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ABSTRACT

Throughout human history, navigation has always been an elementary necessity, from hunting
to traveling overseas, and even outside of planet Earth. Agriculture is another area where navi-
gation is progressively required, especially in the scope of the so-called precision agriculture,
which considers and handles intrinsic spatial variabilities along cultivations. In order to meet
the demands for navigation, numerous techniques have been developed; one of the most used
and known is the GNSS (Global Navigation Satelite System) technology, which can provide
navigation aid in a broad range of accuracy and cost. Navigation based on IMUs (Inertial Me-
asurement Units) and AHRSs (Attitude and Heading Reference Systems), on the other hand,
which basically consist of inertial and magnetic sensors, follows a complementary pattern in
terms of cost benefit. Despite being possible, navigation systems based on only one navigation
technique often do not produce a sufficiently accurate navigation solution, since those indivi-
dual technologies, such as marine-grade IMUs and accurate GNSS signals, are generally too
expensive. A possible solution for producing low-cost, high-precision navigation systems is
the combination of different navigation techniques into an integrated system via sensor fusion.
One of the biggest challenges involving low-cost inertial and magnetic sensors, especially the
latter, is that their measurements are strongly corrupted by inherent and external errors. Such
errors can be so compromising as to make it impossible to use the corrupted measurements for
navigation purposes. In addition to sensor fusion, which contributes to the mitigation of errors,
calibration techniques can precisely estimate systematic errors, which, then, can be compen-
sated for. Therefore, this work analyzes and implements current calibration techniques for
magnetometers and accelerometers. One of the objectives is to determine the suitability/robust-
ness of the investigated algorithms for consumer-grade sensors. As the main contribution of
this work, numerical and analytical solutions are presented for the compensation of systematic
errors from intermediate estimates computed via one of the addressed methods. In addition, the
work provides a complete mathematical description of the investigated calibration techniques,
both for each type of sensor individually and for several types simultaneously. For validation
purposes, the algorithms are subjected to simulations and comparisons with the results obtai-
ned via the proposed solutions, followed by implementations in hardware. Finally, a traditional
magnetometer calibration method, for which new numerical and analytical solutions have been
proposed, is adapted for the calibration of accelerometers.

Keywords: Calibration. Magnetometers. Accelerometers.



RESUMO

Ao longo da história humana, a navegação tem sido uma necessidade elementar, desde a caça,
às viagens marítimas, e até mesmo extraplanetárias. A agricultura é mais uma área que progres-
sivamente requer navegação, especialmente no âmbito da chamada agricultura de precisão, onde
variabilidades espaciais intrínsecas às plantações são consideradas e tratadas. Para suprir as de-
mandas por navegação, várias técnicas foram desenvolvidas; uma das mais usadas e conhecidas
é a tecnologia GNSS (Sistema de Navegação Global por Satélites), que pode prover navegação
em uma larga faixa de precisão e custo. A navegação baseada em IMUs (Unidades de Medição
Inercial) e AHRSs (Sistemas de Referência de Orientação e Rumo), por outro lado, os quais
são compostos basicamente por sensores inerciais e magnéticos, segue um padrão complemen-
tar em termos de custo-benefício. Embora seja possível, muitas vezes sistemas de navegação
baseados em apenas uma técnica de navegação não produzem uma solução de navegaçao sufici-
entemente precisa, já que tais meios, como marine-grade IMUs e sinais de GNSS precisos, são
geralmente dispendiosos. Uma possível solução para produzir sistemas de navegação de baixo
custo e alta precisão é a combinação de diferentes técnicas de navegação em um sistema inte-
grado via fusão sensorial. Um dos maiores desafios envolvendo sensores inerciais e magnéticos
de baixo custo, especialmente os últimos, é que suas medições são fortemente corrompidas por
erros inerentes e externos. Tais erros podem ser tão comprometedores a ponto de impossibilitar
a utilização das medições por eles corrompidas para fins de navegação. Além da fusão sen-
sorial, que contribui para a mitigação de erros, técnicas de calibração podem estimar com alta
precisão erros sistemáticos, que podem ser compensados nas medições. Portanto, este traba-
lho analisa e implementa técnicas atuais para a calibração de magnetômetros e acelerômetros.
Um dos objetivos é determinar a adequação/robustez dos algoritmos investigados para sensores
com nível de desempenho consumer-grade. Como principal contribuição deste trabalho, solu-
ções numéricas e analíticas são apresentadas para a compensação de erros sistemáticos a partir
de estimativas intermediárias de um dos métodos abordados. Ademais, o trabalho fornece a
descrição matemática completa dos métodos de calibração investigados, tanto para cada tipo
de sensor individualmente, quanto para vários tipos simultaneamente. Para fins de validação,
os algoritmos são submetidos a simulações e comparações com os resultados obtidos a partir
das soluções propostas, seguidas pelas implementações em hardware. Por fim, um tradicional
método de calibração de magnetômetros, para o qual as novas soluções numéricas e analíticas
foram propostas, é adaptado para a calibração de acelerômetros.

Palavras-chave: Calibração. Magnetômetros. Acelerômetros.
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1 INTRODUCTION

The term navigation may be conceived differently by different authors. Groves (2013)

and Thompson (1995), for instance, break down the concept into two distinct ideas: (a) science

navigation, which stands for the determination of position and velocity of a moving body with

respect to a reference point; (b) art of navigation, which relates to the planning of the trajectory

between two points, avoiding obstacles and collisions. Throughout this work, definition (a) is

adopted.

Inertial sensors and magnetometers are essential devices in many areas of industry, par-

ticularly those dependent on navigation systems technology. Although there are other approa-

ches for navigation, such as Global Navigation Satellite System (GNSS), inertial sensors and

magnetometers have their specific set of applications. For instance, whenever a GNSS can-

not provide constant or accurate enough signal, there should be an alternative, which, in many

cases, is an Inertial Measurement Unit (IMU) or an Attitude and Heading Reference System

(AHRS). However, techniques can be implemented cooperatively, where one complements the

shortcomings of the other.

In this study, we are primarily interested in techniques that can be implemented in the

agricultural field, as it is a very technological demanding area and one of the main economical

activities in Brazil (MOLIN; AMARAL; COLAÇO, 2015). In this context, a notably effective

and emerging set of techniques is called precision agriculture, which aims to manage culti-

vations based on precise analyses, considering soil and climate variability (ZHANG; WANG;

WANG, 2002). Geostatistics is used in order to analyze the spatial variabilities, and define

the appropriate actions: e.g., fertilizing, irrigation, harvesting, etc. For this reason, machines

employed in these processes must be aided with spacial referencing; hence, a minimally accu-

rate navigation system is necessary in order to implement precision agriculture. Nevertheless,

this type of technology is also interchangeably applied to a number of areas (GROVES, 2013),

which reinforces even more the relevance of studies like this. Therefore, we do not restrict this

work to any particular field, keeping it general, so readers from different areas can have the

same understanding and applicability.

Even though GNSS can provide extremely accurate measurements, such precise services

may be excessively costly for some small farmers, as also are precise IMUs and AHRSs. One

possible solution for this problem comes from sensor fusion, which, in this case, consists of

combining low-cost GNSS and IMU/AHRS to produce a more robust navigation solution.
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One of the problems involving low-cost sensors is that they may present poor perfor-

mance, being corrupted by many stochastic and systematic error sources. Magnetometers, in

particular, can only be used for navigation purposes if they exclusively measure the Earth’s

magnetic field, like a compass. However, the Earth is not the only source of magnetic fields.

Many ferromagnetic materials may be present in the surrounding of the sensor, producing and

distorting the underlying magnetic fields. If the magnetometers sense such spurious fields, in

addition to that produced by Earth, navigation is not possible. Therefore, compensating for cor-

rupted measurements, i.e. calibration, is a central task in a navigation system. Fortunately, this

topic has been broadly addressed by many authors throughout the years, and many effective

methodologies have been proposed. Nonetheless, there is still much room for improvements

and new investigations.

The main contributions of this work are twofold: (a) providing the reader with a com-

prehensive review on the main calibration methodologies available for magnetometers, inclu-

ding a full description of their mathematical implementation; (b) proposing novel numerical

and analytical solutions that complement traditional existing calibration methodologies. Minor

contributions of this work include the correction of errors detected in the papers that originally

described the calibration techniques under investigation, the adaptation of a magnetometer ca-

libration technique for accelerometers, and the execution of comprehensive experiments and

analyses involving traditional methodologies and the novel procedures proposed here.

Some of the aforementioned contributions are being separated for posterior journal sub-

missions, and some have already been presented and published in the proceedings of national

and international conferences: (FILHO et al., 2020b) and (FILHO et al., 2020a).

This work is organized as follows. Chapter 2 reviews the concepts and technologies rela-

ted to the sensors of interest, namely, accelerometers, gyroscopes and magnetometers. Section

2.1 presents a review on inertial sensors, i.e., accelerometers and gyroscopes, describes their

main architectures, characterizes the errors that corrupt their measurements, and establishes an

error model. Section 2.2 does the same as the previous, but for magnetometers. Chapter 3

provides a comprehensive literature review on the calibration techniques available for accelero-

meters, magnetometers and multiple sensors, including gyroscopes. In sequence, some of the

most traditional magnetometer calibration techniques are mathematically described. Chapter 4

presents novel two-dimensional, numerical and analytical calibration solutions that complement

the methodology proposed by Foster and Elkaim (2008), since the original work lacks in pro-
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viding a complete procedure, yet presenting an effective estimation algorithm. In addition, real

and simulated experiments, including a Monte Carlo analysis, are conducted in order to validate

the proposed solutions. Chapter 5 contains the most important contributions of this work, which

include the derivation of numerical and analytical solutions for the three-dimensional magne-

tometer calibration methodology presented by Foster and Elkaim (2008), correcting a previous

attempt by Vasconcelos et al. (2011). Moreover, real and simulated experiments are exhaus-

tively performed in order to validate the developed solutions and compare their performances

with those of other calibration techniques investigated in this work. Chapter 6 extends the con-

tribution of adapting the magnetometer calibration technique by Foster and Elkaim (2008) for

accelerometer calibration. This adaptation also involves the solutions proposed in Chapter 5.

Again, real and simulated experiments are conducted in order to validate the adapted calibra-

tion methodology. Finally, Chapter 7 recaps the entire work, analyzes the achieved contributions

and suggests future work guidelines within the topic of inertial and (mainly) magnetic sensors

calibration.
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2 INERTIAL AND MAGNETIC SENSORS USED FOR NAVIGATION

In this chapter, we describe the inertial and magnetic sensors that are commonly used

for navigation purposes, briefly addressing their constructive aspects, and focusing on charac-

terizing the main sources of errors that corrupt their measurements.

2.1 Inertial Measurement Unit

An Inertial Measurement Unit (IMU) is a device capable of sensing the non-gravitational

acceleration and angular velocity of a body with respect to an inertial reference. As the name

suggests, it works based on the principle of inertia, namely, Newton’s Laws of Motion; thus,

inertial sensors – the components of an IMU – do not need an external reference/signal to ope-

rate, unlike other types of referencing approaches (TITTERTON; WESTON, 2004). There are

two different types of inertial sensors to consider: accelerometers and gyroscopes (which is the

terminology adopted here for any angular rate sensor based on inertia). In general, along with

data processing, control, and power units, three accelerometers and three gyroscopes constitute

an IMU, as displayed in Figure 2.1 (see (GROVES, 2013) for more details). Sections 2.1.1,

2.1.2, and 2.1.3 provide a more detailed explanation on inertial sensors; however, in short, ac-

celerometers and gyros measure specific force acceleration and angular rate, respectively.

In order to categorize the different levels of IMU performance, the classification presen-

ted by Groves (2013) is adopted here; it classifies the levels of performance into five categories:

marine-grade, aviation-grade (or navigation-grade), intermediate-grade, tactical-grade, and

automotive-grade (or consumer-grade). First, considered the best category, the marine-grade

is mostly used in ships, submarines, and some spacecraft; a marine-grade Inertial Navigation

System (INS), which comprises a marine-grade IMU and a navigation processor (Figure 2.2),

can cost more than one million US dollars and presents navigation-solution drift of less than 1.8

km per day. One category step below is the aviation-grade; it is largely used in commercial and

military aircrafts; the price for one of these INSs is around US$100,000 and the performance

can guarantee horizontal drift of less than 1.5 km for the first hour. Next, the intermediate-

grade is used primarily in helicopters and small aircrafts; such an IMU costs from US$20,000

to US$50,000, and the performance is approximately one order of magnitude inferior compa-

red to aviation-grade. Tactical-grade inertial sensors, which cost up to US$20,000, are usually

used in guided weapons and Unmanned Aerial Vehicles (UAVs); they can only provide reliable

stand-alone measurements for a few minutes. For this reason, GNSS is often a complemen-
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Figure 2.1 – General IMU scheme that consists primarily of inertial sensors and auxiliary components

Source: (GROVES, 2013)

tary source of navigation for them. Lastly, the automotive-grade, mostly used for Anti-lock

Breaking System (ABS), active suspension, and airbags, are commonly sold as individuals ac-

celerometers and gyroscopes, whose price range from 1 to 10 US dollars; however, due to their

poor accuracy, these sensors are generally not appropriate for navigation.

Figure 2.2 – Scheme of a basic Inertial Navigation System, which basically comprises an IMU plus a
navigation processor

Source: (GROVES, 2013)
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2.1.1 Accelerometers

In order to measure the translational motion of a rigid body, one could observe the

resultant force applied upon it, and calculate the acceleration using Newton’s Second Law of

Motion (TITTERTON; WESTON, 2004). Therefore, the acceleration of a rigid body, which

can be integrated twice over time to determine position, has a linear correlation with the applied

force. As long as the mass is known, acceleration can be computed. However, instead of

calculating the total force acting upon the whole body (e.g. an aircraft), it is convenient to

restrict the measurements to a proof mass. The idea is presented in Figure 2.3, where a proof

mass is free to move along a given displacement range, restricted only by two springs; the

specific force is then proportional to the measured displacement.

Figure 2.3 – Basic accelerometer that transmits the inertial measurement idea of translational movements

Source: (TITTERTON; WESTON, 2004)

The actual sensors are slightly more sophisticated than showed in Figure 2.3. Com-

mercially available accelerometers commonly fall into one of the two categories: pendulous or

vibrating-beam. In the first case, the proof mass is attached to a pendulous arm, which converts

the translational motion described in Figure 2.3 into a rotation, as illustrated by Figure 2.4.

Nevertheless, there are three main drawbacks involving pendulous accelerometers: (a)

resolution is limited by the pick-off length; (b) overtime, the springs may present hysteresis; (c)

since the proof mass rotates around the hinge, the sensitive axis varies with respect to the case.

In order to overcome these shortcomings, a control system is added to the sensor, preventing

the proof mass from moving (Figure 2.5). In this case, instead of taking measurements from
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Figure 2.4 – Scheme representing the pendulous accelerometer

Source: (GROVES, 2013)

the pick-off, they are obtained from the torque exerted by the electromagnet (actuator), which is

proportional to the applied specific force; besides, it provides improved resolution and linearity.

However, whenever the sensor is not operating (energized), the proof mass is free to move inside

the case, which is a considerable shortcoming, since these movements could damage the device,

especially during transportation.

