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RESUMO GERAL 

O processo de erosão sofre modificações à medida que o uso da terra e a cobertura do solo se 

alteram por meio da conversão da floresta em pastagem e/ou em culturas agrícolas. Além da 

cobertura vegetal, outros fatores como a erosividade da chuva –que é o potencial da chuva em 

causar erosão–, são indispensáveis na modelagem da erosão. Esta tese foi dividida em capítulos, 

onde no primeiro capítulo foi desenvolvido o pacote RainfallErosivityFactor dentro da 

linguagem de programação R, e posteriormente disponibilizado no CRAN do R. Este pacote é 

uma ferramenta para analisar dados de chuva, como precipitação total, volume e número de 

chuvas erosivas e não erosivas e determinar a erosividade da chuva, tendo saídas mensais e 

anuais. Deste modo, o fator erosividade da chuva é calculado com exatidão e eficácia. Um 

exemplo foi fornecido para Pirassununga, SP, Brasil, usando um conjunto de dados de chuva 

de 7 anos com intervalo de 10 minutos entre as medições. Os resultados poderão ser processados 

no próprio ambiente R para análise estatística, construção de gráficos, ou aplicação de 

geoestatística. A erosividade média da chuva para Pirassununga foi de 9.512,9 MJ mm ha-1 h-1 

ano-1. Diante do exposto, práticas conservacionistas devem ser adotadas para minimizar os 

impactos do processo erosivo. No segundo capítulo, o método de determinação da erosividade 

da chuva proposto por Wishcmeier e Smith foi comparado com outros métodos utilizados em 

diversas partes do mundo para estimar a erosividade da chuva, visando selecionar um método 

consistente para substituir o método de Wischmeier e Smith para condições tropicais sem 

considerar a intensidade da chuva. Os métodos testados incluíram: Fournier modificado, MF; 

Fournier modificado por Zhang, MF-Z; Fournier modificado por Men, MF-M; Desagregação 

de chuva, RD; Satélite TRMM com coeficiente de Fournier modificado, TRMM-F; e Satélite 

TRMM com precipitação mensal, TRMM-M. As análises foram realizadas de acordo com o 

modelo Additive Main Effects and Multiplicative Interaction (AMMI) e testes de agrupamentos 

Scott-Knott. Os métodos avaliados se comportaram de forma diferente para os períodos 

chuvoso, seco, mensal e anual. O método MF mostrou-se capaz de substituir de forma 

consistente o método de Wischmeier e Smith. Destaca-se que os métodos baseados no satélite 

TRMM podem ser uma alternativa plausível para locais sem informações de precipitação. 

Finalmente, no terceiro capítulo, o objetivo foi modelar as perdas de solo na bacia de drenagem 

do reservatório do Peixe Angical, Brasil, além de avaliar o nível de importância dos fatores da 

RUSLE. Os valores de exportação de sedimentos também foram calculados para identificar 

áreas onde as práticas de conservação do solo eram necessárias. Para estimar as perdas de solo 

para o cenário cronológico de 1990, 2000, 2010 e 2017, o modelo RUSLE foi acoplado a 

ferramentas GIS. A avaliação do nível de importância de cada fator RUSLE foi realizada 

usando um algoritmo de aprendizado de máquina não paramétrico, Floresta Aleatória. O nível 

de importância dos fatores RUSLE foi avaliado na seguinte ordem: C > K > LS > R. A erosão 

hídrica na bacia de drenagem do reservatório Peixe Angical aumentou ao longo dos anos devido 

a mudanças no uso do solo, embora perdas de solo na maior parte da bacia foram classificadas 

como muito baixa (< 2,5 Mg ha-1 ano-1). O impacto da mudança no uso do solo deve ser 

minimizado com práticas de conservação do solo, possibilitando o desenvolvimento 

sustentável. 

Palavras-chave: Erosividade da chuva. Fournier Modificado. Desagregação de chuva. TRMM. 

Perdas de solo. Exportação de sedimentos. 

 



 

 

GENERAL ABSTRACT 

The erosion process undergoes changes as land use and land cover change through the 

conversion of the forest to pasture and / or agricultural crops. In addition to vegetation cover, 

other factors such as rainfall erosivity –which is the potential of rain to cause erosion– are 

indispensable in erosion modeling. This thesis was divided into chapters, where in the first 

chapter the package RainfallErosivityFactor was developed within the programming language 

R, and later made available on CRAN of R. This package is a tool to analyze rain data, such as 

total precipitation, depth and number of erosive and non-erosive rains, and to determine the 

rainfall erosivity, with monthly and annual outputs. In this way, the rainfall erosivity factor is 

calculated accurately and effectively. An example was provided for Pirassununga, SP, Brazil, 

using a 7-year rainfall data set with an interval of 10 minutes between measurements. The 

results can be processed in the R environment itself for statistical analysis, construction of 

graphs, or application of geostatistics. The average rainfall erosivity for Pirassununga was 

9,512.9 MJ mm ha-1 h-1 year-1. In view of the above, conservationist practices must be adopted 

to minimize the impacts of the erosion process. In the second chapter, the method of 

determining rainfall erosivity proposed by Wishcmeier and Smith was compared with other 

methods used in different parts of the world to estimate rainfall erosivity, in order to select a 

consistent method to replace the Wischmeier and Smith method for conditions without 

considering the intensity of the rain. The tested methods included: Modified Fournier, MF; 

Modified Fournier by Zhang, MF-Z; Modified Fournier by Men, MF-M; Rainfall 

Disaggregation, RD; TRMM satellite with modified Fournier coefficient, TRMM-F; and 

TRMM Satellite with monthly precipitation, TRMM-M. The analyzes were performed 

according to the Additive Main Effects and Multiplicative Interaction (AMMI) model and 

Scott-Knott cluster tests. The evaluated methods behaved differently for the rainy, dry, monthly 

and annual periods. The MF method proved to be able to consistently replace the Wischmeier 

and Smith method. It is emphasized that the methods based on the TRMM satellite can be a 

plausible alternative for locations without precipitation information. Finally, in the third 

chapter, the objective was to model soil losses in the drainage basin of the Peixe Angical 

Reservoir, Brazil, in addition to assessing the level of importance of the RUSLE factors. The 

sediment export values were also calculated to identify areas where soil conservation practices 

were needed. To estimate soil losses for the 1990, 2000, 2010 and 2017 chronological scenario, 

the RUSLE model was coupled with GIS. The evaluation of the level of importance of each 

RUSLE factor was carried out using a non-parametric machine learning algorithm, Random 

Forest. The level of importance of the RUSLE factors was assessed in the following order: C> 

K> LS> R. Water erosion in the drainage basin of the Peixe Angical Reservoir has increased 

over the years due to changes in land use, although soil losses in most of the basin were 

classified as very low (<2.5 Mg ha-1 year-1). The impact of change in land use must be 

minimized with soil conservation practices, enabling sustainable development. 

Keywords: Rainfall erosivity. Modified Fournier. Rainfall Disaggregation. TRMM. Soil 

losses. Sediment export. 
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FIRST PART 

1 INTRODUÇÃO GERAL 

O uso e ocupação do solo, quando realizada de maneira inadequada, contribui para 

aceleração da degradação do solo. Esta é ocasionada pela erosão que é um problema mundial, 

com consequências não desejadas ao meio ambiente, afetando também a sociedade e o setor 

econômico. O processo de erosão do solo é modificado pelo ambiente biofísico composto por 

clima, solo, relevo, cobertura do solo e a interação entre eles  (GANASRI; RAMESH, 2016). 

Nas condições tropicais, como no Brasil, os efeitos negativos relacionados aos solos são 

impulsionados pelo impacto da chuva sobre a superfície, desagregando o solo e propiciando o 

escoamento superficial, ou seja, a erosão hídrica do solo. De acordo com Chen et al. (2021), a 

erosividade da chuva descreve o efeito de várias características da chuva como duração, 

quantidade e intensidade. E isto, corresponde ao índice de erosividade (EI30) que é o produto 

da energia cinética das chuvas e a intensidade máxima contínua de 30 minutos no evento de 

chuvas (WISCHMEIER; SMITH, 1978). A forma atual como se determina a erosividade da 

chuva torna o desempenho da pesquisa mais trabalhoso e, consequentemente, a modelagem da 

erosão hídrica e/ou a distribuição espacial e temporal da erosividade tem sido menos reportado 

do que poderia. Portanto, desenvolver um programa ou pacote eficiente nessa questão, tornou-

se de suma importância para obter um resultado rápido e com exatidão. 

Por causa da alta variabilidade temporal e espacial da erosividade da chuva, registros 

precisos com longas séries de dados são requeridos (ANGULO-MARTÍNEZ; BEGUERÍA, 

2009), bem como dados com alta resolução temporal, que são informações presentes em 

estações instaladas em várias partes do mundo. Por isso, a estimativa da erosividade por 

métodos com aplicação de baixa resolução temporal, como dados anuais, mensais, diários e 

horários, tornou-se uma alternativa viável para substituir os métodos de determinação com 

dados de alta resolução temporal (WISCHMEIER; SMITH, 1965, 1978; RENARD et al., 1997; 

McCOOL et al., 2004), que utilizam dados sub-horários no cálculo da energia cinética. 

Com a escassez de dados de pluviógrafos, ou estações automatizadas com alta 

resolução temporal, restringe-se a determinação da erosividade da chuva, por isso, avaliar e 

selecionar um método confiável estatisticamente para estimar este fator torna-se essencial nos 

estudos de conservação do solo. Como nem sempre há dados de precipitação de alta resolução, 

alternativas para estimar a erosividade da chuva precisam ser melhor analisadas. Deste modo, 

alguns métodos de estimativa da erosividade foram testados (com resolução horária, mensais e 

anuais), utilizando os dados de precipitação disponíveis do município de Pirassununga-SP para, 
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futuramente, embasar a estimativa da erosividade para outras localidades tropicais, como na 

bacia de Peixe Angical-TO, nos estados do TO, GO e DF, Brasil. 

A modelagem da erosão é de suma importância para mitigar os efeitos negativos do 

processo erosivo sobre os recursos naturais, como o solo e a água, sendo uma das etapas 

utilizadas para a identificação dos pontos críticos de erosão e o planejamento conservacionista 

visando a proteção do solo (BEZAK et al., 2021). Quanto maior o grau de severidade destes 

pontos, mais prioritárias estas áreas serão para a conservação do solo, visando sua redução das 

perdas de solo para níveis toleráveis. A intervenção antrópica é necessária para o 

desenvolvimento do País, desde que o uso do solo seja de acordo com sua capacidade de 

exploração. Assim, a implementação das melhores técnicas de manejo e conservação do solo e 

da água deve ser analisada, independentemente de ser área protegida por lei ou não. 

Devido à importância deste tema, vários pesquisadores têm contribuído para o 

aprimoramento do estudo sobre a modelagem da erosão hídrica, mediante informações mais 

detalhadas a respeito dos programas aplicados para estimativa das perdas de solo (BATISTA et 

al., 2019; BEZAK et al., 2021; BORRELLI et al., 2021; PANDEY et al., 2021). Dos modelos 

para predição das perdas de solo, têm-se a Universal Soil Loss Equation, USLE 

(WISCHMEIER; SMITH, 1965, 1978) e suas versões revisadas, RUSLE (RENARD et al., 

1997) e RUSLE2 (McCOOL et al., 2004). Recentemente, estes modelos têm sido acoplado para 

valoração dos serviços ecossistêmicos, citando o modelo Integrated Valuation of Ecosystem 

Services and Tradeoffs, InVEST (SHARP et al., 2020), sendo o componente Sediment Delivery 

Ratio – SDR (HAMEL et al., 2015), utilizado para estimar a produção de sedimentos em uma 

bacia hidrográfica. 

Dentre estes, o modelo Revised Universal Soil Loss Equation – RUSLE, desenvolvido 

nos Estados Unidos (RENARD et al., 1997), tem sido amplamente aplicado no Brasil para os 

biomas Amazônia (CRUZ et al., 2019), Cerrado (GALDINO et al., 2016; BATISTA et al., 

2017; CUNHA; BACANI; PANACHUKI, 2017; GOMES et al., 2017; SALIS; COSTA; 

VIANA, 2019), Mata Atlântica (OLIVEIRA; VIEIRA, 2017) e Pampa (STEINMETZ et al., 

2018; NACHTIGALL et al., 2020). E também, em outros países como Índia (GANASRI; 

RAMESH, 2016), Etiópia GELAGAY; MINALE, 2016), Malásia (VIJITH; HURMAIN; 

DODGE-WAN, 2018), Etiópia (ZERIHUN et al., 2018) e Sri Lanka (FAYAS et al., 2019), 

entre outros. No entanto, este modelo não estima a taxa de entrega de sedimento, Sediment 

Delivery Ratio-SDR, informação necessária para analisar a quantidade que realmente atinge os 

cursos de água. O InVEST SDR,  com relatos de aplicação em países como Tunísia, Sri Lanka, 

China e Etiópia (BOUGUERRA; JEBARI, 2017; DIAS et al., 2019; ZHOU et al., 2019; 
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ANESEYEE et al., 2020). De acordo com Morgan e Nearing (2011), estudar todos os locais da 

superfície terrestre não é viável, por isso, ferramentas de avaliação e predição precisam ser 

aplicadas para avaliar os problemas atuais, prever tendências futuras e fornece uma base 

científica para decisões de política e de gestão. Os modelos de erosão podem cumprir esta 

função, desde que usados corretamente e sejam robustos (MORGAN; NEARING, 2011). Deste 

modo, o modelo RUSLE foi selecionado para modelagem das perdas de solo na bacia de Peixe 

Angical. Além do modelo InVEST SDR para estimativa da taxa de entrega de sedimentos pela 

bacia. 

Os modelos de perdas de solo necessitam de uma avaliação quanto as suas incertezas, 

de acordo com Batista et al. (2019) há diversas formas de avaliar estes modelos conforme a 

escala e finalidade da aplicação, como por imagens aéreas de alta resolução utilizada na 

avaliação qualitativa e semiquantitativa. No entanto, a avaliação visual não é válida para a taxa 

de transporte de sedimentos (BATISTA et al., 2021). Nesse caso, torna-se necessário a 

comparação entre dados observados e preditos. Uma vez que, a estimativa da exportação de 

sedimentos é o produto da perda de solo pela taxa de entrega de sedimentos. Neste sentido, 

presume-se que a avaliação das incertezas da exportação de sedimentos seja suficiente para 

verificar a eficiência de toda a modelagem da erosão, desde as perdas de solo até a taxa de 

entrega de sedimentos. 

