessing the model’s capability to

explain observations (AGUIRRE, 2015). The error that this estimator yields is called the Simulation

Error (SE).

2.5.1.3 Multistep-ahead Prediction

In this case, the free-run simulation is truncated to K steps ahead and rebooted soon after

with a one-step moving horizon (more details in (AGUIRRE, 2015; RIBEIRO et al., 2020)). Thus,
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the estimation is defined by:

ỹ[i] = ΨT
ŷKu[i−1]θ̂ , for i = k−K, ...,k and ỹ0 = yk−K .

ŷ[k] = ỹ[k], for k = max(ny,nu)+K, ...,N ,
(2.16)

Figure 2.1(c) presents a clear graphical representations of this method. Note that there is

a K-steps free-run simulation and only the K-th value is used as output prediction. Then, a one-

step-ahead moving horizon is applied and the K-steps free-run simulation is performed again. This

process is repeated while there are availed original data (system’s output and input).

2.5.1.4 Multiple Shooting

For multiple shooting, the data are split into M intervals of size ∆m+initial conditions, each

one with its own initial condition yi
0, for i = 1, ...,M. The estimation ŷi[k] is computed over the

interval ∆m: ŷi[m] = ΨT
ŷiu[m−1]θ̂ , for m = 1, ...,∆m and i = 1, ...,M

ŷ[k] =
⋃M

i=1 ŷi
(2.17)

This differs from the multistep-ahead predictor due to the moving horizon of ∆m steps.

Figure 2.1(d) presents a clear graphical representation of this method. Note that the data is split

into two intervals of size ∆m+initial conditions. A free-run simulation is performed for each of

them and the predictions are concatenated. Ribeiro et al. (2020) compares the smoothness of the

error space yielded by free-run simulation, multistep-ahead prediction and multiple shooting during

the parameter optimization process. Multiple shooting allows optimization problems to be solved

that would be infeasible in a free-run simulation setting.
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Figure 2.1 – Simulation Methods. (a) one-step-ahead prediction, (b) free-run simulation, (c) multi-step-
ahead prediction and (d) multiple shooting. Light gray represents original data used as initial
conditions, medium gray represents predicted data used as initial conditions and dark gray rep-
resents the model output.

(a) (b)

(c) (d)
(Source: Author)
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3 EVOLUTIONARY ALGORITHMS

The EAs, based on natural processes, build computational models capable of solving prob-

lems. There are a wide variety of algorithms which simulates the evolution of species through the

natural phenomena of selection, mutation and reproduction that occur in a given population of indi-

viduals. The computational representation of these phenomena is called genetic operator (EIBEN;

SMITH et al., 2003; LINDEN, 2008).

There are two points of extreme significance in EA: the representation, or codification, of

individuals and the evaluation function (or cost function). The codification can be understood as

the individual genotype, also called chromosome, and the evaluation function yields the individual

phenotype, also called fitness. The EAs are optimization algorithms, in which an objective function

is minimized or maximized. Hence the evaluation function must be chosen carefully. A well chosen

function must represent all the knowledge one has about the problem, including its constraints. An

optimization problem may be defined as:

min J(θ)

subject to: λ1i ≤ θi ≤ λ2i, i = 1,2, ...,m,
(3.1)

where m is the number of parameters θ to be adjusted by the optimization algorithm and λ con-

strains the search space to the feasible set. The evaluation function (or cost function) translates the

information the chromosome encodes into a numeric value that is the measure of the chromosome

quality.

Generally, an EA exhibits standard behaviors: it begins with an initial population of random

individuals (chromosomes), and at each generation (main loop), the best solutions are sought (se-

lection), and then combined through recombination/reproduction/crossover and changed through

mutation to potentially generate better individuals. The Algorithm 1 summarizes this process.

In many problems, the quality of the solution depends on several and possibly conflicting

objectives. A multi-objective optimization problem can be defined as:

min J1(θ),J2(θ), ...,Jn(θ)

subject to: θ ∈Θ,
(3.2)
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Algorithm 1: EVOLUTIONARY ALGORITHMS

1 P := initial population
2 evaluate individuals (P)
3 while it doesn’t satisfy stop condition do
4 P′ = parents selection (P)
5 apply recombination and mutation (P′)
6 evaluate individuals (P′)
7 P = select new generation (P,P′)
8 end

where n is the number of objective functions and Θ is the feasible set. In these cases, Multi-

Objective Evolutionary Algorithms (MOEA) can be used. An MOEA algorithm works with the

concepts of dominance and of Pareto-optimal set.

Consider the optimization problem defined in (3.2). The solution J(A) =

{J1(A),J2(A), ...,Jn(A)} is said to be dominant over J(B) if each Ji(A), for i = 1, ...,n, is lesser

than or equal to the respective Ji(B), and there is at least one Ji(A) lesser than the respective Ji(B)

(EIBEN; SMITH et al., 2003):

A� B⇒∀i ∈ {1,2, ...,n}, Ji(A)≤ Ji(B), and ∃ j ∈ {1,2, ...,n}, J j(A)< J j(B). (3.3)

The Pareto-optimal set consists of all non-dominated solutions. These are solutions which

quality cannot be improved in any objective without affecting negatively one of the others.

Note that EAs use stochastic factors to initialize and evolve the population. Therefore,

they are heuristics that do not guarantee the best solution. EAs are search techniques classified as

"Random-Guided Techniques", which means, despite the random components, they use the current

state to guide the search (LINDEN, 2008). Among the EAs, we highlight the GA and the GP. They

are introduced in the next sections.

3.1 Genetic Algorithms

GAs were introduced by Holland (1975) as a way to study the adaptation and evolution of

species. However, they have become a powerful tool as a method of function optimization. De

(1975) together with Goldberg and Holland (1988) define the classic genetic algorithm, or Simple
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Figure 3.1 – Binary Representation of Boolean variables (a) and numerical variables with a chromosome
representing one and two variables (b).

(a) Boolean variables (b) Integer variables
(Source: Author)

Genetic Algorithm (SGA). It uses binary representation, roulette wheel selection and one-point

crossover reproduction. SGA focuses on crossover as a means to generate new solution candidates

for a maximization problem. We use SGA as basis to exemplify GAs representation and operators.

3.1.1 GA Representation

In the SGA, the individuals consists of a sequel of binary numbers. Thus the representation

is named binary representation. As an analogy to the biological chromosome, each indivisible part

of the representation is called a gene. Figure 3.1 presents some examples of binary individuals.

When the binary number represents Boolean variables, the genotype-phenotype mapping is

intuitive: the chromosome length is defined as the number of items to be classified as true or false.

On the other hand, when the binary number represents integers or real numbers, the chromosome

length depends on the search space and the desired precision. To represent more than one integer

or real number in a single chromosome, one must select which genes are responsible for code each

variable. The conversion of a k-bit binary number coded in the chromosome to a real number is

possible after setting the lower and the upper limits of the representation – [lower, upper]. The

precision is given by
upper− lower

2k−1
and the conversion operation is given by (EIBEN; SMITH et

al., 2003):

real = lower+
upper− lower

2k−1
·b, (3.4)

where b is the integer corresponding to the binary number.



30

Figure 3.2 – Virtual roulette wheel in a maximization problem: each individual gets a selection probability
equals to its percentage of the evaluations sum.

(Source: Author)

The binary representation is inadequate for some problems due to certain limitations. For

example, it is difficult to handle multiple dimensions of continuous variables, mainly when great

precision is required. In this case, the most appropriate representation is the real representation

(HERRERA; LOZANO; VERDEGAY, 1998), in which each gene represents exactly one variable

to be optimized. The real representation uses the maximum precision the computer is capable to

offer. Depending on the specificity of each problem, more adequate and possibly more powerful

representations can be used (see more in Linden (2008)).

3.1.2 GA Selection Operators

The genetic operator responsible for select the fittest individuals is based on the process of

natural selection. Therein, the fitter the individual the greater the chance of survival. Note that

individuals with poor evaluations should not be completely discarded from population, since they

may carry important genetic information to generate fitter children.

In SGA, the roulette wheel method is used as selection operator Holland (1975). In this

method, the chance of an individual to be selected equals its own percentage of a virtual roulette.

The SGA maximizes the objective function, hence the individual selection probability corresponds

to its fitness parcel in the sum of all individuals evaluations. Figure 3.2 presents an example of this

method in a hypothetical population: it consists of a virtual roulette that represents the sum of the

fitnesses of four individuals (67, 82, 74 and 192). The probabilities of each individual to be selected

are 16%, 20%, 18% and 46%. Some disadvantages of the roulette wheel method are highlighted by

Eiben, Smith et al. (2003):
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• individuals with a much higher fitness than the remainder of the population tend to direct the

search process to themselves. As consequence, they are the only ones to be reproduced in

most of the generations. Hence the population is composed of increasingly similar individ-

uals throughout time. In this case, there is not enough genetic diversity for proper evolution

of the population.

• if individuals fitnesses are close to each other, there is almost no selection pressure, which

is the greater probability of survival of the individuals with the best fitness. In this case, the

selection is almost uniformly random and the population’s average fitness grows very slowly.

• the roulette wheel behaves differently when the evaluation function is shifted. For example,

consider that f is the evaluation function. The probability of selecting individuals with eval-

uation f +x, where x is a real number much higher than the average fitness of the population,

are basically the same.

One way to circumvent these disadvantages is to use selection operators which does not

take the absolute best fitness into consideration, but the best relative fitness between individuals.

Such as the Tournament operator, in which a number k of individuals is chosen at random from

the population. They are compared to each other and the best of them is chosen to be a parent.

Since two parents are required for reproduction, this procedure is repeated. The magnitude of the

fitnesses difference is not relevant. Therefore, the selection pressure on the population remains

constant.

3.1.3 GA Recombination Operators

After parenting selection, their genotypes are recombined to generate two offspring. It is

expected that, at each generation, some children will have their characteristics improved. SGA uses

the simplest recombination operator: the one-point crossover operator. A cutoff point is selected at

random among the genes of a chromosome. It divides the parent individuals into two parts: one on

the left and one on the right side of the cutoff point. The offspring are produced by concatenating

the left part of one parent with the right of the other and vice-versa. Figure 3.3 presents an example

of this genetic operator.
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Figure 3.3 – One Point Cross-over: a cutoff point is randomly selected and the parents exchange genetic
material to generate the offspring.

(a) (b)
(Source: Author)

Regarding real representations, different crossover operators can be used. Such as: the

flat crossover operator (RADCLIFFE, 1991), in which the value of the gene i in the offspring

chromosome h is chosen randomly from the interval [c1
i ,c

2
i ], where c j

i is the gene i of the parent

chromosome j; the arithmetical crossover operator, in which the offspring chromosomes h1 and

h2 are generated according to the relationships h1
i = λc1

i +(1− λ )c2
i and h2

i = λc2
i +(1− λ )c1

i ,

where λ is chosen from the interval [0,1] and may vary over generations (EIBEN; SMITH et al.,

2003; LINDEN, 2008); and the BLX - α crossover operator, also called blend crossover, where

hi is chosen randomly in the interval [cmin− I ·α,cmax + I ·α], where cmax = max(c1
i ,c

2
i ), cmin =

min(c1
i ,c

2
i ) and I = cmax− cmin. The BLX-0.0 crossover is the same as flat crossover (see more at

Herrera, Lozano and Verdegay (1998)).

3.1.4 GA Mutation Operators

The offspring may change through mutation given a mutation probability. The mutation

process is always stochastic and the probability of applying the mutation operator should be low. If

it is too high, the algorithm behaves as a random search for solutions (random walk).

SGA uses uniform mutation operator, the most common mutation operator for binary chro-

mosomes. In this operator, each gene can flip its value (from 0 to 1 and from 1 to 0) depending on a

independent mutation probability. Note that, there are two mutation probabilities: one to determine

whether the operator is applied or not, and other to determine whether each gene is flipped or not.

Figure 3.4 presents an example of uniform mutation.
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Figure 3.4 – Uniform mutation: a random number is generated for each gene. If it is smaller than the inde-
pendent mutation probability (5% in this example), that specific attribute is flipped.

(Source: Author)

The mutation operator for real representations consists of replacing the value of a gene, or

genes, by a value chosen randomly within some range [L,U ], where L is the lower limit and U is

the upper limit. Eiben, Smith et al. (2003) discriminates two types of mutation operators for real

representations according to the probability distribution from which the new values are taken: the

uniform mutation, in which the new values are chosen uniformly at random within the range [Li,Ui],

where Li and Ui are fixed values for each gene i; and the non-uniform mutation, in which the new

values are taken from a Gaussian distribution with mean equals the current state of the gene and

with standard deviation specified by the user.

3.1.5 Selecting new generation

Assuming that the population evolves in an environment of limited resources, not all indi-

viduals among the population of parents and offspring will be present in the next generation. The

simplest way to select survivors of a generation is to replace the entire population (parents) with

the generated offspring. This "new generation selection operator" is named population module

(LINDEN, 2008).

The population module can also use the elitism scheme, in which the individuals with the

best fitness are maintained in the population of the next generation.