Figure 2.5 – Scheme of the force-feedback pendulous accelerometer

Source: (GROVES, 2013)

Similarly to pendulous accelerometers, vibrating-beam accelerometers are also largely

used. These sensors estimate acceleration by measuring the resonant frequency of a vibrating-

beam attached to a proof mass (Figure 2.6). This is possible because the resonant frequency of

the beam varies according to the total force applied to the sensitive axis of the proof mass. This

sensor has virtually no moving parts, which is an evident improvement, compared to pendulous

accelerometers. Since 2005, Microelectromechanical Systems (MEMSs) have been expanding

quite rapidly, which manifests the need for effective calibration techniques, considering their

manufacturing limitations (GLUECK et al., 2014).
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Figure 2.6 – Vibrating-beam accelerometer

Source: (GROVES, 2013)

2.1.2 Gyroscopes

Gyroscopes are sensors that measure angular rate without any external reference; they

can be classified into three main groups: spinning-mass, optical and vibratory gyros. Th-

roughout history, these sensors have been considerably improved through the discovery of new

technologies, as summarized in Figure 2.7.

Figure 2.7 – Gyroscopes development timeline

Source: Author

Spinning-mass gyros were the main source of self-contained angular position in the past,

as explained by Draper (1958). However, this technology has been superseded by optical and
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vibratory gyros. Essentially, a spinning-mass gyroscope works based on the idea of angular

momentum conservation; a circular mass is continually rotated while a pick-off measures the

displacement caused by a torque upon the sensitive axis. This approach, unfortunately, presents

the same shortcomings reported for pendulous accelerometers, even when a closed-loop format

is adopted.

Optical gyroscopes, on the other hand, do not have moving parts (except for the dither

wheel, in Ring Laser Gyros (RLGs)), which eliminates most of the shortcomings existing in

spinning-mass gyros. In this study, we categorize them into two groups: RLG and Interferome-

tric Fiber Optic Gyro (IFOG). RLGs were the first that appeared as a viable option for strapdown

IMU configuration in high dynamical environments, such as military vehicles (BARBOUR,

2010). Basically, two lasing modes (one in each direction) are generated inside the sensor ca-

vity. When it is rotated around the sensitive axis, the frequency of one laser mode decreases,

while the other increases; then, these changes in wavelength, later converted into angular rate,

are sensed by a detector, as illustrated in Figure 2.8 (see (GROVES, 2013) for more details).

Although RGLs are a well established technology in terms of performance, they are still an ex-

pensive option; thus, most improvements on these sensors focus on cost reduction, rather than

performance enhancement (BARBOUR, 2010).

Figure 2.8 – Drawing of a ring laser gyro in a 2D plane perpendicular to the sensitive axis

Source: (GROVES, 2013)

The other class of optical gyros presented here is the IFOG. Originally conceived as a

cheaper alternative to RLGs (BARBOUR, 2010), IFOGs rely on the Sagnac effect: a light beam

is split into two parts traveling in opposite directions inside a fiber-optic coil that can range from
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100m to 3km in length (Figure 2.9); if rotation is applied to the axis perpendicular to the coil

plane, the recombined beams will present a phase change that can be converted into angular

rate. They have some advantages over RLGs that include: lower cost, weight and voltage

requirements. However, there are also disadvantages, such as a more limited dynamic range.

Figure 2.9 – Interferometric fiber-optic gyro

Source: (GROVES, 2013)

2.1.3 Error Characteristics

Inertial sensors exhibit at least four types of error: biases, scale factors, cross-coupling

errors (misalignments), and random noise. They comprise four components: constant, temperature-

varying, run-to-run, and in-run contribution. The constant (or fixed) component is generally

compensated by the IMU processor, based on laboratory calibration parameters. Temperature-

varying errors can also be modeled and compensated by prior estimation. The run-to-run con-

tribution, which is the focus of this study, varies each time the sensor is turned on, but stays

the same until power is turned back off. Therefore, these errors cannot be previously estimated,

then, a calibration algorithm is required whenever the sensor is turned on. Lastly, the in-run

component comprises errors that appear during sensor activity. Even though they cannot be

fully estimated, integration with other sensors (sensor fusion) collaborates to mitigate them

(GROVES, 2013).

2.1.3.1 Biases

Biases, which are present both in accelerometers and gyroscopes, have a static and a

dynamic component. The first comprises the run-to-run contributions plus residual constant

biases remaining from laboratory calibration; the latter stands for the in-run biases. They are

expressed as: bx, by, and bz, which refer to biases along the x, y, and z-axes of the sensor
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frame, respectively. Figure 2.10 shows the effect of a constant bias b on a sinusoidal signal that

represents the measurements over time of an individual sensor (in one axis) of an IMU.

Figure 2.10 – Effect of bias on sensor measurements

Source: Author

2.1.3.2 Scale Factors

Scale factors, denoted here by sx, sy and sz, also manifest both in accelerometers and

gyroscopes; they corrupt the measurements by multiplying them by a parameter. Therefore, the

error caused by a scale factor is proportional to the sensor measurement. Figure 2.11 illustrates

the effect of a constant scale factor s acting upon a sinusoidal shaped measurement. Observing

the gray area, representing the error over time, we can notice the linear relation (caused by a

constant scale factor) between the corrupted and uncorrupted measurements. Therefore, the

sensor’s output can be calibrated by a simple division; the challenge, then, becomes estimating

these error parameters, as discussed in Chapter 3.
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Figure 2.11 – Effect of scale factor on sensor measurements

Source: Author

2.1.3.3 Cross-Coupling Errors

Cross-coupling errors, also referred to as misalignments, occur when the sensitive axes

of the sensors are not orthogonally aligned; thus, they become sensitive to each other’s accele-

ration or angular rate. For instance, if the y-axis accelerometer is misaligned towards the x-axis

(Figure 2.12), measurements of the former will be corrupted by specific forces applied to the

latter.

Figure 2.12 – Misalignment in one axis

Source: (FOSTER; ELKAIM, 2008)
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In the three-dimensional case, the misalignments appear as in Figure 2.13, where ρ is

defined as the angle between the y body and sensitive axes, φ is the error from z-sensor to x-z

plane of the body frame, and λ , from z-sensor to y-z plane of the body frame.

Figure 2.13 – Misalignments in a triaxial sensor.

Source: Author

Considering the three aforementioned sources of error (bias, scale-factor and cross-

coupling), one could model the specific force accelerations measured by the triaxial accele-

rometer of Figure 2.13 as follows:

f̃x = sx fx +bx (2.1)

f̃y = sy[ fy cos(ρ)+ fx sin(ρ)]+by, (2.2)

f̃z = sz[ fz cos(φ)cos(λ )+ fx sin(φ)cos(λ )+ fy sin(λ )]+bz (2.3)

where f̃x, f̃y, and f̃z are the measured specific force accelerations at x, y and z-axes of the sensor

frame, and fx, fy and fz the uncorrupted counterparts at x, y and z-axes of the body frame,

respectively. Notice that, because the x- body and sensor axes are, by definition, coincident,

there is no cross-coupling error between them. The same model is assumed here for gyros.
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2.1.3.4 Other Sources of Error

Besides the three aforementioned systematic contributions, additional errors can arise

from further sources. Firstly, random noise manifests in every inertial sensor, contributing

differently depending on the sensor design. As examples, we may cite: electrical noise (af-

fects especially MEMS), noise due to mechanical instabilities (pendulous accelerometers and

spinning-mass gyros), RLG residual lock-in effect and high frequency resonances (vibrating-

beam accelerometers and vibratory gyros), etc.. Random noise on specific force and angular

rate measurements, when integrated into velocity and attitude, respectively, produce a stochas-

tic error process called random-walk. Furthermore, quantization (necessary in any digital com-

puter) inherently causes error, which varies according to the Analog-to-Digital (A/D) converter

resolution. Spinning-mass and vibratory gyros also present additional acceleration-dependent

biases, named g-dependent biases. Nonlinearity along the sensor range also occurs to a cer-

tain level, depending on design characteristics. Finally, spinning-mass gyros and pendulous

accelerometers also suffer from other higher-order errors (GROVES, 2013). Among the men-

tioned additional error sources, only random noises, assumed here to be white and Gaussian,

are considered in the inertial sensor error model hereinafter, where only accelerometers will be

addressed.

2.1.3.5 Complete Error Model

Accounting for the four aforementioned error sources, the complete error model, descri-

bed for accelerometers, but also applicable for gyros, is written as follows (GROVES, 2013):

f̃ff =CsCm fff + cccb + cccµ , (2.4)

where f̃ff and fff are 3×1 vectors that contain the measured and uncorrupted specific force mea-

surements in the sensor frame, respectively; Cm is a lower triangular matrix whose entries are

functions of ρ , φ and λ , as displayed in (2.5); Cs is a diagonal matrix whose elements are the

scale factors of each axis, as displayed in (2.6); cccb and cccµ are 3×1 vectors containing the biases

and random noises affecting each sensor, as displayed in (2.7) and (2.8), respectively.

Cm =


1 0 0

sin(ρ) cos(ρ) 0

sin(φ)cos(λ ) sin(λ ) cos(φ)cos(λ )

 (2.5)
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Cs =


sx 0 0

0 sy 0

0 0 sz

 (2.6)

cccb =


bx

by

bz

 (2.7)

cccµ =


µx

µy

µz

 (2.8)

Notice that we represent Cm as a 3×3 lower triangular matrix (2.5) and Cs as a 3×3

positive diagonal matrix (2.6). Therefore, CsCm is also a lower triangular matrix. However,

the format of CsCm could have been different, if Cm had been defined, for instance, as a fully

populated 3×3 matrix (as preferred by some authors). Nevertheless, conversion between these

different formats is always possible, so, in this work, the simplifying assumption of Cm being a

lower triangular matrix is preferred, as defined by Foster and Elkaim (2008).

2.2 Attitude and Heading Reference System

An Attitude and Heading Reference System (AHRS) comprises an IMU (tactical or

lower grade) plus a triaxial magnetometer (covered in more details in Section 2.2.1) (FARRELL,

2008). This device provides attitude based on the combination of these sensors, which can be

obtained by integration via Kalman Filter, for example. Figure 2.14 presents a block diagram of

an AHRS, where the attitude solution is computed after processing data from the three blocks

representing the gyroscope, magnetometer, and accelerometer triads.

AHRSs are mainly used as a source of attitude for UAVs, small aircrafts and other low-

cost aviation applications. As the goal of this study is to analyze and implement calibration

techniques for AHRSs, the next two sections (2.2.1 and 2.2.2) will discuss the most relevant

topics relative to magnetometers and their error characteristics.
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Figure 2.14 – Block diagram of a basic AHRS

Source: (GROVES, 2013)

2.2.1 Magnetometers

Earth’s magnetic field has been a navigation reference for thousands of years. One of

the first techniques consisted of placing a plate containing a magnetic lodestone into a water

container for leveling; then, the floating plate would rotate according to Earth’s magnetic field,

providing heading (RENAUDIN; AFZAL; LACHAPELLE, 2010). Floating-needle magnetic

compass is another traditional technology for heading reference. Nowadays, with the advent of

digital computers, magnetometers offer digital measurements of Earth’s magnetic field, which

can be used for calculating attitude, particularly with the aid of models like the International

Geomagnetic Reference Field (IGRF) and the World Magnetic Model (WMM).

Four types of magnetometers are suitable for navigation: fluxgates, Hall-effect sensors,

magnetoinductive sensors, and magnetoresistive sensors (GROVES, 2013). Langley (2003)

described each of these designs. The fluxgate magnetometer was invented in the 1930s by Vic-

tor Vacquier. It is basically a transformer whose coils are submitted to an alternating current,

producing a varying magnetic field; whenever there is an external magnetic field acting upon

the sensor, it interferes on the alternating one, which can be measured and computed into mag-

netic field density. Although a good accuracy is provided, they are larger and more expensive

sensors. In 1879, Edwin Hall "...discovered that if a current is passed lengthwise through a thin

conductor in the presence of a magnetic field, a small voltage develops across the width of the

conductor." (LANGLEY, 2003, p. 74). This discovery led to the development of many devi-

ces for magnetic field measurement, whose construction was relatively simple, although their

performance was inferior. A magnetoinductive magnetometer was first patented in 1989. This
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sensor works by measuring, through the frequency of an oscillator, the variation of inductance

in a coil submitted to a magnetic field. Lastly, magnetoresistive sensors comprise a resistor, first

described by William Thompson, a.k.a. Lord Kelvin, in 1856, sensitive to magnetic fields; it

is usually mounted as a Wheatstone bridge, so the variation in resistance can be measured as

voltage (Figure 2.15). The two aforementioned sensors, which are small, provide measurements

accurate enough for most navigation applications (GROVES, 2013).

Figure 2.15 – Wheatstone bridge of magnetoresistive sensors

Source: (FOSTER; ELKAIM, 2008)

2.2.2 Error Characteristics

Magnetometers present the same types of error described in Section 2.1.3 for accele-

rometers and gyroscopes in addition to hard iron and soft iron errors, denoted here by hi and

si, respectively. Foster and Elkaim (2008) described the last two as side effects of measuring

magnetic fields, where hard iron interferences are caused by the permanent magnetization of

materials in the vicinity of the sensor, while soft iron effects occur due to variable magnetic per-

meability, which enables inducted magnetic fields to arise. Even though hard iron has its own

causes, it manifests in the same way as regular sensor bias and is constant. Therefore, they are

often mathematically represented together as one single bias parameter. Since soft iron errors

are induced by external magnetic fields, and they are proportional to the magnitude of these fi-

elds, their effects manifest in the same way as scale factors and misalignments. Thus, if a linear

relation can be assumed between the intensity of the magnetic field and the soft iron error, it can
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be modeled as regular scale factor and misalignments. In short, hard iron and soft iron errors

are often modeled as part of biases, and scale factors and misalignments, respectively. There-

fore, magnetometers reading are modeled here with the same parameters as accelerometers, as

follows.

m̃mm =CsCmmmm+ cccb + cccµ , (2.9)

where m̃ is the measured magnetic field density in the sensor frame, and m is the real magnetic

field density in the sensor frame.

After the systematic parameters are estimated, one may correct the corrupted measure-

ments using 1:

m̂mm = Ĉ−1
m Ĉ−1

s (m̃mm− ĉccb), (2.10)

whereˆindicates estimated variables.

1 The same formulation can be used for accelerometers.
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3 CONVENTIONAL CALIBRATION METHODS

As stated in Chapter 1, the aim of this study is to provide a comparison between the most

relevant calibration algorithms for accelerometers, gyroscopes and magnetometers. Thus, this

chapter presents a general description of some of the most relevant calibration methods availa-

ble in the literature. By calibration, we should understand the ensemble of techniques devoted

to identify the systematic errors sources addressed in Chapter 2, and to compensate them in the

sensor readings. As shown by Särkkä et al. (2017), there are numerous approaches for calibra-

tion: some can only be performed for a single kind of sensor (i.e., either accelerometers, gyros

or magnetometers); while other are capable of calibrating two or even all three of them simul-

taneously. Therefore, Section 3.1 focuses on calibration techniques used for accelerometers,

gyros and magnetometers individually, following then on methods used for multiple sensors.

3.1 Accelerometer Calibration

One of the most referred calibration techniques for accelerometers has been presented

by Lötters et al. (1998) for medical applications. This method estimates the biases and scale

factors (referred to as offsets and sensitivities, respectively) of a triaxial accelerometer, which

results in output values with mean errors of less than 3%. As the procedure is intended to

be performed automatically in-field, no specific sensor positions or orientations are required;

instead, quasi-static random movements (producing not detectable centripetal force) must be

applied to the sensors in order to collect the data so that the module of the three outputs equals

the local gravity acceleration (in error free conditions):

√
f 2
x + f 2

y + f 2
z = g (3.1)

where g is the local gravity acceleration. However, considering the actual measurements corrup-

ted by biases and scale factors, (3.1) becomes (cross-coupling errors have not been considered

by (LÖTTERS et al., 1998)):

√(
f̃x−bx

sx

)2

+

(
f̃y−by

sy

)2

+

(
f̃z−bz

sz

)2

= g (3.2)

If a perfectly calibrated triaxial accelerometer is submitted to quasi-static movements,

the total compilation of the output module draws a perfect sphere with center at the origin; by
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contrast, the raw measurements (with errors) produce an ellipsoid with center moved away from

the origin (Figure 3.1). Consequently, taking the ideal sphere as a reference, the method uses a

linear estimator to compute the bias and scale factor.