No primeiro artigo, os objetivos foram desenvolver um pacote no ambiente R para 

determinar a erosividade da chuva a partir de dados sub-horários. O pacote foi desenvolvido e 

encontra-se disponível para download desde novembro de 2018, com o nome 

RainfallErosivityFactor. Este pacote tem como resultados os valores de erosividade da chuva 

mensal, anual e a média do período, também, a precipitação total, volume e número de chuvas 

(erosivas e não erosivas) mensal e anual. Para validar o pacote utilizou-se um banco de dados 

abertos referente ao município de Pirassununga-SP. 

No segundo artigo, visto que, nem sempre os dados sub-horários estão disponíveis, o 

objetivo foi selecionar um método alternativo ao considerado padrão, Wischmeier e Smith, 

visando uma substituição em caso de ausência de dados sub-horários. Para isso foi aplicado a 

técnica Additive Main Effects and Multiplicative Interaction (AMMI) para avaliar a interação 

entre métodos e meses. Quando a interação foi significativa aplicou-se o agrupamento Scott-

Knott, o qual visou verificar, qual método foi estatisticamente semelhante ao método padrão.  

No terceiro artigo, os objetivos foram estimar as perdas de solo e sedimentos 

exportados pela bacia de drenagem do reservatório de Peixe Angical, localizada nos estados de 

Tocantins, Goiás e Distrito Federal. Após estimar as perdas de solo, esta foi classificada como 
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muito baixa a extremamente alta, sendo um parâmetro para definir as áreas prioridades para 

conservação do solo, contribuindo para tomada de decisões quanto ao planejamento da 

aplicação das práticas conservacionistas. Além disso, verificar entre os fatores do modelo 

RUSLE –fatores R, K, LS e C–, aquele de maior importância para a modelagem da erosão 

hídrica. A bacia do reservatório de Peixe Angical está inserida no bioma Cerrado, o qual vem 

sofrendo intensas modificações de uso. Assim, a avaliação dos recursos ambientais, analisando 

o passado e o presente, de uma sequência cronológica (1990, 2000, 2010 e 2017) e o futuro, 

tornam-se essenciais para o monitoramento da bacia de Peixe Angical, propiciando a qualidade 

e quantidade dos seus recursos hídricos. 
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SECOND PART – Articles 

Article I - RainfallErosivityFactor: An R package for rainfall erosivity (R-factor) 

determination 

(Article published in Catena, https://doi.org/10.1016/j.catena.2020.104509) 

 

Abstract 

RainfallErosivityFactor is an R package developed as a tool for the analysis of rainfall data and 

the calculation of the R-factor, a relevant parameter for soil loss prediction due to water erosion. 

The package consists of a user-friendly routine for loading large rainfall datasets into the R 

software environment and classifying data into erosive and non-erosive events. Erosive rainfall 

events are then used to compute rainfall erosivity values. This paper explains the development 

of the package with the purpose of showing how rainfall data can be analyzed accurately, fast 

and efficiently. An example is provided for Pirassununga, SP, Brazil, using a 7-year rainfall 

dataset with 10-minute interval between measurements. This package proved to be an efficient 

and fast tool for the determination of rainfall erosivity, which can be subsequently used to 

predict soil erosion. Considerations for future developments may come in the form of feedback, 

such as the need for more options of time interval. 

Keywords: decision making tool; rainfall data analysis; water erosion; R software environment; 

erosion model prediction. 

 

1. Introduction 

The R-factor –rainfall erosivity– is defined as the capacity of rainfall to cause soil loss 

by water. The R-factor is one of the six factors in the Universal Soil Loss Equation-USLE 

(Wischmeier and Smith, 1978) and its revised versions. Due to the irregular distribution of 

precipitation, in time and space, rainfall erosivity (R-factor) can be computed and mapped 

(Nearing et al., 2017). Thus, the R-factor is an important soil conservation tool for decision 

making and proper selection of best management practices for anthropogenic activities such as 

agriculture, urban development, barrage construction, among others (Wischmeier, 1959; 

Wischmeier and Smith, 1978). 

Rainfall erosivity has been widely studied worldwide (Nearing et al., 2017). A survey 

with the term “Rainfall Erosivity” was performed recently (February 2020) using the Scopus 

database. Results of this search showed 1265 records, 86.2% of which were associated with 

scientific papers. 
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Nowadays there are only a few computer programs capable to assist on the 

computation of rainfall erosivity: Chuveros, NetErosividade, Climate Generator (CLIGEN), 

Rainfall Intensity Summarization Tool (RIST), and Web ERosivity Module (WERM). In 

Brazil, Chuveros was used in only a few regional research projects in the State of Rio Grande 

do Sul (Bazzano et al., 2007; 2010). NetErosividade usage has been reported in the scientific 

literature for several studies in the Brazilian states of São Paulo, Minas Gerais, Espírito Santo, 

and Rio Grande do Sul (Moreira et al., 2006; 2008; 2012; 2016), whereas CLIGEN is a weather 

generator used by the Water Erosion Prediction Project (WEPP) for the modeling of soil loss 

(Lobo et al., 2015; Kinnell, 2019). The other two recently reported tools for the prediction of 

rainfall erosivity include RIST (Araujo et al., 2018) and WERM (Risal et al., 2016; 2018). 

Rainfall erosivity can be calculated using datasets from automated weather stations or 

even pluviograms. However, in both cases, data processing begins by entering values manually 

into spreadsheets. A challenge in computing the R-factor refers to the vast rainfall input data 

required for a reliable calculation; e.g. it is recommended to use historical precipitation series 

of ≥20 years (Renard and Freimund, 1994; Vantas et al., 2019). Even for smaller datasets, 

calculation of rainfall erosivity becomes time-consuming. Thus, the determination of R-factor 

becomes an exhaustive process for reliable predictions, requiring a lot of attention or 

automation to avoid errors. For rather long historical series, the manual procedure increases the 

chances of failed calculations or cumulative errors. 

An easy-to-adopt software package was developed to avoid errors during the 

computation of erosivity values, as well as to make its determination process faster and 

straightforward. This software package can be used as a tool, ad-hoc to the vertiginous 

technological and scientific times, to facilitate the scientific and extensionist work in the area 

of soil and water conservation. The R-project is an open source and collaborative free 

environment for advanced statistics, data management, graphic generation, and predictive 

analytics (R Core Team, 2018). Thus, the first objective was to develop a package to be run at 

the R software environment to calculate rainfall erosivity accurately, fast, and efficiently. Once 

the R package: RainfallErosivityFactor for R-factor determination was developed, the second 

objective was to validate it using a robust public database from Pirassununga, State of São 

Paulo, Brazil. 
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2. Methods 

2.1. Structure of the package RainfallErosivityFactor 

The RainfallErosivityFactor package was developed and created using the R software 

environment (R Core Team, 2018). The package became available at the Comprehensive R 

Archive Network (CRAN) on the 18th of November of 2018. The RainfallErosivityFactor 

package was developed accordingly to the procedure described by Wischmeier (1959); 

Wischmeier and Smith (1978). The package first identifies single rainfall events. A single 

rainfall event refers to an interruption in rain in an interval of 6 h with precipitation ≤1 mm. 

Then, the kinetic energy is determined using: E = 0.119 + 0.0873 * Log10I (MJ ha-1 mm-1). 

Subsequently, rainfall erosivity (EI30, MJ mm h-1 ha-1 year-1) is computed according to 

Wischmeier (1959), considering the total kinetic energy of a storm in a maximum of 30-minute 

intensity (EI30). The sum of these products corresponds to the R-factor of the USLE 

(Wischmeier and Smith, 1978). 

The RainfallErosivityFactor package differentiates non-erosive from erosive rainfall 

events. Erosive rainfall events are computed based on the following criteria: i) the cumulative 

rainfall of an event is greater than 10 mm; ii) the intensity in 10 minutes (I10) is greater than 24 

mm h-1; and iii) the kinetic energy is greater than 3.6 MJ ha-1. Conversely, when these criteria 

are not met, the rainfall event is considered non-erosive. 

The outputs provided by the RainfallErosivityFactor package are the monthly values 

of precipitation, rainfall erosivity, number of erosive rainfall events, number of non-erosive 

rainfall events, sum of erosive rains, and sum of non-erosive rains, as well as annual values. 

Finally, the RainfallErosivityFactor package delivers the annual average value of rainfall 

erosivity for the period evaluated. The slowest runtime analysis for a 7-year period database 

was 56 s using a Windows-based computer. 

 

2.2. Documentation of the package RainfallErosivityFactor 

The RainfallErosivityFactor package was developed using the R software 

environment. The package is currently available for installation at the CRAN public repository 

https://CRAN.R-project.org/package=RainfallErosivityFactor, which is free to access 

worldwide. The RainfallErosivityFactor package is documented in the R software through the 

standard package documentation systems established by CRAN. The documentation contains a 

manual divided into four reports: Description; RainfallErosivity Factor (The Rainfall Erosivity 

Factor); RainFallExample (dataset to perform an example of Rainfall Erosivity Factor); and 
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RFactor (The R-Factor function - Computes Rainfall Erosivity Factor). For more information, 

see the supplementary data. 

As part of the RainfallErosivityFactor package validation process -for the package to 

be approved and made available at https://cran.r-

project.org/web/packages/RainfallErosivityFactor/index.html-, the data were presented, the 

results verified by the maintenance team, and evaluated by CRAN. 

 

To use the package, it is necessary to install it by the command line: 

install.package (RainfallErosivityFactor) 

 

Immediately after installation, the library of the package should be loaded; viz. the 

installation of the library by command line: 

library (RainfallErosivityFactor) 

 

To run the function, from a dataset: 

data (RainFallExample, package=“RainfallErosivityFactor”) 

RFactor (Data, initialmonth, months, registration, nyear). 

 

The report “RainFallExample” shows the way the database must be organized for the 

package to recognize the serial data. 

The report “RFactor” displays the details of the main function of the program. The 

main function of the library is executed by the following command line: 

RFactor(Data, initialmonth, months, registration, nyear). 

 

2.3 Version of the software R 

The RainfallErosivityFactor package was developed using versions of R 3.4.3 and 

1.0.136 - © 2009-2016 RStudio, Inc. Therefore, versions equal to or greater than those utilized 

in creating the package must be used for correct performance. The license used to create the 

package was the GPL General Public License Version equal to or greater than 2. 

 

2.4. Use of the package RainfallErosivityFactor for scientific research 

2.4.1. Site description 

Brazil is a country of continental proportions and one of the world’s leading producers 

of sugar, soybeans, beef, poultry, coffee, citrus, and corn (IBGE, 2018; Miranda and Fonseca, 



30 

 

2020). Correspondingly, the State of São Paulo remains the main producer of sugarcane (Veiga 

et al., 2018; Miranda and Fonseca, 2020), and citrus (AGRIANUAL, 2016; IBGE, 2018) in 

Brazil. The city of Pirassununga is located in the State of São Paulo (SP), at the geographical 

coordinates 21°59'46" S and 47°25'33" WGr (Fig. 1). Regarding Pirassununga, typical farming 

systems comprehend crop production, pastures for cattle, and installations for poultry and other 

small species (Godoi, 2018). According to the Köppen classification, the climate is Cwb 

(Alvares et al., 2013), i.e. humid subtropical climate, with dry winters and mild summers. 

Precipitation information was obtained from the University of São Paulo Weather Station 

(USPWS) located at the Fernando Costa campus in Pirassununga. This referred university 

campus includes rural and agricultural areas devoted to experimental research and productive 

farming, well concealed by the surrounding areas of pasture for livestock, and farmland for 

citrus and sugarcane production (Godoi, 2018). This weather station was selected due to the 

importance of the region for agricultural production, and because precipitation data is open 

access and readily available on-line. 

 

Fig. 1. Location of Pirassununga, State of São Paulo, Brazil. 
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2.4.2. Source and characteristics of the rainfall data 

The USPWS rainfall dataset comprises the period from 2009 to 2015. Data were 

recorded in automatic rain gauges every 10 min with accuracy of 0.1 mm. These data were used 

to calculate rainfall erosivity using the RainfallErosivityFactor package. 

 

3. Results 

3.1. Package performance 

The RainfallErosivityFactor package computed –with no errors– rainfall erosivity, 

monthly and total annual rainfall, and number of erosive and non-erosive events. Therefore, the 

RainfallErosivityFactor package revealed to be accurate, fast, and effective in calculating the 

R-factor. It is important to acknowledge that the computed R-factor was the average rainfall 

erosivity for the studied period. 

Additionally to the package being open access, there is no limitation regarding the 

dataset size to be analyzed by it. These characteristics are very advantageous since the package 

is already available and operational worldwide. 

 

3.2. Weather station from Pirassununga 

The studied area has a well-defined wet season (Table 1), being concentrated during 

the months of November to April. In terms of annual amount, there is a large variation of 

rainfall, directly proportional to the rainfall erosive potential. 

Regarding to rainfall amount, 2014 was an atypical year with water deficit in many 

parts of Brazil, especially in the study region. Santos et al. (2017) compared the hydrological 

year of 2013-2014 to the rain distribution of the previous 21 years and found out rainfall indexes 

significantly below average, with irregular distribution of precipitation during the rainy season. 

Marengo et al. (2015) reported that the main cause leading to this heavy lack of rain was an 

intense, persistent and anomalous high pressure system blocking moisture flow from the 

Amazon and cold front systems in the South Atlantic Convergence Zone. Although 2014 was 

the year with the lowest total rainfall accumulation rainfall, the smallest rainfall erosivity value 

was computed for 2012. These results showed rainfall erosivity relates more to rainfall intensity 

than to total accumulation. 

The R-factor for Pirassununga ranged from 6983.6 to 13236.4 MJ mm ha-1 h-1 year-1 

(Table 1), being the smallest for year 2012 and the most erosive for 2009. The average rainfall 

erosivity for the period corresponds to 9512.9 MJ mm ha-1 h-1 year-1, being classified as 

medium-high erosivity, according to Foster et al. (1981). 
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Fig. 2 depicts the minimum, average, and maximum values of each of the output data 

for Pirassununga, SP, Brazil. One can observe the large variability of the data, thus the 

importance of using as input a large rainfall dataset for predicting a reliable R-factor. 

 

Fig. 2. Minimum, average, and maximum values for: (a) rainfall, mm; (b) amount of erosive 

rainfall, mm; (c) amount of non-erosive rainfall, mm; and (d) rainfall erosivity, MJ mm ha-1 h-

1 month-1. 
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4. Discussion 

4.1 Rainfall erosivity 

Average rainfall erosivity for Pirassununga was 9512.9 MJ mm ha-1 h-1 year-1. This 

value was higher than those reported by Oliveira et al. (2012); Oliveira et al. (2015); Trindade 

et al. (2016). They computed rainfall erosivity values ranging from 6000 to 8000 MJ mm ha-1 

h-1 year-1.  