3.1.6 Genetic Algorithms in System Identification

Li and Jeon (1993) use GA to select the most statistically significant terms of the polynomial

NARX model to avoid over-parameterization. Once the values of ny, nu and l (maximum delay in

y, in u and non-linearity degree, respectively) are chosen, the number of candidate terms (n) for the



34

model can be determined as:

n = M+1, (3.5)

where

M =
l

∑
i=1

ni

ni =
ni−1(ny +nu + i−1)

i
, n0 = 1.

The binary representation is used. The variables are Boolean, thus each gene represents the

inclusion or exclusion of one possible model term. The value 1 means the inclusion of that term in

the model and the value 0 means its exclusion. For example, if ny = nu = 3 and l = 3, there are 84

candidate terms: θ0, y[k− 1], y[k− 2], y[k− 3], u[k− 1], u[k− 2], u[k− 3], y[k− 1]2, y[k− 2]2, ....

Therefore, the system y[k] = θ0+θ1u[k−1]+θ2y[k−1]2 is represented by A= 100010010...0. The

parameters are estimated via the LS method. Li and Jeon (1993) determine the fitness of individuals

in the population using the one-step-ahead MSE, so that

f =
1

1+MSE
. (3.6)

Chen et al. (2007) introduce an enhanced evaluation function to identify NARX dynamic

models by means of GA. The binary representation is used. Each gene is a sub-string of the

chromosome corresponding to a model parameter. The maximum lags (ny and nu) and the number

of non-linear terms in their simplest form (s) are determined during the search process. Thus the

exact number of parameters is not known. Therefore, there are empty genes (buffers) to be used

depending on the values of ny, nu and s, which are limited to not exceed the amount of genes

reserved for the corresponding parameters in the model representation.

The chromosome has the following structure:

θ
y
1 θ

y
2 ... θ

y
ny buffer buffer θ u

1 θ u
2 ... θ u

nu
buffer buffer ⇒

⇒ θ 2
1 θ 2

2 ... θ 2
s buffer buffer ny nu s
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The genes corresponding to the model parameters are floating point numbers that follow the

encoding:

1 0101 1011 1110 1101 0101 0 0000 0011
coefficient a4 a3 a2 a1 a0 exponent

sign sign k
0→+ coefficient digits after decimal point 0→+ exponent Digits
1→− 1→−

where θ x
i is calculated by:

θ
x
i =±

(
1
16
·a4 +

1
162 ·a3 +

1
163 ·a2 +

1
164 ·a1 +

1
165 ·a0

)
·2±k. (3.7)

Regarding the genes corresponding to the values of ny, nu and s, they are integers that follow

the encoding:

000 000 000 011
b3 b2 b1 b0

in which the integer value is evaluated as

nx = 80 ·b0 +81 ·b1 +82 ·b2 +83 ·b3. (3.8)

The evaluation function proposed by Chen et al. (2007) seeks to better describe the main

properties of the model for the best performance of the GA process. Based on the general rule, the

normalized one-step-ahead prediction error is used:

e =

√
∑

n
k=1(y[k]− ŷ[k])2

∑
n
i=k y[k]2

(3.9)

where y is the desired output and ŷ is the model response. However, an evaluation function based

only on this error is unable to justify the model structure (CHEN et al., 2007).

If there are non-modeled system dynamics, these dynamics have their influence on the pre-

diction residues ξ (i) = y(i)− ŷ(i). Let the correlation function between two generic data vectors a
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and b be given by:

Ra,b(τ) =
1

n− τ

n−τ

∑
i=0

a[i]b[i+ τ]. (3.10)

Chen et al. (2007) define the evaluation function:

f (y,u,ξ ) =
1

e+ρy,ξ +ρu,ξ +ρξ ,ξ y +ρξ ,y2 +ρξ 2,y2
, (3.11)

where

ρa,b =

√
∑

n−1
τ=1 R2

a,b[τ]

∑
n
i=1 y2[i]

.

Aguirre, Barbosa and Braga (2010) implemented the GA to estimate parameters in NARX/-

NARMAX models. They use mono and multi-objective approaches with real representation, in

which each single locus is a gene that represents a parameter to be estimated. The individuals are

selected via stochastic universal sampling (BAKER, 1987), a heuristic crossover is implemented

(it returns a offspring closer to the best parent) and Gaussian mutation, in addition to the use of an

elitist strategy. Barbosa et al. (2011) also implemented the GA to estimate parameters for hydraulic

pumping models. They use a bi-objective approach with cost function composed of the acsSE in

dynamical data and the error in the system static curve (gray-box identification).

3.2 Genetic Programming

Unlike the GA, the GP is an evolutionary algorithm where the structure of the solution is

not specified in advance. The individuals are computer programs that randomly evolve into new

programs. In this sense, the GP may be considered as a machine learning technique and not as an

optimization technique (EIBEN; SMITH et al., 2003).

The problem to be solved by the GP consists of building a function or a program that makes

the mapping between input and output data. The chromosome is assessed by executing the program

and by determining its error relating to the desired output.



37

Figure 3.5 – Tree representation.The function (or program) f (x1,x2) = x1 · x2 · (x2+ x1) is represented as a
tree.

(Source: Author)

3.2.1 GP Representation

The most common representation used in the GP is the tree representation. In this represen-

tation, from a root node, the tree is divided into several branches in which the internal nodes have

arithmetic functions (+, -, *, /, max, ...) and the terminals, also called leaves, have variables and con-

stants. As a result, the tree representation hierarchically synthesizes a mathematical function. Fig-

ure 3.5 presents the tree representation of a function of two variables f (x1,x2) = x1 ·x2 · (x1+x2),

and the root node multiplies two branches: (x1 · x2) and (x1+ x2).

3.2.2 GP Selection Operators

According to Poli et al. (2008), the most common selection operator used in the GP is the

tournament selection operator, in which a number of individuals are chosen randomly from the

population. They are compared to each other and the best of them is chosen to be a parent.

3.2.3 GP Recombination and Mutation Operators

In the GP, the offspring are usually generated by recombination or mutation, rather than

recombination followed by mutation. In this sense, given a crossover probability pr and a muta-

tion probability pm, if there is recombination, there is no mutation and vice-versa. Koza (1992)

advises the use of the GP with no mutation at all. Other studies point out that approaches with only

crossover may have inferior performance (LUKE; SPECTOR, 1997).
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Figure 3.6 – GP subtree crossover operator. The parent individuals 2 ·x1 · x2
10 and 4 ·x1−x2 exchange subtrees

as genetic materials and generate two offspring: 2 · x1 · x2 and 4 · x1− x2
10 .

(a) (b)
(Source: Author)

The most common operators of reproduction and mutation are the subtree crossover and

the subtree mutation, respectively. In the former, two nodes are chosen randomly in the parent

individuals and the sub-trees formed from these points are interchanged between the chromosomes.

Figure 3.6 presents an example of such operation. In this case, two parents exchange subtrees as

genetic materials and generate two offspring:

parent1(x1,x2) = 2 · x1 · x2
10

and parent2(x1,x2) = 4 · x1− x2

o f f spring1(x1,x2) = 2 · x1 · x2 and o f f spring2(x1,x2) = 4 · x1− x2
10

.

In the latter, a mutation point is chosen at random. The existing subtree from that point is removed

and a new randomly generated tree is inserted in its place. A subtree mutation example is presented

in Figure 3.7. The individual f (x1,x2) = 2 · x1 · x2
10 has the branch composed of x2

10 replaced by the

random tree r(x1,x2) = 4 ·x1−x2. As result the mutated individual fm(x1,x2) = 2 ·x1 ·(4 ·x1−x2)

is generated.
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Figure 3.7 – GP subtree mutation operator. The individual 2 ·x1 · x2
10 has the branch composed of x2

10 replaced
by the random tree 4 · x1− x2.

(a) (b)
(Source: Author)

3.2.4 Genetic Programming in System Identification

The use of GP in System Identification has the advantage of promoting automatic struc-

ture selection. There is no need to define the degree of non-linearity, the maximum lags and the

functional form in advance.

Madar, Abonyi and Szeifert (2005) address the structure selection problem of polynomial

NARX models via the GP. To represent polynomial models, internal nodes are limited to the set

of operators F = {+,∗} and terminals to the set of variables T = {x1,x2, ...,xm}, where x ∈ {y[k−

1],y[k− 2], ...,y[k− ny],u[k− 1],u[k− 2], ...,u[k− nu]}. In addition, a syntactic rule is established

so that the internal nodes below a node with operator ∗ are switched to ∗, thus there is no addition

operator after a multiplication operator, i.e., consider the individual in Figure 3.8: if the root was a

multiplication operator (∗) the root of the subtree B would be switched from (+) to (∗).

A decomposition method extracts the regression terms from the individual. The subtrees

are selected by starting from the root node, following the branches until reaching a nonlinear node

(multiplication node). For example, see the tree represented in Figure 3.8. The root node is the
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Figure 3.8 – Decomposition of a tree in regression terms. Starting from the root node, follow the branches
until reach a nonlinar node or a terminal. The individual (x1 · x2)+(x1+ x2) yields the regres-
sors x1 · x2, x1 and x2.

(Source: Author)

operator +, thus it is possible to decompose this tree into two sub-trees A and B. The root of

the subtree A is a nonlinear function (operator ∗), thus this entire subtree is a regression term

(F1 = x1 · x2). The root of the subtree B is the + operator, therefore it is decomposed into two

subtrees C and D that are terminals, hence they are the regression terms (F2 = x2 and F3 = x3). The

selected regressors yield a linear-in-the-parameters model: y = θ0+θ1x1x2+θ2x2+θ3x3. Thus the

parameters are estimated via the LS method.

The authors use the following evaluation function, that is maximized:

fi =
ri

1+ exp(a1(Li−a2))
(3.12)

where fi is the fitness of the individual i, ri is the correlation coefficient between the model output

and the desired output, Li is the tree length (number of nodes), and a1 and a2 are parameters of a

penalty function design to avoid overparameterized models.

The resultant model may contain terms that contribute very little to its accuracy, therefore

MADAR; ABONYI; SZEIFERT suggest the use of OLS/ERR to improve the algorithm perfor-

mance. The regressor that are less significant (low ERR) are removed from the model. This "prun-

ing" method is applied before the evaluation step. For example, suppose that ERRF1 ≪ ERRF2 ,

ERRF1 ≪ ERRF3 and ERRF1 +ERRF2 +ERRF3 = 1, where F1, F2 and F3 are the regressors gener-

ated by the subtrees A, C and D from Figure 3.8, respectively. Hence the subtree A is eliminated

and the final model is y = θ0 +θ1x2 +θ2x3.
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Figure 3.9 – MGGP individual. It is a sequel of genetic programs as basis functions. The linear combination
of these programs represents the mathematical model.

(Source: Author)

3.3 Multi-Gene Genetic Programming

The MGGP was introduced by Hinchliffe et al. (1996), under the name of Multi Basis

Function Genetic Programming (MBF-GP). It follows the methods already established in Systems

Identification, in which the models are constructed by combining a number of functions. The

MGGP can be represented as the combination of separated basis functions:

g(ϕ,Θ) =
m

∑
i=1

θigi(ϕ) (3.13)

where m is the number of basis functions, gi represents individual functions and θi represents the

model parameters. Ljung (1999) shows how this expansion can be used to represent and analyze

virtually any nonlinear modeling technique. For example, a feedforward neural network is the

combination of a number of log-sigmoid or hyperbolic tangent functions. Figure 3.9 presents the

representation of a generic MGGP individual as an example.

Hinchliffe (2001) points out possible weaknesses of these traditional modeling techniques:

they are restricted to the use of a particular type of basis function and the general model structure

(for instance neural network architecture) is fixed before starting the stage of parameter optimiza-

tion. In this sense, the MGGP is very attractive because it does not have a fixed structure and can

vary the number of basis functions during the evolutionary process.

3.3.1 Modification of the Genetic Operators

The main difference between the MGGP genetic operators and those of the standard GP is

the recombination operators. In MGGP, they are referred to as high-level crossover (Figure 3.10)

and low-level crossover (Figure 3.11). In the former, the genetic materials are exchanged as entire
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Figure 3.10 – MGGP High-Level Crossover. A cutoff point is determined for each parent individual, that
exchanges a set of basis functions as genetic materials.

(Source: Author)

basis functions; that is, the MGGP parents exchange their GP individual in a way similar to GA one-

point crossover. Note that in high-level crossover, the resultant offspring can have sizes different

from those of each other and even from those of their parents. This occurs because the cutoff point

is chosen for each parent. In this sense, the MGGP algorithm works with fluctuating individual

sizes. In the latter, the genetic materials are exchanged as subtrees of the basis functions; that is,

only one gene is randomly chosen from each parent individual, and their GPs (or basis functions)

exchange genetic materials as in the GP subtree crossover operator.