Figure 3.1 – Distortion caused by the errors on accelerometer measurements.

Source: Adapted from (VASCONCELOS et al., 2011)

Lötters et al. (1998) referred to some previous approaches for accelerometer calibration

as "laboratory oriented techniques", such as (ESTRICH; RANGAN, 1989) and (MARIOLI;

SARDINI; TARONI, 1993), in the sense that these methods can only be performed with aid

of laboratory equipment, which limits practical implementations. Alternatively, the so-called

"in-field calibration techniques" have been proposed (GREWAL; HENDERSON; MIYASAKO,

1991) and (BARSHAN; DURRANT-WHYTE, 1995). Although they do not rely on laboratory

procedures, they still require measurements from other sources - such as gyros - to provide

orientation or position reference for calibration.

Afterwards, Wu, Wang and Ge (2002) adapted the calibration method presented by Löt-

ters et al. (1998) for acceleration measurement in elevators. However, instead of using a pre-

dictor to estimate whether the sensor was under quasi-static conditions, this information was

directly attainable from the control system, which figured as a relevant benefit. Following the

same initial concepts, Krohn et al. (2004) improved the technique by also considering intrin-

sic the non-orthogonalities (cross-coupling errors) of most sensors commercially available –

particularly the inexpensive ones.

Techniques based on similar ideas have been reported in the literature; even though

they vary considerably in performance. For instance, Frosio, Pedersini and Borghese (2009)

proposed a new method whose working principle relies on the same fact that the module of a



40

triaxial accelerometer equals 1g in static conditions. However, in contrast to (LÖTTERS et al.,

1998), (WU; WANG; GE, 2002), (ESTRICH; RANGAN, 1989), (MARIOLI; SARDINI; TA-

RONI, 1993), (GREWAL; HENDERSON; MIYASAKO, 1991), and (BARSHAN; DURRANT-

WHYTE, 1995), this approach estimates, in addition to the biases and scale factors, the misa-

lignments between the sensor axes, which, as stated in Section 2.1.3.3, need to be accounted

for in order to guarantee the reliability of the measurements. Moreover, this procedure requires

the triaxial accelerometer to perform only nine random rotations; and, parameters are estimated

using Newton’s method for optimization. It provides an improved accuracy, of about one or-

der of magnitude compared to past works (WU; WANG; GE, 2002). In the paper by Won and

Golnaraghi (2009), the authors proposed another enhanced approach; in contrast to preceding

methods, it used an iterative algorithm for computing the error parameters, in this case, only

biases and scale factors.

More recently, Forsberg, Grip and Sabourova (2013) presented a non-iterative method

for accelerometer calibration. The working principle, similar to most of the aforementioned

techniques, is based on measurements of the Earth gravity vector in different positions; requi-

ring however, the sensor to be placed into, at least, nine different orientations. Alike Frosio,

Pedersini and Borghese (2009) and Krohn et al. (2004), this approach computes biases, scale

factors and misalignments.

As pointed by Glueck et al. (2014), an issue in most of the procedures based on gravity

measurements is that these algorithms have to deal with nonlinear optimization problems, which

brings shortcomings. For instance, Frosio, Pedersini and Borghese (2009) and Krohn et al.

(2004) express the calibration in terms of a first or second-order Taylor series. This approach

is usually solved by the Newton or adapted-Newton algorithm, which inherently creates a local

convergence issue that demands proper initial values for convergence. Another conventional

way to handle the problem, via analytical linearization-based parameter estimation, is described

by Lötters et al. (1998), which however, does not solve the aforementioned convergence issue.

To solve this drawback, a statistical linearization, implemented through an Unscented Kalman

Filter (UKF) can be adopted (GLUECK; BUHMANN; MANOLI, 2012). Despite overcoming

the problem, this approach only estimates six parameters: three biases and three scale factors.
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3.2 Magnetometer Calibration

Regarding magnetometer calibration, one of the most classic approaches is called com-

pass swinging, originally proposed by Bowditch (1995). This technique requires the magnetic

sensor to be rotated around each axis, while measurements are acquired. In this case, an exter-

nal source of orientation is required in order to provide the reference needed for the subsequent

non-linear parameter estimation. However, as stated by Alonso and Shuster (2002a), the need

for an external source of attitude is a major drawback, since the magnetometers are often the

only source of orientation available. Therefore, in order to overcome the attitude-dependence

issue, Alonso and Shuster (2002a) presented a new technique called TWOSTEP, which was an

extension of the work by Gambhir (1975). As the name implies, this approach has two stages:

(a) a so-called "centering technique"is used to estimate the biases; (b) the estimated values are

used as initial conditions for the Gauss-Newton method, which runs until the minimization re-

aches a predetermined desired threshold. Although this method is attitude-independent, it only

estimates biases, which is a significant shortcoming. Nevertheless, Alonso and Shuster (2002b)

presented an extension of their own method that was also able to estimate scale factors and

misalignments regardless of attitude, in contrast to common wisdom. This methodology is fully

mathematically described in Section 3.4.1 and implemented in Chapter 5.

In 2005, Crassidis, Lai and Harman (2005) presented a relevant improvement to the work

by Alonso and Shuster (2002b) for real-time implementation; three approaches were tested and

analyzed: the first was based on the centering approximation, the second was derived using an

Extended Kalman Filter (EKF), and the third employed an Unscented Filter (UF). Simulations

and real data tests showed that the last two approaches are considerably superior to the first one,

providing better calibration.

Gebre-Egziabher et al. (2006) also pointed some issues involving compass swinging:

(a) as previously mentioned, compass swinging is attitude-dependent; (b) the sensor must be

horizontally leveled during calibration; (c) the procedure is location dependent, that is, the

accuracy degrades as the sensor is moved away. In order to tackle these issues, the authors

presented a new calibration method performed in the magnetic field domain. The procedure is

very similar to the scaling check presented by Lötters et al. (1998) for accelerometer calibration.

However, instead of taking the local gravity vector as a reference, this approach uses the local

Earth magnetic field density vector (Equation 3.3), which is available with high accuracy via

models like the IGRF and WMM.
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√
m2

x +m2
y +m2

z = mt (3.3)

where mx, my and mz are the uncorrupted magnetic field density components at each axis: x, y

and z, respectively; and mt is the magnitude of the local Earth magnetic density.

In Gebre-Egziabher’s approach, a linearized iterative batch least squares is the parame-

ter estimator, initialized by a non-linear two-step estimator (shall not be confused with Alonso

and Shuster’s TWOSTEP estimator, referred to in this work, with capital letters). Despite the

improvements, this method does not account for misalignments between the sensors axes. This

shortcoming was handled by Foster and Elkaim (2008), who successfully included these pa-

rameters in their calibration algorithm (herein called "Extended Two-Step"(ETS)), which is

mathematically described in Section 3.4.2 and implemented in Chapters 4 and 5. Springmann

and Cutler (2012) improved the work by Foster and Elkaim (2008) by including a time-varying

bias component into the calibration parameters. Destined to small satellite applications, this

method models the time-varying (in-run) biases by considering telemetered currents from the

spacecraft circuits, which produces magnetic interferences. Another improvement to the work

by Gebre-Egziabher et al. (2006) came from the study presented by Renaudin, Afzal and La-

chapelle (2010), which considered, in addition to biases, scale factors and misalignments, the

effects of spatially-varying magnetic perturbations (soft iron errors).

Vasconcelos et al. (2011) claimed to have further improved the preceding methods by

presenting an algorithm based on a Maximum Likelihood Estimation (MLE). This calibration

methodology is mathematically described in Section 3.4.3 and implemented in Chapter 5. There

are additional improvements to this method in the literature, but they will be discussed in Section

3.3, since their algorithms are able to handle multiple sensors.

Besides the aforementioned magnetometer calibration techniques, other procedures have

been proposed. Kayton and Fried (1997), for instance, presented a solution for the inconveni-

ent motions required in most calibration algorithms; in their approach, a device produces an

artificial magnetic field that submits the sensor to various known scenarios. However, a major

drawback is the need for extra equipment on-board. Wang and Gao (2005) introduced a different

solution for the ellipsoid fitting problem: they used an Artificial Neural Network (ANN) in order

to map the relation between the corrupted measurements and the ideal output values. Pang et

al. (2013) presented another attitude-independent approach, also based on scaling calibration.

This method, which relies on a differential evolution algorithm, presented better calibration
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performance and robustness compared to methods derived from UKF, Genetic Algorithm (GA)

and Recursive Least-Squares (RLS). In order to deal with the local minima convergence issue,

a problem faced by many optimization-based calibration methods, Wu et al. (2012) presented

a stochastic-based algorithm named Stretching Particle Swarm Optimization. In the same year,

Wu et al. (2013) proposed a methodology based on a Constrained Total Least-Squares (CTLS),

which is described in details in Section 3.4.4 and implemented in Chapter 5. Other methodo-

logies have been proposed in the following years. We call attention to the optimal MLE-based

methodology described in (WU; SHI, 2015), which is also fully mathematically described in

Section 3.4.5 and implemented in Chapter 5.

In addition, some national studies have addressed the topic of magnetometer calibration.

Hemerly and Coelho (2014) present the procedure as an ellipsoid fitting problem, solved via

a constrained least squares. Furthermore, Mucciaccia, Frizera and Salles (2016) proposed a

similar method, also described as a ellipsoid fitting solved via least squares, but with a direct

solution based on algebraic distance.

3.3 Calibration of Multiple Sensors

The calibration algorithms available in the literature are often adapted for multiple sen-

sors, which is absolutely convenient for practical implementations. From Sections 3.1 and 3.2,

it is possible to notice consistent similarities between the calibration techniques for accelero-

meters and magnetometers, especially those based on the ellipsoid fitting idea. As mentioned

in Section 3.2, Foster and Elkaim (2008) implemented a technique for magnetometer calibra-

tion; however, they also suggested that the procedure could be adapted for accelerometers, even

though no tests were performed for this purpose.

Renk et al. (2005) presented a calibration algorithm for accelerometers and magneto-

meters that estimates biases, scale factors and non-orthogonality between the sensors, through

a least squares problem, solved after they are rotated (quasi-statically, for the accelerometers)

using a robotic arm. Even though this method provides reasonably accurate calibration, it de-

pends on a robotic actuator, which precludes in-field application; in addition, misalignments

between each sensor axis are not taken into account. Furthermore, Zhu and Zhou (2006) propo-

sed another laboratory calibration technique that complements the work by Renk et al. (2005),

by estimating misalignments within each triaxial sensor. The procedure is based on an optical

analysis of the misalignments, followed by a least squares estimation of the calibration para-
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meters. Following, Včelák et al. (2005) presented a method that accounts for the contributions

by both Renk et al. (2005) and Zhu and Zhou (2006). Biases, scale factors and misalignments

are estimated through a scalar calibration algorithm. In the latter, the sensors are positioned in

random orientations, while a novel two-step method estimates the non-orthogonality between

the magnetometers and accelerometers, with the aid of a laboratory non-magnetic calibration

device. In addition, the authors suggest that the technique can be used for any kind of triaxial

sensor.

Jurman et al. (2007) considered, in addition to magnetometers and accelerometers, the

calibration of gyroscopes. The first two had the calibration parameters estimated via a constrai-

ned Newton optimization, using data obtained while the sensors were moved through different

orientations; the latter was submitted to a more sophisticated procedure that required known

constant angular rates, produced by a laboratory device. For each case, biases, scale factors and

misalignments were estimated.

Bonnet et al. (2009) presented a new algorithm for in-field calibration of accelerometers

and magnetometers, considering biases, scale factors and misalignments. Basically, the sensors

must be rotated into different positions; then, the parameters are estimated via a Minimum-

Volume Enclosing Ellipsoid (MVEE) algorithm, which performs more effectively as the mea-

surements are better distributed around the ellipsoid.

Taking the work by Vasconcelos et al. (2011) as a benchmark, Xiaoming et al. (2014)

extended their work by calibrating not only biases, scale factors and misalignments, but also

estimating mounting errors between magnetometer and other sensors (usually an IMU). Zhang

and Yang (2014) presented an algorithm based on least squares ellipsoid fitting that, in addition

to what Xiaoming’s approach comprises, performs gyroscope calibration. Lastly, Särkkä et

al. (2017) provided one of the most comprehensive methodologies so far, which estimates the

usual calibration parameters for each sensor (in the same frame), and can be performed in-field

with fairly simple tools (a cube and a jig). Another comprehensive methodology, based on an

iterative algorithm initialized with a least squares, was presented by Papafotis and Sotiriadis

(2019); although variations for accelerometers, gyroscopes and magnetometers are presented,

only the last one is mathematically described in Section 3.4.6 and implemented in Chapter 5.
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3.4 Mathematical Description of the Implemented Methods

In this section, six main calibration methods reviewed in Sections 3.1 to 3.3 and im-

plemented in Chapters 4 and 5 are mathematically described. The choice for these techniques

was based on practicality for in-field use, effectiveness, and relevance amongst its pairs. As

magnetometers are traditionally known to require more frequent in-field calibrations (due to the

effects of hard and soft iron magnetisms) in comparison to inertial sensors, we also prioritized

the selection/description of magnetometer calibration algorithms. As will be discussed in Chap-

ter 6, some of them can, and will, be adapted for inertial sensor (accelerometer, in particular)

calibration.

Notice also that each algorithm presents its own variable definitions. In order to maintain

a pattern throughout this work, and also to preserve the original variables of each method, we

define two sets of variables called inputs and outputs according to Chapter 2, and relate them

with the ones used at the calibration methods. Therefore, besides the variables classified as

inputs or outputs, the ones presented in each mathematical description are only valid for that

specific method. They are referred to here as local variables, and shall not be confused with the

ones used regularly, called global variables.

3.4.1 TWOSTEP Method

The first calibration method described here, referred to as TWOSTEP, was introduced by

Alonso and Shuster (2002a) and expanded by Alonso and Shuster (2002b). In addition, Dinale

(2013) implemented and comprehensively described the TWOSTEP technique. For this reason,

we follow Dinale’s description of TWOSTEP, presenting it in 12 steps focused on implementa-

tion. The code used throughout this work to implement the TWOSTEP method is available in

the work by Dinale (2013).

Before going through the implementation steps, it is necessary to introduce the error

model adopted in the TWOSTEP method, which significantly differs from that presented in

Chapter 2. The error model is defined as follows:

BBBk = (I +D)−1(ϑ T AkHHHk +bbb+ εk) (3.4)

where BBBk is the kth sample of the triaxial magnetometer; I is an identity matrix; D is a fully

populated symmetric matrix that comprehends scale factor errors and misalignments; Ak and
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ϑ are two rotation matrices used to convert HHHk, the true magnetic field density vector resol-

ved in Earth-Centered-Earth-Fixed (ECEF) coordinates, to body frame and to sensor frame,

respectively; bbb is the bias vector; and εk is the measurement noise vector.