A more global perspective can be perceived by comparing these values to other parts 

of the world. Hoyos et al. (2005) reported an R-factor of 13,192 MJ mm ha-1 h-1 year-1 for the 

Andes of Colombia, a greater value compared to Pirassununga. For Asia, Yu et al. (2001) 

reported rainfall erosivity values of 13,600 and 21,600 MJ mm ha-1 h-1 year-1 for two locations 

of the Malaysian Peninsula. However, for the entire Peninsula, Leow et al. (2011) obtained 

values ranging from 7500 to 20,000 MJ mm ha-1 h-1 year-1. For Japan, Shiono et al. (2013) 

reported a range from 700 to 15,000 MJ mm ha-1 h-1 year-1. Higher rainfalll erosivity values 

than those for Pirassununga were also observed for Cuba, where the R-factor ranged from 

13,500 to 15,500 MJ mm ha-1 h-1 year-1 (Schiettecatte et al., 2008). Lower values were registered 

for central Chile, which ranged from 71 to 4025 MJ mm ha-1 h-1 year-1 (Bonilla and Vidal, 

2011). For Europe, average rainfall erosivity values were lower than those determined for 

Pirassununga, as 871 MJ mm ha-1 h-1 year-1 for Belgium (Verstraeten et al., 2006), 1715.2 MJ 

mm ha-1 h-1 year-1 for Italy (Borrelli et al., 2016), and 849.6 MJ mm ha-1 h-1 year-1 for Greece 

(Panagos et al., 2016). Rainfall erosivity values vary according to climate, largely associated to 

different types of rain, i.e. in terms of duration and intensity. Consequently, higher rainfall 

erosivity values are observed in South-eastern Asia (Cambodia, Indonesia, Malaysia, the 

Philippines, and Bangladesh), Central Africa (Congo, and Cameroon), South America (Brazil, 

Colombia, and Peru), Central America and the Caribbean. Conversely, lower rainfall erosivity 

values are commonly located in regions of Siberia, the Middle East, Northern Africa, Canada, 

and Northern Europe (Panagos et al., 2017). 
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Table 1. Monthly rainfall, erosive rainfall, and rainfall erosivity obtained through the RainfallErosivityFactor package, for Pirassununga, SP, 

Brazil. (continue…) 

Year Monthly Annual 

 
January February March April May June July August September October November December Total 

 Rainfall (mm)  

2009 302.6 255.2 170.8 89.6 82.0 46.4 84.0 174.4 156.6 133.8 252.8 403.0 2151.2 

2010 198.0 305.2 201.4 181.4 40.0 15.4 33.4 0.0 87.0 4.8 26.2 215.0 1307.8 

2011 452.2 166.8 181.0 115.2 4.4 44.0 0.4 28.8 8.4 214.4 224.0 219.0 1658.6 

2012 316.0 85.2 89.6 151.8 105.0 165.8 55.6 0.2 64.4 117.4 176.0 230.2 1557.2 

2013 275.8 297.2 168.0 92.6 144.8 49.2 40.8 25.6 52.0 157.8 230.0 79.0 1612.8 

2014 129.8 46.8 87.6 0.2 31.2 8.6 44.2 0.4 47.6 20.0 388.0 238.6 1043.0 

2015 186.8 293.4 173.8 70.0 79.2 31.8 42.2 22.2 90.2 96.8 297.4 215.4 1599.2 

 
Volume of erosive rainfall (mm)  

2009 264.2 239.0 165.2 80.6 57.8 10.2 62.2 173.6 128.4 105.4 232.6 366.8 1886.0 

2010 133.2 273.2 186.4 169.0 34.8 12.8 32.4 0.0 70.0 0.0 11.0 195.0 1117.8 

2011 401.2 128.0 172.0 106.0 0.0 41.8 0.0 13.6 0.0 194.6 198.2 179.0 1434.4 

2012 279.0 60.8 63.2 141.6 97.8 161.0 35.0 0.0 51.4 108.0 147.6 173.2 1318.6 

2013 247.8 244.0 135.8 78.6 137.0 22.0 22.8 23.4 42.2 135.6 209.0 14.4 1312.6 

2014 114.4 23.2 62.2 0.0 25.0 0.0 41.0 0.0 28.4 0.0 363.2 201.2 858.6 

2015 173.8 252.0 144.0 41.6 71.4 22.2 20.8 17.8 82.0 87.2 238.0 175.4 1326.2 

 
Rainfall Erosivity (MJ mm ha-1 h-1)  
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Table 1. (concluded) 

2009 2679.9 1487.5 745.5 553.8 403.0 10.3 268.3 527.0 788.3 881.0 1294.6 3597.2 13236.4 

2010 471.5 3462.0 1544.0 1150.0 316.6 26.7 289.2 0.0 156.1 0.0 52.7 1537.9 9006.7 

2011 3128.3 876.1 679.8 907.4 0.0 210.7 0.0 19.9 0.0 936.1 2131.6 1968.8 10858.7 

2012 1746.4 598.6 258.4 600.7 303.3 539.3 211.9 0.0 146.5 347.6 792.0 1438.9 6983.6 

2013 1527.9 2889.1 820.5 407.5 821.5 29.2 28.1 239.7 92.2 1268.6 918.0 10.2 9052.5 

2014 1135.2 100.0 1370.6 0.0 157.6 0.0 72.1 0.0 40.9 0.0 3596.9 1631.3 8104.6 

2015 1484.9 1791.7 532.8 317.1 457.4 300.1 36.0 16.1 733.9 720.2 1900.8 1057.0 9348.0 
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According to Foster et al. (1981), the average rainfall erosivity of Pirassununga was 

classified as medium-high (9512.9 MJ mm ha-1 h-1 year-1). This value indicates soil and water 

conservation practices should be adopted to minimize the water erosion impacts in the area. In 

Brazil, water erosion of cropland areas results in soil loss rates of more than 600 million tons 

per year (Dechen et al., 2015). Regarding the State of São Paulo, 65% of the agricultural area 

requires some type of intervention to curtail soil losses (Medeiros et al., 2016). Nationwide, no-

till cropping systems have been adopted in approximately 50% of annual crop cultivated areas; 

wheareas in the State of São Paulo, no-till systems are much less common (only 11% of annual 

crop cultivated areas) (Llanillo et al., 2013). According to the computed rainfall erosivity values 

(Table 1), the region of study presents high soil erosion vulnerability during the months above 

the critical limit −more than 500 MJ mm ha-1 h-1 month-1 (Rufino, 1986)−, adding up to about 

half of the year. Thus, Telles et al. (2019) suggest adequate soil conservation practices as no-

till systems integrated with agricultural terracing, contour farming, intercropping, or crop 

rotation. 

 

4.2. Comparison with other programs 

Chuveros program runs on MS-DOS and the input file requires only erosive rainfall 

data in .DAT format. The process to separate only erosive events is arduous, time-consuming, 

and very susceptible to errors. Chuveros is no longer available for download. The 

NetErosividade program is available for download and it requires users to input the 

geographical coordinates. Thus, its calculations rely on an internal rainfall database limited to 

a few Brazilian States: Minas Gerais, São Paulo, Espírito Santo, and Rio Grande do Sul. The 

output results of rainfall erosivity are based on neural network analyzes. According to Moreira 

et al. (2006), the NetErosivity for the state of São Paulo makes it possible to obtain the annual 

erosivity value. 

The other programs require a more sophisticated climatic information input (e.g. daily 

rainfall, storm duration, air temperature, solar radiation, and wind speed and direction). 

However, meteorological stations in developing countries, such as Brazil, usually lack this 

information. RIST accepts input data files in .TXT or .CSV formats. The intensity and time 

intervals should be checked (5, 10, 15, 30 and 60 min). Its outputs are precipitation (mm), 

duration (hours), maximum intensity (mm h-1), kinetic energy (MJ ha-1), and EI30 (MJ mm ha-1 

h-1). RIST does not return the number of erosive rainfall events. Furthermore, it is necessary to 

divide the computed R-factor by the years of the dataset. The WERM outputs are precipitation, 
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maximum intensity in 30 minutes and R-factor, being these results expressed per event and 

month, and rain erosivity per year. 

The RainfallErosivityFactor package is simple and can be employed for any rainfall 

dataset. An advantage of it is the input of data in any format acceptable by R software 

environment (.TXT, .CSV, XLSX, among others). Once the package is loaded into the R 

software library, descriptive analyses may be performed altogether. 

 

4.3. Limitations of R factor 

A common hurdle for engineers and scientists using USLE or its revised versions 

(RUSLE and RUSLE2), in various parts of the world, consists of a lack of continuous and fine 

temporal resolution rainfall data for the computation of the R-factor, since long term (≥20 years) 

precipitation records are required (Renard and Freimund, 1994; Vantas et al., 2019). The R-

factor is usually computed for time periods greater than 20 years to minimize any possible bias 

caused by unusual wet or dry rainfall periods (Vantas et al., 2019). Nevertheless, the developers 

of RUSLE2 (USDA-ARS, 2013) reported a rainfall record of 15 years sufficed for R-factor 

computation in Northern Mississippi. 

Although for illustrative purposes we used a 7-year rainfall dataset, the region of study 

presented small amounts of precipitation during the wet seasons of years 2014 and 2016. This 

may underestimate rainfall erosivity (skewing R-factor). Thus, the accentuated importance of 

identifying a source of rainfall data with null or minimum latency, and appropriate temporal 

resolution. 

Furthermore, Nearing et al. (2017) pointed out that the first version of USLE 

(Wischmeier and Smith, 1965) defined rainfall erosivity as an empirical function of rainfall 

intensity. Nevertheless, soil loss during interrill erosion is dominated by either splash 

detachment (correlated to rainfall intensity) or sheet-flow sediment transport (not correlated to 

rainfall intensity). Similarly, soil loss during rill or gully erosion is driven by runoff rate; i.e. it 

is not rainfall intensity dependent. Thus, depending on the physical conditions of the area of 

study, it may result in significantly underestimated erosivity. 

 

4.4. Landscape scale application 

Rainfall erosivity must be computed locally according to available historic rainfall 

datasets. Nevertheless, once proximal regions are analyzed, rainfall erosivity can be mapped 

using geostatistical tools for interpolation as means to achieve the spatial distribution of the R-
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factor. Panagos et al. (2017) mapped the global rainfall erosivity to provide R-factor values 

around the globe. This information may be used to estimate current soil erosion rates under 

different land-use and vegetation cover conditions, or to estimate soil losses considering future 

climate change scenarios. 

An adequate spatial interpolation can only be achieved by using precipitation data from 

various locations within or around the vicinity of the region of interest. The 

RainfallErosivityFactor package can assist to compute the rainfall erosivity at each individual 

locale. The results can be fed into any GIS software, or another package also available at CRAN 

to run the geostatistics. 

 

5. Conclusions 

The RainfallErosivityFactor package is robust in determining rainfall erosivity. No 

operational errors occurred, and no dataset size limit was detected. This showed to be a rather 

fast, efficient, and accurate process for the determination of the R-factor. 

Currently, the RainfallErosivity package is in version 0.1.0. The need to calculate fast 

and accurately the rainfall erosivity using a large dataset motivated the development of this 

package. In developing countries, such as Brazil, there is little monitoring of climatic variables 

in some regions, thus a package to calculate rainfall erosivity based on simple rainfall historic 

data constitutes a very useful tool.  

Future versions of the package may include considerations by users around the world 

in the form of feedback, such as the addition of more options for time interval. 
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Article II - Rainfall Erosivity Estimation: A comparison and statistical assessment 

among methods using data from Southeastern Brazil 

(Article elaborated according to standards of the Journal Catena, ISSN: 0341-8162) 

 

Abstract 

Rainfall erosivity is an indispensable factor in water erosion modeling. The search for 

alternatives to replace the Wischmeier and Smith method (standard) for determining rainfall 

erosivity becomes important due to the scarcity of detailed rain data from weather stations in 

many parts of the globe, with emphasis upon tropical regions. Thus, the objective of this study 

was to select a consistent method for such substitution in Brazilian conditions without access 

to rainfall intensity data. The tested methods included: modified Fournier, MF; modified 

Fournier by Zhang, MF-Z; modified Fournier by Men, MF-M; Rainfall Disaggregation, RD; 

TRMM Satellite with modified Fournier coefficient, TRMM-F; and TRMM Satellite with 

monthly rainfall, TRMM-M. The rainfall data were obtained from the USP Meteorological 

Station located on the Fernando Costa campus, with a time series of 7 years, referring to the 

period from 2009 to 2015. The analyses were performed according to the Additive Main effects 

and Multiplicative Interaction (AMMI) model and Scott-Knott statistical tests. Considering the 

1:1 line, all methods had good adjustment, presenting similar behavior in relation to the standard 

method. The assessed methods behaved differently for rainy, dry, monthly, and annual periods. 

The MF method proved to be capable to consistently replace the standard method in all 

aforementioned situations. Considering the driest period, any method can be used. For annual 

rainfall erosivity estimation, the RD, MF, TRMM-F, and TRMM-M methods can be applied; 

highlighting that TRMM-based methods are optimal for locations without on-site rain gauges. 

Additionally, it was computed that the modified Fournier by Men and modified Fournier by 

Zhang underestimated and overestimated the rainfall erosivity, respectively. 

Keywords: Modified Fournier; Rainfall Disaggregation; TRMM. 

 

1. Introduction 

The erosive potential of rainfall, defined as rainfall erosivity index, can be calculated 

using datasets from automated weather stations or even pluviograms. The rainfall erosivity 

index –also represented as the R factor of EI30– is computed as the product of rainfall kinetic 

energy times its 30-minute maximum intensity (Wischmeier and Smith, 1978). The R factor is 
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one of the six factors in the Universal Soil Loss Equation (USLE) (Wischmeier and Smith, 

1978) and its revised versions. However, in parts of the globe, there is insufficient trustworthy 

rainfall data for a reliable calculation (Trindade et al., 2016), since it is recommended to use 

historical precipitation series of ≥ 20 years (Renard and Freimund, 1994; Vantas et al., 2019), 

and the rainfall stations do not present homogeneity in their distribution (Moraes et al., 2015). 

Thus, the lack of good resolution rainfall data –mainly rainfall intensity– has driven researchers 

to develop alternative methods to estimate the rainfall erosivity such as the Fournier index 

(Fournier, 1960), Modified Fournier (Arnoldus, 1980) by the adjustment of potential equations, 

and considering erosivity per day in half a month (Zhang et al., 2002), among others (Diodato 

et al., 2013; Diodato and Bellocchi, 2010; Men et al., 2008). 