3.4 Multi-Gene Genetic Programming in System Identification

Hinchliffe and Willis (2003) use the MBF-GP as a means to develop an automatic func-

tion selection procedure for dynamic models. What differs their work from the previous papers

presented until this point is that HINCHLIFFE; WILLIS propose an algorithm that automatically

discovers the appropriate lag terms required to build an accurate model without predetermining the

set of terminal variables T = {x1,x2, ...,xn}. That is, instead of the GP construct dynamic basis

functions by providing it with a terminal set containing shifted process inputs and outputs, it is

provided a back-shift operator, q−1, to the function set (or node set). Thus the terminal set con-

sists solely of the process input and output signals shifted by a single time sample. The single

shifting is justified for the terminal alone must be a valid model term. As an example, the term

ŷ[k] = u[k−6]− y[k−2] is represented in the GP as f = q3(q2(u1))−q1(y1), where q3 stands for

q−3 that shifts u(k− 1) by three samples, and u1 is the single sample shifted input terminal. The

authors worked with rational models and the function set is composed of {+, -, /, *, POW, SQRT,
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Figure 3.11 – MGGP Low-Level Crossover. Parent individuals exchange basis function’s subtrees as genetic
materials.

(Source: Author)

SQR, EXP, LOG, Back-shift operators: q0, q1, q2, q3}. The model parameters are optimized using

the Recursive Least Squares (RLS) method (AGUIRRE, 2015). The results of the MGGP algorithm

is compared to the results of the Filter Based Neural Network (FBNN) (Willis et al., 1991), which

had the benefit of time delay removal via correlation analysis to identify the time delay before net-

work training. There was little difference between the two techniques in terms of model accuracy.

Ghareeb and Saadany (2013) implemented the MGGP in a Short Term Load Forecasting

(STLF) problem in power system operation. A data set of the Egyptian electrical network is used.

This data set includes the daily maximum temperature, the daily minimum temperature and the

corresponding actual peak load. The MGGP has successfully forecasted the future load with high

accuracy compared to that of a Radial Basis Function (RBF) network and of a standard single-gene

GP.

Mehr and Kahya (2017) proposed a Pareto-optimal Moving Average (MA) MGGP for daily

streamflow prediction. The data is pre-processed by a MA filter, that diminishes the lagged predic-

tion effect of stand-alone MGGP models. A multi-objective framework is used to select a parsimo-

nious model through an interactive complexity-efficiency trade-off. Thus MA filtered data is en-

tered into the black-box MGGP system and then, Pareto front plot of the best generated population

is depicted to choose a parsimonious model. It is considered up to 7-day lag for the autoregressive

model from which the GP selects the most effective inputs. The model was superior to the stand-

alone GP, MGGP and conventional Multivariate Linear Regression (MLR) prediction models in

terms of both prediction accuracy and simplicity.
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4 MATERIALS AND METHODS

4.1 Proposed Algorithm

This dissertation proposes a modified MGGP algorithm for nonlinear system identification.

We suggest a hybridization with the traditional OLS/ERR method, which is applied to the MGGP

individuals depending on some probability. This hybridization is named MGGP/ERR. Moreover,

we suggest the use of "two levels" of mutation: a high-level mutation and a low-level mutation

(named after the high- and low-level crossovers). As any evolutionary algorithm, the MGGP/ERR

starts with an initial population which evolves through the generations by applying genetic opera-

tors.

Regarding the genetic operators, MGGP works with two levels of crossover: high-level

crossover and low-level crossover (see figures 3.10 and 3.11). In the proposed algorithm, for a

given crossover probability CXPB, there is 50% chance of applying one or another of the crossover

operators. As mentioned before, we also propose two kinds of mutation:

• high-level mutation, which swaps one randomly selected gene for a new one; and

• low-level mutation, which occurs as a GP subtree mutation operator (see 3.2.3), that is, one

single gene is selected and its basis function has a subtree replaced by a new random subtree.

Figure 4.1 exemplify these operators. Note that in the high-level mutation (Figure 4.1(a)), the basis

function of one randomly selected gene (dark gray) is replaced by an entirely new basis function.

On the other hand, in the low-level mutation (Figure 4.1(b)), the basis function of one randomly

selected gene (pointed by a dark gray arrow) has a subtree replaced by a new one. For a given

mutation probability MTPB, it has also a 50% chance of applying one or another of the mutation

operators. As recommended for GP evolution (POLI et al., 2008), the individual experiences either

crossover or mutation, i. e. both operators are not applied to the same individual.

The elitism operator is applied over the generations and it selects the best individuals from

both offspring population and previous elite individuals.

A set of parameters must be configured in the algorithm:

• population size: defines the number of individuals present in the population;
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Figure 4.1 – Two level MGGP mutation. (a) High-level mutation. (b) low-level mutation.

(a) (b)
(Source: Author)

• crossover probability (CXPB): defines the probability of a pair of individuals being combined

together through a recombination operator;

• mutation probability (MTPB): defines the probability of a single individual being mutated

through a mutation operator if it has not experienced recombination;

• maximum GP height: limits the size of a GP tree regarding its height;

• maximum number of MGGP terms: limits the model size regarding the number of terms that

the model can possess;

• elite size: defines the percentage of individuals from the population that can remain in the

next generation;

• primitive functions: the set of functions (multiplication, division, exponentiation, trigono-

metric operations, etc.) used as nodes in GP individuals. Additionally, the set of back-shift

operators (q−1,q−2, ...) responsible for the automatic lag determination.

• pruning probability (OLSPB): defines the probability of applying the pruning strategy

(OLS/ERR) over an individual during evaluation step.

• pruning tolerance: defines the minimum ERR a term must yield to not be discarded.

Figure 4.2 exhibits the algorithm flowchart. It begins with an initial population that is

evaluated. Then, the generation loop starts: i) the parent individuals are selected via tournament,

ii) each parent couple has a chance to be recombined (CXPB), iii) each individual that has not been

recombined has a chance to be mutated (MTPB), iv) the individuals are evaluated, and v) the elitism
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Figure 4.2 – Algorithm flowchart

(Source: Author)

operator is applied. After the generation loop, the most significant individuals are validated and the

one with the least validation error is selected as the system model. Details from the evaluation

function are discussed next.
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4.2 Individuals Evaluation

In this step, for any EA, a fitness value is assigned to every individual in the current pop-

ulation. Regarding system identification EAs, in which each individual is a possible model, the

model parameters would be estimated and a statistic discriminant value would be assigned to ev-

ery individual. Traditionally, in this step there is no modification in the individual structure. The

MGGP/ERR algorithm is disruptive in this common sense. It uses a pruning strategy that reduces

the individuals to only relevant terms during the evaluation step. Thus the parameters estimation,

pruning and fitness assignment are performed.

The cost function is generically defined by:

Evaluation(individual):

if rand() < OLSPB:

apply_pruning_method // OLS/ERR

parameter_estimation // LS or ELS

fitness_assignment // MSE

Note that there are two design parameters to be set (as mentioned in the previous section),

the probability (OLSPB) of applying the OLS/ERR algorithm and its tolerance. The tolerance

regards the minimum ERR value a regressor must yield to be selected. The parameters θ estimated

by OLS/ERR is equivalent to that estimated via the standard LS method. Hence, if the OLS/ERR

is not triggered, the LS method is used. The fitness of an individual is the MSE.

Remark 1 The MGGP toolbox developed in this dissertation allows the user to work with Single

Input Single Output (SISO) and Multiple Input Single Output (MISO) models.

Remark 2 The automatic lag determination allows the user not to worry about the assembly of a

regressor matrix with all possible terms. The traditional parameters ny, nu and l are replaced by

the maximum GP height parameter.

Three different fitness functions are used during individuals evaluation (see definitions in 2.5.1):

i) one-step-ahead prediction error PE, ii) free-run simulation error SE, and iii) multiple-shooting

simulation error. The next chapter describes the experiments and discuss the results.
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5 EXPERIMENTS

In this chapter, we assess the hybrid MGGP/ERR algorithm performance in solving some

important identification problems, which are: influence of the noise level, PEM versus SEM tech-

niques, and soft input excitement. The last two are interconnected, since SEM techniques are

usually used to solve soft input problems. It is not hard to understand that the noise level may inter-

fere in the algorithm performance. We focused in the equation error problem, which does not yield

parameters biases. PEM and SEM techniques differ from resultant model generalization capabili-

ties. And soft inputs excite poorly the systems in which are applied. They yield outputs that do not

carry all information about the system and hinder the identification process. In total, we perform

four experiments. The first two analyse noise level and soft input problems using stochastic test

systems to generate data. The third identify a hydraulic pumping system benchmark. And the last

one identify a piezoelectric actuator, which is characterized by the hysteretic behavior. In the next

sections we state the problems, present from where the data are acquired, present the algorithm

configuration used in the process together with scripts on how to perform the experiment using the

toolbox, and discuss the results.

5.1 Influence of the Noise Level

The objective of this experiment is to investigate the influence of noise level in the

MGGP/ERR algorithm performance. The assessment is yielded for equation error problem: the

EE noise level (v[k]) varies and OE noise level is fixed to zero (e[k] = 0) over 30 Monte Carlo sim-

ulations for each noise level. The validation errors yielded by the models selected via MGGP/ERR

are compared to the ones yielded by the models selected via standalone OLS/ERR, over 30 other

Monte Carlo simulations, using the parameters (l = 3,ny = 3,nu = 3) to build the whole candidate

regressor matrix. Only the PE fitness function (2.14) is used in this test.
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5.1.1 Data set

The following test systems are used to generate data (MADAR; ABONYI; SZEIFERT,

2005; PIRODDI; SPINELLI, 2003):

S1 : ỹ[k] = 0.8u[k−1]2 +1.2y[k−1]−0.9y[k−2]−0.2+ v[k]

y[k] = ỹ[k]+ e[k]

S2 : ỹ[k] = 0.75y[k−2]+0.25u[k−1]−0.2y[k−2]u[k−1]+ v[k]

y[k] = ỹ[k]+ e[k],

(5.1)

where the input signal u[k] is a white Gaussian noise with zero mean and variance of one

(u[k]∼WGN(0,1)), v[k] is white noise signal (v[k]∼WGN(0,x)) that forms the EE problem, with

x ∈ {0.02,0.04,0.06,0.08}, and e[k] = 0.

5.1.2 Algorithm parameters and toolbox guide

The following set up is used for training:

population size = 300; generations = 100; elitism = 10%;

maximum GP height = 3; maximum number of MGGP terms = 10;

CXPB = 0.8; MTPB = 0.2 (if not crossover); OLSPB = 1.0

OLS tolerance = 1e-3; delay functions = q1, q2, q3;

primitive functions = multiplication;

parameter estimation = LS;

fitness function = PE.

These design parameters are intuitive, some of them from trial and error, i.e., the maximum

GP height is chosen small to form short basis functions, which yield low degree of nonlinearity.

Note that the primitive functions are composed of multiplication operators only. This allows the

representation of polynomial NARX/NARMAX models.
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Script 5.1 – Influence of the noise level experiment.

1 import numpy as np

2 from mggp import mggpElement , mggpEvolver

3

4 def evaluate(ind):

5 try:

6 element.compile_model(ind)

7 element.ols(ind ,1e-3,y,u)

8 theta = element.ls(ind,y,u)

9 return element.score_osa(ind,theta ,y,u),

10 except np.linalg.LinAlgError as e:

11 return np.inf,

12 element = mggpElement()

13 element.setPset(maxDelay=3,numberOfVariables=2,

14 constant=True)

15 element.renameArguments()

16 evolver = mggpEvolver(popSize=100,CXPB=0.8,MTPB=0.2,

17 n_gen=100, maxHeight=3,maxTerms=30,

18 verbose=False ,elite=10,

19 element=element)

20 for std in [0.02, 0.04, 0.06, 0.08]:

21 for i in range(30):

22 y,u = generateData(std)

23 hof,log = evolver.run(evaluate=evaluate)

24 bestModel = element.model2List(hof[0])

25 element.save("fileName.pkl", bestModel)

The Script 5.1 shows how to perform the influence of noise level experiment. The MGGP

toolbox is composed of two classes: mggpElement and mggpEvolver. An mggpElement object

carries information about individual’s characteristics and an mggpEvolver object is responsible for

population evolution. Note that the toolbox allows the user to perform an experimentation with very

few lines of code. We can summarize the coding process in four steps: i) define an element object
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Table 5.1 – Number of times the algorithms selected all terms present in the systems during 30 Monte Carlo
simulations.

MGGP/ERR OLS/ERR
std(v) - EE

0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08
S1 (4 terms) 26/30 26/30 27/30 29/30 23/30 20/30 21/30 22/30
average SNR 88.37 76.75 69.82 64.21 88.37 76.75 69.82 64.21
S2 (3 terms) 22/30 27/30 25/30 27/30 30/30 30/30 30/30 30/30
average SNR 51.47 40.05 32.34 27.15 51.47 40.05 32.34 27.15

that carries the primitive set used to form nodes and terminals, ii) define the evaluation function,

iii) define the evolver element that runs the evolution process, and iv) run the evolution process.

Details about the functionalities of each method can be seen in Appendix A.