However, the model of (3.4) must be adapted, since Ak and ϑ T are not estimated, and

|HHHk| is known via magnetic models, yielding:

|HHHk|2 = [(I +D)BBBk−bbb− εk]
T [(I +D)BBBk−bbb− εk] (3.5)

which is further manipulated into:

|HHHk|2 = |BBBk|2 +BBBT
k EBBBk−2BBBT

k ccc−νk + |bbb|2 (3.6)

where E and ccc are included in order to eliminate nonlinearities related to D, and νk is the new

measurement noise. They are defined as follows:

E = 2D+D2 (3.7)

ccc = (I +D)bbb (3.8)

νk = 2[(I +D)BBBk−bbb]εk−|εk|2 (3.9)

In addition, a scalar measurement zk is introduced:

zk = |BBBk|2−|HHHk|2 (3.10)

which becomes:

zk =−BBBT
k EBBBk +2BBBT

k ccc+νk−|bbb|2 (3.11)

In practice, zk represents the scalar error between the measured and expected total mag-

netic field density.

In order to simplify the implementation, zk can be recast as:

zk = LLLkθθθ
′−|bbb|2 +νk (3.12)
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where

LLLk = (2BBBT
k −KKKk) (3.13)

where

KKKk = [B2
1k B2

2k B2
3k 2B1kB2k 2B1kB3k 2B2kB3k] (3.14)

and

θθθ
′ =



ccc

E11

E22

E33

E12

E13

E23


(3.15)

Lastly, the noise νk must be characterized. It is considered a white Gaussian noise, such

that νk~N (µk,σ
2
k ). Its mean and variance are calculated as follows:

µk =−tr(Σk) (3.16)

σ
2
k = 4[(I +D)BBBk−bbb]T Σk[(I +D)BBBk−bbb]+2tr(Σ2

k) (3.17)

where Σk is the covariance matrix of the measurement noise εk.

The step-by-step implementation of TWOSTEP is given as follows. Given the known

inputs |HHHk|, BBBk and Σk, then:

• Calculate the noise mean µk via (3.16).

• Calculate zk via (3.10).

• Calculate LLLk via (3.13).

• Calculate σ2
k via (3.17), where the initial estimates for bbb and D are zero.

• Calculate centre components σ̄2, B̄BB, z̄, L̄LL and µ̄ , over the whole data length (N):
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σ̄
2 =

(
N

∑
k=1

1
σ2

k

)−1

(3.18)

B̄BB = σ̄
2

N

∑
k=1

1
σ2

k
BBBk (3.19)

z̄ = σ̄
2

N

∑
k=1

1
σ2

k
zk (3.20)

L̄LL = σ̄
2

N

∑
k=1

1
σ2

k
LLLk (3.21)

µ̄ = σ̄
2

N

∑
k=1

1
σ2

k
µk (3.22)

• Calculate centred components B̃k, z̃k, L̃k and µ̃k:

B̃BBk = BBBk− B̄BB z̃k = zk− z̄ L̃LLk = LLLk− L̄LL µ̃k = µk− µ̄ (3.23)

• Calculate centred Fisher Information Matrix Ĩ (θ ′):

Ĩ (θθθ ′) = E
{

∂ 2J̃(θθθ ′)

∂θθθ
′2

}
(3.24)

which is manipulated into:

Ĩ (θθθ ′) =
N

∑
k=1

1
σ2

k
L̃LLT

k L̃LLk (3.25)

• Estimate θ̃θθ
′∗

, where the asterisk indicates the value is an estimate:

θ̃θθ
′∗
= [Ĩ (θθθ ′)]−1

N

∑
k=1

1
σ2

k
(z̃k− µ̃k)L̃LL

T
k (3.26)

• Calculate log likelihood gradients:

∂

∂θθθ
′ J̃ =

N

∑
k=1

−1
σ2

k
(z̃k− µ̃k)L̃LL

T
k + Ĩ (θθθ ′)θθθ ′ (3.27)

∂

∂θθθ
′ J̄ =− 1

σ̄2

(
L̄LLθθθ
′− ∂

∂θθθ
′ |bbb|

2
)(

z̄− L̄LLθθθ
′+ |bbb|2− µ̄

)
(3.28)
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• Calculate centre Fisher Information Matrix Ī (θθθ ′∗):

Ī (θθθ ′∗) =
1

σ̄2

(
L̄LL− ∂ |bbb|2

∂θθθ
′

)T (
L̄LL− ∂ |bbb|2

∂θθθ
′

)
(3.29)

• Iterate (3.30), updating Ī (θθθ ′∗) at each iteration, until ηi reaches a desired value or i

exceeds a maximum iteration number.

θθθ
′
i+1 = θθθ

′
i−I (θθθ ′i)

−1 ∂

∂θθθ
′ J(θθθ

′
i) (3.30)

ηi = (θθθ ′i−θθθ
′
i−1)

T I (θθθ ′i−1)(θθθ
′
i−θθθ

′
i−1) (3.31)

• Recover desired values bbb and D.

Firstly, we need to recover E and ccc via (3.15), where E is a symmetric 3x3 matrix, and ccc

is a 3x1. Then, U , S and W must be calculated, where the first two are the E’s eigenvalues

and eigenvectors, respectively. The diagonal matrix W relates to S as:

S = 2W +W 2 (3.32)

Therefore, each element of W can be calculated as:

w j =−1+
√

1+ s j (3.33)

Finally, we can calculate D and bbb:

D∗ =UWUT (3.34)

bbb∗ = (I +D∗)−1ccc∗ (3.35)

The covariance matrix for θθθ , with θθθ = [ bbb DDD ]T , where DDD =

[ D1,1 D2,2 D3,3 D1,2 D1,3 D2,3 ]T , is calculated as follows:



50

I (θθθ)−1 =

(
∂ (bbb,DDD)

∂ (ccc,EEE)

)
I (θθθ ′)−1

(
∂ (bbb,DDD)

∂ (ccc,EEE)

)T

(3.36)

where

(
∂ (bbb,DDD)

∂ (ccc,EEE)

)
=

(
∂ (ccc,EEE)
∂ (bbb,DDD)

)−1

(3.37)

(
∂ (bbb,DDD)

∂ (ccc,EEE)

)
=

 (I +D) McccDDD

06×3 2I +MEEEDDD

 , (3.38)

McccDDD =


b1 0 0 b2 b3 0

0 b2 0 b1 0 b3

0 0 b3 0 b1 b2

 , (3.39)

and

MEEEDDD =



2D1 0 0 2D4 2D5 0

0 2D2 0 2D4 0 2D6

0 0 2D3 0 2D5 2D6

D4 D4 0 D1 +D2 D6 D5

D5 0 D5 D6 D1 +D3 D4

0 D6 D6 D5 D4 D2 +D3


(3.40)

Table 3.1 provides the relation between the input/output variables defined by Alonso and

Shuster (2002b) and Dinale (2013), and the ones used interchangeably throughout this work,

referred to here as global variables.

The individual misalignments and scale factors (outputs) in global format are derived as

follows:
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Table 3.1 – Input and output variables equivalency for the TWOSTEP method

Local variables Global equivalent Type (I/O) Definition

BBBk m̃mm I
Measured magnetic

field density

|HHHk| mt I
Earth’s total local

magnetic field density magnitude

∑k cov(cµ) I
Covariance matrix of

the measurement noise

(I +D)−1bbb cccb O Biases

(I +D)−1 CsCm O Misalignments and scale factors
εk cccµ N/A Misalignments and scale factors

ρ = arctan
(

M′2,1
M′2,2

)
φ = arctan

(
M′3,1
M′3,3

)
λ = arctan

(
M′3,2
M′3,1

)
sinφ

sx = M′1,1

sy =
M′2,1
sinρ

sz =
M′3,2
sinλ

(3.41)

where

M = (I +D)−1 (3.42)

M′ =


M1,1 0 0

M2,1 +M1,2 M2,2 0

M3,1 +M1,3 M3,2 +M2,3 M3,3

 (3.43)

3.4.2 Extended Two-Step Method

The second method described here, the Extended Two-Step (ETS), developed by Foster

and Elkaim (2008) as an extension of the work by Gebre-Egziabher et al. (2006), where mi-

salignments are not estimated, can be used both for two- or three-axial magnetometers. Since
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there are applications for 2D compasses, such as in maritime navigation, both cases will be

presented, starting with the simplest.

3.4.2.1 Two-dimensional Calibration

The two-dimensional ETS technique (shall not be confused with TWOSTEP) is based

on the idea that a pair of leveled, uncorrupted magnetometers rotated about the z-axis would

produce outputs that, if plotted together, would have the shape of a centered circle with radius

of BH (total horizontal magnetic field density). Equation 3.44 describes this relation:

B2
H = Bb2

x +Bb2
y , (3.44)

However, the errors described in Chapter 2 reshape that circle into a shifted, rotated

ellipse. Each effect can be observed in Figure 3.2, where δBH stands for the combined effect of

both biases and hard iron errors (FOSTER; ELKAIM, 2008).

Figure 3.2 – Effects of error components on original circle. (Adapted from Gebre-Egziabher et al.
(2006))

Therefore, it is clear that the ellipse parameters are directly related to the errors. Ne-

vertheless, notice that some error parameters are mathematically indistinguishable, since they

produce the same distortions on the plotted ellipse. The shifting effect, for instance, is caused
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by both biases and hard iron effects. Thus, they are treated in ETS simply as the biases xo

and yo. Conversely, the distortions caused by soft iron effects are the same as those produced

by misalignments and scale factors. Therefore, soft iron effects are also represented in ETS

as part of the scale factors a and b, and the misalignment ρ . Lastly, as noise is considered to

have a zero-mean, Gaussian distribution, whose effect is smoothed over the progression of the

calibration method, it is not considered in the estimation model.

Based on the preceding assumptions and in agreement with Chapter 2, the measured

magnetometer outputs are described as follows, where the x-sensor is considered to be aligned

with body x-axis:

B̂b
x = aBb

x + xo (3.45)

B̂b
y = b[Bb

y cos(ρ)+Bb
x sin(ρ)]+ yo, (3.46)

The first step in the ETS calibration methodology consists of estimating the parameters

that define the shifted, rotated ellipse. Without loss of generality, geometrical shapes can be

represented by parametric models. In this case, the ellipse is represented as a conic section.

The relation can be found, starting by solving (3.45) and (3.46) for Bb
x and Bb

y , respectively, and

plugging the results into (3.44), yielding:

AB̂b2
x +BB̂b

xB̂b
y +CB̂b2

y +DB̂b
x +EB̂b

y +F = 0, (3.47)

Notice that (3.47) is linear in terms of A,B,C,D,E, and F , but not in terms of the actual

error parameters xo, yo, a, b, and ρ . Estimates of the former parameters are found via a least

squares algorithm, which requires some adjustments to (3.47), as follows:

[
B̂b2

x B̂b
xB̂b

y B̂b
x B̂b

y 1
]


A
C

B
C

D
C

E
C

F
C


=−B̂b2

y (3.48)
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Next, magnetometer measurements of all available epochs are combined into matrices

H2D and YYY 1.

H2DXXX2D = YYY , (3.49)

with

XXX2D =
[

A
C

B
C

D
C

E
C

F
C

]T
, (3.50)

YYY =
[
−B̂b2

y1 −B̂b2
y2 . . . −B̂b2

yk

]T
, (3.51)

H2D =



B̂b2
x1 B̂b

x1B̂b
y1 B̂b

x1 B̂b
y1 1

B̂b2
x2 B̂b

x2B̂b
y2 B̂b

x2 B̂b
y2 1

...
...

...
...

...

B̂b2
xk B̂b

xkB̂b
yk B̂b

xk B̂b
yk 1


(3.52)

where k is the epoch of each measurement taken.

Lastly, where k ≥ 5, (3.53) is the pseudo 2 least squares solution 3:

X̂XX2D = (HT
2DH2D)

−1HT
2DYYY (3.53)

where X̂XX2D are the estimated parameters that best fit the ellipse. Finally, even though not inclu-

ded in (FOSTER; ELKAIM, 2008), xo, yo, a, b, and ρ , are found to be functions of A,B,C,D,E,

and F , and can be calculated either algebraically or numerically, as long as BH is known. The

latter is easily computed through world magnetic field models, as the US/UK World Magne-

tic Model (WMM) and International Geomagnetic Reference Field (IGRF) (CHULLIAT et al.,

2015; THÉBAULT et al., 2015). The fact that Foster and Elkaim (2008) did not provide a clear

1 These matrices, in their current format, are defined differently than in the original algorithm propo-
sed by Foster and Elkaim (2008), as we wish to differentiate the two-dimensional from the three-
dimensional ETS calibration matrices.

2 The term pseudo least squares is adopted here, as in the work by Vasconcelos et al. (2011), as the
measurement matrix H2D is not independent on the measurement readings (requirement of the classical
least squares)

3 Notice the typo (lack of YYY ) in Equation (15) of the work by Foster and Elkaim (2008)
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methodology (either numerical or analytical) for recuperating the sough calibration parameters

from X̂XX2D was the main motivation for the study conducted in Chapter 4.

3.4.2.2 Three-dimensional Calibration

The three-dimensional magnetometer calibration via ETS methodology follows the same

ideas described in Section 3.4.2.1. However, instead of calculating the parameters of an ellipse,

defined as a conic section, the objective now is to estimate the parameters of a shifted, rotated

ellipsoid, defined as a quadric surface. Firstly, the parametrization of the z-axis’ magnetometer

measurements is necessary, in agreement with Chapter 2:

B̂b
z = c[Bb

z cos(φ)cos(λ )+Bb
x sin(φ)cos(λ )+Bb

y sin(λ )]+ zo (3.54)

In addition, instead of taking the horizontal magnetic field density magnitude BH as a

reference, the total magnetic field intensity B is necessary. The relation described in (3.55)

suggests, analogously to (3.44), that the magnitude of the vectors Bb
x , Bb

y , and Bb
z always falls

onto the surface of a sphere with radius B:

B2 = Bb2
x +Bb2

y +Bb2
z (3.55)

The ellipsoid whose parameters are to be estimated is described by the quadric surface

general equation (3.56), which can be obtained by isolating Bb
x , Bb

y and Bb
z in (3.45), (3.46) and

(3.54), respectively, and plugging the results into (3.55) 4.

AB̂b2
x +BB̂b

xB̂b
y +CB̂b

xB̂b
z +DB̂b2

y +EB̂b
yB̂b

z +FB̂b2
z +GB̂b

x +HB̂b
y + IB̂b

z + J = 0, (3.56)

To proceed as suggested, we rewrite (3.56) in matrix format as 5:

4 Notice again, that there is a small typing error in this equation at the original work by Foster and
Elkaim (2008), namely, an extra F in the sixth term.

5 Again, the matrices arranged for the least squares computation are defined slightly differently from the
original algorithm presented by Foster and Elkaim (2008).
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[
B̂b2

x B̂b
xB̂b

y B̂b
xB̂b

z B̂b
yB̂b

z B̂b2
z B̂b

x B̂b
y B̂b

z 1
]



A
D

B
D

C
D

E
D

F
D

G
D

H
D

I
D

J
D



=−B̂b2
y (3.57)

Next, (3.57) is augmented for arbitrary (k ≥ 9) magnetometer measurements:

H3DXXX3D = YYY , (3.58)

where H3D, XXX3D, and YYY are:

XXX3D =
[

A
D

B
D

C
D

E
D

F
D

G
D

H
D

I
D

J
D

]T
, (3.59)

YYY =
[
−B̂b2

y1 −B̂b2
y2 . . −B̂b2

yk

]T
, (3.60)

H3D =



B̂b2
x1 B̂b

x1B̂b
y1 B̂b

x1B̂b
z1 B̂b

y1B̂b
z1 B̂b2

z1 B̂b
x1 B̂b

y1 B̂b
z1 1

B̂b2
x2 B̂b

x2B̂b
y2 B̂b

x2B̂b
z2 B̂b

y2B̂b
z2 B̂b2

z2 B̂b
x2 B̂b

y2 B̂b
z2 1

. . . . .

. . . . .