Other methodologies, such as rainfall disaggregation (Silveira, 2000) –considering 

annual or monthly totals for hourly or shorter periods–, or techniques based on orbital remote 

sensing to estimate rainfall depth (Duarte and Silva Filho, 2019; Li et al., 2020; Moreira et al., 

2020), can be used at locations with low density of  rain gauge data points. Rainfall erosivity 

mapping for Africa utilizing Tropical Rainfall Measurement Mission (TRMM) based on TMPA 

3B43 satellite data (precipitation data) coupled with the modified Fournier index, proved to be 

a reliable methodology (Vrieling et al., 2010). Although, there are regions where available 

databases and automated data collection systems –automatic rain gauges, and real-time data 

transfer– provide reliable hourly or daily rainfall records, even some with 5-, 10-, or 15-minute 

resolution (Angulo-Martínez and Beguería, 2009; Diodato et al., 2017; Porto, 2016; Todisco et 

al., 2019; Yue et al., 2020), this is not the case for less technologically advanced countries (Di 

Raimo et al., 2018; Waltrick et al., 2015). 

In Brazil, a country of continental proportions and one of the world’s leading crop 

producers (USDA, 2020), the most reliable rainfall datasets are available on the websites of the 

National Water Agency (ANA, 2019), the National Institute of Meteorology (INMET, 2019), 

and the Centre for Monitoring and Early Warnings of Natural Disasters (Cemaden, 2019). 

Nevertheless, there is still a gap in utilizing the correct method for the estimation of rainfall 

erosivity based on the specific characteristics of the area of study (Trindade et al., 2016). 

Studies conducted by Angulo-Martínez and Beguería (2009) compared different 

methods to estimate rainfall erosivity (R factor) and assess each of them via RUSLE. They 

reported some of the methods could be applied in other regions, provided the availability of 

high-resolution rainfall data (pluviographic data). Nearing et al. (2017) reported estimations of 

rainfall erosivity resulted in underestimation of soil erosion using RUSLE. Additionally, Vantas 
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et al. (2019) presented the correlation between the R factor and annual precipitation for several 

countries in the world, using parametric equations and geostatistical models. With this temporal 

resolution, regression models based on annual precipitation (coarser resolution) to estimate the 

R factor were compared by Lee and Heo (2011) using rainfall erosivity data in Korea. Thus, 

these methodologies have proved to be useful for the estimation of rainfall erosivity in regions 

with insufficient rainfall data. 

It is worthy to mention that studies comparing methodologies for the estimation of 

rainfall erosivity are sparse. In this sense, (Ma et al., 2014) compared three models for 

estimating the R factor, including those proposed by Zhang et al. (2002) and (Men et al., 2008). 

The different methods presented discrepancies over the months of the year. Thus, alternative 

methods should be evaluated for accuracy as compared to the standard method. 

Although there are great advancements in having readily useful rainfall erosivity data 

in Brazil (Oliveira et al., 2013), there are still some regions that lack reliable instrumentation 

and data acquisition. For these regions, we focus on identifying the best alternatives of 

estimating rainfall erosivity from monthly, daily, or hourly precipitation data. The objective of 

this work was to statistically assess alternative methods for the estimation of the R factor, as 

proposed by Wischmeier and Smith (1978) (WS), via a comparison of estimations using: 

modified Fournier (MF); modified Fournier by Zhang (MF-Z); modified Fournier by Men (MF-

M); rainfall disaggregation (RD); TRMM Satellite with modified Fournier coefficient (TRMM-

F); and TRMM Satellite with monthly rainfall (TRMM-M). Although, Ma et al. (2014) results 

were associated to climate conditions of China, we opted to test the Modified Fournier 

equations of Zhang et al. (2002) and Men et al. (2008) to verify if they could be useful for 

Southeastern Brazil conditions. These computational tools for R factor estimation can benefit 

different stakeholders: engineers, extensionists, policy makers, and research groups across 

Brazil, South America, and other tropical regions around the world. 

 

2. Materials and Methods 

2.1. Characterization of the study area 

The selected study area was the municipality of Pirassununga, located in the State of 

São Paulo, between the coordinates of 21°50’ and 22°8’ south latitude and between 47°10’ and 

47°40’ longitude WGr (Figure 1). The climate of the municipality according to Köppen 

classification is Cwb, i.e., humid subtropical climate with dry winters and rainy summers 

(Alvares et al., 2013). 
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Fig. 1. Location map of the municipality of Pirassununga, in the State of São Paulo, Brazil. 

 

The rainfall data were obtained from the Meteorological Station of the University of 

São Paulo (USP) located at the Fernando Costa campus, with a time series of 7 years, referring 

to the period from 2009 to 2015. The automatic rain gauge was configured to record frequency 

of rain every 10 minutes, with an accuracy of 0.1 mm. 

 

2.2. Methods for determining rainfall erosivity 

Rainfall erosivity is important for several studies (Figure 2), mainly for the area of 

environmental modeling, i.e. water erosion. This factor can be determined or estimated. Figure 

2 highlights the determined EI30 (blue color) and estimated EI30 –represented by the original or 

modified Fournier index– (green color). Therefore, evaluating other methods for its estimation 

is essential to have method options for regions with a range of space-time rainfall information. 
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Fig. 2. Map of co-occurrence network referring to rainfall erosivity, based on the Scopus 

survey (02/12/2020), and elaborated in VOSviewer. 

 

The rainfall erosivity index (R factor or EI30) was estimated via a comparison of the 

following methods. 

 

2.2.1. Wischmeier and Smith, WS 

The methodology proposed by Wischmeier and Smith (1958), Wischmeier (1959), and 

Wischmeier and Smith (1978), is adopted as the standard method in this work according to 

studies conducted by Nearing et al. (2017). The method considers individualized events of rain, 

where the previous rain is separated from the subsequent one for at least 6 hours for rains up to 

1 mm. The rainfall events are considered erosive for rain depths ≥ 10 mm, or rain duration ≥ 15 

minutes and rain depths ≥ 6 mm (Wischmeier and Smith, 1958). The kinetic energy of rainfall 

was calculated by the following equation: 

𝐸𝑐 = 0.119 + 0.0873 × log 𝐼 Eq. 1 

where Ec is the kinetic energy (MJ ha-1 mm-1); and I is the rainfall intensity (mm h-1). 
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The rainfall erosivity index (EI30) is the product of the kinetic energy of the rainfall 

event by the maximum intensity in 30 minutes (Brown and Foster, 1987). 

𝐸𝐼30 = 𝐸𝑐 × 𝐼30 Eq. 2 

where EI30 is the erosivity index (MJ mm ha-1 h-1); Ec is the kinetic energy (MJ ha-1); and I30 is 

the maximum intensity in 30 minutes (mm h-1). 

For this determination, the RainfallErosivityFactor package (Cardoso et al., 2020) was 

run in the R environment (R Core Team, 2020) to compute the R factor. 

 

2.3. Methods estimating rainfall erosivity 

2.3.1. Modified Fournier Index, MF 

To estimate the rainfall erosivity, we first computed the rainfall coefficient of the 

modified Fournier index (Arnoldus, 1980) using Eq. 3. 

 

𝑀𝐹 = ∑
𝑝2

𝑃

12

𝑖=1

 

Eq. 3 

where MF is the rainfall coefficient (mm); p is the monthly average rainfall (mm); and P is the 

annual average rainfall (mm). 

Subsequently, this rainfall coefficient was used to estimate the rainfall erosivity. The 

adjusted equation between rainfall erosivity index and rainfall coefficient for Pirassununga, SP, 

Brazil was calculated by Eq. 4. 

𝐸𝐼30 = 128.39 × 𝑀𝐹0.7214 Eq. 4 

where EI30 is the rainfall erosivity index (MJ mm ha-1 h-1); and MF is the rainfall coefficient 

(mm). 

 

2.3.2. Modified Fournier by Zhang, MF-Z 

Rainfall erosivity index was obtained according to the methodology proposed by 

Zhang et al. (2002), with local calibrations of the parameters. The model uses daily rainfall 

amounts to estimate half-month rainfall erosivity. Thus, rainfall erosivity was estimated by 

equation 5. 

𝑀𝑖 =  𝛼 ∑(𝐷𝑗)
𝛽

𝑘

𝑗=1

 

Eq. 5 
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where Mi is the half-month rainfall erosivity (MJ mm ha-1 h-1); Dj is the erosive rainfall for day 

j in half-month. Dj is equal to the actual rainfall, if the actual rainfall is greater than 12.7 mm, 

otherwise Dj is equal to zero; K is the number of days in half-month;  and  are empirical 

parameters adjusted locally, determined by the following equations: 

𝛽 = 0.8363 +
18.144

𝑃𝑑12
+

24.455

𝑃𝑦12
 

Eq. 6 

𝛼 = 21.586𝛽−7.1891 Eq. 7 

where Pd12 is the average daily rainfall greater than 12.7 mm; and Py12 is the annual average 

rainfall for days with rainfall greater than 12.7 mm. 

 

2.3.3. Modified Fournier by Men, MF-M 

In this method, Men et al. (2008) proposed an exponential equation to estimate the 

rainfall erosivity index by calculating the modified Fournier index (Eq. 8). 

𝑅𝑎 = 𝛼𝑀𝐹 Eq. 8 

where Ra is the annual rainfall erosivity index (MJ mm ha-1 h-1); MF is the modified Fournier 

index calculated by Equation 3;  and  are empirical parameters. The  parameter was 

calculated by Equation 6, and  was determined by Equation 9. 

𝛼 =  102.124−1.495𝛽+0.00214𝑃𝑑𝑚𝑎𝑥  Eq. 9 

where Pdmax is the maximum daily rainfall in an average year. 

 

2.3.4. Rainfall Disaggregation, RD 

Silveira (2000) proposed disaggregation coefficients considering daily duration of 

rainfall totals for shorter durations (sub-event). So, to obtain daily rainfall amount, the number 

of erosive rains for the Pirassununga region was analyzed (Figure 3). The rainfall events are 

considered erosive if rain depths ≥ 10 mm, or if rain duration ≥ 15 minutes and rain depths ≥ 6 

mm (Wischmeier and Smith, 1958). 
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Fig. 3. Average monthly rainfall amount of erosive events, and average number of erosive rains, 

from 2009 to 2015, at Pirassununga, State of São Paulo, Brazil. 

 

For months during dry season (Figure 3), the average number of rainfall events ranged 

from one to two events per month. Considering the rainiest months are the ones with the greatest 

erosion, the number of rainfall events between November and March were evaluated. Thus, six 

rainfall events were adopted as the average number of erosive rainfalls per month. Then, daily 

rainfall was computed by dividing monthly rainfall by 6. For the application of the Wischmeier 

and Smith (1978) methodology, the daily precipitation was disaggregated using coefficients 

obtained by Silveira (2000) for Brazilian rainfall characteristics. Disaggregation coefficients of 

0.17 for 10-minute duration, and 0.31 for 30-minute duration were used to estimate the rainfall 

amount as input for equations 1 and 2, respectively (Silveira, 2000). After estimating the rainfall 

erosivity for such rainfall event, the value was multiplied by 6 rain events to obtain the monthly 

rainfall erosivity value. 
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2.3.5. TRMM Satellite with modified Fournier coefficient, TRMM-F 

For this methodology, monthly average rainfall data (Figure 4) for Pirassununga, from 

2009 to 2015, were obtained from the Tropical Rainfall Measuring Mission (TRMM) satellite. 

This information is available on the Giovanni platform of the National Aeronautics and Space 

Administration (NASA, 2019). These monthly data were transformed into 90-m spatial 

resolution (Figure 4).  

Using the raster calculator tool of the ArcGIS 10.3 software (ESRI, 2014), the average 

monthly and the annual rainfall were extracted. Then, equations 3 and 4 were applied to 

estimate the rainfall erosivity. 
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Fig. 4. Rasters referring to monthly average rainfall data (from 2009 to 2015) extracted the TRMM satellite, for Pirassununga, State of São Paulo, 

Brazil. 
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2.3.6. TRMM Satellite with monthly rainfall, TRMM-M 

The average monthly rainfall amount was obtained according to the previous method, 

by Tropical Rainfall Measuring Mission (TRMM) satellite (Figure 4). However, rainfall 

erosivity was estimated by Eq. 10, which is calibrated for Pirassununga, SP and based on 

rainfall erosivity and average monthly rainfall. 

𝐸𝐼30 = 7.7255 × 𝑝 − 213.75  Eq. 10 

where p is the average monthly rainfall. 

 

2.4. Statistical assessment of the methods 

After estimation of rainfall erosivity index by all different methods, a statistical 

assessment of these methods was performed using the Additive Main effects and Multiplicative 

Interaction (AMMI) model. The AMMI is a hybrid analysis that incorporates both, the additive 

and multiplicative, components of the two-way data structure. The AMMI model uses analysis 

of variance (ANOVA) followed by the principal component analysis (PCA) applied to the sums 

of squares allocated by the ANOVA to analyze the two factor interaction effects (Sabaghpour 

et al., 2012). In this work, the different methods tested correspond to the one factor and the 

month was the second factor. When the interaction was significant, the Scott-Knott test was 

performed at a 5% significance level to compare methods in each month. 

The modified equation of Perkins and Jinks (1968) was applied aiming to analyze the 

behavior of the different methods in the estimation of the monthly rainfall erosivity over a 5-

year period. 

𝑌𝑖𝑗 =  µ + 𝑀𝑒𝑖 + 𝑀𝑜𝑗 + (𝑀𝑒𝑀𝑜)𝑖𝑗  Eq. 11 

where Yii is the observation of the i-th method and j-th month; µ is the general average; Mei is 

the effect of the i-th method; Moj is the effect of the j-th month; and (MeMo)ij is the effect of 

the interaction of the i-th method and j-th month. 

The Principal Component Analysis (PCA) was applied to describe the structure of the 

interaction of methods and months, based on the method of least squares, allowing the 

experimental error to be estimated from the effect of the interaction and the application of the 

statistical tests. According to Hirai (2019) equation, it is possible to separate the deterministic 

part, given by k=1, 2, …, K eigenvalues containing the highest variability of the interaction 

effect (methods x months), from the residual part (noise) k = K+1, K+2, …, n eigenvalues with 

the lowest variability of the interaction effect: 
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 (𝑔𝑒̂)𝑖𝑗  = ∑ 𝑘𝑖𝑘

𝐾

𝑘=1

𝑗𝑘  + ∑ 𝑘𝑖𝑘

𝑛

𝑘=𝐾+1

𝑗𝑘 = ∑ 𝑘𝑖𝑘

𝐾

𝑘=1

𝑗𝑘 + 
𝑖𝑗

 

Eq. 12 

where k is the square root of the k-th eigenvalues of interaction (k-th singular value); ik is the 

i-th element of the column vector 
𝑘

⃑⃑  ⃑ associated with k; and jk is the j-th element of the line 

vector 𝑘
⃑⃑⃑⃑  associated with k. 