5.1.3 Results and discussion

Table 5.1 presents the performance of the proposed MGGP/ERR algorithm and of the stan-

dalone OLS/ERR algorithm regarding the number of times the algorithms are able to select every

term present in the model (in 30 Monte Carlo executions). Note that the EE noise level has no ef-

fect on the structure selection for both MGGP/ERR and OLS algorithms since the number of times

they select all correct terms does not correlate with the noise level. In addition, the MGGP/ERR

algorithm yields better performance than the OLS for system S1, and the opposite is true for system

S2. Regarding the first, the means of correctly selected models are 27.00 for MGGP/ERR and 21.50

for OLS (out of 30). For the second, the values are 25.50 for MGGP/ERR against 30.00 for OLS.

These results indicate that the best algorithm to be used depends on the system dynamics.

Figure 5.1 presents the free-run simulation errors of the selected models for validation data.

Note that the algorithms yield similar performance despite the number of times they select all

terms present in the model. It indicates that the terms which are not selected are not so relevant to

the system dynamics. We highlight Figure 5.1(b), in which MGGP/ERR models perform slightly

better than OLS/ERR algorithm for the highest noise level, even though the latter selected models

correctly more times than the former.
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Figure 5.1 – The free-run mean squared errors (or simulation errors) for the selected models via OLS (dark
gray) and MGGP (light gray) algorithms for the case increasing equation error (EE) noise level.
The shaded plots represent the inter-quartile range and the inner lines represent the median
value.

(a) System S1 - EE problem (b) System S2 - EE problem

5.2 Influence of OLS Probability and PEM and SEM Techniques

In this experiment, the influence of OLS/ERR pruning in the MGGP structure selection

algorithm is analyzed. The cost functions (individuals evaluation) are implemented using PEM

or SEM techniques for comparison. In the identification process, the systems are excited by soft

input, and the validation data are generated using a persistently exciting signal (ideal input). This is

a challenging situation where the identification data do not carry all information about the system.

In addition, we use a polynomial framework to model a rational test system.

5.2.1 Data set

Two OE test systems are used to generate data for the identification process. The first is

the system S2, defined in (5.1), and the second is the following system taken from (HINCHLIFFE;

WILLIS, 2003):

S3 : ỹ[k] = ỹ[k−1] · ỹ[k−2] · 2.5+ ỹ[k−1]
1+ ỹ[k−1]2 + ỹ[k−2]2

+u[k−11],

y[k] = ỹ[k]+ e[k],
(5.2)
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where e[k] is a WGN with standard deviation std(e) = 0.02 for system S2 (SNR ≈ 51.47) and

var(e) = 0.04var(ỹ) for system S3 (SNR≈ 28.05) and, in both cases, the input:

• for the identification data, u[k] ∼WGN(0;0.20) that is processed by a low-pass filter with

poles in 0.95 and 0.9;

• for the validation data, u[k]∼WGN(0;1).

Training and validation data are composed of 500 samples and the validation data are simulated

without noise.

5.2.2 Algorithm parameters and toolbox guide

The algorithm set up for the identification of both systems differ only in the individual size

constraints as follows:

population size = 200; generations = 50; elitism = 10%;

CXPB = 0.8; MTPB = 0.2 (if not crossover); OLSPB = 0-100%;

OLS tolerance = 1e-3; delay functions = q1, q2, q3;

primitive functions: multiplication;

parameter estimation: LS

fitness function = PE / SE

for system S2:

maximum GP height = 3; maximum MGGP terms = 10;

for system S3:

maximum GP height = 5; maximum MGGP terms = 30.

The Script 5.2 presents how to perform the influence of OLS probability and PEM and

SEM techniques experiment. In addition to the Script 5.1, an OLS probability is included into the

evaluation function. PEM and SEM techniques are defined by the return method in the evaluation

function.
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Script 5.2 – Influence of OLS probability and PEM and SEM techniques experiment

1 import numpy as np

2 from mggp import mggpElement , mggpEvolver

3 import random

4

5 def evaluate(ind):

6 try:

7 element.compile_model(ind)

8 if random.random()<OLSPB:

9 element.ols(ind ,1e-3,y,u)

10 theta = element.ls(ind,y,u)

11 ind.theta = theta

12 return element.score_osa(ind,theta ,y,u),

13 # return element.score_freeRun(ind,theta ,y,u),

14 except np.linalg.LinAlgError as e:

15 return np.inf,

16 element = mggpElement()

17 mggp = mggpEvolver(popSize=200,CXPB=0.8,MTPB=0.2,

18 n_gen=50,maxHeight=5,maxTerms=30,

19 verbose=False ,elite=10,element=element)

20 for OLSPB in [0.0, 0.25, 0.5, 0.75, 1.0]:

21 for i in range(50):

22 y,u = generateData()

23 hof,log = evolver.run(evaluate=evaluate)

24 bestModel = element.model2List(hof[0])

25 element.save("fileName.pkl", bestModel)

5.2.3 Results and discussion

The results of this experiment consist of the PE and SE performances obtained over the

validation data with ideal input, the number of unstable models in free-run simulation (out of 50)

and the model sizes over 50 Monte Carlo simulations for each OLSPB value.
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Figure 5.2 – Selected models results for system S2 using PEM technique ans soft input in 50 Monte Carlo
simulations. It consists of the graphics (a) PE x OLSPB, (b) SE x OLSPB, (c) non-stable models
x OLSPB and (d) model sizes x OLSPB.

(a) MSEPE x OLSPB (b) MSESE x OLSPB

(c) Non-stable Models (d) Model Size x OLSPB

5.2.3.1 System S2

Figures 5.2 and 5.3 present the results for system S2 using PEM and SEM techniques, re-

spectively. In each figure, there are three box-plots relating PE, SE and model size to the probability

OLSPB and one graphic relating the number of models (out of 50) that are unstable in free-run sim-

ulation over validation data to the OLSPB values. Note that there is an improvement in terms

variance of the PE and SE scores for both PEM and SEM techniques with increment of OLSPB.

However, the boxes notches overlap hence nothing can be said about their medians. The graph-

ics SE×OLSPB (figures 5.3(b) and 5.4(b)) are complementary to the graphics non-stable models

×OLSPB (figures 5.3(c) and 5.4(c)). For example, regarding the PEM technique and OLSPB= 0.0,
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Figure 5.3 – Selected models results for system S2 using SEM technique and soft input in 50 Monte Carlo
simulations. It consists of the graphics (a) PE x OLSPB, (b) SE x OLSPB, (c) non-stable models
x OLSPB and (d) model sizes x OLSPB.

(a) MSEPE x OLSPB (b) MSESE x OLSPB

(c) Non-stable Models (d) Model Size x OLSPB

there are 20 models (out of 50) that are BIBO unstable on validation data, and these models are

not represented in the box-plot SE×OLSPB. Thus, for OLSPB = 1.0 (in which there is only one

unstable model), the median and variance of SE are much smaller than the ones for OLSPB = 0.0

(in which there are 20 unstable models). It can be inferred that there is a significant improvement in

the SE over the validation data with the increment of the OLSPB. Moreover, regarding the model

size × OLSPB boxplot, the boxes notches do not overlap for OLSPB bigger than 0.5, which means

that the median values of the models size decrease with the increment of OLSPB.

For PEM technique, OLSPB = 0 and OLSPB = 0.25, all 50 models are of size 10. It goes

down to between 5 and 8 terms, with median of 6, for OLSPB = 1.0. It is clear that the removal

of spurious terms influences the number of unstable models. It is worth mentioning the difference
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Figure 5.4 – Selected models results for system S3 using PEM technique and soft input in 50 Monte Carlo
simulations. It consists of the graphics (a) PE x OLSPB, (b) SE x OLSPB, (c) non-stable models
x OLSPB and (d) model sizes x OLSPB.

(a) MSEPE x OLSPB (b) MSESE x OLSPB

(c) Non-stable Models (d) Model Size x OLSPB

between the non-stable models graphics for PEM and SEM techniques. Note that for OLSPB= 0.0,

the number of unstable models is smaller for SEM technique (11 models for SEM and 20 models

for PEM technique). This behavior is expected since SEM based algorithms yield better models

when soft inputs are used (PIRODDI; SPINELLI, 2003).

5.2.3.2 System S3

Figures 5.4 and 5.5 present the results for system S3 using PEM and SEM techniques,

respectively. Note that, for OLSPB = 0.0, all the models obtained by PEM technique and 41

models (out of 50) obtained by SEM technique are BIBO unstable in free-run simulation. The
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Figure 5.5 – Selected models results for system S3 using SEM technique and soft input in 50 Monte Carlo
simulations. It consists of the graphics (a) PE x OLSPB, (b) SE x OLSPB, (c) non-stable models
x OLSPB and (d) model sizes x OLSPB.

(a) MSEPE x OLSPB (b) MSESE x OLSPB

(c) Non-stable Models (d) Model Size x OLSPB

improvement in terms of stable models was greater for PEM technique (from 50 unstable models

in OLSPB = 0.0 to 5 unstable models in OLSPB = 1.0) than the one for SEM technique (from 41

unstable models in OLSPB = 0.0 to 19 unstable models in OLSPB = 1.0). The improvement in the

PE for this system is clearer than the one for system S2. In Figure 5.5(a), the variance and median

of the PE decreases systematically with the increment of the OLSPB. Note that the notches of

OLSPB = 0.0 and OLSPB = 0.5 do not overlap. It is worth mentioning that, for system S3, the use

of PEM technique together with 100% chance of applying OLS/ERR algorithm during evaluation

step achieved better performance than the use of SEM technique with the same OLSPB.

The system S3 has high degree of non-linearity (with rational structure) and long input lag

term dependency (u[k− 11]). The degree of nonlinearity necessary to represent this system in
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Figure 5.6 – Selected models results for system S3 using PEM technique in 50 Monte Carlo simulations with
ideal input. It consists of the graphics (a) PE x OLSPB, (b) SE x OLSPB, (c) non-stable models
x OLSPB and (d) model sizes x OLSPB.

(a) MSEPE x OLSPB (b) MSESE x OLSPB

(c) Non-stable Models (d) Model Size x OLSPB

a polynomial structure is not known in advance. It should be emphasized that if the OLS/ERR

algorithm was applied in this example for structure selection using the parameters (l = 5,ny =

11,nu = 11), the RAM memory would burst out for low performance computers (> 2 Gb for a single

matrix). Moreover, the OLS/ERR algorithm usually fails to select the correct regressor among

candidates highly correlated, i.e., the correct term y[k− 1] and the term y[k− 2], which is highly

correlated to the former if the system is excited by soft input. In this way, the MGGP algorithm

facilitates the OLS/ERR algorithm task, as the former selects groups of terms from the candidate

regressor space over which the latter is applied. Eventually, the highly correlated regressors do not

appear in the group of regressor candidates selected by the MGGP and the OLS/ERR selects the

correct terms.
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Figure 5.7 – Selected models results for system S3 using SEM technique in 50 Monte Carlo simulations with
ideal input. It consists of the graphics (a) PE x OLSPB, (b) SE x OLSPB, (c) non-stable models
x OLSPB and (d) model sizes x OLSPB.

(a) MSEPE x OLSPB (b) MSESE x OLSPB

(c) Non-stable Models (d) Model Size x OLSPB

One last analysis must be made to conclude this experiment. Until this point, only soft

inputs were used in the training step. Figures 5.6 and 5.7 show the results for system S3 in an ideal

situation of training data, that excites the system in all possible frequencies (ideal input). There is

no improvement due to the increment of the OLSPB in terms of performance for PEM nor SEM

techniques. Although, the use of OLS/ERR yields more parsimonious models.

5.3 Hydraulic Pump

The hydraulic pumping system (Figure 5.8) here studied simulates the behavior of the hy-

draulic part of a hydroelectric power plant, and the output pressure must be controlled over a wide
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Figure 5.8 – Hydraulic pump system.

(Source: Barbosa et al. (2011))

range of operating conditions. Mathematical models are desired to simulate and to design a closed-

loop controller for the real pumping system, in which the model output is the system pressure and

the model input is the pumps’ reference speed (BARBOSA et al., 2011).

5.3.1 Data set

The data set, also used in (BARBOSA et al., 2011), is taken from the Artificial Intelligence

and Automation group webpage (http://www.aia.ufla.br/home/filesdatasets/). The dynamical data

are composed of N = 3200 samples for model identification and N = 800 samples for validation,

with a sampling time of Ts = 50 ms. An example of input-output data is shown in Figure 5.9.

5.3.2 Algorithm setup

To model the hydraulic pump system, two cost functions are tested: the PEM and SEM

techniques. None extra primitive function is included in the algorithm, so it looks for polynomial

models. The following setup is used:

population size = 500; generations = *; elitism = 10%;

maximum GP height = 5; maximum number of MGGP terms = 50
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Figure 5.9 – Hydraulic pump dynamical data.

(a) Pump speed reference (b) System output pressure

CXPB = 0.8; MTPB = 0.2 (if not crossover); OLSPB = 0.2;

OLS tolerance = 1e-7; delay functions = q1, q2, q3, q4, q5;

primitive functions: multiplication;

parameter estimation: ELS;

fitness function = PE and SE.