B̂b2
xk B̂b

xkB̂b
yk B̂b

xkB̂b
zk B̂b

ykB̂b
zk B̂b2

zk B̂b
xk B̂b

yk B̂b
zk 1


(3.61)

Finally, the pseudo least squares formulation is written as:

XXX3D = (HT
3DH3D)

−1HT
3DYYY (3.62)
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where XXX3D are the estimated ellipsoid parameters (auxiliary or intermediate parameters) that

minimize the quadratic error with respect to the measurements YYY , as in Section 3.4.2.1.

Again, the ellipsoid parameters are functions of the sought error parameters, and the

relation between them can be found algebraically (or numerically). As such relation has not

been clearly described by Foster and Elkaim (2008), this motivated the discussions of Chapter

5. The local-global variables equivalency is summarized in Table 3.2.

Table 3.2 – Input and output variables equivalency for the ETS method.

Local variables Global equivalent Type (I/O) Definition

B̂b m̃mm I
Measured magnetic

field density

B mt I
Earth’s total local

magnetic field density magnitude

BH mh I
Earth’s total horizontal

magnetic field density magnitude

xo bx O x-axis bias

yo by O y-axis bias

zo bz O z-axis bias

a sx O x-axis scale factor

b sy O y-axis scale factor

c sz O z-axis scale factor

3.4.3 Maximum Likelihood Estimation-based Method

The magnetometer calibration method developed by Vasconcelos et al. (2011) takes the

technique by Foster and Elkaim (2008) described previously as an initial estimate of the syste-

matic errors. For easiness of reference with Vasconcelos et al. (2011), the following magneto-

meter model is introduced, comprising local variables:

hhhri = SSSMCCCNO(CCCSI
B
ERRRi | Ehhh | E h̄hhi +bbbHI)+bbbM +nnnmi (3.63)

where hhhri is the ith sensor reading, SSSM is the scale factor matrix, CCCNO is the nonorthogonality

(misalignment) matrix, CCCSI is the soft iron matrix, B
ERRRi is the rotation matrix from body to ECEF

frame, Ehhh is the Earth’s total magnetic field density vector resolved in ECEF-axes, E h̄hhi is the

normalized Earth magnetic field density in ECEF-axes, bbbHI is the hard iron vector, bbbM is the
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bias vector, and nnnmi is the measurement noise, considered to have a zero mean, white, Gaussian

distribution.

However, as in the work by Foster and Elkaim (2008), the error parameters are not

observable separately. Therefore, only two matrices/vectors are actually estimated: CCC (or TTT ,

where TTT = CCC−1), which is a function of the combined effects of soft iron, scaling factors and

misalignments, and bbb, which is a function of the offset (hard iron and bias) effects. In terms

of our previously defined global variables, TTT is a function of Cm and Cs, and bbb and nnnmi are

equivalent to cccb and cccµ , respectively. Consequently, the error model becomes:

hhhri =CCCBh̄hhi +bbb+nnnmi (3.64)

where CCC = SSSMCCCNOCCCSI|Ehhh|, bbb = SSSMCCCNObbbHI +bbbM and Bh̄hhi =
B
ERRRi

E h̄hhi.

The first step to estimate TTT and bbb is to find the initial estimates via the work by Foster

and Elkaim (2008). However, Foster and Elkaim (2008) only provided the ellipsoid parameters

estimate of (3.62) in their work. Thus, Vasconcelos et al. (2011) proposed analytical solutions

for the error parameters Cm, Cs and cccb via the estimates from (3.62). Nevertheless, such soluti-

ons are not directly comparable, since (3.59) and (3.60) are defined differently by Vasconcelos

et al. (2011), as follows:

XXXv =−
[

A
F

B
F

C
F

D
F

E
F

G
F

H
F

I
F

J
F

]T
, (3.65)

YYY v =
[

m̃2
z1 m̃2

z2 . . m̃2
zk

]T
, (3.66)

In the appendix of (VASCONCELOS et al., 2011), the estimates from (3.65) are referred

to simply as A,B,C,D,E,G,H and J. In order to distinguish them from the ellipsoid parameters

of (3.65), we write XXXv as:

XXXv =
[

xv1 xv2 xv3 xv4 xv5 xv6 xv7 xv8 xv9

]T
, (3.67)

The estimates XXXv relate to XXX3D as:
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

xv1

xv2

xv3

xv4

xv5

xv6

xv7

xv8

xv9



=−



x3D1

x3D2

x3D3

1

x3D4

x3D6

x3D7

x3D8

x3D9



1
x3D5

(3.68)

Once XXXv has been distinguished from XXX3D, we can present Vasconcelos’ analytical so-

lution for the error parameters in terms of the former, as follows:

α1 =−x2
v2 + xv4x2

v3 +4xv4xv1 + xv1x2
v5− xv2xv5xv3 (3.69)

α2 = 4xv1x2
v5xv9− x2

v5x2
v6−4xv2xv5xv3xv9 +2xv5xv3xv7xv6 +2xv2xv5xv8xv6−4xv5xv7xv1xv8

−4xv4xv8xv3xv6− x2
v3x2

v7 +4xv4xv1x2
v8 +2xv3xv2xv7xv8−4xv4x2

v6 +4xv4x2
v3xv9

+4xv2xv7xv6−4xv1x2
v7− x2

v2x2
v8−4x2

v2xv9 +16xv4xv1xv9

(3.70)

α3 = x4
v5xv1− xv3xv2x3

v5 + x2
v5x2

v3xv4−2x2
v2x2

v5 +8xv4xv1x2
v5−4xv4x2

v2 +16x2
v4xv1 (3.71)

β1 = 2xv2xv7 + xv2xv5xv8−2xv3xv4xv8−4xv4xv6 + xv5xv3xv7− x2
v5xv6 (3.72)

β2 =−2xv1xv5xv8 +4xv1xv7− xv2xv3xv8−2xv2xv6 + x2
v3xv7− xv3xv5xv6 (3.73)

β3 = 4xv4xv8xv1−2xv4xv6xv3 + xv5xv6xv2− xv8x2
v2−2xv5xv7xv1 + xv3xv2xv7 (3.74)



60

Next, we use the auxiliary parameters α1,α2,α3,β1,β2 and β3 to find the initial estimate

of the error parameters that describe TTT and bbb.

a =
1

2α1
[−(4xv4 + x2

v5)α2]
1/2 (3.75)

b =
1

2α1
[−(4xv1 + x2

v3)α2]
1/2 (3.76)

c =
1

2α1
[(4xv4xv1− x2

v2)α2]
1/2 (3.77)

ρv = arctan
[
−1

2
(2xv2 + xv5xv3)(α1)

−1/2
]

(3.78)

φv = arctan
[
(xv2xv5− xv3xv4)(α1)

−1/2
]

(3.79)

λv = arctan
[
xv5(−α1α

−1
3 )1/2

]
(3.80)

The initial estimates for TTT and bbb are written as follows 6:

TTT 0 =


1
a 0 0

−1
a tanρv

1
b secρv 0

1
a(tanρv tanλv secφv− tanφv) −1

b secρv tanλv secφv
1
c secλv secφv

 (3.81)

bbb0 =
1

2α1


β1

β2

β3

 (3.82)

6 Notice that the term in position (2,2) of matrix TTT 0 incorrectly has a minus sign in the original work.
This mistake has been corrected in (3.81).
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The next step is to implement a Gauss-Netwon’s descent-based Maximum Likelihood

Estimator (MLE), which iterates until a condition ||O f |xxxk || < εstop is satisfied, where || || is the

representation for the Mahalanobis distance 7, as follows:

 vec(TTT k+1)

bbbk+1

=

 vec(TTT k)

bbbk

− (O2 f |xxxk)
−1O f |xxxk (3.83)

where the gradient of the likelihood function is defined as 8:

O f |xxx =
[
O f |TTT O f |bbb

]T
(3.84)

O f |TTT =
n

∑
i=1

2cTTT

σ2
mi

uuui⊗TTT uuui (3.85)

O f |bbb =
n

∑
i=1

−2cTTT

σ2
mi

TTT T TTT uuui (3.86)

with,

cTTT = 1−|TTT uuui|−1 (3.87)

uuui = hhhri−bbb (3.88)

where σmi is the magnetometer random noise standard deviation, ⊗ represents the Kronecker

product (see Appendix A for details), and | | the Euclidian norm. The Hessian of the likelihood

function, in turn, is defined as:

O2 f |xxx =

 HTTT ,TTT HTTT ,bbb

HT
TTT ,bbb Hbbb,bbb

 (3.89)

where

HTTT ,TTT =
n

∑
i=1

2
σ2

mi

[
(uuuiuuuT

i )⊗ (TTT uuuiuuuT
i TTT T )

|TTT uuui|3
+ cTTT [(uuuiuuuT

i )⊗ I3]

]
(3.90)

7 The Mahalanobis distance considers the distribution of the object points in the variable space (as
characterized by the covariance matrix) and is independent from the scaling of the variables. It is a
distance measure that accounts for the covariance structure (VARMUZA; FILZMOSER, 2016).

8 Notice that, in the work by Vasconcelos et al. (2011), equation (3.84) is missing the transpose sign T .
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HTTT ,bbb =
n

∑
i=1

−2
σ2

mi

[
(uuui⊗TTT uuui)uuuT

i TTT T TTT
|TTT uuui|3

+ cTTT (uuui⊗TTT + I3⊗TTT uuui)

]
(3.91)

Hbbb,bbb =
n

∑
i=1

2
σ2

mi

[
TTT T TTT uuuiuuuT

i TTT T TTT
|TTT uuui|3

+ cTTT TTT T TTT
]

(3.92)

After ||O f |xxx|| reaches a desired threshold, the final estimates of TTT and bbb need to be

converted back into the error parameters, which is achieved in terms of global variables as

follows:

M =
1
| Ehhh |

TTT−1 (3.93)

ρ = arctan
M2,1

M2,2
(3.94)

φ = arctan
M3,1

M3,3
(3.95)

λ = arctan
(

M3,2

M3,1

)
sinφ (3.96)

sx = M1,1 (3.97)

sy =
M2,1

sinρ
(3.98)

sz =
M3,2

sinλ
(3.99)

cccb = bbb (3.100)

In summary, the technique by Vasconcelos et al. (2011) requires three inputs: hhhri, | Ehhh |

and σmi, which are equivalent in terms of global input variables to m̃mm, mt and σµ (standard

deviation of the measurement noise cccµ ). The relation between the local/global input/output

variables is summarized in Table 3.3 and in (3.94) to (3.100).
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Table 3.3 – Input and output variables equivalency for the MLE method.

Local variables Global equivalent Type (I/O) Definition

hhhri m̃mm I
Measured magnetic

field density

Ehhh mt I
Earth’s total local

magnetic field density magnitude

nnnmi cccµ I Measurement noise

CCC CsCmCs
bmt I/O Misalignments and scale factors

bbb cccb O Biases

where Cs
b is a rotation matrix from body to sensor frame.

3.4.4 Constrained Total Least Squares-based Method

Wu et al. (2013) proposed a Constrained Total Least-Squares (CTLS) technique for tri-

axial magnetometer calibration. The error model adopted in this methodology is the same

adopted in this work, with a different notation (local variables are once again employed, for

easiness of reference with the work by Wu et al. (2013)), as follows:

Bs = KBb +O (3.101)

with

K =


κ1 0 0

κ2 sinρ1 k2 cosρ1 0

κ3 sinρ2 cosρ3 κ3 sinρ3 κ3 cosρ2 cosρ3

 (3.102)

O =


o1

o2

o3

 (3.103)

where Bs stands for the magnetometer readings in the sensor frame, K contains the scale factors

and misalignment effects, Bb represents the Earth magnetic field density at each axis of the

body frame, and O contains the total bias (offset) effects that corrupt the sensor readings. Once

again, as in the methods presented previously, K and O include the mathematical effects of soft

and hard iron errors, represented as scale factors, misalignments and biases, respectively.
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The calibration methodology is summarized into four steps. The first consists of cal-

culating initial estimates for the error parameters, which is achieved via the ETS estimator by

Foster and Elkaim (2008), with a different notation:

XLS = (AT A)−1AT b (3.104)

where the subscript LS indicates the least-squares estimate of vector X, defined as:

X =− 1
a6

[
a1 a2 a3 a4 a5 a7 a8 a9 a10

]T
, (3.105)

A =



(Bs
x1)

2 Bs
x1Bs

y1 Bs
x1Bs

z1 (Bs
y1)

2 Bs
y1Bs

z1 Bs
x1 Bs

y1 Bs
z1 1

(Bs
x2)

2 Bs
x2Bs

y2 Bs
x2Bs

z2 (Bs
y2)

2 Bs
y2Bs

z2 Bs
x2 Bs

y2 Bs
z2 1

...
...

...
...

...
...

...
...

...

(Bs
xq)

2 Bs
xqBs

yq Bs
xqBs

zq (Bs
yq)

2 Bs
yqBs

zq Bs
xq Bs

yq Bs
zq 1


(3.106)

b =
[
(Bs

z1)
2 (Bs

z2)
2 . . . (Bs

zq)
2
]T

, (3.107)

where q is the qth measurement, and X contains the estimated ellipsoid parameters.

Once the initial estimates are computed, we can move on to the second step, which

consists of iteratively refining X using Gauss-Newton’s descent method:

Xr+1 = Xr−H−1
r Tr (3.108)

where r represents the rth iteration, Hr is the Hessian matrix at Xr, and Tr the gradient vector,

computed as follows:

Tr = 2(UT A−UT B1)
T , (3.109)

Hr = 2(A−B1−B2)
T (HX HT

X)
−1(A−B1−B2)−2BT

3 B3, (3.110)

with

U = (HX HT
X)
−1C

(
X
−1

)
, (3.111)
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B1 =
[

HX FT
1 U HX FT

2 U ... HX FT
L U

]
, (3.112)

B2 =
[

F1HT
XU F2HT

X U ... FLHT
X U

]
, (3.113)

B2 =
[

FT
1 U FT

2 U ... FT
L U

]
, (3.114)

where

C =
[

A b
]
, (3.115)

F1 =


−2Bs

x1 0 0

−2Bs
x2 0 0

. . .

2Bs
xq 0 0


q×3q

, (3.116)

F2 =


−Bs

y1 −Bs
x1 0

−Bs
y2 −Bs

x2 0
. . .

−Bs
yq −Bs

xq 0


q×3q

, (3.117)

F3 =


−Bs

z1 0 −Bs
x1

−Bs
z2 0 −Bs

x2
. . .

−Bs
zq 0 −Bs

xq


q×3q

, (3.118)

F4 =


0 −Bs

y1 0

0 −Bs
y2 0

. . .

0 −Bs
yq 0


q×3q

, (3.119)
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F5 =


0 −Bs

z1 −Bs
y1

0 −Bs
z2 −Bs

y2
. . .

0 −Bs
zq −Bs

yq


q×3q

, (3.120)

F6 =


−1 0 0

−1 0 0
. . .

−1 0 0


q×3q

, (3.121)

F7 =


0 −1 0

0 −1 0
. . .

0 −1 0


q×3q

, (3.122)

F8 =


0 0 −1

0 0 −1
. . .

0 0 −1


q×3q

, (3.123)

F9 = 0q×3q, (3.124)

F10 =


0 0 −2Bs

z1

0 0 −2Bs
z2

. . .

0 0 −2Bs
zq


q×3q

, (3.125)

and

HX =
9

∑
i=1

xiFi−F10 (3.126)
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where xi is the rth element of X.

The third step consists of repeating the second until ||TTT r||< εstop or r reaches an iteration

limit.