Thus, the final AMMI model is expressed as: 

𝑌𝑖𝑗 = µ + 𝑀𝑒𝑖 + 𝑀𝑜𝑗 + ∑ 𝑘

𝐾

𝑘=1


𝑀𝑒𝑘

𝑀𝑜𝑘 + 
𝑖𝑗

 

Eq. 13 

where Yij is the response of the i-th method and j-th month; µ: general average; Mei is the effect 

of the i-th method; Moj is the effect of the j-th month; k is the square root of the k-th eigenvalues 

of the matrix methods x months; ik is the i-th element of the column vector 
𝑘

⃑⃑  ⃑ associated with 

k; jk is the j-th element of the line vector 𝑘
⃑⃑⃑⃑  associated with k; and 

𝑖𝑗
 is the noise from the 

multiplicative part used as an error, being 
𝑖𝑗
~N(0, 2) considered the experimental error. 

The analysis was carried out according to the AMMI model (Crossa, 1990), through 

the Stability Program. The Scott-Knott test was performed using the Mapgen computer program 

developed by Ferreira and Zambalde (1997). 

 

3. Results 

3.1. Rainfall Erosivity Estimations 

According to the coefficient of determination (Table 1), all models had a good 

adjustment. The critical point (x-critical) of the standard model (WS) occurred at 6.99 months. 

This point corresponds to the derivative of the adjusted equation. In practical terms, corresponds 

to the lowest value of the rainfall erosivity (EI30), consequently, it refers to the change in rainfall 

erosivity behavior. For all models tested, the inversion point occurred between the end of June 

and the beginning of July.  

Considering the critical point for the WS (6.99 months; EI30 equal to 106.83 MJ mm 

ha-1 h-1), the rainfall erosivity in such point, obtained by interpolation, for the other methods, 

corresponded to 88.90 MJ mm ha-1 h-1, 53.58 MJ mm ha-1 h-1, 0.0 MJ mm ha-1 h-1, 0.0 MJ mm 

ha-1 h-1, 41.43 MJ mm ha-1 h-1 and 75.75 MJ mm ha-1 h-1 for MF, MF-Z, MF-M, RD, TRMM-

F, and TRMM-M, respectively. However, the evaluation of the critical points and the respective 

minimum rainfall erosivity values (Table 1) revealed that the methods presented minimum 
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rainfall erosivity values lower than the WS, pointing out to an underestimation of such values 

for the peak of the dry season. 

 

Table 1. Adjusted equations, coefficients of determination, critical points, and rainfall erosivity 

indexes (EI30, MJ mm ha-1 h-1) corresponding to critical point for the evaluated methods. 

Methods Equation R2 x-critical  EI30 

WS y = 1.6826x3 + 23.55x2 – 576.45x + 2410.09 0.94 6.99 106.83 

MF y = 0.3189x3 + 53.512x2 – 765.81x + 2718.40 0.95 6.75 85.40 

MF-Z y = 4.4793x3 – 15.664x2 – 481.43x + 2654.30 0.93 7.26 47.54 

MF-M y = -1.4409x3 + 86.812x2 – 938.73x + 2682.50 0.93 6.44 0.00 

RD y = -1.3976x3 + 95.109x2 – 1053.3x + 3156.6 0.93 6.46 0.00 

TRMM-F y = 1.7507x3 + 29.567x2 – 677.43x + 2734.10 0.98 7.05 41.22 

TRMM-M y = 2.1909x3 + 16.871x2 – 574.21x + 2516.90 0.98 7.13 74.58 

y = rainfall erosivity indexes; and x = months. 

 

The fit plots (Figure 5) presented high values of coefficient of determination, varying 

from 0.8908 (TRMM-F method) to 0.9747 (MF method). Besides a better determination 

coefficient, the MF best fitted to the WS, presenting little dispersion around the 1:1 line. 
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Fig. 5. Comparison between standard (WS) and other estimated rainfall erosivity (EI30) 

methods. WS: Wischmeier and Smith; MF: modified Fournier; MF-Z: modified Fournier by 

Zhang; MF-M: modified Fournier by Men; RD: Rainfall Disaggregation; TRMM-F: TRMM-

M Satellite. 
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The method MF-Z showed overestimation of the rainfall erosivity values (Figure 5) 

when compared to the WS, particularly for higher rainfall erosivity values, which are of 

paramount importance to predict water erosion. Conversely, the MF-M underestimated the 

rainfall erosivity, it is noteworthy that the method shifted the adjustment above to the 1:1 line, 

underestimating the rainfall erosivity values, but maintaining the same proportion, both for 

higher and lower EI30 values. 

The methods based on obtaining rainfall data by satellite or by disaggregation, also 

showed good adjustments (Figure 5). However, compared to the MF method, the rainfall 

erosivity estimation showed greater dispersion around the 1:1 line. In these cases, both methods 

(RD, TRMM-F and TRMM-M) may be inaccurate for the most extreme rainfall erosivity 

values. 

 

3.2. Statistical Comparion of Methods 

The selected methods were further classified by grouping, through the principal 

component analysis (Table 2) for rainfall erosivity and the Scott-Knott test –AMMI technique. 

The interaction of the methods with the months was significant at the 5% level (Table 3). 

Therefore, the methods responded differently for the analyzed months. 

 

Table 2. Percentages of the sum of total squares (methods x months) associated to each main 

axis, being the individual and accumulated values according to AMMI analysis for the standard 

method (WS) and the other methods (MF, MF-Z, MF-M, RD, TRMM-F, and TRMM-M) use 

to estimate the rainfall erosivity of Pirassununga-SP. 

Principal component % Explanation % Accumulated 

explanation 

PC1 47.44 47.44 

PC2 32.43 79.87 

PC3 15.73 95.60 

PC4 3.48 99.08 

PC5 0.86 99.94 

PC6 0.06 100.00 
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Table 3. Summary of the analysis of variance and mean squares associated with the effect of 

the interaction between methods and months, referring to the rainfall erosivity of Pirassununga-

SP. 

Source GL QM Fc Pr>Fc 

Methods  6 167056.6107 55.23 0.00* 

Monthly  11 3491670.0616 1154.36 0.00* 

Methods x Monthly 42 37554.72892 12.42 1.00e-8* 

Residual 24 3024.7772   

 

The principal components, PC1, and PC2, explained together 79.87% of the variation 

in rainfall erosivity, being 47.44% and 32.43% explained by PC1 and PC2, respectively (Table 

2). 

The AMMI technique provides a joint analysis of ANOVA and principal component 

analysis. In this way, the level of significance of the parameters was separated from the 

interaction between them, in this case, utilized methods and months. The formed groups 

indicated that the methods belong to the same group and are statistically equal, i.e., they do not 

differ from each other. In this work, for all the methods compared, the WS method was 

considered the baseline –blue color– (Figures 6, 7, and 8), this way the compared methods were 

grouped as 1) statistically equal, 2) methods that underestimate, or 3) methods that 

overestimate. 

Considering the month of January (Figure 6), the methods were divided into 3 groups. 

The method considered standard (WS) was the only one in group 1. Thus, all methods assessed 

overestimated the rainfall erosivity, being statistically grouped into Group 2: MF-M, TRMM-

M, and MF methods; and Group 3: TRMM-F, RD, and MF-Z –greater overestimation than 

Group 2– methods. 
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Fig. 6. The univariate grouping of methods of estimation of the monthly rainfall erosivity 

indexes (January to June), by Scott and Knott (1974), with a Chi-squared significance level of 

5%. 
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Considering the month of February (Figure 6), methods were statistically grouped into 

Group 1: MF-M –greatest underestimation–; Group 2: MF-Z, TRMM-F, TRMM-M, MF, and 

RD; and Group 3: WS-standard method. Conversely to January, for this month all methods 

underestimated the rainfall erosivity indexes.  

Taking into account the March month (Figure 6), the methods were separated into 

three groups. The first group underestimated the EI30(MF-M and RD), the second group was 

statistically equal (WS and MF) and the third one overestimated the rainfall erosivity indexes 

(TRMM-F, TRMM-M and MF-Z). 

As well as March, for the month of April (Figure 6), the methods were also classified 

into three groups. Group 1 (MF-M and RD), Group 2 (TRMM-F, MF, TRMM-M, and WS) and 

Group 3 (MF-Z). For this month, the MF-M and RD methods underestimated, and the MF-Z 

method overestimated the rainfall erosivity index values. 

Concerning to May (Figure 6), the methods were stratified by only two groups (Figure 

5), with underestimating rainfall erosivity values in Group 1 (MF-M and RD), and considered 

equal values for Group 2 (TRMM-F, TRMM-M, MF, MF-Z, and WS). 

For the driest period of the year –June (Figure 6), July and August (Figure 7)–, there 

was no statistical difference between the methods evaluated and the standard one (WS). 
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Fig. 7. The univariate grouping of methods for estimation of the monthly rainfall erosivity 

indexes (July to December), by Scott and Knott (1974), with a Chi-squared significance level 

of 5%. 
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For the month of September (Figure 7), the MF-M, RD, and MF-Z methods (Group 1) 

underestimated the EI30, while the other methods (MF, TRMM-F, and TRMM-M) showed to 

be equal to the WS. 

Considering the month of October (Figure 7), there were three groups. The methods 

TRMM-F, MF, TRMM-M, and MF-Z (Group 3) were equal to the WS. The methods MF-M 

(Group 1) and RD (Group 2) underestimated the rainfall erosivity index values. 

For November (Figure 7), the groups were classified as 1 (TRMM-F, TRMM-M, and 

MF-M), 2 (WS, MF, and RD), and 3 (MF-Z). The WS belongs to group 2, therefore group 1 

underestimated and group 3 overestimated the rainfall erosivity values. 

Finally, for December (Figure 7), the methods were classified in Group 1 (MF-M), 

Group 2 (WS, MF, and RD), Group 3 (TRMM-F and TRMM-M) and Group 4 (MF-Z), being 

the values of the rainfall erosivity index underestimated by Group 1 and overestimated by 

Groups 3 and 4 in comparison to the WS method. 

For the rainy season (November to March), the MF method was statistically equal or 

grouped very close to the WS (Figures 6 and 7), reflecting the adequate fit between them (Figure 

5). Therefore, in this period, with a lack of more detailed rainfall data –short intervals–, the MF 

method can replace the WS with accuracy. For the dry season, methods did not differ from WS. 

The annual rainfall erosivity or R Factor was classified into 2 groups (Figure 8), with 

Group 1 represented by the MF-M method, and Group 2 represented by the RD, WS, MF, 

TRMM-M, TRMM-F, and MF-Z methods. Group 1 underestimated the rainfall erosivity values 

in relation to the WS. By analyzing the 1:1 fitting line (Figure 5), the predictions were parallel 

to the line. However, for the other methods (Figure 5), the estimates always crossed the 1:1 line, 

which means under or overestimation according to higher or lower rainfall erosivity values. 
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Fig. 8. The univariate grouping of methods for estimation of the rainfall erosivity (R Factor), 

by Scott and Knott (1974), with a Chi-squared significance level of 5%. 

 

In general, regardless of the estimated rainfall erosivity values (monthly or annual) 

(Figures 6, 7, and 8), the MF-M and MF-Z methods underestimated and overestimated EI30 

values in relation to the WS method, respectively. The MF method showed to be always closer 

to the standard method (Figures 6, 7, and 8). 

 

4. Discussion 

According to our results, rainfall erosivity estimates are a reliable alternative to the 

product of kinetic energy and intensity of the rain. Regardless of the way employed, R factor 

and its estimates were low between June and August, these months corresponded to the dry 

season. Additionally, coarse temporal resolution of the data, such as monthly data in relation to 

the sub-event intervals, can result in low estimated values for rainfall erosivity. The monthly 

evaluation of rainfall erosivity index is important for the planning of farmers’ activities on a 

small-time scale, while the total annual soil and water losses estimation is crucial to assess the 

impacts of the cultivations for the correct management and adoption of conservation practices. 

The irregular distribution of weather stations, lack of maintenance and failure of older 

stations, together with little automated data acquisition systems in place are some problems 

which can be easily overcome by using precipitation data from TRMM 3B42-v7 (Galvão et al., 
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2020). These authors compared rainfall stations data –only the ones with continuous rainfall 

data– to the data extracted from the TRMM; they found these data could be reliable and useful 

in regions with no pluviometric stations installed. Similarly, we found the usage of TRMM 

3B42-v7 data to estimate rainfall erosivity using two adjusted equations for Pirassununga, SP 

resulted in useful estimates for annual rainfall erosivity values. Li et al. (2020), mapping rainfall 

erosivity with TRMM in China, found underestimations when precipitation data pointed to high 

rainfall erosivity, while overestimating when rain data pointed to the opposite (low rainfall 

erosivity). However, for tropical conditions, our results pointed to an opposite trend. 

An innovation for the assessment of different methodologies was the usage of the 

Additive Main effects and Multiplicative Interaction (AMMI) model. This AMMI model is a 

hybrid analysis that incorporates both, the additive and multiplicative, components of the two-

way data structure. Other studies have used other statistical methodologies to determine the 

accuracy of the estimates between methods: mean square root error, mean absolute percentage, 

correlation coefficient, or determination coefficient (Lee and Heo, 2011; Ma et al., 2014; Vantas 

et al., 2019; Li et al., 2020). The AMMI model allowed us to apply in tandem the ANOVA and 

PCA to the sums of squares allocated by the ANOVA to analyze the two factor interaction 

effects. This way we verified the efficiency of the methods, while statistically grouping them 

and identifying them as more or less reliable estimates of rainfall erosivity (R factor). 

According to our results, the modified Fournier (MF) index was the closest estimate 

to rainfall erosivity. This is in accordance with those results of  Oğuz (2019), while it opposes 

to what Angulo-Martínez and Beguería (2009) reported. Using the unit kinetic energy 

calculation of the RUSLE model, the MF index underestimated rainfall erosivity for the Ebro 

basin in Spain (Angulo-Martínez and Beguería, 2009). Nearing et al. (2017) compared three 

different methodologies (USLE, RUSLE and RUSLE2) to calculate the kinetic energy, and 

results showed the kinetic energy values determined by the RUSLE method were 

underestimating as compared to USLE and RUSLE2. Thus, it is possible that discordance with 

Angulo-Martínez and Beguería (2009) may be due to an embedded underestimation of the 

kinetic energy due to RUSLE methodology. Although there was still no test of the effectiveness 

of the modified Fournier index –until this study–, MF method has been used for Brazilian 

conditions as a rainfall erosivity estimator in several parts of the country, as the States of Santa 

Catarina (Back et al., 2018), Espírito Santo (Moreira et al., 2020), Tocantins (Avanzi et al., 

2019), Mato Grosso (Di Raimo et al., 2018), São Paulo (Lombardi Neto, 1977), and Amazonas 

(Silva et al., 2020), along with large areas for regional studies (Mello et al., 2013, 2015; Oliveira 

et al., 2013). 
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Annual rainfall erosivity was overestimated by MF-Z (Zhang et al., 2002) and 

underestimated by MF-M (Men et al., 2008). These methods were developed for other climatic 

conditions, helping to explain such results. The other methods (MF, RD, TRMM-F, and 

TRMM-M) used local rain characteristics, improving the estimations. Our results agreed well 

with those of Ma et al. (2014), as they presented negative values of MSDE; nevertheless, MF-

M had lower absolute MSDE and RMSE values than MF-Z. 