The algorithm is run until the minimum error stops improving. The parameter estimation

method used in this experiment is the extended least squares (see 2.4). In this case, the identification

is performed considering the problem as a white noise output error problem (see 2.2.1).

The Script 5.3 presents a code to perform this experiment using the MGGP toolbox. Note

the use of extended least squares in line 10. In this experiment, after every 100th generation the

best individual from the population is saved and only the elite is maintained for the next one.
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Script 5.3 – Hydraulic pump identification experiment

1 from mggp import mggpElement ,mggpEvolver

2 import numpy as np

3 import random

4

5 def evaluate(ind):

6 try:

7 element.compile_model(ind)

8 if random.random()<OLSPB:

9 element.ols(ind ,1e-7,y,u)

10 theta = element.ls_extended(ind,y,u)

11 return element.score_osa(ind,theta ,y,u),

12 # return element.score_freeRun(ind,theta ,y,u),

13 except np.linalg.LinAlgError as e:

14 return np.inf,

15

16 element = mggpElement()

17 element.setPset(maxDelay=5)

18 element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’})

19 mggp = mggpEvolver(popSize=200,CXPB=0.8,MTPB=0.2,

20 n_gen=100,maxHeight=5,maxTerms=30,

21 elite=10,element=element)

22 y,u = trainingData()

23 OLSPB = 0.2

24 k = 500

25 seed = None

26 for i in range(100):

27 hof,log = mggp.run(evaluate=evaluate ,seed=seed)

28 best = element.model2List(hof[0])

29 element.save("fileName.pkl",best)

30 seed = hof.items
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5.3.3 Results and discussion

In this experiment, two models were found by the MGGP algorithm, one from the PEM

technique (model MGGPPEM(5.3)) and another from the SEM technique (model MGGPSEM(5.4)):

yPEM [k] = θ1y[k−1]+θ2y[k−4]+θ3y[k−12]+θ4u[k−4]+θ5u[k−13]

+θ6y[k−1]y[k−2]+θ7y[k−1]y[k−3]+θ8y[k−1]u[k−4]

+θ9y[k−1]u[k−6]+θ10y[k−5]u[k−2]+θ11y[k−5]u[k−7]

+θ12y[k−8]u[k−7]+θ13u[k−1]u[k−4]+θ14u[k−1]u[k−6]

+θ15u[k−4]u[k−6]+θ16y[k−1]2y[k−2]+θ17y[k−1]y[k−3]2

+θ18y[k−1]y[k−5]2 +θ19y[k−3]2u[k−3]+θ20y[k−1]u[k−2]2

+θ21y[k−1]y[k−3]u[k−4]+θ22y[k−1]u[k−3]u[k−5]

+θ23y[k−7]2u[k−2]+θ24y[k−1]3u[k−6]

+θ25y[k−1]y[k−8]2u[k−1]

+θ26y[k−1]y[k−3]2u[k−3]+θ27y[k−2]y[k−5]2u[k−5]

+θ28y[k−3]2u[k−4]2 +θ29y[k−3]2y[k−5]u[k−5]

+θ30y[k−8]2u[k−1]u[k−6]+θ31y[k−2]y[k−3]y[k−5]u[k−4]

+θ32y[k−1]3y[k−7]u[k−7]+ξMA [k],

(5.3)

ySEM [k] = θ1y[k−7]+θ2u[k−4]+θ3u[k−10]+θ4u[k−11]+θ5y[k−1]y[k−3]

+θ6y[k−1]y[k−2]+θ7y[k−1]u[k−4]+θ8y[k−5]u[k−7]

+θ9y[k−6]u[k−4]+θ10y[k−6]u[k−10]+θ11y[k−3]3

+θ12y[k−1]2y[k−2]+θ13y[k−3]2u[k−4]+θ14y[k−2]y[k−4]y[k−7]

+θ15y[k−1]y[k−4]u[k−6]+θ16y[k−6]y[k−9]u[k−12]

+θ17y[k−1]u[k−5]u[k−12]+θ18u[k−4]3 +θ19u[k−5]2u[k−10]

+θ20y[k−3]2u[k−4]2 +θ21y[k−3]y[k−4]y[k−7]u[k−10]

+θ22y[k−2]y[k−3]y[k−5]u[k−4]+θ23y[k−2]y[k−3]2u[k−6]

+θ24y[k−5]2u[k−5]u[k−6]+θ25y[k−1]3y[k−5]u[k−4]+ξMA [k],

(5.4)

where the term ξMA represents the moving average part of the model. Model terms are not sorted

by ERR value.
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Table 5.2 – Hydraulic pump models. The first two are from (BARBOSA et al., 2011) obtained via OLS
method. PE is the one-step-ahead MSE (mlc2); SE is the free-run MSE (mlc2); NP the number of
parameters present in the model; and max. NP is the number of all possible regressors for given
(l,ny,nu).

Model PE(Ident.) PE(Val.) SE(Ident.) SE(Val.) NP (l,ny,nu) max. NP
Barbosa (15) 0.100 0.082 2.600 2.243 17 (2,6,6) 90
Barbosa (17) 0.086 0.070 1.447 1.120 23 (3,6,6) 454

MGGPPEM(5.3) 0.067 0.058 1.910 1.150 32 (5,12,13) 142505
MGGPSEM(5.4) 0.088 0.068 1.221 0.997 25 (5,9,12) 65779

Barbosa et al. (2011) worked with two models in which parameters were estimated via the

ELS method and structures were obtained by OLS/ERR algorithm. The model Barbosa (15) is

obtained using l = 2, ny = 6 and nu = 6; and the model Barbosa (17) with l = 3, ny = 6 and

nu = 6. Their performances are described in Table 5.2, where PE and SE of each model over the

identification and validation data are presented, as well as the number of terms a polynomial model

would contain considering all possible regressors for a given nonlinearity degree (l), maximum

output lag (ny) and maximum input lag (nu). The performances of the obtained MGGP models are

also described in the table.

Model MGGPPEM (5.3) achieved the best one-step-ahead prediction results. Model

MGGPPEM (5.3) and model Barbosa (17) obtained PE = 0.067 mlc2 and PE = 0.086 mlc2, re-

spectively, for the training data (model MGGPPEM (5.3) performs 22% better), and PE = 0.058

mlc2 and PE = 0.070 mlc2 for the validation data (model MGGPPEM (5.3) performs 17% better),

respectively. However, the free-run simulation errors are SE = 1.910 mlc2 and SE = 1.447 mlc2

for the training data (model MGGPPEM (5.3) performs 32% worse) and SE = 1.150 mlc2 and SE =

1.120 mlc2 for the validation data (model MGGPPEM (5.3) performs 3% worse), respectively. Note

that for the validation data, the simulation error of model MGGPPEM (5.3) is very close to the error

of model Barbosa (17). Considering only the validation data as the criterion, model MGGPPEM

(5.3) is considered better, with the best prediction error and similar simulation error. Moreover,

the algorithm was trained with the PE cost function, which means that it accomplished its objec-

tive finding better one-step-ahead model for the hydraulic pump under analysis without critically

worsening its free-run prediction in comparison with the previous work’s results.

Model MGGPSEM (5.4) achieved better PE and SE than Barbosa (17) for the validation

data. The errors are PE = 0.068 mlc2 and PE = 0.070 mlc2 (model MGGPSEM (5.4) performs 3%
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Figure 5.10 – Free-run simulation of models obtained by MGGP algorithm for the hydraulic pump validation
data: (a) Model (5.3) - PEM technique and (b) Model (5.4) - SEM technique

(a) (b)

better) and SE = 0.997 mlc2 and SE = 1.120 mlc2 (model MGGPSEM (5.4) performs 11% better),

respectively. The PE is not as good as that for model MGGPPEM (5.3). Nevertheless, the algorithm

was trained with the SE cost function and found a model with the best free-run prediction. The

choice of which model to use depends on the application, i.e., whether better PE or better SE is

desirable.

Note that the proposed algorithm built a model with nonlinearity degree of 5 and maximum

input and output delays of 13 and 12, respectively (l = 5, nu = 13 and ny = 12). This means a total

of 142505 possible regressors for a traditional OLS/ERR analysis (not considering the constant

term). Table 5.3 presents the memory usage for building the full candidate regressor matrix for

different sets of degrees of nonlinearity and maximum output and input lags (l,ny,nu). The me-

mory usage increases exponentially, and for the last set (5,12,12), a memory error is raised in the

attempt to build the matrix of shape (3188 x 118754). Therefore, the proposed MGGP algorithm

is able to explore a considerably larger search space than the traditional OLS method without the

need for high-performance computers. Although the interesting feature of explore a wide range

in search space, the MGGP/ERR have a considerable disadvantage compared to stand alone ERR-

based algorithms: processing time. While stand alone ERR-based algorithms take a few seconds to

perform the hydraulic pump identification presented in this section, the MGGP/ERR takes several

hours.
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Table 5.3 – Memory usage for building one full candidate regressor matrix for the real problem training data
(3200 samples)

(l,ny,nu)
(3,3,3) (5,5,5) (5,10,10) (5,12,12)

Memory (mb) 2.02 73.18 1293.04 ≈ 2820.00
IntelCoreTM i7 - 4500U 1.8GHz 8Gb Memory.

5.4 Piezoelectric Actuator

Piezoelectric actuators (PEAs) are used in micro- and nano-positioning applications. Their

resolutions, fast responses, and large actuating forces are their main characteristics. However, the

existence of nonlinearities such as hysteresis makes modeling and controlling PEAs challenging

(PENG; CHEN, 2013). Abreu et al. (2020) present a property that a model must attain in order to

represent the main aspects of a hysteretic system and use it to obtain constraints on the structure

and parameters of the model:

Property 1 An identified model of hysteresis, under a constant input, has two or more real nondi-

verging equilibria.

Martins and Aguirre (2016) ensure that the identified model has at least one equilibrium

point under loading-unloading inputs so that Property 1 is attained. To do so, the following general

type model is used:

yk = F l(yk−1, ...,yk−ny , ...,uk−1, ...,uk−nu,φ1,k−1,φ2,k−1) (5.5)

where φ1,k = uk−uk−1, φ2,k = sign(φ1,k) and F l is a polynomial function of nonlinearity degree l,

with φ2,k = 1 for loading and φ2,k =−1 for unloading.

According to Abreu et al. (2020), Property 1 is satisfied if the model has a continuum of

equilibrium points (MORRIS, 2011), which can be verified by taking y[k] = ȳ, ∀k, u[k] = ū, ∀k

and get ȳ = Σyȳ, where Σy is the sum of all parameters of all linear output regressors and equals 1

(∑y = 1).
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Figure 5.11 – Training Data: piezoelectric actuator

(a)

(b)

5.4.1 Data set

Consider the piezoelectric actuator with hysteretic nonlinearity modeled by the Bouc-Wen

model (WEN, 1976) and whose mathematical model is given by (RAKOTONDRABE, 2011):

ḣ(t) = Au̇(t)−β |u̇(t)|h(t)− γ u̇(t)|h(t)|,

y(t) = dpu(t)−h(t)
(5.6)

where y(t) is the displacement, u(t) is the voltage applied to the actuator, d p = 1.6 µm
V is the

piezoelectric coefficient, h(t) is the hysteretic nonlinear term and A = 0.9 µm
V , β = 0.008V−1 and

γ = 0.008V−1 are parameters that determine the shape and scale of the hysteresis loop.

The excitation signal is generated by low-pass filtering white Gaussian noise. A fifth-order

low-pass Butterworth filter with a cutoff frequency of 1 Hz is used. The sampling time is set to

Ts = 0.001 s, and the data set is 50 s long (50000 samples), as shown in Figure 5.11. This signal is

used as training data. For the validation data, the system is excited by u(t) = 40sin(2πt) V. These

parameters used to build the data set are the same as the ones used in Abreu et al. (2020).
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Script 5.4 – Piezoelectric actuator identification experiment

1 def evaluate(ind):

2 try:

3 element.constraint_funcs(ind ,[’sgn’,’phi’],

4 [’mul’,’sgn’,’phi’],terminals)

5 element.compile_model(ind)

6 if random.random() <0.2:

7 element.ols(ind,random.random()*1e-7,y,u)

8 theta = element.ls(ind,y,u)

9 return element.score_ksa(ind,theta ,k=500,y,u),

10 except np.linalg.LinAlgError as e:

11 return np.inf,

12

13 def sgn(x1,x2):

14 return np.sign(x1-x2)

15 def phi(x1,x2):

16 return np.subtract(x1,x2)

17 element = mggpElement()

18 element.addPrimitive(sgn ,2)

19 element.addPrimitive(phi ,2)

20

21 mggp = mggpEvolver(popSize=500,CXPB=0.8,MTPB=0.2,

22 n_gen=20,maxHeight=5,maxTerms=30,

23 elite=10,element=element)

24 y,u = trainingData()

25 terminals = element.getTerminalsObjects()

26 seed = None

27 for i in range(100):

28 hof = mggp.run(evaluate=evaluate ,seed=seed)

29 best = element.model2List(hof[0])

30 element.save("fileName.pkl",best)

31 seed = hof.items
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5.4.2 Algorithm setup

Since the dataset is composed of a very large number of samples, the multiple shooting

simulation error is used in the cost function. In this case, the dataset is divided into batches of size

500+max(nu + ny), which means that each individual has different batch size since individuals

can have different maximum lags. Additionally, based on Martins and Aguirre (2016), two extra

functions are added to the algorithm: subtract (φ1) and sign (φ2), both of which receive lagged

variables as arguments. Besides, two different constraints are tested: i) the functions’ arguments

are any of the lagged variables (uk and yk), this is considered here as a black-box identification

approach and ii) the arguments are just input terms (uk), this is considered a gray-box identification

approach since it constraints the model structure as suggested in Martins and Aguirre (2016), Abreu

et al. (2020).