Finally, the estimated X is converted into actual error parameters (biases, scale factors

and misalignments) in terms of the previously defined global variables using the analytical

solution presented by Vasconcelos et al. (2011) described here in (3.69) to (3.82) and (3.93) to

(3.100), also noting that CTLS’s XXX is the same of MLE’s XXXv. Table 3.4 summarizes the relation

between local and global variables for CTLS.

Table 3.4 – Input and output variables equivalency for the CTLS method.

Local variables Global equivalent Type (I/O) Definition

Bs m̃mm I
Measured magnetic field

density in the sensor frame

Bb (Cs
b)

T mmm I
Uncorrupted magnetic field
density in the body frame

K CsCmCs
b O Misalignments and scale factors

O cccb O Biases

where Cs
b is a rotation matrix from body to sensor frame.

3.4.5 Optimal Maximum Likelihood-based Method

Wu and Shi (2015) introduced an alternative magnetometer calibration technique based

on an MLE algorithm. However, in contrast to the methodologies used previously, the so called

Optimal Maximum Likelihood (OML) was proposed as a means of overcoming shortcomings

of the regular MLE implementation, such as its sensitivity to initial estimates errors, which may

cause the calibration not to converge..

The error model follows the same pattern as the ones presented previously. For easiness

of reference with the original work by Wu and Shi (2015), however, the following local variables

are adopted here:

y = R−1mb +h+ e (3.127)

where y is the sensor measurement, R−1 is a matrix containing the scale factors, misalignment

errors and soft iron effects, mb is the Earth’s magnetic field density in the body frame, h contains
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the bias errors and hard iron effects, and e is the measurement noise, considered to be Gaussian

and have covariance σI3. The OML-based method requires an initial estimate, which is found

via a linear least squares, as follows:

Ykz = [ yT
k ⊗yT

k yT
k 1 ]


vec(A)

b

c

= 0 (3.128)

where k is the measurement index, ⊗ represents the Kronecker product (see Appendix A for

details), vec(AAA) is the operator that forms a vector by stacking the columns of the matrix AAA but

excluding the lower triangular zero entries, and A (symmetric), b and c are functions of the

error parameters.

AAA = RRRT RRR (3.129)

bbb =−2RRRT RRRhhh (3.130)

c = hhhT RRRT RRRhhh−1 (3.131)

Considering the availability of N measurements, we can form:

Yz = 0 (3.132)

with

Y = [Y′T1 . . .Y′TN ]T (3.133)

where

Y′k = [ Yk,1 Yk,2 +Yk,4 Yk,5 Yk,3 +Yk,7 Yk,6 +Yk,8 Yk,8 ... Yk,13 ] = 0 (3.134)

A linear least-squares problem can be expressed as:
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z = min|Yz|2 (3.135)

The solution of (3.135) should satisfy:

YT Yz = 0 = 0z (3.136)

Therefore, the solution ze is the eigenvector YT Y, with zero or minimum eigenvalue.

Noticing that αze for any real α is also solution to (3.135), allows us to write:


vec(A)

b

c

= αze = α


vec(Ae)

be

ce

 (3.137)

where

α =
4

bT
e A−1

e be−4ce
(3.138)

The actual error parameters initial estimates are:

h(0) =−1
2

A−1b (3.139)

R(0) = chol(A) (3.140)

where chol(.) represents the matrix Cholesky factorization.

The next step is to initialize the Optimal Maximum Likelihood estimation vector 9:

x =
[

vecT (T) hT mbT
1 ... mbT

N λ1 ... λN

]T
(3.141)

where the initial Lagrange coefficients λ
(0)
k are set to zero, mb

k = R(0)(yk−h(0)), and T(0) =

(RRR(0))−1.

In sequence, the estimate is updated using Gauss-Newton’s descent method until a stop

condition is fulfilled:

x(i+i) = x(i)−
[
O2

x f |x(i)
]−1 (

Ox f |x(i)
)

(3.142)

9 Notice a small typo in the original paper by (WU; SHI, 2015), where the equation corresponding to
(3.141) lacks some transpose operators.
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where i is the ith iteration.

The Jacobian (gradient) vector and the Hassian matrix are derived as 10:

Ox f =

 JT
T JT

h JT
mb

k
JT

λk

k=1:N k=1:N

T

(3.143)

O2
x f =



HT T HT h HT mb
k
... 06×1...

HT
T h Hhh Hhmb

k
... 03×1...

HT
T mb

k
HT

hmb
k

Hmb
kmb

k
... Hmb

kλk
...

...
...

...
...

0T
6×1 03×1 Hmb

kλk
... 0...

...
...

...
...

k=1:N k=1:N


(4N+9)×(4N+9)

(3.144)

with

JT =−2
N

∑
k=1

mb
k⊗
(

uk−Tmb
k

)
(3.145)

Jh =−2
N

∑
k=1

(
uk−Tmb

k

)
(3.146)

Jmb
k
=−2TT

(
uk−Tmb

k

)
+2λkmb

k (3.147)

Jλk
= |mb

k |
2−1 (3.148)

HT T = 2
N

∑
k=1

(
mb

kmbT
k

)
⊗ I (3.149)

HT h = 2
N

∑
k=1

mb
k⊗ I (3.150)

HT mb
k
= 2

[(
mb

k⊗ I
)

T− I⊗
(

uk−Tmb
k

)]
(3.151)

10 Notice the presence of three typos in the equation equivalent to (3.144) in the original paper, i.e., a
misplaced transpose sign and the dimensions of the 6×1 matrices.
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Hhh = 2NI (3.152)

Hhmb
k
= 2T (3.153)

Hmb
kmb

k
= 2TT T+2λkI (3.154)

Hmb
kλk

= 2mb
k (3.155)

where

uk , yk−h (3.156)

After the estimation convergence, corrected magnetometer measurements can be achie-

ved by substituting the estimated R (or T) and h in (3.127) and solving for mb.

Lastly, and for comparison purposes with the other methods, we shall find the OML’s

estimated error parameters in terms of the previously defined global variables. The biases cccb

are simply equal to h. In contrast, finding Cs and Cm from T is not trivial (as CsCm has been

defined as a lower triangular matrix, while T, an upper triangular one), and actually requires the

knowledge of the real (not only estimated) error parameters. Therefore, even though not neces-

sary in a real application, this transformation is derived here for the sake of clear comparison

between methods. The first step is to compute the following intermediate estimated matrix.

M′ =
T
mt

(3.157)

Next, we use the modified Gram-Schmidt (see Appendix B for details) decomposition

algorithm described by Stewart (1998), and denoted here as mgs(.), upon the true error matrix

Mt =CsCm, in order to extract the following orthogonal matrices:

Q = mgs(M−1
t ) (3.158)

q = mgs(MT
t ) (3.159)
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Next, we find M:

M = M′QT qT (3.160)

And from M:

ρ = arctan
M2,1

M2,2
(3.161)

φ = arctan
M3,1

M3,3
(3.162)

λ = arctan
(

M3,2

M3,1

)
sinφ (3.163)

Cs =


M1,1 0 0

0 M2,1
sinρ

0

0 0 M3,2
sinλ

 (3.164)

The variables equivalency are summarized in Table 3.5.

Table 3.5 – Input and output variables equivalency for the OML method.

Local variables Global equivalent Type (I/O) Definition

y m̃mm I
Measured magnetic

field density

mb (Cs
b)

T mmm I
Uncorrupted magnetic field

density in body-frame

e cccµ I Measurement noise

h cccb O Biases

R−1 (CsCm)
T qT QT O Misalignments and scale factors

3.4.6 MAG.I.C.AL Method

Lastly, we mathematically describe the MAGnetometer-Inertial sensors Calibration and

ALignment (MAG.I.C.AL) method presented by Papafotis and Sotiriadis (2019), which uses

an iterative process with a linear least-squares initial estimate. The mathematical model used

to describe the corrupted measurements is the same as the previous ones, but is formulated in

terms of the following local variables, as in the work by Papafotis and Sotiriadis (2019):
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ym = Tmm+hm + ε (3.165)

where ym is the measured magnetic field density vector, Tm is a 3×3 matrix containing a com-

bination of the total scale factor, misalignment error and soft iron, m the true magnetic field

density vector, hm is the bias vector, and ε is the measurement noise, considered to be a zero

mean random vector. The model (3.165) can be represented in matrix format as:

Y = LG+E (3.166)

with

Y =
[

ym1 ym2 ... ymN

]
(3.167)

L =
[

Tm hm

]
(3.168)

G =

 m1 m2 ... mN

1 1 ... 1

 (3.169)

E =
[

ε1 ε1 ... εN

]
(3.170)

where N is the total number of available measurements.

The calibration algorithm is based on the minimization of the following penalty func-

tion:

J =
N

∑
k=1

[
|ymk−Tmmk−hm|2 +λ

(
|mk|2−1

)2
]

(3.171)

where k is the measurement index and λ is the Lagrange coefficient (positive constant), which

is usually selected to be in the order of |Tm|.

The methodology is divided by the authors into six steps:

Step 1: Initialize mk for k = 1 . . . N, as:

mk =
ymk

|ymk|
(3.172)

Step 2: Solve for L using the least-squares formulation:
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L = Y GT (GGT )−1 (3.173)

Step 3: Extract Tm and hm from L.

Step 4: Calculate m̃k for k = 1 . . . N:

m̃k = T−1
m (ymk−hm) (3.174)

Step 5: Update G using:

mk =
m̃k

||m̃k||
(3.175)

Step 6: Calculate J using (3.171).

Step 7: Repeat steps 2-6 until J reaches a predetermined stop condition.

Lastly, and for the purpose of comparison between methods, we present a conversion

of the local Tm and hm in terms of the global parameters for scale factors, misalignments and

biases.

cccb = hm (3.176)

M =
Tm

mt
(3.177)

ρ = arctan
M2,1

M2,2
(3.178)

φ = arctan
M3,1

M3,3
(3.179)

λ = arctan
(

M3,2

M3,1

)
sinφ (3.180)

Cs =


M1,1 0 0

0 M2,1
sinρ

0

0 0 M3,2
sinλ

 (3.181)

The variables equivalency are summarized in Table 3.6.
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Table 3.6 – Input and output variables equivalency for the MAG.I.C.AL method.

Local variables Global equivalent Type (I/O) Definition

ym m̃mm I
Measured magnetic

field density

m mmm/||mmm|| I
Uncorrupted unitary magnetic field

density vector in sensor-frame

ε cccµ I Measurement noise

Tm CsCmmt O Error matrix

hm cccb O Biases
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4 TWO-DIMENSIONAL NUMERICAL AND ANALYTICAL SOLUTIONS FOR THE

EXTENDED TWO-STEP CALIBRATION METHODOLOGY

In this chapter, novel numerical and analytical solutions for the two-dimensional ETS

calibration method (FOSTER; ELKAIM, 2008) are presented, with a meticulous derivation.

Simulated and real data experiments are performed in order to validate the solutions.

4.1 Numerical Solution

As mentioned in Section 3.4.2.1, the solutions for the two-dimensional error parameters

bx,by,sx,sy and ρ are not provided by Foster and Elkaim (2008), but since they are a function

of the estimated parameters A,B,C,D,E and F , they can be derived.

First, let us rewrite the equations (3.44) to (3.47) that establish the relationship between

the aforementioned parameters, in terms of the previously defined global variables:

m̃x = sxmx +bx (4.1)

m̃y = sy(my cosρ +mx sinρ)+by (4.2)

Am̃2
x +Bm̃xm̃y +Cm̃2

y +Dm̃x +Em̃y +F = 0 (4.3)

m2
x +m2

y = m2
h (4.4)

We begin the manipulation by solving (4.1) for mx and plugging it into (4.2), so we can

solve it for my, in terms of m̃x and m̃y only:

mx =
m̃x−bx

sx
(4.5)

my =−
by− m̃y +

[sy sin(ρ)(m̃x−bx)]

sx
sy cosρ

(4.6)

which is rearranged as:
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my =−
sxby− sxm̃y + sy sin(ρ)(m̃x−bx)

sxsy cosρ
(4.7)

Next, we plug (4.5) and (4.7) into (4.4), yielding:

[
m̃x−bx

sx

]2

+

[
−

sxby− sxm̃y + sy sin(ρ)(m̃x−bx)

sxsy cosρ

]2

= m2
h (4.8)

In order to find the ellipse parameters A,B,C,D,E and F , we expand (4.8) and compare

the result with (4.3). In particular, in order to find F in terms of bx, by, sx, sy and ρ , one looks

for the expanded terms in (4.8) that multiply neither m̃x nor m̃y, which yields:

F =

(
by−

sybx sinρ

sx

)
s2

y cos2 ρ
+

b2
x

s2
x
−m2

h (4.9)

The parameters A and D, which multiply m̃2
x and m̃x in (4.3), respectively, can be found

by substituting m̃y by zero in (4.8) and subtracting F from it, yielding:

A =− 1
s2

x(sin2
ρ−1)

(4.10)

D =
2sybx−2sxby sinρ

s2
xsy(sin2

ρ−1)
(4.11)

The same process is repeated for C and E by substituting m̃x by zero in (4.8) and sub-

tracting F , producing:

C =− 1
s2

y(sin2
ρ)−1

(4.12)

E =
sxby−2sybx sinρ

sxs2
y(sin2

ρ−1)
(4.13)

The only parameter left is B, which is found by subtracting the already known parame-

ters from (4.8), yielding:

B =
2sinρ

sxsy(sin2
ρ−1)

(4.14)

Even though there are six parameters in (4.3), only five are necessary to characterize

the ellipse. Therefore, the ETS methodology (FOSTER; ELKAIM, 2008) only estimates five
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auxiliary parameters. There are many ways to rearrange (4.3) in order to achieve that. Here, we

follow the same as in the work by Foster and Elkaim (2008):

A
C

m̃2
x +

B
C

m̃xm̃y + m̃2
y +

D
C

m̃x +
E
C

m̃y +
F
C

= 0 (4.15)

Therefore, the parameters estimated via the least-squares relate to the ellipse parameters

as in (3.50):

XXX2D =



x2D1

x2D2

x2D3

x2D4

x2D5


=



A
C
B
C
D
C
E
C
F
C


(4.16)

For the sake simplicity, the subscripts 2D in x2D1 , x2D2 , x2D3 , x2D4 and x2D5 are omitted

throughout this chapter, yielding, x1, x2, x3, x4 and x5, respectively. However, these estimates

shall not be confused with those from three-dimensional calibration procedures.

Finally, substituting (4.9) to (4.14) into the right hand side of (4.16) allows us to nume-

rically solve (4.16) for sx,sy,bx,by and ρ with computational aid like MATLAB solve function.

4.2 Analytical Solution

Despite the appropriateness of the numerical solution derived above, real-time mag-

netometer calibration would be further benefited from its analytical counterpart (if existent),

especially in situations with limited computational capabilities. In order to derive an analytical

solution for the error parameters sx,sy,bx,by and ρ from the two-dimensional ETS estimated

XXX2D, we need a geometrical understanding of (4.15), which is the general equation for a conic

section, particularly a shifted, rotated ellipse (Fig. 3.2).

4.2.1 Biases

From a geometrical perspective, the biases bx and by are the ellipse’s offset from the

origin. Therefore, by calculating the center of the ellipse (4.15), we also calculate the biases.

Since (4.15) describes an ellipse with a symmetric shape, if we draw a line between m̃x maxima
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and minima, and another line between m̃y maxima and minima, the two lines intersect at the

center of the ellipse (Fig. 4.1).

Figure 4.1 – Partial derivative functions intersecting at the center of the ellipse.