Finally, usage of precipitation data obtained by TRMM proved to be a viable 

alternative to estimate annual rainfall erosivity. Our results were in accordance with those 

reported in other parts of the world (Fan et al., 2013; Vrieling et al., 2010). For African climatic 

conditions, the best performance was obtained using the MF index derived from monthly data 

from TRMM Multisatellite Precipitation Analysis (TMPA) 3B43 (Vrieling et al., 2010). In our 

work, usage of this product in an adjusted equation based on the MF was less accurate as an 

estimator (R-squared values around to 0.9), although it would be useful for locations with scarce 

or irregular pluviographic or pluviometric data. Thus, regions with small number of 

meteorological stations can very well use precipitation data obtained by TRMM as a viable 

alternative for R factor estimation. 

 

5. Conclusions 

The best tested method for rainfall erosivity estimation was the Modified Fournier 

Index, showing great potential to substitute the standard method in the absence of more detailed 

rainfall data. 

For monthly and annual estimations, the methods modified Fournier by Men and 

modified Fournier by Zhang underestimated and overestimated the values of rainfall erosivity 

indexes in relation to the Wischmeier and Smith method (standard), respectively. 

For locations without any on-site rainfall instrumentation, the rainfall data obtained 

through satellite (TRMM) may be a viable alternative, since its annual rainfall erosivity 

estimation was situated in the same statistical group as the standard method. Nevertheless, 

inaccuracy was observed for monthly estimates. 

For the months of low rainfall erosivity (June to August) the methods of estimating 

rainfall erosivity were not different to the standard one, so any method could be potentially 

adopted. 

Heterogeneous performance in the estimation of monthly rainfall erosivity was 

observed by the analyzed methods depending on the data associated to rainy or dry seasons. 
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Article III - Machine Learning Assessment of the Soil Erosion Modeling using RUSLE: 

A case study in a sub-basin on the Upper Tocantins River, Brazil 

(Article elaborated according to standards of the Journal Catena, ISSN: 0341-8162) 

 

Abstract 

Water erosion leads to removal of soil particles from a high positions in the landscape to low 

positions. The erosive process modify as land use and soil cover changes through conversion 

of forest to pasture and agricultural crops. The aim was to assess the soil losses and sediment 

export –considering land use in the chronological scenarios of 1990, 2000, 2010, and 2017– for 

the Peixe Angical Reservoir drainage basin on the Upper Tocantins River, Brazil; identify 

priority areas –considering soil losses– in need of soil and water conservation practices; and to 

apply a statistical analysis –using RF algorithm– to assess the contribution and importance of 

the RUSLE factors (R, K, LS, and C). To estimate soil losses the RUSLE model was coupled 

with GIS tools to calculate the product of factors R, K, LS, C (rasters of 90-m resolution), and 

P (equal to 1). Soil losses were then classified by erosion risk from very low (0 to 2.5 Mg ha-1 

yr-1), to extremely high (greater than 100 Mg ha-1 yr-1). Assessment of the level of importance 

of each RUSLE factor was performed using a non-parametric machine learning algorithm 

Random Forest. Additionally, sediment exports values were also computed to identify areas 

where soil conservation practices were needed. The level of importance of RUSLE factors was 

assessed in the following order: C > K > LS > R. Water erosion in the Peixe Angical Reservoir 

drainage basin increased over the years due to changes in land use, although soil losses in the 

majority of the basin were classified as very low. Additionally, although in small proportion, a 

trend towards the reduction of sediment export was calculated as areas with null values of 

sediment increased through time in the basin. Soil conservation practices should be adopted to 

support the expansion of agricultural production in a sustainable manner to minimize the effects 

caused by changes in land use, and ensuring both the quantity and quality of water in the water 

ways, as well as natural and artificial reservoirs. 

Keywords: Land use; soil losses; random forest; sediment export; land management. 

 

1. Introduction 

Water erosion is deleterious to the sustainability of agricultural systems. Detached soil 

particles are transported downstream together with nutrients, organic carbon, and agrochemical 
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compounds. This impacts negatively on crop production, and water quality. This also affects 

the service life of water reservoirs, including storage dams for hydroelectric power plants. The 

Peixe Angical Hydroelectric Power Plant (HPP) is on the Upper Tocantins River, extending 

through the states of Goiás and Tocantins, as well as the Distrito Federal (Figure 1). This HPP 

is preponderant for electricity production in the region, promoting socioeconomic development. 

To sustain reservoir hydroelectricity generation, the reservoir must be maintained in terms of 

stored water volume. Thus, monitoring silting rates is fundamental for the assessment of the 

service life of reservoirs. 

Considering the consequences of water erosion, prevention is the first step. Therefore, 

different stakeholders must identify the most vulnerable to erosion areas, within regions of 

interest by monitoring ecosystem services, edaphic and climatic environments at different 

scales. Since monitoring areas, at basin or landscape scales, is laborious, expensive and time-

consuming, modeling of soil erosion is a long used tool. 

Various erosion prediction models have been used for environmental analysis. In 

Brazil, the Revised Universal Soil Loss Equation (RUSLE) (Renard et al., 1997) has been 

widely applied for over two decades (Angima et al., 2003; Fu et al., 2006; Ganasri and Ramesh, 

2016; Ostovari et al., 2017). RUSLE considers input variables such as rainfall erosivity, soil 

erodibility, slope length, and steepness of the area, cover management, and support practices. 

It was been proved that RUSLE ran together with Geographic Information System (GIS), 

facilitates its applicability in large areas as basins, provinces, states, or countries (Barros et al., 

2018; Cunha et al., 2017; Gomes et al., 2017). This integration allows localization of critical 

points in relation to the erosion processes, which can assist the decision making process 

regarding the need of soil and water conservation practices (Chen et al., 2019; Fayas et al., 

2019; Vijith et al., 2018; Zerihun et al., 2018). Furthermore, although the Peixe Angical 

Reservoir drainage basin (PARDB) is inserted in the Cerrado biome, this area has not yet been 

studied. 

Considering RUSLE takes into account several factors to predict and model soil 

erosion (R, K, LS, C, and P) (Renard et al., 1997), and the fact that transdisciplinary usage of 

machine learning statistical analysis are on the rise, the aim of this work is to assess the level 

of importance of these factors for modeling soil losses. We hypothesized that by modeling soil 

losses through RUSLE-GIS, we could apply the Random Forest (RF) algorithm –a non-

parametric machine learning algorithm– (Liaw and Wiener, 2002; RColorBrewer and Liaw, 

2018) to better understand the greater or lesser level of importance of each of the RUSLE 
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factors. This coupled approach can provide a better insight for soil and water conservation 

planning. 

To achieve our objective, we estimated soil losses and sediment export –considering 

land use in the chronological scenarios of 1990, 2000, 2010, and 2017– for the Peixe Angical 

Reservoir drainage basin; we also identified priority areas –due to soil losses– in need of soil 

and water conservation practices; and we applied a statistical analysis –using RF algorithm– to 

assess the contribution and importance of the RUSLE factors (R, K, LS, and C). 

 

2. Materials and Methods 

2.1. Study area 

The Peixe Angical Reservoir drainage basin (PARDB), formed by the Upper Tocantins 

River and its tributaries, composed by the rivers Palma, Paranã, Maranhão, and Almas, occupies 

an area of 125,776 km2, with 0.62% in the Distrito Federal, 75.58% in the state of Goiás (West 

Central region of Brazil), and the remaining 23.80% in the state of Tocantins (North region of 

Brazil). The PARDB is located between the geographic coordinates 11° to 17° S and 46° to 51° 

W (Figure 1). 
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Fig. 1. Location of the Peixe Angical Reservoir drainage basin (PARDB). 

The climate in the drainage basin, according to the Köppen climate classification, is 

Aw - tropical with dry winter (Alvares et al., 2013). The altitude ranges from 236 to 1,670 m, 

and the slope ranges from near zero to more than 75% (Figure 2). 
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Fig. 2. Digital Elevation Model (a), and slope steepness categories (%) of the Tocantins River 

upstream from Peixe Angical Reservoir drainage basin (PARDB). 

 

2.2. RUSLE Model 

For modeling water erosion in the PARDB, the Revised Universal Soil Loss Equation 

(RUSLE) was used (Renard et al., 1997), described as follows: 

𝐴 = 𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃                                                                                             (1) 

where A = annual soil loss, in Mg ha-1 yr-1; R = rainfall erosivity factor (MJ mm ha-1 h-1 yr-1); 

K = soil erodibility factor (Mg ha h ha-1 MJ-1 mm-1); LS = slope length and steepness factor 

(dimensionless); C = cover management factor (dimensionless), and P = support practices 

(dimensionless). The spatial resolution adopted in this modeling was 90 m. 

 

2.2.1. Rainfall erosivity factor (R factor) 

Historical rainfall data were obtained from Meteorological Database (BDMEP) from 

Meteorological Institute (INMET) and also from HidroWeb portal, a tool that is part of the 

National System of Information on Water Resources, coordinated by the National Water and 

Sanitation Agency (ANA). A total of 62 rainfall stations were selected (Figure 3), containing 

information corresponding to the period from 1990 to 2017. 

 



75 

 

 

 

Fig. 3. Location of the gauging station inside and around the Peixe Angical Reservoir drainage 

basin (PARDB). 

 

When data collection failed in the rain-gauge into the monthly rainfall data, the 

nearest-neighbor method was used to fill in these gaps. Then, the double mass curve method 

was applied to check the consistency of the data. 

The method selected to estimate the rainfall erosivity was the Modified Fournier (MF) 

index, based on the results obtained in this thesis (Article II). Thus, rainfall erosivity factor for 

each rain-gauge was estimated by equations surrounding the PARDB that correlate the rainfall 

erosivity factor with the Modified Fournier Index (Rc) (Arnoldus, 1980). To define which 

equation for each one of the rain-gauge, the Thiessen Polygon was determined. Equations found 

in the neighboring area are: Canarana-MT, EI30 = 317.397829*Rc0.484654 (Almeida et al., 2012), 

Conceição do Araguaia-PA, EI30 = 321.50 + 36.20*Rc (Oliveira Junior, 1996), and Goiânia-

GO, EI30 = 215.33 + 30.23*Rc (Silva et al., 1997). After defining, based on Thiessen Polygon, 

the MF equation to be used in each rain gauge, rainfall erosivity was estimated. Then, 

geostatistics technique was applied to obtain the rainfall erosivity spatial distribution. 
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Ordinary kriging was used to adjust the exponential semivariogram model. During 

kriging, cross validation was performed together with the process. Afterward, rainfall erosivity 

was mapped on the ArcGIS® software - version 10.3 (ESRI, 2014). 

 

2.2.2. Soil erodibility factor (K factor) 

The soil groups, according to (FAO, 2014), can be observed in the Table 1, as well as 

the corresponding K factor. The soil erodibility was selected from Brazilian studies available 

on the literature. However, when this factor was not found for some soil class, K factor was 

estimated by equation. Information of soil profile description contained on sheets SC. 22 

Tocantins, SD. 22 Goiás, SD. 23 Brasília, and SE. 22 Goiânia of the RadamBrasil were used 

(RadamBrasil, 1983, 1982, 1981a, 1981b). In that case, soil erodibility was calculated based on 

the nomogram of Wischmeier and Smith (1978), using the following equation: 

 

𝐾 =
{[(2.1)∗(10−4)∗(𝑀1,14)∗(12−𝑂.𝑀.)]+ [3.25∗(𝑒−2)]+[2.5∗(𝑝−3)]}

100
                                            (2) 

where K = soil erodibility factor (Mg acre h). Transformation to the International System of 

Units (SI) was through multiplication of the correction factor 0.1317, obtaining the value in Mg 

ha h ha-1 MJ-1 mm-1; M = percentage of modified silt, i.e., percentage of silt plus very fine sand, 

in reference to the North American Classification System (USDA), which corresponds to the 

size fraction of 0.002-0.1 mm; O.M. = percent organic matter; e = code referring to soil 

structure; and p = code referring to soil permeability. The description of Marques et al. (1997) 

was used for these codifications for Brazilian soils. 
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Table 1. Soil classification according to the FAO-World Reference Base (WRB) and the Brazilian Soil Classification System (SiBCS), their 

respective geographical expression within the Peixe Angical Reservoir drainage basin (PARDB), and soil erodibility factor values. 

Soil Groups Soil Classes Area Soil erodibility References  

FAO-WRB SiBCS (%) (Mg ha h ha-1 MJ-1 mm-1)  

Rhodic Acrisol Red Argisol 3.66 0.0192 Di Raimo et al. (2019)  

Lithic Leptosol Litholic Neosol 26.87 0.0344 Calculated by the authors 

Rhodic Ferralsol Red Latosol 14.91 0.0032 Silva et al. (2009)  

Dystric Cambisol Haplic Cambisol 13.40 0.0355 Silva et al. (2009) 

Haplic Plinthosol Haplic Plinthosol 9.99 0.0170 Martins et al. (2011)  

Chromic Acrisol Red-Yellow Argisol 9.28 0.0106 Eduardo et al. (2013)  

Haplic Ferralsol Red-Yellow Latosol 7.01 0.0100 Silva et al. (2000)  

Petric Plinthosol Petric Plinthosol 4.57 0.0206 Calculated by the authors 

Dystric Arenosol Quartzarenic Neosol 4.37 0.0567 Castro et al. (2011)  

Haplic Phaeozem Argilluvic Chernosol 2.81 0.0316 Calculated by the authors 

Xanthic Ferralsol Yellow Latosol 1.92 0.0090 Silva et al. (2000)  

Rhodic Nitisol Red Nitosol 1.10 0.0138 Calculated by the authors 

Dystric Gleysol Haplic Gleysol 0.10 0.0180 Di Raimo et al. (2019)  

WRB available in (FAO, 2014) and SiBCS (Santos et al., 2018)
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2.2.3. Topographic factor (LS factor) 

The LS factor represents the topographic factor that considers the slope and the 

contribution area of the basin, by which, soil loss is also influenced. For calculation of the LS 

factor, the Digital Elevation Model (DEM) from Shuttle Radar Topography Mission (SRTM) 

(Farr et al., 2007) was used, with 90 m-resolution (Jarvis et al., 2008). Preprocessing of the 

DEM-SRTM was performed to voids filling (Wang and Liu, 2006). Applying the Multiple Flow 

Direction algorithm proposed by Quinn et al. (1991), the drainage area of the basin was 

determined, then LS factor was figured out. The System for Automated Geoscientific Analyses 

– SAGA software (SAGA, 2013) was used for that determination, through the algorithm of 

Desmet and Govers (1996). 