The parameters of the algorithm are set as follows:

population size = 500; generations = *; elitism = 10%;

maximum GP height = 3; maximum number of MGGP terms = 20;

CXPB = 0.8; MTPB = 0.2 (if not crossover); OLSPB = 0.2;

OLS tolerance = random()*1e-7; delay functions = q1, q2, q3;

primitive functions = multiplication, sign, subtraction;

parameter estimation = LS;

fitness function = multiple shooting

simulation interval of 500 steps.

The algorithm is run until the minimum fitness value stops improving (manual command, which

is possible after every 20 generations). The sign function is modified to receive as arguments

two variables that are subtracted from each other: sign(subtract(x1,x2)), for instance, sign(u[k−

2]− u[k− 4]), sign(u[k− 6]− u[k− 3]). Martins and Aguirre (2016) claim that the sign of the

first difference of the input in addition to polynomial terms is a sufficient condition to reproduce

hysteresis. In this experiment, the algorithm is free to assemble sign functions of any difference of

arguments, or even to define whether the sign function is used or not.

The Script 5.4 present a code to perform this experiment using the MGGP toolbox. The

function constraint_funcs() present in the evaluation function is responsible to restrain the argu-
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ments of sgn() and phi() functions, which must receive as arguments only terminals. The multiple

shooting cost function is performed by the function score_ksa(). For more details see Apendix A.

5.4.3 Results and Discussion

In this experiment, two models were identified by the MGGP algorithm, one from black-box

identification (model MGGPblack (5.7)) and another from gray-box identification (model MGGPgray

(5.8)) (in which model structure is constrained):

• Black-box approach

yblack [k] = θ1sign(y[k−3]− y[k−2])+θ2y[k−3]u[k−4]u[k−5]+θ3u[k−1]+θ4u[k−3]+θ5y[k−1]

+θ6y[k−3]y[k−5]sign(y[k−2]− y[k−3])+θ7u[k−5]u[k−6]sign(y[k−2]− y[k−3])

+θ8y[k−2]u[k−3]u[k−4]+θ9u[k−4]u[k−5]sign(y[k−2]− y[k−3])+θ10u[k−2]3

+θ11y[k−4]2u[k−3]sign(y[k−2]− y[k−3])+θ12u[k−3]u[k−4]sign(y[k−2]− y[k−3])

+θ13u[k−1]sign(y[k−1]− y[k−2])+θ14y[k−4]u[k−4]sign(y[k−2]− y[k−3])

+θ15y[k−2](y[k−2]−u[k−4])sign(y[k−2]− y[k−3])+θ16u[k−6]

+θ17y[k−2]u[k−5]sign(y[k−2]− y[k−3])

+θ18u[k−2]u[k−3]u[k−5]+θ19y[k−1]y[k−3]u[k−2]

(5.7)

• Gray-box approach

ygray [k] = θ1y[k−5]2(u[k−1]−u[k−2])+θ2y[k−4]u[k−4](u[k−1]−u[k−2])+θ3y[k−1]

+θ4sign(u[k−3]−u[k−7])+θ5u[k−1]u[k−2](u[k−4]−u[k−7])

+θ6y[k−1]u[k−6]+θ7y[k−1](u[k−6]−u[k−4])sign(u[k−4]−u[k−5])

+θ8y[k−2]u[k−2]+θ9u[k−1]u[k−3](u[k−6]−u[k−4])

+θ10sign(u[k−1]−u[k−6])+θ11(u[k−3]−u[k−1])

+θ12u[k−2]+θ13u[k−4]+θ14sign(u[k−5]−u[k−4])

+θ15u[k−1](u[k−6]−u[k−4])sign(u[k−4]−u[k−1])

(5.8)

Figures 5.12 and 5.13 present the free-run validation for quasi-static input and for the cases

in which the input becomes constant during loading and unloading. Table 5.5 presents the MSE

measures for the training and test data of both models.
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Table 5.4 – Piezoelectric actuator models parameters (obtained via LS)

Model Values
θ1 = 7.18e−4 θ2 = 1.11e−4 θ3 = 0.6633
θ4 =−0.8556 θ5 = 1.0000 θ6 = 2.31e−3
θ7 = 2.24e−2 θ8 =−1.10e−4 θ9 =−4.87e−2

MGGPblack θ10 = 1.01e−4 θ11 = 7.78e−09 θ12 = 2.63e−2
θ13 =−9.42e−06 θ14 =−4.49e−3 θ15 =−2.30e−3

θ16 = 0.1923 θ17 = 2.16e−3 θ18 =−1.01e−4
θ19 =−2.43e−07

θ1 = 2.35e−4 θ2 =−7.70e−4 θ3 = 1.0000
θ4 = 4.24e−4 θ5 =−1.75e−3 θ6 = 7.15e−06

MGGPgray θ7 = 4.17e−3 θ8 =−7.13e−06 θ9 =−2.93e−3
θ10 =−6.04e−4 θ11 =−0.9500 θ12 =−0.5749

θ13 = 0.5749 θ14 =−6.27e−05 θ15 = 6.84e−3

The models yielded low SE for quasi-static validation as we can see in the Table 5.5 and

in figures 5.13(a) and 5.14(a). However, for the cases where the input u becomes constant dur-

ing loading and unloading, their free-run simulation present a decreasing value (figures 5.13(d),

5.13(e), 5.14(d) and 5.14(e)), which means that the models do not have a continuum of equilibrium

points and do not satisfy Property 1.

Model MGGPgray (5.8) performs better than model MGGPblack (5.7) for both training (MSE

of 0.0458 µm and of 0.0588 µm) and validation data (MSE of 0.0201 µm and of 0.0395 µm,

respectively). In order to rectify the absence of continuum of equilibrium points, the parameters

of the gray-box model were fine tuned. Consider the case of constant input and constant output in

which u[k] = ū and y[k] = ȳ. Model MGGPgray (5.8) becomes:

y[k] = θ3ȳ+θ6ȳū+θ8ȳū+θ12ū+θ13ū. (5.9)

The continuum of equilibrium points is present if y[k] = 1 · y[k−1]. Considering (5.9), the

following restrictions must be made: Σy = θ3 = 1, Σyu = θ6 +θ8 = 0 and Σu = θ12 +θ13 = 0. A

Table 5.5 – Piezoelectric models’ free-run simulation errors

Model MSE (train) MSE (test)
MGGPblack(5.7) 0.0588 0.0395
MGGPgray (5.8) 0.0458 0.0201

MGGPgray (5.8) - CLS 0.0473 0.0205
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Figure 5.12 – Black-box identified model’s free-run validation for quasi-static input data. (a) y x t, (b) y x u
and (c) y x t for the cases in which input u becomes constant during loading (d) and unloading
(e). Dashed lines represent MGGP model simulation.

(a) (b)

(c)

(d) (e)

new set of parameters is obtained by re-estimating them via CLS (Table 5.6). The errors for the

new set of parameters are shown in Table 5.5. The free-run simulation for quasi-static input, which

becomes constant during loading and unloading, is shown in Figure 5.14. As one can note, it has a
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Figure 5.13 – Gray-box identified model’s free-run validation for quasi-static input data. (a) y x t, (b) y x u
and (c) y x t for the cases in which input u becomes constant during loading (d) and unloading
(e). Dashed lines represent MGGP model simulation.

(a) (b)

(c)

(d) (e)

constant output. Now, Model MGGPgray (5.8) has a continuum of equilibrium points and satisfies

Property 1.



75

Figure 5.14 – Gray-box identified model’s free-run simulation for quasi-static input which becomes constant
during loading (a) and unloading (b) after constraining parameter estimation. Dashed lines
represent MGGP model simulation.

(a) (b)

Table 5.6 – Piezoelectric actuator gray-box model’s parameters (obtained via CLS)

Model Values
θ1 = 2.41e−4 θ2 =−7.82e−4 θ3 = 1.0000
θ4 = 3.99e−4 θ5 =−1.76e−3 θ6 = 7.98e−06

MGGPgray-CLS θ7 = 4.08e−3 θ8 =−7.98e−06 θ9 =−2.94e−3
θ10 =−5.86e−4 θ11 =−1.0154 θ12 =−0.6402

θ13 = 0.6402 θ14 =−5.63e−05 θ15 = 6.74e−3

Remark 3 We highlight that the MGGP/ERR algorithm selected regressors in such a way that it is

possible to cancel the nonlinear clusters Σyu and Σu.



76

6 CONCLUSION

This work addressed the problem of nonlinear system identification using evolutionary al-

gorithms with focus on the model structure selection topic. An introductory material on system

identification and evolutionary algorithms is presented, including some of the main works on this

interdisciplinary topic. The chosen algorithm to work with is the MGGP. It uses a very flexible

individual representation, which allows fluctuating chromosome sizes in the same population and

automatic time lag determination.

It is proposed a hybrid MGGP/ERR algorithm to solve NARMAX models structure selec-

tion problem. The algorithm is first applied in a real life hydraulic pump identification problem. The

MGGP/ERR presented good performance in pursuing the least prediction error (PE) and free-run

simulation error (SE). Also, the algorithm showed the capacity to explore regions in the regres-

sors space that is highly costly in terms of memory usage for the traditional OLS/ERR algorithm.

The use of genetic programming (GP) in NARMAX terms representation granted the possibility to

include functions in the nodes set that allowed the algorithm to identify a simulated hysteretic sys-

tem. Multiple-shooting simulation and gray-box framework were used in this experiment. Finally,

in order to better understand the MGGP/ERR behavior, some stochastic test systems identification

were performed. The hybridization showed itself beneficial in the soft input identification problem.

Results show that models obtained by MGGP/ERR yield better PE, are more stable in free-run

simulation and more parsimonious than the ones obtained by standalone MGGP. A disadvantage

of MGGP/ERR compared to standalone OLS/ERR is that the former consumes considerably more

processing time. Nonetheless, it is extremely useful for offline applications.

A very relevant contribution of this work is the development of a toolbox for research pur-

pose named mggp. It is a python package that includes the framework used in the aforementioned

experiments. A tutorial on how to use is presented in Appendix A.

Future works include the toolbox enhancement, i.e., implement an adaptive mutation proba-

bility, other types of mutation and crossover operators and a multi-objective framework. Moreover,

identify real life hysteretic systems for control purposes.



77

BIBLIOGRAPHY

ABREU, P. E. et al. Identification and nonlinearity compensation of hysteresis using narx models.
Nonlinear Dynamics, Springer, v. 102, n. 1, p. 285–301, 2020.

AGUIRRE, L. A. Introdução à Identificação de Sistemas - Técnicas Lineares e Não-Lineares:
Teoria e Aplicação. 4a. Belo Horizonte: Editora UFMG, 2015.

AGUIRRE, L. A.; BARBOSA, B. H.; BRAGA, A. P. Prediction and simulation errors in parameter
estimation for nonlinear systems. Mechanical Systems and Signal Processing, v. 24, n. 8, p.
2855 – 2867, 2010.

AGUIRRE, L. A.; BILLINGS, S. A. Dynamical effects of overparametrization in nonlinear
models. Physica D: Nonlinear Phenomena, Elsevier, v. 80, n. 1-2, p. 26–40, 1995.

AGUIRRE, L. A.; LETELLIER, C. Modeling nonlinear dynamics and chaos: a review.
Mathematical Problems in Engineering, Hindawi, v. 2009, 2009.

AKAIKE, H. A new look at the statistical model identification. IEEE Transactions on Automatic
Control, v. 19, n. 6, p. 716–723, 1974.

BAKER, J. E. Reducing bias and inefficiency in the selection algorithm. In: Proceedings of the
second international conference on genetic algorithms. United States: Taylor & Francis, 1987.
v. 206, p. 14–21.

BARBOSA, B. H. G. et al. Black and gray-box identification of a hydraulic pumping system.
Control Systems Technology, IEEE Transactions on, v. 19, n. 2, p. 398 –406, march 2011.

BILLINGS, S.; AGUIRRE, L. Effects of the sampling time on the dynamics and identification of
nonlinear models. International Journal of Bifurcation and Chaos, v. 5, p. 1541–1556, 12 1995.

BILLINGS, S. A.; CHEN, S. Identification of non-linear rational systems using a prediction-error
estimation algorithm. International Journal of Systems Science, Taylor & Francis, v. 20, n. 3, p.
467–494, 1989.