Source: Author

The functions that intersect the points of maxima and minima m̃xmax and m̃xmin, and

m̃ymax and m̃ymax can be derived by taking the partial derivatives of (4.15). Let us first rewrite

(4.15) in terms of the estimated parameters XXX2D:

Q(m̃x, m̃y) = x1m̃2
x + x2m̃xm̃y + m̃2

y + x3m̃x + x4m̃y + x5 = 0 (4.17)

The partial derivatives of (4.17) with respect to m̃x and m̃y are expressed as:

∂Q
∂ m̃x

= 2x1m̃x + x2m̃y + x3 (4.18)

∂Q
∂ m̃y

= x2m̃x +2m̃y + x4 (4.19)

The points m̃xmax and m̃xmin, and m̃ymax and m̃ymin can be calculated by solving (4.18)

and (4.19), when ∂Q
∂ m̃x

and ∂Q
∂ m̃y

intersect Q(m̃x, m̃y), respectively.

Finally, we can find the biases solving a system of equations with ∂Q
∂ m̃x

= 0 and ∂Q
∂ m̃y

= 0,

where bx and by are the solutions for m̃x and m̃y, respectively:
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m̃x =−
2x3− x2x4

−x2
2 +4x1

≡ bx (4.20)

m̃y =−
2x1x4− x2x3

−x2
2 +4x1

≡ by (4.21)

The analytical biases solutions of equations (4.20) and (4.20) can be verified by substi-

tuting the ETS estimates x1, x2, x3 and x4 by their counterparts of equation (4.16), as:

− 2x3− x2x4

−x2
2 +4x1

=−
2D

C −
B
C

E
C

−
(B

C

)2
+4 A

C

(4.22)

− 2x1x4− x2x3

−x2
2 +4x1

=−
2 A

C
E
C −

B
C

D
C

−
(B

C

)2
+4 A

C

(4.23)

and substituting the terms A, B, C, D and E of the resulting equations (4.22) and (4.23) by

their analytical descriptions in terms of bx, by, sx, sy and ρ as presented in equations (4.10) to

(4.14). After simplification, only bx and by are left on the right hand sides of equations (4.24)

and (4.25), respectively, as follows:

− 2x3− x2x4

−x2
2 +4x1

= bx (4.24)

− 2x1x4− x2x3

−x2
2 +4x1

= by (4.25)

which proves the adequacy of (4.20) and (4.21).

4.2.2 Misalignment

Once analytical expressions have been derived for the biases, the misalignment ρ can be

described in terms of XXX2D via algebraic manipulation:

x1

x2
2
=

A
C
B2

C2

=
AC
B2 (4.26)

Next, we substitute A,B and C in (4.26) by their analytical descriptions of (4.10), (4.14)

and (4.12), respectively, and simplify the result, yielding:
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x1

x2
2
= (4sin2

ρ)−1 (4.27)

Finally, solving (4.27) for sin2
ρ yields:

sin2
ρ =

x2
2

4x1
(4.28)

Computing cos2ρ from (4.28), and using it to determine tanρ allows an explicit analy-

tical solution for ρ to be derived, namely 1:

cos2
ρ = 1− sin2

ρ = 1−
x2

2
4x1

(4.29)

tan2
ρ =

sin2
ρ

cos2 ρ
=

x2
2

4x1− x22 (4.30)

tanρ =

√
x22

4x1− x22 (4.31)

ρ = arctan

√ x22

4x1− x22

 (4.32)

4.2.3 Scale Factors

Once we have analytically determined bx,by and ρ in terms of XXX2D, we substitute them

in (4.9) to (4.14) and arrange a system equations as in (4.16), with five equations and two

unknowns: sx and sy. The solution is then:

sx =±2

√
x1
(
x5x2

2− x2x3x4 + x2
3 + x1x2

4−4x1x5
)

√
x1
(
−mhx2

2 +4mhx1
) (4.33)

sy =±2

√
x1
(
x5x2

2− x2x3x4 + x2
3 + x1x2

4−4x1x5
)

−mhx2
2 +4mhx1

(4.34)

As by definition, sx and sy are positive scalars (with value close to the unity), the ± sign

in (4.33) and (4.34) should be selected accordingly, so that the latter requirement is fulfilled.

1 We can use the arctan function in (4.32) because, by definition, ρ is a small angle, i.e., it lies in the
first or fourth quadrant.
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4.3 Simulated Experiments

In this section, we perform the two-dimensional ETS calibration of magnetometers using

simulated data, with both the numerical and analytical solutions, and their performance is com-

pared. The simulations are presented with two different approaches. The first is an example of

a consumer-grade magnetometer calibration, where the error parameters corrupting the measu-

rements were selected in accordance with a regular consumer-grade sensor, like the Honeywell

HMC5883L used in future sections of this work for real data experiments. The second is a

Monte Carlo analysis performed in order to statistically characterize the solutions.

4.3.1 Calibration Example

In this scenario, a 2D magnetometer calibration was performed. As mentioned before,

this version of the technique is useful when only two axes are available (or required). In this

case, sensors must be horizontally leveled and are rotated about the z-axis. Accordingly, 3600

samples of corrupted magnetometer measurements were generated at frequency of 15 Hz, while

rotating in yaw with constant rate of 10 deg/s ; the error parameters corrupting the signal are

given in the first two columns of Table 4.1. Noise was defined as a zero-mean Gaussian distribu-

tion with variance of 2 mG2, as estimated from stationary measurements, throughout this entire

section. Figure 4.2 shows the corrupted and corrected data, and a reference circle with radius

mh, computed via the WMM2. Notice that the corrupted data assume the shape of a shifted,

rotated ellipse, while the calibrated data lies on top of the expected circle. The calibration was

conducted via both the numerical and analytical solutions, with approximately equal results.

The difference between the estimates was in the order of 10−15 mG for the biases, 10−17 for

the scale factors and 10−15 deg for the misalignment. Therefore, the analytical and numerical

solutions are represented as the same in Table 4.1 (column 3) and Figure 4.2.

The correction displayed in Figure 4.2 was preceded by the error parameters estimation,

whose results are given in Table 4.1. As can be inferred, satisfactory accuracy was obtained

with ETS method for two-dimensional case (see fourth column of Table 4.1).

2 Notice that the calibration is model dependent. Therefore, its performance is sensitive to model errors
or inaccuracies. In addition, using other models may result in different results.
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Table 4.1 – Two-dimensional calibration results for simulated data

Error
component Original Estimated Error Unit

bx -45 -44.9938 6.2212×10−3 mG
by 10 9.9994 -5.9245×10−4 mG
sx 0.98 0.9801 9.3635×10−5 unitless
sy 1.09 1.0898 -2.0603×10−4 unitless
ρ -6 -6.0305 -3.0488×10−2 deg

Figure 4.2 – Corrupted and corrected data, in red and green, respectively. In addition, the expected
uncorrupted circle is plotted in black.

4.3.2 Monte Carlo Analysis

A Monte Carlo analysis was conducted in order to identify the estimation error distribu-

tions for each error parameter for the two-dimensional ETS analytical and numerical solutions.

The data was generated throughout 5000 runs, each containing 2500 samples, where the error

parameters were randomly selected in each run, following normal distributions as expressed in

Table 4.2.

The resulting histograms of each estimation error are plotted in Figures 4.3 to 4.7.
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Table 4.2 – Error parameters used to generate the data for the Monte Carlo analysis.

Error Parameter Mean Standard Deviation Unit
bx 0 50 mG
by 0 50 mG
sx 1 0.1 unitless
sy 1 0.1 unitless
ρ 0 1 deg

Figure 4.3 – Histograms of the bx estimation error, with numerical and analytical solutions, resulting
from the Monte Carlo Analysis.

Source: Author
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Figure 4.4 – Histograms of the by estimation error, with numerical and analytical solutions, resulting
from the Monte Carlo Analysis.

Source: Author

Figure 4.5 – Histograms of the sx estimation error, with numerical and analytical solutions, resulting
from the Monte Carlo Analysis.

Source: Author
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Figure 4.6 – Histograms of the sy estimation error, with numerical and analytical solutions, resulting
from the Monte Carlo Analysis.

Source: Author

Figure 4.7 – Histograms of the ρ estimation error, with numerical and analytical solutions, resulting from
the Monte Carlo Analysis.

Source: Author
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The identified estimation error for each parameter are characterized through their mean

and standard deviation, as expressed in Table 4.3. Notice that the distributions identified for the

analytical and the numerical solutions are approximately the same, where the difference in mean

is in the order of 10−20 to 10−17 and 0 to 10−17 in standard deviation (Table 4.4), confirming

the adequacy of both for the purpose of two-dimensional magnetometer calibration.

Table 4.3 – Errors in estimation identified via the Monte Carlo Analysis.

Error Parameter Mean Standard Deviation Unit
bx −1.0977×10−3 4.0882×10−2 mG
by 3.6401×10−3 3.9978×10−2 mG
sx −3.2319×10−4 2.8199×10−4 unitless
sy 2.0128×10−4 2.8483×10−4 unitless
ρ 7.8067×10−6 4.6550×10−4 deg

Table 4.4 – Estimation error difference between analytical and numerical solutions.

Error Parameter Mean Standard Deviation Unit
bx −4.4235×10−17 0 mG
by 8.2399×10−17 2.7755×10−17 mG
sx −2.3581×10−17 2.2768×10−18 unitless
sy 2.3879×10−17 −2.4394×10−18 unitless
ρ 5.2516×10−20 0 deg

In conclusion, both solutions can be used interchangeably, without significant loss of

accuracy, as shown in Table 4.4. On the other hand, as displayed in Table 4.3, the scale factors

estimation error means (sx and sy) are not centered around zero, as ideally expected for accuracy.

This characteristic can be investigated in order to further improve the estimation, considering

the distribution characteristics obtained here.

Even though the numerical and analytical solutions are very similar in terms of accuracy

and precision, they differ dramatically with respect to computational effort. An analysis of such

matter is provided for the three-dimensional solutions in the Chapter 5.

4.4 Real Data Experiments

In this section, we perform the calibration of a Honeywell HMC5883L magnetometer,

which has a built-in Analog-to-Digital Converter that offers a 12-bit digital resolution. Conver-

sely, there is a trade-off between magnetic field resolution and measurement range. The default
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option, used throughout this work, is 0.92 mG/LSb and ±1300 mG, respectively. The experi-

ments were conducted in two different scenarios: in the first, the sensor was rotated by hand,

while in the second, a robot arm Motoman MH5 was used. Notice that, in this section, we are

only using the two-dimensional ETS analytical calibration solution, since it requires less com-

putational effort and is more suitable for embedded applications. These data sets were meant

to represent a restricted scenario where only limited motion is possible, such as in a land, or

maritime vehicle application. In this case, the vehicle was supposed not being able to perform

rotations around its x or y axes. Even though this is beyond the scope defined by the authors,

we also tested the two-dimensional ETS methodology for a scenario where the vehicle is not

precisely leveled, as eventually found in real in-field applications.

4.4.1 Manual Calibration

In this section, the data were acquired while the triaxial magnetometer was rotated by

hand on top of a regular table. The sampling frequency was also set to 15 Hz, and a total of 3600

samples were collected. Figure 4.8 shows the sampled data and a reference sphere of radius mt ,

computed via WMM.
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Figure 4.8 – Corrupted, restricted measurements, in red, plotted with the reference sphere of radius mt ,
computed via the WMM.

Source: Author

We assumed a two-dimensional magnetometer in the restricted scenario, not considering

measurements from z-sensor, and conducted calibration using the two-dimensional ETS method

via analytical solution. Figure 4.9 shows the 2D corrupted and corrected data plotted with the

reference circle, and Table 4.5 contains the estimated parameters.

Table 4.5 – Calibration results for real data acquired while the sensor was rotated by hand.

Error
component 2D Calibration Unit

bx 41.0439 mG
by 185.2486 mG
sx 1.1050 unitless
sy 1.0486 unitless
ρ -2.4280 deg



90

Figure 4.9 – Corrupted and corrected measurements acquired manually, in red and green, respectively,
for x- and y-sensors, plotted with the reference circle of radius mh, in black.

Source: Author

Notice that, after one complete turn, the plotted data do not overlap the first circle. This

effect occurs due to non deterministic errors that appear during sensor use, like the in-run biases,

which can be mitigated, for example, with posterior filtering. Despite the non deterministic

errors affecting the data during calibration, the systematic errors were successfully estimated

and corrected for, which resulted in a major improvement, as displayed in Figure 4.9.

4.4.2 Robot Arm Aided Calibration

Lastly, we performed the 2D calibration using ETS analytical solution and data acquired

while the magnetometer was rotated with a robot arm Motoman MH5 (Figure 4.10). Again, the

scenario is considered restricted, since even though there may be a three dimensional sensor,

the rotation is only performed around the z-axis, which precludes 3D calibration. However,

the scenario is not perfectly suitable for 2D calibration either, since leveling is not guaranteed.

This experiment differs from the previous manual rotation because of the magnetic interference

(hard and soft iron effects) possibly caused by the robot arm, which emulates practical applica-

tions where the sensors are mounted into a vehicle. This scenario can be considered a hostile

environment for magnetometer calibration, since the magnetic interference magnitude may be

as high as Earth’s magnetic field density itself. The experimental setup is displayed in Figure

4.11, where the digitized data acquired via the HMC5883L is fed into an Arduino Mega, which

is only responsible to deliver the measurements to a PC, for processing and storage.
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Figure 4.10 – The robot arm Motoman MH5 used in the experiments, at the Federal University of Lavras.

Source: Author (picture by Gustavo Carvalho)

Figure 4.11 – Experimental setup with the Honeywell HMC5883L, the Arduino Mega used as a commu-
nication interface, and the robot arm Motoman MH5.

Source: Author (picture by Gustavo Carvalho)

Table 4.6 displays the error parameters estimated with the acquired data by the me-

ans of ETS analytical solutions. Notice that, even though the sensor is the same Honeywell

HMC5883L used in the previous section, the errors have become larger. This occurs, as ex-

plained before, due to errors that change over time, namely run-to-run and in-run biases, and to

intrinsic magnetic interference, as hard and soft iron effects. The magnetic interference caused

by the Motoman MH5 has certainly degraded the raw measurements.
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Table 4.6 – Calibration results for real data acquired while the sensor was rotated by the Motoman MH5

Error component 2D Calibration Unit
bx -217.0674 mG
by 50.2206 mG
sx 0.8180 unitless
sy 0.8696 unitless
ρ 8.9781 deg

The measurements were corrected with respect to the estimated parameters of Table 4.6

and plotted around the reference circle of Figure 4.12, calculated via WMM.

Figure 4.12 – Corrupted and corrected measurements acquired with the aid of the robot arm, in red and
green, respectively, for x- and y-sensors, plotted with the reference circle of radius mh, in
black.

Source: Author

From Figure 4.12 we can see that the measurements do not complete a revolution (360

deg). This fact is due to a motion limitation in the Motoman MH5 joint. In addition, the

corrupted measurements do not draw the exact shape of an ellipse, as expected, presenting an

asymmetric shape. However, the calibration could be performed despite that, and the results

proved the efficacy and robustness of the analytical solution derived for the two-dimensional

ETS calibration method.
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5 THREE-DIMENSIONAL NUMERICAL AND ANALYTICAL SOLUTIONS FOR THE

EXTENDED TWO-STEP CALIBRATION METHODOLOGY

In this chapter, novel numerical and analytical solutions for the three-dimensional ETS

calibration methodology (FOSTER; ELKAIM, 2008), described in Chapter 3, are presented.

Firstly, the derivations that originated the solutions are introduced; in sequence, they are imple-

mented and compared with other usual calibration techniques also presented in Chapter 3. The

calibration techniques are implemented in simulated and real data scenarios.