 

2.2.4. Cover management factor (C factor) 

The land use maps in the years of 1990, 2000, 2010, and 2017 were obtained from the 

MapBiomas Project (Alencar et al., 2020; Souza Jr. et al., 2020) collection 4.1 (Projeto 

MapBiomas, 2020). Collection 4 presented accuracy assessment analysis based on acquisition 

of 100 thousand independent samples per year from 1985 to 2018 (Souza and Azevedo, 2017). 

The global accuracy for Cerrado Biome (collection 4.1) was 72.6%, with 21.7% of allocation 

disagreement and 5.7% of area disagreement.  

All the maps were download from Projeto MapBiomas (2020). Then, the rasters for 

each year were projected for Albers (South America Albers Equal Area Conic). The maps were 

trimmed down according to the delimitation of the drainage basin and converted to a 90 m-

resolution. Finally, C factor values were attributed, according to Table 2. 

 

Table 2. Land use and the respective values for the C factor. 

Land use C factor Reference  

Forest Formation 0.001 Cunha et al. (2017) 

Savanna Formation 0.013 Oliveira et al. (2015) 

Forest Plantation 0.12 Silva et al. (2014) 

Grassland 0.50 Cunha et al. (2017) 

Pasture 0.22 Silva et al. (2014) 

Agricultural Crops 0.13 Corrêa et al. (2016) 

Urban Infrastructure 0  
Other Non Vegetated Area 0  
Mining* 0  
Water 0  

Source: Adapted from (Projeto MapBiomas, 2020). *It was considered that water erosion would be restricted to the created 

crater, without contributing to the study drainage basin. 
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2.2.5. Support practices factor (P factor) 

Practices of soil conservation influence on a reduction of soil erosion processes. 

However, the study intends to ascertain the land use change. Thus, the entire area was 

considered without support practices of erosion control. Therefore, the value assigned to the P 

factor was 1. 

 

2.3. Soil losses 

The spatial distribution of soil losses in the PARDB was obtained using Equation (1), 

by multiplying the rasters of the R, K, LS, and C factors, with the assistance of ArcMap 10.3 

(ESRI, The Redlands, CA, USA). Then, these losses were separated into erosion risk categories 

according to the classification proposed by Avanzi et al. (2013). In sequence, the combine 

function in ArcMap 10.3 (ESRI, The Redlands, CA, USA) was used for comparison among the 

years evaluated, thus obtaining information of changes in soil losses between the years 1990 to 

2000, 2000 to 2010, and 2010 to 2017, besides the change for the entire period from 1990 to 

2017. 

 

2.4. Level of importance of each RUSLE factor 

The level of importance of each RUSLE factor was assessed by extracting each pixel 

data using the SAGA-GIS software. Then the randomForest package (Liaw and Wiener, 2002; 

RColorBrewer and Liaw, 2018) was run in the R environment  (R Core Team, 2020) to obtain 

the level of importance of each RUSLE factor to predict soil losses using the following 

parameters: number of trees of the model, ntree=1000, number of variables in each node, 

nodesize=4, and number of variables used in each tree, mtry=one-third of the total number of 

predictor variables, as suggested by (Liaw and Wiener, 2002). During the adjustments of the 

RF models, the mean squared error (MSEOOB) (Eq. 3) and the percent variance explained 

(%Varex) (Eq. 4) were computed using the out-of-bag (OOB) methodology. In this method, for 

each interaction, only a few predictor variables are used to generate a tree based on a measure 

of their importance as predictor variables. Thus, the model is able to identify the informative 

variables and ignore noisy data (Liaw and Wiener, 2002); i.e. if one variable is removed from 

the model, resulting in a greater error and less prediction accuracy, the more important this 

variable is for the model. 

𝑀𝑆𝐸𝑂𝑂𝐵 =
1

𝑛
∑[𝑦𝑖 − 𝑦̂𝑖

𝑂𝑂𝐵]
2

𝑛

1

 (3) 
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%𝑉𝑎𝑟𝑒𝑥 = 1 −
𝑀𝑆𝐸𝑂𝑂𝐵

𝜎̂𝑦
2

 (4) 

 

where 𝑛 = 𝑛𝑡𝑟𝑒𝑒; 𝑦𝑖 is the ith observed value; 𝑦̂𝑖
𝑂𝑂𝐵 is the average of the OOB predictions for 

the ith observation; and  𝜎̂𝑦
2 is the variance computed with n as divisor, instead of (𝑛 − 1). 

 

2.5. Sediment analysis 

2.5.1. Sediment Delivery Ratio (SDR) 

The RUSLE model does not estimate the sediment delivery rate (SDR). Alternately, 

we used the InVEST sediment delivery ratio model (Hamel et al., 2015). According to (Cong 

et al., 2020) this model requires a smaller amount of input data, being adequate to estimate the 

SDR using the little available data for the Peixe Angical basin. Table 3 shows the essential input 

data for modeling with InVEST SDR. 
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Table 3. The input data, format, variation, spatial resolution (m) and references used in the InVEST SDR model, version 3.8.2. 

Input Format Range Resolution  Reference 

Digital Elevation Model Raster (236-1670) 90 Jarvis et al. (2008) 

Rainfall Erosivity Index (R) Raster (7047.64-11348.5) 90 / 

Soil Erodibility Raster (0.0032-0.0567) 90 Vide Table 1 

Land-Use/Land-Cover Raster (1-10) 90 Vide Table 2 

Watersheds Vector / / / 

Biophysical Table Decimal (1-0.5) / / 

Threshold Flow Accumulation Integer 1000 / Luo et al. (2008) 

Borselli K Parameter Decimal 1 / Vigiak et al. (2012) 

Borselli ICo Parameter Decimal 0.5 / Vigiak et al. (2012) 

Max SDR Value Decimal 0.2 / Vigiak et al. (2012) 

Spatial resolution in meters (m). 
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The sediment delivery ratio for the ith pixel is derived from the connectivity index IC 

using a sigmoid function (Vigiak et al., 2012): 

𝑆𝐷𝑅𝑖  =
𝑆𝐷𝑅𝑚𝑎𝑥

1 + 𝑒𝑥𝑝 (
𝐼𝐶𝑜 − 𝐼𝐶𝑖

𝐾 )
 

(5) 

 

where:  

SDRi = sediment delivery ratio for a pixel i;  

SDRmax = maximum theoretical sediment delivery ratio; and  

ICo and K = are model calibration parameters. 

 

2.5.2. Sediment Export 

The sediment export from a given pixel, is the amount of sediment eroded from that 

pixel that actually reaches the stream (Sharp et al., 2014). Sediment export is given by: 

𝐸𝑖  =  𝐴𝑅𝑈𝑆𝐿𝐸𝑖 ∗ 𝑆𝐷𝑅𝑖 (6) 

where: 

Ei = sediment exported from a given pixel i (Mg ha-1 ano-1); 

ARUSLEi = soil losses from a given pixel i (Mg ha-1 ano-1), estimated by RUSLE model; and 

SDRi = sediment delivery ratio from a given pixel i, estimated by InVEST SDR. 

 

2.6. Calibration and Validation of the models 

For the calibration and validation of the RUSLE and InVEST SDR models, the 

exported sediment obtained by the product of the soil loss estimated by RUSLE and the InVEST 

SDR was used. However, the observed sediment was provided by Enerpeixe S.A., using data 

from the Station (code 21660000) HPP Peixe Angical Farm Visão do Santana. In 

sedimentometric monitoring (Posse Junior and Manz, 2020), at least four measurements are 

made throughout the year to define and update, in this case, the solid discharge curve. 

Part of the data observed from 2011 to 2018 (70%) was used for calibration. The 

parameters PBIAS were obtained using the hydroGOF package (Zambrano-Bigiarini, 2020), 

utilizing exclusively 30% of the data points for validation purposes.  
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3. Results 

3.1. Soil erosion factors 

The values of rainfall erosivity in the PARDB exhibited minimum values of 7,047.64 

MJ mm ha-1 h-1 yr-1 (east and west part) and maximum values of 11,348.5 MJ mm ha-1 h-1 yr-1 

(north part). These classes occupy 7.84%, 82.01%, and 10.15% of the total area of the drainage 

basin in reference to the moderate to strong class, strong class, and very strong class, 

respectively. Considering the entire PARDB, mean annual erosivity was 9,198.07 MJ mm ha-1 

h-1 yr-1 (Figure 4). 

 

Fig. 4. Annual average rainfall erosivity (MJ mm ha‑1 h‑1 yr-1) from 1990 to 2017 in the Peixe 

Angical Reservoir drainage basin (PARDB). 

 

The Dystric Arenosol had the highest values of soil erodibility, 0.0567 Mg ha h ha-1 

MJ-1 mm-1 (Table 1), occupying an area of 4.37% (Figure 5). In contrast, the lowest value of 

erodibility was 0.032 Mg ha h ha-1 MJ-1 mm-1 (Table 1) for Rhodic Ferralsol, which represents 

14.91% of the area. Lithic Leptosol is the dominant soil class occupying 26.87% of the area of 

the PARDB, besides it presents high erodibility value (0.0344 Mg ha h ha-1 MJ-1 mm-1). 
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Fig. 5. Soil classes distribution in the Peixe Angical Reservoir drainage basin (PARDB). 

 

The values for the LS factor were separated into 8 classes (Figure 6). Thus, as 

expressed in the topographic factor, most of the area (87.05%) will not increase soil losses. 

However, 0.41% of the area leaves the drainage basin more vulnerable to erosion processes, as 

it exhibits LS values higher than 20. 
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Fig. 6. Spatial distribution of topographic factor - LS (dimensionless) in the Peixe Angical 

Reservoir drainage basin (PARDB). 

 

The vegetated areas in the PARDB (Figure 7) are represented by forests, non-forest 

natural formations, crops, and livestock systems. Forest cover (Figure 7) comprises forest 

formation, savanna formation, and forest plantation, which represented 60.61% in 1990, 

54.56% in 2000, 51.21% in 2010, and 48.70% in 2017 of the total PARDB area. The savanna 

formation was the most extensive over years. 

The area percentage occupied by the grassland (Figure 7), showed reduction for each 

analyzed time scenario, occupying an area of 11.69%, 10.76%, 10.24%, and 8.97% in 1990, 

2000, 2010, and 2017, respectively. In the case of crop and livestock operations (pasture and 

agricultural crops), the opposite occurred: an increase in the area was observed as the years 

went by (Figure 7), showing the advance of crop and livestock systems in this region. 
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Fig. 7. Map of land use for the Peixe Angical Reservoir drainage basin (PARDB) in the years 

of 1990, 2000, 2010, and 217. (Adapted from MapBiomas). 

 

Although most of the area of the PARDB is occupied by native forest, there are still 

soil losses in these environments. Other important land uses in the PARDB are Brazilian 

savanna formation and forest plantation, however, they present a low plant cover index (Table 

2). 
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As previously mentioned, the PARDB revealed an increase in the crop and livestock 

area (Figure 7), advancing across 13.32%. Nearly in the same proportion was reduction of 

12.07% and 2.72% in the areas of native forest and non-forest formations (Figure 7), 

respectively. 

 

3.2. Soil loss potential 

After mapping each factor separately –R, K, LS, and C factors– soil losses were 

calculated via RUSLE coupled to GIS for spatial distribution at the PARDB (Figure 8). 

High soil losses were predicted for central and northeast regions, though in lower 

amount for the latter. Small areas occupying the highest level of soil loss class were also 

observed in the eastern, southern, and western parts at the edges of the drainage basin (Figure 

8). 
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Fig. 8. Map of soil loss rate (Mg ha-1 yr-1) for the Peixe Angical Reservoir drainage basin 

(PARDB) in the years of 1990, 2000, 2010, and 2017. 

 

3.3. Analysis of soil erosion risk 

In general, from 1990 to 2000 (Table 4), inside the erosion class −line of the table−, a 

reduction of the erosion risk has been verified for all the classes. However, for the first class 

−very low erosion risk− showed an increase of the percentage of erosion risk. For the next two 
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decades, from year 2000 to 2010 and from 2010 to 2017, the changes in soil loss were like the 

previous decade (Table 4). 

 

Table 4. Change in the percentage of erosion risk classes from 1990 to 2000, from 2000 to 

2010, and from 2010 to 2017, which corresponds to the complete chronological scenario, in a 

time span of 28 years. 

Classes 1 2 3 4 5 6 7 
Erosion risk class 

Increase Reduce 

 1990-2000   

1 65.89 3.16 0.50 0.17 0.13 0.26 0.14 4.36 0.00 

2 2.11 9.63 0.21 0.02 0.00 0.12 0.08 0.43 2.11 

3 0.41 0.46 4.17 0.01 0.01 0.03 0.14 0.19 0.87 

4 0.11 0.08 0.03 2.20 0.01 0.01 0.08 0.09 0.21 

5 0.08 0.02 0.04 0.01 1.56 0.01 0.09 0.10 0.14 

6 0.13 0.07 0.03 0.02 0.03 3.21 0.12 0.12 0.28 

7 0.11 0.04 0.07 0.04 0.06 0.14 3.88 0.00 0.46 

Total area 68.84 13.45 5.04 2.47 1.80 3.78 4.62   
 2000-2010   

1 65.24 2.63 0.39 0.14 0.11 0.21 0.14 3.60 0.00 

2 2.10 10.86 0.29 0.01 0.00 0.12 0.06 0.49 2.10 

3 0.42 0.38 4.06 0.01 0.01 0.04 0.11 0.17 0.81 

4 0.10 0.09 0.04 2.16 0.00 0.01 0.07 0.08 0.23 

5 0.07 0.02 0.03 0.02 1.56 0.02 0.08 0.10 0.14 

6 0.12 0.07 0.03 0.02 0.05 3.35 0.13 0.13 0.30 

7 0.09 0.04 0.07 0.04 0.05 0.15 4.18 0.00 0.44 

Total area 68.15 14.09 4.92 2.40 1.80 3.88 4.77   
 2010-2017   

1 65.54 2.07 0.21 0.06 0.06 0.12 0.09 2.61 0.00 

2 1.79 12.02 0.15 0.01 0.00 0.07 0.04 0.28 1.79 

3 0.34 0.53 3.93 0.01 0.01 0.02 0.07 0.12 0.87 

4 0.10 0.07 0.05 2.13 0.01 0.01 0.04 0.06 0.22 

5 0.07 0.01 0.02 0.02 1.61 0.02 0.05 0.07 0.12 

6 0.12 0.06 0.02 0.01 0.05 3.50 0.11 0.11 0.27 

7 0.11 0.03 0.06 0.04 0.05 0.14 4.34 0.00 0.43 

Total area 68.07 14.79 4.45 2.29 1.78 3.88 4.75   

Erosion risk classes: 1 – very low (0 - 2.5 Mg ha-1 yr-1); 2 – low (2.6 – 5.0 Mg ha-1 yr-1); 3 – 

moderate (5.1 – 10.0 Mg ha-1 yr-1); 4 - moderate high (10.1 – 15.0 Mg ha-1 yr-1); 5 – high (15.1 

– 25.0 Mg ha-1 yr-1); 6 – very high (25.1 – 100.0 Mg ha-1 yr-1); and 7 – extremely high (> 100.0 

Mg ha-1 yr-1). 