BILLINGS, S. A.; CHEN, S.; KORENBERG, M. J. Identification of mimo non-linear systems
using a forward-regression orthogonal estimator. International Journal of Control, Taylor &
Francis, v. 49, n. 6, p. 2157–2189, 1989.

BILLINGS, S. A.; TAO, Q. H. Model validity tests for non-linear signal processing applications.
International Journal of Control, Taylor & Francis, v. 54, n. 1, p. 157–194, 1991.

BILLINGS, S. A.; ZHU, Q. M. Nonlinear model validation using correlation tests. International
Journal of Control, Taylor & Francis, v. 60, n. 6, p. 1107–1120, 1994.

BRAGA, A. d. P.; CARVALHO, A.; LUDERMIR, T. Redes neurais artificiais: teoria e prática.
Editora LTC, 2000.

CHEN, Q. et al. Genetic algorithm with an improved fitness function for (n) arx modelling.
Mechanical Systems and Signal Processing, Elsevier, v. 21, n. 2, p. 994–1007, 2007.



78

CHEN, S.; BILLINGS, S. A.; LUO, W. Orthogonal least squares methods and their application to
non-linear system identification. International Journal of control, Taylor & Francis, v. 50, n. 5,
p. 1873–1896, 1989.

COELHO, M. d. S. Modelos de Hammerstein e de Wiener: conexões com modelos narx e sua
aplicação em identificação de sistemas não-lineares. Phd Thesis (PhD Thesis) — Dissertação
de Mestrado, Programa de Pós-Graduação em Engenharia Elétrica, 2002.

CORRÊA, M. Identificaçao caixa-cinza de sistemas nao-lineares utilizando representaçoes
NARMAX polinomiais e racionais. Phd Thesis (PhD Thesis) — PhD thesis, Universidade
Federal de Minas Gerais.(PPGEE), 2001.

DE, J. Ka an analysis of the behavior of a class of genetic adaptative systems. Ann Arbor, USA,
Ph. D Thesis-Department of Computer and Comunication Sciences, University of Michigan,
1975.

DENG, L.; TAN, Y. Modeling hysteresis in piezoelectric actuators using narmax models. Sensors
and Actuators A: Physical, Elsevier, v. 149, n. 1, p. 106–112, 2009.

EIBEN, A. E.; SMITH, J. E. et al. Introduction to evolutionary computing. Bristol, UK:
Springer, 2003.

FALSONE, A.; PIRODDI, L.; PRANDINI, M. A randomized algorithm for nonlinear model
structure selection. Automatica, v. 60, p. 227 – 238, 2015.

GHAREEB, W. T.; SAADANY, E. F. E. Multi-Gene Genetic Programming for Short Term Load
Forecasting. In: 2013 3rd International Conference on Electric Power and Energy Conversion
Systems (EPECS). Istanbul, Turkey: IEEE, 2013. (International Conference on Electric Power
and Energy Conversion Systems).

GOLDBERG, D. E.; HOLLAND, J. H. Genetic algorithms and machine learning. Machine
learning, Springer, v. 3, n. 2, p. 95–99, 1988.

HAYKIN, S. Redes neurais: princípios e prática, 2a edição, tradução: Paulo martins engel.
Editora: Bookman, Porto Alegre, Cap, v. 1, n. 2, p. 3, 2001.

HERRERA, F.; LOZANO, M.; VERDEGAY, J. L. Tackling real-coded genetic algorithms:
Operators and tools for behavioural analysis. Artificial intelligence review, Springer, v. 12, n. 4,
p. 265–319, 1998.

HINCHLIFFE, M. et al. Modelling chemical process systems using a multi-gene genetic
programming algorithm. 1996. 56–65 p.

HINCHLIFFE, M. P. Dynamic modelling using genetic programming. Phd Thesis (PhD Thesis),
University of Newcastle upon Tyne, UK, 2001.

HINCHLIFFE, M. P.; WILLIS, M. J. Dynamic systems modelling using genetic programming.
Computers & Chemical Engineering, v. 27, n. 12, p. 1841 – 1854, 2003.



79

HOLLAND, J. H. Adaptation in natural and artificial systems. The University of Michigan Press,
1975.

KOZA, J. R. Genetic programming: on the programming of computers by means of natural
selection. London: MIT press, 1992.

LEONTARITIS, I.; BILLINGS, S. A. Input-output parametric models for non-linear systems part
i: deterministic non-linear systems. International journal of control, Taylor & Francis, v. 41,
n. 2, p. 303–328, 1985.

LI, C. J.; JEON, Y. Genetic algorithm in identifying non linear auto regressive with exogenous
input models for non linear systems. In: IEEE. 1993 American Control Conference. San
Francisco, CA, USA, 1993. p. 2305–2309.

LINDEN, R. Algoritmos genéticos. Rio de Janeiro: Brasport, 2008.

LJUNG, L. System Identification: Theory for the User. 2nd edition. United States: Prentice
Hall, 1999.

LUKE, S.; SPECTOR, L. A comparison of crossover and mutation in genetic programming.
Genetic Programming, v. 97, p. 240–248, 1997.

MADAR, J.; ABONYI, J.; SZEIFERT, F. Genetic programming for the identification of nonlinear
input - Output models. Industrial & Engineering Chemistry Research, 44, n. 9, p. 3178–3186,
2005.

MARTINS, S. A. M.; AGUIRRE, L. A. Sufficient conditions for rate-independent hysteresis in
autoregressive identified models. Mechanical Systems and Signal Processing, Elsevier, v. 75, p.
607–617, 2016.

MEHR, A. D.; KAHYA, E. A pareto-optimal moving average multigene genetic programming
model for daily streamflow prediction. Journal of hydrology, Elsevier, v. 549, p. 603–615, 2017.

MORRIS, K. What is hysteresis? Applied Mechanics Reviews, American Society of Mechanical
Engineers Digital Collection, v. 64, n. 5, 2011.

PEARSON, R. K.; POTTMANN, M. Gray-box identification of block-oriented nonlinear models.
Journal of Process Control, Elsevier, v. 10, n. 4, p. 301–315, 2000.

PENG, J.; CHEN, X. A survey of modeling and control of piezoelectric actuators. Modern
Mechanical Engineering, Scientific Research Publishing, v. 3, n. 1, 2013.

PIRODDI, L.; SPINELLI, W. An identification algorithm for polynomial narx models based on
simulation error minimization. International Journal of Control, Taylor & Francis, v. 76, n. 17,
p. 1767–1781, 2003.

POLI, R. et al. A field guide to genetic programming. Lulu.com, 2008. Available at:
<http://www.gp-field-guide.org.uk>.

http://www.gp-field-guide.org.uk


80

RADCLIFFE, N. J. Equivalence class analysis of genetic algorithms. Complex systems, v. 5, n. 2,
p. 183–205, 1991.

RAKOTONDRABE, M. Bouc–wen modeling and inverse multiplicative structure to compensate
hysteresis nonlinearity in piezoelectric actuators. IEEE Transactions on Automation Science
and Engineering, v. 8, n. 2, p. 428–431, 2011.

RIAHI-MADVAR, H. et al. Pareto Optimal Multigene Genetic Programming for Prediction of
Longitudinal Dispersion Coefficient. Water Resources Management, 33, n. 3, p. 905–921, 2019.

RIBEIRO, A. H. et al. On the smoothness of nonlinear system identification. Automatica, v. 121,
p. 109158, 2020.

RUGH, W. J. Nonlinear system theory : the Volterra/Wiener approach. United States: Johns
Hopkins University Press, 1983.

SAFARI, M. J. S.; MEHR, A. D. Multigene genetic programming for sediment transport modeling
in sewers for conditions of non-deposition with a bed deposit. International Journal of Sediment
Research, 33, n. 3, p. 262–270, 2018.

SJÖBERG, J. et al. Nonlinear black-box modeling in system identification: a unified overview.
Automatica, Elsevier, v. 31, n. 12, p. 1691–1724, 1995.

WEN, Y.-K. Method for random vibration of hysteretic systems. Journal of the engineering
mechanics division, American Society of Civil Engineers, v. 102, n. 2, p. 249–263, 1976.

WIENER, N. Nonlinear problems in random theory. Nonlinear Problems in Random Theory,
by Norbert Wiener, pp. 142. ISBN 0-262-73012-X. Cambridge, Massachusetts, USA: The
MIT Press, August 1966.(Paper), p. 142, 1966.

WIGREN, T. Recursive prediction error identification using the nonlinear wiener model.
Automatica, Elsevier, v. 29, n. 4, p. 1011–1025, 1993.

Willis, M. J. et al. Artificial neural networks in process engineering. IEE Proceedings D - Control
Theory and Applications, v. 138, n. 3, p. 256–266, 1991.

YOUNG, P. C. The use of linear regression and related procedures for the identification of
dynamic processes. In: IEEE. Seventh Symposium on Adaptive Processes. Los Angeles, CA,
USA, 1968. p. 53–53.



81

A THE MGGP TOOLBOX

A.1 mggpElement Class

A mggpElement object is responsible to carry the attributes and functions used to create and

evaluate individuals from a MGGP population.

It is able to build MISO models. Its default configuration creates an element object capable of

building SISO models which variables are ’y1’, ’u1’ and (optional) ’e1’. The number ’1’ in the

variable name indicates that it is a one-step lagged variable (y1 = y[k-1]). Also, the only func-

tion present in the primitive set is ’mul’ with arity equals 2, that is, it receives two arguments –

mul(x1,x2).

Three parameters should be set in a mggpElement object:

• maxDelay = corresponding to the maximum number of back-shift operator to be included

into the primitive set. For example:

maxDelay = 3→ {q1, q2, q3} (default)

maxDelay = 5→ {q1, q2, q3, q4, q5} and so on.

• MA = this parameter enables the use of the variable ’e1’ that represents residual terms. That

means, when it is set True, the functions related to extended least squares and (extended)

one-step-ahead prediction will depend on the terms of ’e1’. If it is set False (default), those

functions will work as a white noise output error problem.

• constant = if it is set ’True’ it enables the terminal ’1’ and the individuals are allowed to have

constant term. Otherwise, if it is set ’False’ (default), the terminal ’1’ is not included into the

primitive set.

Those parameters can be changed using the function

element.setPset(maxDelay,numberOfVariables,MA,constant)

A.1.1 Create SISO Model

The mggpElement Class possesses the function createModel(listStrings) that receives as

argument a list of string in which each string is a term of the model
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Consider the following NARX system (Piroddi, 2003):

y(k) = 0.75y(k−2)+0.25u(k−1)−0.20y(k−2)u(k−1)

Lets create an element object with the default parameters. Then create a model object with the

variables of the aforementioned system.

from mggp import mggpElement

element = mggpElement()

listStrings = [’q1(y1)’,’u1’,’mul(q1(y1),u1)’]

model = element.createModel(listStrings)

element.compile_model(model)

If the user wants to print the model terms in the console, just do:

for term in model:

print(str(term))

Note: If it is needed, the createModel() function sets an attribute ’lagMax’ in the model object

which contains the maximum lag applied by back-shift operators. That means, the real model

maximum lag is maximumLag = model.lagMax+1. The example model has a model.lagMax = 1,

and the maximum lag of the model is 2.

A.1.2 Create MISO Model with Constant Term

Consider the following NARX MISO system, that has two inputs u and h.

y(k) = 0.75y(k−2)+0.25u(k−1)−0.20y(k−2)u(k−1)−0.5h(k−2)+0.1

Now, the number of variables is 3 and it has a constant term. The user can change the name of the

arguments using the function

element.renameArguments(dictionary)



83

The default names are ’ARG0’, ’ARG1’, ’ARG2’, etc. The first argument must always be the

output. The dictionary maps the default names to the new ones.

element = mggpElement()

element.setPset(maxDelay=3,numberOfVariables=3,MA=False,

constant=True)

element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’,’ARG2’:’h1’})

listStrings = [’q1(y1)’,’u1’,’mul(q1(y1),u1)’,’q1(h1)’,’1’]

model = element.createModel(listStrings)

element.compile_model(model)

Note1: It is advised to name the arguments with the suffix ’1’. It helps the user to remember that

the variable is a one-step lagged variable.

Note2: The constant term is always represented as ’1’ in the listStrings argument. Its value will be

determined by the parameter θ value.
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A.1.3 Simulate a System

To simulate the aforementioned SISO model as a system use the free-run simulation func-

tion

element.predict_freeRun(model,theta,y0,*inputs)

No matter the size of the initial conditions y0 you use, the function will work only with the size of

the maximum lag in your model. For example, our model has a maximum lag equals 2, y0 must

have at least size 2.

Lets say our input is 100 Gaussian distributed random values with zero mean and standard deviation

1 and use the previous SISO model already built.

u = np.random.normal(loc=0,scale=1,size=(100))

y0 = np.zeros((2))

theta = np.array([0.75,0.25,-0.20])

y = element.predict_freeRun(model,theta,y0,u[:-1])

Note1: The model must be compiled in order to identify the terms functions.

Note2: u[: −1] is used to neglect the last sample of u in the prediction so that y and u have the

same sizes.

To plot the output just do:

import matplotlib.pyplot as plt

plt.plot(y)

plt.title(’Simulation of the example model’)

A.1.3.1 Simulate a System with White Noise Equation Error

y(k) = 0.75y(k−2)+0.25u(k−1)−0.20y(k−2)u(k−1)+ v(k)

element = mggpElement()

element.setPset(maxDelay=3,numberOfVariables=3,MA=False,
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constant=False)

element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’,’ARG2’:’v’})

listStrings = [’q1(y1)’,’u1’,’mul(q1(y1),u1)’,’v’]

model = element.createModel(listStrings)

element.compile_model(model)

y0 = np.zeros((2))

u = np.random.normal(loc=0,scale=1,size=(100))

v = np.random.normal(loc=0,scale=0.02,size=(100))

theta = np.array([0.75,0.25,-0.20,1])

y = element.predict_freeRun(model,theta,y0,u[:-1],v[:-1])
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A.1.3.2 Simulate a System with Colored Noise Equation Error

y(k) = 0.75y(k−2)+0.25u(k−1)−0.20y(k−2)u(k−1)+0.8v(k−1)+ v(k)

element = mggpElement()

element.setPset(maxDelay=3,numberOfVariables=3,MA=False,

constant=False)

element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’,’ARG2’:’v’})

listStrings = [’q1(y1)’,’u1’,’mul(q1(y1),u1)’,’q1(v)’,’v’]

model = element.createModel(listStrings)

element.compile_model(model)

y0 = np.zeros((2))

u = np.random.normal(loc=0,scale=1,size=(100))

v = np.random.normal(loc=0,scale=0.02,size=(100))

theta = np.array([0.75,0.25,-0.20,0.8,1])

y = element.predict_freeRun(model,y0,theta,u[:-1],v[:-1])

Note: Although in the example the noise variable v do not have the suffix ’1’, this delay is applied

on the ’regressor’. However, the noise variable is temporary. Experimental models do not have it

as argument. So, it can be interpreted as a non-lagged variable.

A.1.4 The Least Squares Functions

• element.ls(model,y,*inputs)

Example:

For the SISO model:

theta = element.ls(model,y,u)

For the MISO model:

theta = element.ls(model,y,u,v)
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• element.ls_extended(model,y,*inputs)

Example:

For the SISO model:

theta = element.ls_extended(model,y,u)

For the MISO model:

theta = element.ls_extended(model,y,u,v)

Note: If the MA parameter is set ’True’, the ELS will extend the regressor matrix with the

MA part of the model. On the other hand, if it is set ’False’, the extension is made as it was a white

noise output error problem.

A.1.5 Predictors

There are four predictors in the toolbox:

• element.predict_freeRun(model,theta,y0,*inputs)

Returns the free-run simulation with the initial conditions in the beginning.

• element.predict(model,theta,y,*inputs)

Returns the one-step-ahead prediction (without initial conditions in the beginning)

• element.predict_extended(model,theta,y,*inputs)

Returns the one-step-ahead prediction (without initial conditions in the beginning) from the

extended regressor matrix. If the MA parameter is set ’False’, the extension is made as it was

a white noise output error problem.

• element.predict_ksa(model,theta,k,y,*inputs)

Returns a tuple with the k-steps-ahead prediction (with initial conditions) and the 3-d batched

array of y. They are 3-d arrays with the form (batches,data,1). The number of batches are

calculated dividing the data-set in several windows of (k+ model maximum lag) size. The

remaining data is discarded.
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It can be confusing how to compare the predicted value with the desired one. There are to ways for

the user remove the initial conditions from the y vector:

yd = y[model.lagMax+1:]

and the built-in function

yd = element.getDesiredY(model,y)

This function also works in the 3-d array from ksa analysis.

A.1.6 MSE built-in scores

• element.score_osa(model,theta,y,*inputs)

• element.score_osa_ext(model,theta,y,*inputs)

• element.score_freeRun(model,theta,y,*inputs)

• element.score_ksa(model,theta,k,y,*inputs)
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A.1.7 Moving Average Models

The Moving Average configuration is activated by the MA argument in the setPset function.

If it is set ’True’ the mggpElement object automatically includes an extra variable named ’e1’. That

means, the numberOfVariables argument should not take into account the residual term.

Consider the following NARMAX model:

y(k) = θ1y(k−2)+θ2u(k−1)−θ3y(k−2)u(k−1)+θ
e
1 e(k−1)

element = mggpElement()

element.setPset(maxDelay=3,numberOfVariables=2,MA=True,

constant=False)

element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’})

listStrings = [’q1(y1)’,’u1’,’mul(q1(y1),u1)’,’e1’]

model = element.createModel(listStrings)

element.compile_model(model)

theta = element.ls_extended(model,y,u)

ypred = element.predict_extended(model,theta,y,u)

Note: The free-run predictor for NARMAX models neglects the MA part.

A.1.8 Get Regressor Matrix

The user can get the regressor Matrix through the function:

element.makeRegressors(model,y,*inputs,**options)

There are two arguments in options that can be set. They are

• mode: {’default’, ’extended’}

• theta: if mode is set to ’extended’, the theta values must be sent.

Examples:
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p = element.makeRegressors(model,y,u,mode=’default’)

p = element.makeRegressors(model,y,u,mode=’extended’,theta=theta)

Note: If MA is set ’True’, the ’extended’ mode must be used. If it is set ’False’ the ’extended’

mode will return a regressor matrix as it was a white noise output error problem.

A.1.9 Orthogonal Least Squares

The built-in ols function apply a classical Gram-Smith Orthogonal Least Squares structure

selection method.

element.ols(model,tol,y,*inputs,**kwargs)

Example:

element = mggpElement()

element.setPset(maxDelay=3,numberOfVariables=2,MA=False,constant=False)

element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’})

listStrings = [’q1(y1)’,’u1’,’mul(q1(y1),u1)’,’y1’,’q1(u1)’]

model = element.createModel(listStrings)

element.compile_model(model)

element.ols(model,1e-3,y,u)

for term in model:

print(str(term))

Note1: If the MA mode is set ’True’, the key argument ’theta’ must be set. The algorithm will

create a extended regressor matrix and apply ols pruning over it. Probably, all residual terms will

be removed.

element.ols(model,tol,y,*inputs,theta=theta)

Note2: The ols function perform an in-place operation, that means, it modifies the object sent as

argument.

Note3: The resultant model do not have its terms sorted by ERR coefficient.
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A.1.10 Include New Functions

Other functions can be included into the primitive set through the function:

element.addPrimitive(function,arity)

Note: Arity is the number of arguments the function takes.

Example 1: Exponential function

element = mggpElement()

element.setPset(maxDelay=1,numberOfVariables=2)

element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’})

element.addPrimitive(np.exp,1)

listStrings = [’exp(u1)’]

model = element.createModel(listStrings)

element.compile_model(model)

u = np.linspace(-5,5)

y0 = np.zeros(1)

theta = np.array([1])

y = element.predict_freeRun(model, theta, y0, u)

plt.figure()

plt.plot(u,y[1:])
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(a) Example 1 (b) Example 2

Example 2: Sinusoidal function

element = mggpElement()

element.setPset(maxDelay=1,numberOfVariables=2)

element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’})

element.addPrimitive(np.sin,1)

listStrings = [’sin(u1)’]

model = element.createModel(listStrings)

element.compile_model(model)

u = np.linspace(-5,5)

y0 = np.zeros(1)

theta = np.array([1])

y = element.predict_freeRun(model, theta, y0, u)

plt.figure()

plt.plot(u,y[1:])

A.1.11 Handling constraints with built-in functions

There are cases in which the structure of a model has some restrictions. It is possible to

create constraints in functions arguments through the function:

element.constraint_funcs(model,funcs,consts,values)
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The arguments present in the list of string ’consts’ will be removed from the functions present in

the list of strings ’funcs’ and replaced by values.

• model: model object to be constraint

• funcs: list of strings with functions names

• consts: list of strings with functions or arguments names. The latter must be the default

names - ’ARG0’, ’ARG1’, etc

• values: list of terminals objects to be used as replacement

The terminals list can be gotten by the function:

terminals = element.getTerminalsObjects()

For example, if the user wants to limit the ’mul’ function to be used only with ’u1’ variables:

element.constraint_funcs(model, ’mul’, ’ARG0’,terminals[1])

Note: to check terminals names use

terminals[index].name

Example 1: include the sign function and restrain it to not have ’mul’ nor ’sign’ as arguments, and

replace them by any terminal

def sgn(x1):

return np.sign(x1)

element = mggpElement()

element.setPset(maxDelay=1,numberOfVariables=2,constant=True)

element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’})

element.addPrimitive(sgn,1)

listStrings = [’sgn(y1)’,’sgn(mul(u1,u1))’,’sgn(sgn(u1))’]

model = element.createModel(listStrings)

element.compile_model(model)
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terminals = element.getTerminalsObjects()

element.constraint_1arityFuncs(model, [’sgn’],

[’mul’,’sgn’],terminals)

Example 2: include a sign function of arity 2 that return sign(x1-x2) and restrain it to not have

’mul’, ’sign’ nor ’y1’ as arguments, and replace them by ’u1’

def sgn(x1,x2):

return np.sign(x1-x2)

element = mggpElement()

element.setPset(maxDelay=1,numberOfVariables=2,constant=True)

element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’})

element.addPrimitive(sgn,2)

listStrings = [’sgn(u1,y1)’,’sgn(u1,mul(u1,u1))’,

’sgn(sgn(y1,u1),y1)’]

model = element.createModel(listStrings)

element.compile_model(model)

terminals = element.getTerminalsObjects()

element.constraint_2arityFuncs(model, [’sgn’],

[’mul’,’sgn’,’ARG0’],terminals[1])

A.2 Save and Load functions

To make it easier to the user, mggpElement class implements a save and a load functions

(using pickle package).

element.save(filename,dictionary)

element.load(filename)

It can be used with dictionary objects. For example, if the user wants to save a model, a theta value,

and training data:



95

modelListString = element.model2List(model)

dictionary = {’model’:modelListString,

’theta’:theta,

’y_train’:y,

’u_train’:u}

element.save(’modelInfo.pkl’,dictionary)

Note: It is advised to save models as list of strings as the Individual instances can generate conflicts

with another base.creator modules. The user can get it from the function:

element.model2List(model)

And to retrieve the saved objects:

dictionary = element.load(’modelInfo.pkl’)

modelListString = dictionary[’model’]

model = element.createModel(modelListString)

theta = dictionary[’theta’]

y_train = dictionary[’y_train’]

u_train = dictionary[’u_train’]
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A.3 The mggpEvolver Class

The mggpEvolver class is responsible to execute the evolution of a population. The indi-

viduals from this population are created according to the primitive set defined in a mggpElement

object. The following parameters can be set:

• popSize: population size (default = 100)

• CXPB: crossover probability (default = 0.9)

• MTPB: mutation probability (default 0.1)

• n_gen: number of generations (default = 50)

• maxHeight: maximum heiht of GP elements (default = 3)

• maxTerms: maximum number of model terms (default = 5)

• elite: percentage of the population to be included into the hall of fame object and be kept in

the population (default = 5)

• verbose: print statistics at each generation (default = True)

• element: mggpElement object with the information needed to create individuals.

The run function have two arguments:

• evaluate: function which returns the individual fitness to be minimized. It must posses one

single argument that is the individual to be evaluated. The function must return a tuple

(value,) – with the comma after value.

• seed: list of valid models (created by element.createModel function). If ’None’ (default), no

seed is included into the population.

The run function return a hall of fame object.
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A.3.1 Simple Example

Consider the system:

y(k) = 0.75y(k−2)+0.25u(k−1)−0.20y(k−2)u(k−1)

where u = WGN(0,1) with an output Gaussian noise of zero mean and standard deviation std =

0.08.

from mggp import mggpElement, mggpEvolver

import numpy as np

# Simulate the System

element = mggpElement()

element.setPset(maxDelay=1,numberOfVariables=2)

element.renameArguments({’ARG0’:’y1’,’ARG1’:’u1’})

listStrings = [’q1(y1)’,’u1’,’mul(q1(y1),u1)’]

model = element.createModel(listStrings)

element.compile_model(model)

u = np.random.normal(loc=0,scale=1,size=(500))

y0 = np.zeros((2))

theta = np.array([0.75,0.25,-0.20])

y = element.predict_freeRun(model,theta,y0,u[:-1])

y += np.random.normal(loc=0,scale=0.08,size=(500,1))

# Create the element object to be used in MGGP

# in this case, it is the same used to create training data.

mggp = mggpEvolver(popSize=500,CXPB=0.9,MTPB=0.1,n_gen=50,maxHeight=3,

maxTerms=5,verbose=True,elite=5,element=element)

def evaluate(ind):
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try:

element.compile_model(ind)

theta = element.ls(ind,y,u)

ind.theta = theta

SE = element.score_osa(ind, theta, y, u)

return SE,

# exception treatment for cases of Singular Matrix

except np.linalg.LinAlgError:

return np.inf,

hof = mggp.run(evaluate=evaluate,seed=None)

model = hof[0]

for term in model:

print(str(term))
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