 

3.4. Evaluation of the R, K, LS, and C factors, through Random Forest 

Through Random Forest analysis (Figure 9), the importance of the factors for soil loss 

was determined by analyzing the increases in the mean square error for each factor when 
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excluded from the model. Therefore, the most important variables for the prediction of soil 

losses using RUSLE were the C and K factors (Figure 9). 

 

Fig. 9. Identification of explanatory variables of soil losses by Random Forest algorithm. 

Factors C and K were assessed as the most important variables for soil loss prediction using 

RUSLE at the Peixe Angical Reservoir drainage basin (PARDB) in the years of 1990, 2000, 

2010, and 2017. 

High values of percent increase in mean square error (𝑀𝑆𝐸𝑂𝑂𝐵) mean high explanatory 

value. Thus, the level of importance of RUSLE factors was assessed –considering all scenarios– 

in the following order: C > K > LS > R. The observed 𝑀𝑆𝐸𝑂𝑂𝐵 were 42.73% (C factor), 30.48% 

(K factor), 23.62% (LS factor), and 3.16% (R factor) (Figure 9). 

 



91 

 

 

3.5. Sediment export 

The estimation of the sediment export from a catchment is particularly important, 

especially those with reservoirs, since retained sediments (sedimentation) can reduce the 

service life span of the reservoir. 

Sediment export was computed spatially with values ranging from 0 to more than 3.30 

Mg ha-1 year-1. Areas with null values corresponded to an average of 5.2% of the total area of 

the basin considering the different time scenarios (1990, 2000, 2010 and 2017). Likewise, areas 

ranging from 0.01 to 1.1 Mg ha-1 year-1 occupied 93.5% of the basin. Furthermore, areas with 

sediment export values from 1.11 to 3.29 Mg ha-1 year-1 represented 0.9% of the total area. 

Finally, only 0.38% of the total area presented values above 3.30 Mg ha-1 year-1. Although in 

small proportion, a trend towards the reduction of sediment export was calculated. Areas with 

null values of sediment export corresponded to 4.58%, 5.16%, 5.50%, and 5.53%, for 1990, 

2000, 2010, and 2017, respectively. 

The areas with the highest values of sediment export added up to less than 0.40% of 

the total area of the basin and are associated to the class of high soil loss. Even though these 

areas are covered with native grasslands, its main phytophysiognomic have land cover of less 

than 5%. Sano and Almeida (1998) reported specific characteristics for similar regions within 

the Cerrado biome where land cover were less than 1%. Thus, these phytophysiognomies offer 

little soil cover to raindrop impact, and consequently erosion processes are accentuated. 

To evaluate the sediment export model, the trend percentage (PBIAS) was applied. 

Thus, for calibration and validation, the PBIAS values were -34.9% and -24.8%, respectively. 
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Fig. 10. Spatial distribution of exported sediments (Mg ha-1 year-1) and percentage classification 

for the Peixe Angical Reservoir drainage basin (PARDB). 

 

4. Discussion 

The computed rainfall erosivity values were classified, according to Foster et al. 

(1981), as moderate to strong (4,905 to 7,357 MJ mm ha-1 h-1 yr-1), strong (7,357 to 9,810 MJ 

mm ha-1 h-1 yr-1), and very strong (greater than 9,810 MJ mm ha-1 h-1 yr-1) (Figure 4). Previous 

studies in the surroundings of, or proximal to, the area of study reported rainfall erosivity values 
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ranging from 8,000 to 12,000 MJ mm ha-1 h-1 yr-1 (Mello et al., 2013; Oliveira et al., 2012). 

Meanwhile, according to Avanzi et al. (2019) rainfall erosivity values ranged from 4,905.1 to 

9,810.0 MJ mm ha-1 h-1 yr-1 in Tocantins, Brazil. This discordance in values is what Nearing et 

al. (2017) reported regarding how short time series influence calculation of rainfall erosivity 

due to significantly wetter or drier periods (outliers). Since 28 consecutive years of rainfall 

observations were used in our work, the mean value of rainfall erosivity for the area of study 

can be considered reliable for this time span. 

Vegetation cover protects the soil surface from direct impact of raindrops, impeding 

or reducing the beginning of erosion processes. To achieve more efficient cover protection, it 

is preponderant that areas under permanent preservation remain protected. This way, rain drop 

impact and soil disaggregation can be ameliorated, consequently reducing the overall sediment 

dispersion, transportation, and deposition. Since there are areas already endangered due to 

anthropogenic activities such as the expansion of crop production and livestock pastures, 

replacing native vegetation in the Brazilian Savanna (Cerrado), adoption of soil and water 

conservation practices are of paramount importance to support sustainable agroecosystems 

within this region, pointed out as the last Brazilian agricultural frontier, where crop and 

livestock systems currently occupy 40.43% (Figure 7) of the total area. 

The values of soil losses were classified in classes of soil loss, as proposed by Avanzi 

et al. (2013). It should be noted that, the PARDB presented spots with high soil losses, even in 

small areas (Figure 8). These places require adequate land management and soil conservation 

practices. Thus, these areas should be a top priority for preventive and corrective actions to stop 

the further evolution of erosion processes. 

According to the edaphic and climatic characteristics of each drainage basin, there are 

(large or small) areas prone to extreme soil losses. For the area of study, results of soil losses 

above 100 Mg ha-1 yr-1 corresponded to 4.44% and 4.75% of the basin, for years 1990 and 2017, 

respectively. 

Other studies in Brazil reported soil loss classes considered very high (> 100 Mg ha-1 

yr-1), values of 2.2% in the Amazon biome (Cruz et al., 2019), from 0,66% (Gomes et al., 2017) 

to 6% (Salis et al., 2019), in the Cerrado biome. Considering degradaded pasture scenario, 

Galdino et al. (2016) reported 3.04% of the area. In the Atlantic Forest biome considering soil 

losses greater than 200 Mg ha-1 yr-1, this corresponded to 0.10% of the total area (Oliveira and 

Vieira, 2017). For the Pampa biome, the percentage of the area with losses above 100 Mg ha-1 

yr-1 raged from 1.5% (Steinmetz et al. 2018) to 2.60% (Nachtigall et al., 2020). 
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Studies in other parts of the world also reported small areas of the drainage basin with 

extreme soil losses in tropical or subtropical regions. In India, for the Nethravath drainage basin, 

Ganasri and Ramesh (2016) reported that for the very high erosion category, soil losses were 

25.63 Mg ha-1 yr-1, occupying 4.4% of the total area. For the Baram River drainage basin 

(Malaysia), the erosion value higher than 50 Mg ha-1 yr-1 represented 8.3% of the total area of 

that drainage basin (Vijith et al., 2018). Fayas et al. (2019) found that approximately 1% of the 

total area of the Kelani River drainage basin in Sri Lanka occupied the extremely-vulnerable-

to-erosion class. For the upper Blue Nile drainage basin (Ethiopia), the values of soil loss 

greater than 50 Mg ha-1 yr-1 corresponded to 0.9% (Zerihun et al., 2018). Conversely, some 

drainage basins may be very susceptible to erosion, as noted for 23.7% of the area of the Koga 

River drainage basin (South Africa) with soil losses greater than 60 Mg ha-1 yr-1 (Gelagay and 

Minale, 2016). 

The soil erodibility (K factor) did not exhibit significant alteration over the years; 

however, there are regions within the basin were the predominant soil class is Lithic Leptosol, 

prone to high erodibility values. The topographic factor did not alter much over the analyzed 

time span. A synergistic effect of these two factors aggravated the soil erosion vulnerability of 

areas as observed in maps of K factor, LS factor and soil losses (Figures 5, 6, and 8). 

Regarding the C factor, the highest soil losses occurred in grassland areas (Figure 8). 

This phytophysiognomy of the Cerrado biome is characterized as having low plant density per 

area, which help explain soil losses, due to little soil cover. Contrarily, the phytophysiognomy 

of the Tall Woodland −including native perennial vegetation with tree coverage of 50% to 

90%− was the land use that offered most efficient soil cover and consequently lowest soil losses.  

According to the chronological scenario a reduction in the erosion risk within each 

class was computed. Nevertheless, each time the values of erosion risk were estimated, this 

percentage of the area was somehow redistributed to the upper classes (very high and extremely 

high erosion risk) (Table 4). Therefore, from 1990 to 2017 there was a reduction of the 

percentage of areas were soil losses corresponded to the first erosion risk class, meanwhile an 

increase of the percentage of areas associated to the highest risk classes was observed (Figure 

8 and Table 4). Thus, it is of paramount importance to consider that land use conversion –

specially for regions within endangered biomes susceptible for agricultural expansion– must 

include soil and water conservation practices as part of the regional management planning to 

ameliorate anthropogenic impacts to the environment. 

Considering the level of importance of the four RUSLE factors (C > K > LS > R ), our 

results are in accordance with Paul et al. (2019). They reported the C factor as the most 
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important variable for explanation of soil loss in 2010 for the Kiskatinaw River drainage basin 

in Canada. Similarly, Estrada-Carmona et al. (2017) also found that the the C factor was the top 

explanatory variable for various areas of Austria, Estonia, Italy, Latvia, the Netherlands, 

Slovenia, Costa Rica, and the United States. Therefore, different stakeholders should be aware 

of the preponderance of plant cover for the control of water erosion; i.e. soil conservation 

practices for vulnerable soils –such as Lithic Leptosol –should be adopted in these areas to 

improve soil cover. In this soil class, the predominant vegetation cover over the years was the 

savanna formation. 

The generated sediments, which can impact water ways and the Peixe Angical 

hydroelectric reservoir, showed little connectivity index between the points of soil 

disaggregation and deposition. Within the basin, the maximum sediment delivery rate 

corresponds to 20% of the total soil losses. This is associated to a large percentage (66.2%) of 

gentle slopes and a considerable area (36.4% from 1990-2017) of savanna formation within the 

area of study. 

In other regions of the world where the InVEST SDR model was utilized, divergent 

estimates were computed (Aneseyee et al., 2020; Dias et al., 2019; Zhou et al., 2019; Bouguerra 

and Jebari, 2017). This relates to the inputs needed: soil erodibility, rainfall erosivity, soil cover, 

conservation practices, digital elevation model, and connectivity index. All these inputs 

correspond to specific characteristics of the basin, influencing the maximum rate of sediment 

delivery. Therefore, the higher the rate of sediment delivery, the greater the sediment export 

values. For a similar period of our work, Aneseyee et al. (2020) evaluated the sediment export 

in the Omo Gibe basin (Ethiopia) –for 30 years– focusing on the effects of changes in land use 

and occupation. They determined a maximum sediment export of 5.35 Mg ha-1 year-1 for year 

1998, and 5.42 Mg ha-1 year-1 for 2018. In the Peixe Angical basin, the maximum sediment 

export value was about 52 times higher than those reported by Aneseyee et al. (2020). Other 

work in the Qiantang River basin in China reported a reduction in sediment export values from 

1.69 Mg ha-1 year-1 (1990) to 1.22 Mg ha-1 year-1 (2015) (Zhou et al., 2019). Thus, comparisons 

of this methodology can be furthered studied for regions within Brazil, a country of continental 

proportions and diverse environmental conditions. 

Furthermore, negative values meant overestimation of the model, i.e. the estimated 

values were higher than those observed. These results prove the sampling methodology –carried 

out by Enerpeixe SA Company–, as described in the Technical Report No. 4 (Posse Junior and 

Manz, 2020), only considered suspended sediments, while the deposited sediment was 

quantified in terms of the texture of the material. According to Yang (1996), bottom drag 
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sediments can be equivalent to up to 25% of suspended sediments. Thus, it is plausible that 

deposited sediments were not fully quantified. 

According to Moriasi et al. (2007), the performance evaluation of the model was 

classified as good in relation to sediments, as the values –during validation– were ≥ 15% and ≤ 

30%. The values obtained from PBIAS indicate the adequacy of the RUSLE and InVEST SDR 

models to estimate the sediment export values for the Peixe Angical basin. Therefore, changes 

in land use and occupation over the analyzed time span were satisfactorily estimated by the 

models. 

Finally, other soil conservation practices –in a regional scale– should be adopted to 

support the expansion of agricultural production in a sustainable manner minimizing the 

impacts caused by changes in land use, and ensuring both the quantity and quality of water in 

the water ways, and natural and artificial reservoirs. 

 

5. Conclusions 

Application of RF algorithm proved to be useful for the assessment of the level of 

importance in the RUSLE model. The most explanatory variable for soil losses in the study 

case of the Peixe Angical Reservoir drainage basin was land cover (C factor), followed by soil 

erodibility (K factor). 

Water erosion in the Peixe Angical Reservoir drainage basin increased over the years 

due to changes in land use, although soil losses in the majority of the basin were classified as 

very low. Additionally, although in small proportion, a trend towards the reduction of sediment 

export was calculated as areas with null values of sediment increased through time in the basin. 

The expansion of agricultural activity in this watershed should include best 

management practices for soil and water conservation. Further research studies are also required 

to prevent endangerment of waterways and reservoirs, as well as to assure agroecosystems 

sustainability. 
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APPENDICES 

 

Article I 

Highlights 

• Rainfall erosivity is used worldwide for estimating soil erosion rates. 

• Rainfall data analysis for environmental modeling requires up-to-date tools. 

• An R package, available at CRAN, was developed to compute rainfall erosivity. 

• Monthly, annual, and average rainfall erosivity are presented as outputs. 

• This user-friendly package is an advance in the area of soil conservation. 

 

Graphical abstract 
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Article II 

Highlights 

• The rainfall erosivity is the product of the kinetic energy of rainfall by its maximum 

intensity in 30 minutes. 

• Select a method identical to the Wischmeier and Smith, when rainfall data obtained by 

pluviographs are not available. 

• An innovative technique in soil science to compare rain erosivity results called AMMI 

• The methods evaluated showed similar behavior to the standard method of the 

Wischmeier and Smith. 
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Article III 

Highlights 

• Soil erosion and sediment exports threaten waterways and reservoirs. 

• Soil erosion modelling was achieved via RUSLE, and spatially analyzed using  

GIS. 

• Machine learning algorithm, Random Forest, was used to assess RUSLE factors. 

• The level of importance of RUSLE factors was C > K > LS > R. 

• Erosion in the basin increased over the years as changes in land use occurred. 
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