5.1 Numerical Solution

As explained in Chapter 3, the ETS methodology proposed by Foster and Elkaim (2008)

only estimates the auxiliary (or intermediate) ellipsoid parameters (A,B, ...,J), and no conver-

sion method is provided for recovering the sensors error parameters of interest (bx,by, ...,λ ).

Nevertheless, in order to calibrate a three-axial magnetometer, it is necessary to find the biases,

scale factors, and misalignments, as discussed in the previous chapter for the two-dimensional

case.

Aiming at deriving numerical and analytical solutions for the three-dimensional ETS

method, let us first recall the equations presented in Chapter 3 for the estimated ellipsoid (3.56),

the error model (3.45), (3.46), (3.54), and the total magnetic flux density magnitude (3.55), in

terms, now, of the previously defined global variables:

Am̃2
x +Bm̃xm̃y +Cm̃xm̃z +Dm̃2

y +Em̃ym̃z +Fm̃2
z +Gm̃x +Hm̃y + Im̃z + J = 0, (5.1)

m̃x = sxmx +bx (5.2)

m̃y = sy(my cosρ +mx sinρ)+by, (5.3)

m̃z = sz(mz cosφ cosλ +mx sinφ cosλ +my sinλ )+bz (5.4)

m2
t = m2

x +m2
y +m2

z (5.5)
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The first step is the same as performed in Chapter 4, i.e., solving (5.2) for mx and (5.3)

for my, yielding:

mx =
m̃x−bx

sx
(5.6)

my =−
sxby− sxm̃y + sy sinρ(m̃x−bx)

sxsy cosρ
(5.7)

The next step is to plug (5.6) and (5.7) into (5.4) and solve it for mz, resulting in:

mz =−
bz− m̃z + sz

{
cosλ sinφ(m̃x−bx)

sx
−

sinλ

[
by−m̃y+

sy sinρ(m̃x−bx)
sx

]
sy cosρ

}
sz cosλ cosφ

(5.8)

Now that expressions for the true magnetic field densities mx,my and mz have been

determined, we can plug them into (5.5), which is the equation of an sphere, yielding a rotated,

shifted ellipsoid:

m2
t =

(m̃x−bx)
2

s2
x

+
ξ 2

1
s2

y cos2 ρ
+

{
bz− m̃z + sz

[
cosλ cosφ(m̃x−bx)

sx
− sinλξ1

sy cosρ

]}2

s2
z cos2 λ cos2 φ

(5.9)

where

ξ1 =−m̃y +by +
sy sinρ(m̃x−bx)

sx
(5.10)

In sequence, we can find A,B,C,D,E,F,G,H, I and J in terms of the sought error pa-

rameters and the total magnetic field density magnitude, by comparing (5.9) with (5.1), and

looking for the parameters that mutually multiply each combination of m̃x, m̃y and m̃z, as done

for the two-dimensional case in Chapter 4, yielding:

A =
1
s2

x
+

sin2
ρ

s2
x cos2 ρ

+

(
cosρ sinφ

sx
− sinλ sinρ

sx cosρ

)2

cos2 λ cos2 φ
(5.11)

B =−2(sinρ cos2 λ cos2 φ − sinρ cos2 λ − cosρ sinλ sinφ cosλ + sinρ)

sxsy cos2 λ cos2 ρ cos2 φ
(5.12)
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C =
2(sinλ sinρ− cosλ cosρ sinφ)

sxsz cos2 λ cosρ cos2 φ
(5.13)

D =
sxsz(cos2 λ cos2 φ + sin2

λ )

sxs2
ysz cos2 λ cos2 ρ cos2 φ

(5.14)

E =− 2sinλ

sysz cos2 λ cosρ cos2 φ
(5.15)

F =
1

sz cos2 λ cos2 φ
(5.16)

G =−2bx

s2
x
+

2sin(ρ)ξ2

sxsy cos2 ρ
+

(
cosλ sinφ

sx
− sinλ sinρ

sx cosρ

)[
2bz−2sz

(
bx cosλ sinφ

sx
+ sinλξ2

sy cosρ

)]
sz cos2 λ cos2 φ

(5.17)

H =
−2ξ3

sxs2
ysz cos2 λ cos2 ρ cos2 φ

(5.18)

I =−2
sx(sybz cosρ− szby sinλ )+ sysz(bx sinλ sinρ−bx cosλ cosρ sinφ)

sxsys2
z cos2 λ cosρ cos2 φ

(5.19)

J =−m2
t +

b2
x

s2
x
+

ξ 2
4

s2
y cos2 ρ

+

[
bz− sz

(
bx cosλ sinφ

sx
+ sin(λ )ξ4

sy cosρ

)]2

s2
z cos2 λ cos2 φ

(5.20)

where

ξ2 = by−
sybx sinρ

sx
(5.21)

ξ3 = sxszby(sin2
λ + cos2

λ cos2
φ)− sxsybz cosρ sinλ − sysz

bx(sin2
λ sinρ + cos2

λ cos2
φ sinρ− cosλ cosρ sinλ sinρ)

(5.22)

ξ4 = by−
sybx sinρ

sx
(5.23)
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Finally, we rearrange the expressions for the ellipsoid parameters in order to match the

estimated parameters as in (3.59):

X3D =



x3D1

x3D2

x3D3

x3D4

x3D5

x3D6

x3D7

x3D8

x3D9



=



A
D
B
D
C
D
E
D
F
D
G
D
H
D
I
D
J
D



, (5.24)

For the sake of simplicity, the thee-dimensional ETS estimates x3D1 to x3D9 are written in

this chapter simply as x1 to x9, but they shall not be confused with the estimates from previous

chapters.

After the parameters X3D are estimated via (3.62), they can be substituted in the left

hand side of (5.24). Equations (5.11) to (5.23), in turn, can be substituted in the right hand side

of (5.24), producing a system of equations with nine unknowns, i.e., sx, sy, sz, bx, by, bz, ρ , φ

and λ and nine equations that can be numerically solved resorting to computational aid (e.g.,

MATLAB’s solve function).

5.2 Analytical Solution

In this section, we provide novel analytical solutions for the error parameters, i.e., biases,

scale factors and misalignments, for the three-dimensional ETS calibration method (FOSTER;

ELKAIM, 2008). In addition, we present the derivation of the formulas and a comparison with

the analytical solution provided by Vasconcelos et al. (2011).

5.2.1 Biases

The analytical solution for the biases is based on the same rationale used in the two-

dimensional analytical solution, that is, calculating the partial derivatives of the ellipsoid equa-

tion in terms of each corrupted measurement, and using the resulting functions in a system of

equations, whose solution is the ellipsoid center, equivalent to the bias parameters. This concept
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is geometrically explained in Figure 4.1, where we can see that the lines generated by the partial

derivatives always cross the center of the ellipse due to the symmetry property of the ellipse. In

the three-dimensional case, instead of two lines, we generate three planes that intersect at the

center (Figure 5.1).

Figure 5.1 – Estimated ellipsoid plotted with the partial derivative planes that intersect at the center.

Let us start by restating the rearranged ellipsoid equation (5.1), whose parameters are

the Least Squares solution X3D:

R(m̃x, m̃y, m̃z) = x1m̃2
x +x2m̃xm̃y+x3m̃xm̃z+m̃2

y +x4m̃ym̃z+x5m̃2
z +x6m̃x+x7m̃y+x8m̃z+x9 = 0

(5.25)

In sequence, we find the partial derivatives of R(m̃x, m̃y, m̃z) in terms of m̃x, m̃y and m̃z:

∂R
∂ m̃x

= 2x1m̃x + x2m̃y + x3m̃z + x6 (5.26)

∂R
∂ m̃y

= 2m̃y + x2m̃x + x4m̃z + x7 (5.27)

∂R
∂ m̃z

= x3m̃x + x4m̃y +2x5m̃z + x8 (5.28)
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Finally, the intersection of the planes (5.26), (5.27) and (5.28) creates a system of equa-

tions
∂R
∂ m̃x

=
∂R
∂ m̃y

=
∂R
∂ m̃z

= 0, whose solution, for m̃x, m̃y and m̃z characterizes the biases, as

follows:

m̃x =−
x2

4x6 +2x3x8−4x5x6− x2x4x8 +2x2x5x7− x3x4x7

2(x5x2
2− x2x3x4 + x2

3 + x1x2
4−4x1x5)

≡ bx (5.29)

m̃y =−
x2

3x7 +2x1x4x8−4x1x5x7− x2x3x8 +2x2x5x6− x3x4x6

2(x5x2
2− x2x3x4 + x2

3 + x1x2
4−4x1x5)

≡ by (5.30)

m̃z =−
x2

2x8−4x1x8 +2x3x6 +2x1x4x7− x2x3x7− x2x4x6

2(x5x2
2− x2x3x4 + x2

3 + x1x2
4−4x1x5)

≡ bz (5.31)

The adequacy of (5.29), (5.30) and (5.31) can be verified using the same rationale em-

ployed for the two-dimensional ETS equations (4.22) to (4.23). In this case, the parameters x1

to x9 in (5.29) to (5.31) shall be substituted by their counterparts of (5.24), and the outcomes by

their analytical descriptions in terms of biases, scale factors and misalignments derived in (5.11)

to (5.23). After manipulation it can be demonstrated that the right hand sides of the resulting

equations simplifies to bx, by and bz, respectively.

If we compare the analytical biases solution derived above with the one proposed by

Vasconcelos et al. (2011) (3.82), we can notice that the expressions for bx and bz are the same.

However, their solution for by is misleading. Let us rearrange it in terms of XXX3D variables:

bvy =−
x2

2x8−4x1x8+2x3x6+2x1x4x7−x2x3x7−x2x4x6
x5

3

2x22−8x1
x5

2 + 2x32+2x1x42−2x2x3x4
x5

3

(5.32)

We can check the analytical solution of (5.32) by: (a) substituting x1 to x9 by their

counterparts in terms of A to J established in (5.24); (b) substituting the A to J terms in the

resulting equation by their counterparts in terms of biases, scale factors and misalignments

established in (5.11) to (5.20); and (c) simplifying the results. If the Vasconcelos’ solution was

correct, we should be left with bvy = by. However, the following equation is produced (after

extensive simplification):
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bvy =−



2sxszby−2sybx sinρ−4sxszby cos2 λ +2sxszby cos4 λ −2sxszby cos2 ρ . . .

+6sxszby cos2 λ cos2 ρ−4sxszby cos4 λ cos2 ρ +2sxszby cos2 λ cos2 θ . . .

−2sxszby cos4 λ cos2 θ −2sxsybz cosρ sinλ +4syszbx cos2 λ sinρ . . .

+2sxsybz cos3 ρ sinλ −2syszbx cos4 λ sinρ +2syszbx cos2 ρ sinρ . . .

−2sxszby cos2 λ cos2 ρ cos2 θ +2sxszby cos4 λ cos2 ρ cos2 θ . . .

+sxszby cos4 λ cos2 ρ cos4 θ +2sxsybz cos2 λ cosρ sinλ . . .

−4sxsybz cos2 λ cos3 ρ sinλ −10syszbx cos2 λ cos2 ρ sinρ . . .

+8syszbx cos4 λ cos2 ρ sinρ−2syszbx cos2 λ cos2 θ sinρ . . .

+2syszbx cos4 λ cos2 θ sinρ +6syszbx cosλ cosρ sinλ sinθ . . .

+2sxsybz cos2 λ cos3 ρ cos2 θ sinλ +6syszbx cos2 λ cos2 ρ cos2 θ sinρ . . .

−6syszbx cos4 λ cos2 ρ cos2 θ sinρ−6syszbx cosλ cos3 ρ sinλ sinθ . . .

−6syszbx cos3 λ cosρ sinλ sinθ +4sxsybz cosλ cos2 ρ sinρ sinθ . . .

−2sxsybz cos2 λ cosρ cos2 θ sinλ +8syszbx cos3 λ cos3 ρ sinλ sinθ . . .

−4sxsybz cos3 λ cos2 ρ sinρ sinθ +4sxszby cos3 λ cosρ sinλ sinρ sinθ . . .

+2syszbx cos3 λ cosρ cos2 θ sinλ sinθ −4sxszby cosλ cosρ sinλ sinρ sinθ . . .

−2syszbx cos3 λ cos3 ρ cos2 θ sinλ sinθ


sxsz cos4 λ cos2 ρ cos4 θ

(5.33)

which confirms that the analytical solution proposed by Vasconcelos et al. (2011) for by is not

accurate.

5.2.2 Scale Factors

Analytical solutions for the scale factors were also proposed by Vasconcelos et al.

(2011), as described in equations (3.75), (3.76) and (3.77), which are rewritten here in terms of

XXX3D variables as:

a =−
x3

5

√
ξ5(−x2

4+4x5)

x6
5

2(x5x2
2− x2x3x4 + x2

3 + x1x2
4−4x1x5)

(5.34)

b =−
x3

5

√
−ξ5(x2

3−4x1x5)

x6
5

2(x5x2
2− x2x3x4 + x2

3 + x1x2
4−4x1x5)

(5.35)
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c =−
x3

5

√
ξ5(−x2

2+4x1)

x6
5

2(x5x2
2− x2x3x4 + x2

3 + x1x2
4−4x1x5)

(5.36)

with

ξ5 =− x2
2x2

8 +4x5x9x2
2−4x9x2x3x4 +2x2x3x7x8 +2x2x4x6x8−4x5x2x6x7

− x2
3x2

7 +4x9x2
3 +2x3x4x6x7−4x3x6x8− x2

4x2
6 +4x1x9x2

4−4x1x4x7x8

+4x5x2
6 +4x1x5x2

7 +4x1x2
8−16x1x5x9

(5.37)

where a, b and c are the scale factor analytical solutions for the ETS methodology derived via

the formulations proposed by (VASCONCELOS et al., 2011).

Such solutions can be verified by first substituting x1 to x9 in (5.34) to (5.37) by their

counterparts presented in (5.24), and then rewriting them in terms of biases, scale factors and

misalignments using (5.11) to (5.20). After simplification, the following relations are obtained:

a = mtsx

b = mtsy

c = mtsz

(5.38)

Equation (5.38) reveals that Vasconcelos’ analytical solution for the scale factors a, b,

c, are actually misleading, as they correspond to the true scale factors sx, sy, sz multiplied by

the magnitude of the local Earth magnetic field density (mt). As mt is a value easily computed

through magnetic models (WMM or IGRF), corrected analytical solutions for the scale factors

can be devised:

sx =−
x3

5

√
ξ5(−x2

4+4x5)

x6
5

2mt(x5x2
2− x2x3x4 + x2

3 + x1x2
4−4x1x5)

(5.39)

sy =−
x3

5

√
−ξ5(x2

3−4x1x5)

x6
5

2mt(x5x2
2− x2x3x4 + x2

3 + x1x2
4−4x1x5)

(5.40)

sz =−
x3

5

√
ξ5(−x2

2+4x1)

x6
5

2mt(x5x2
2− x2x3x4 + x2

3 + x1x2
4−4x1x5)

(5.41)
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5.2.3 Misalignments

The analytical misalignment solutions proposed by Vasconcelos et al. (2011) for the ETS

methodology, given in (3.78) to (3.80), can be rewritten in terms of XXX3D variables, as follows:

ρv = arctan

 2x2x5− x3x4

2x2
5

√
−x5x2

2−x2x3x4+x2
3+x1x2

4−4x1x5

x3
5

 (5.42)

φv = arctan

− 2x3
x5

2 − x2x4
x5

2√
4x1
x5

2 − x22

x5
2 − x32

x5
3 − x1x42

x5
3 + x2x3x4

x5
3

 (5.43)

λv =−arctan

(
x4

x5

√
−

x2
5(x5x2

2− x2x3x4 + x2
3 + x1x2

4−4x1x5)

2x2
2x2

4x5−4x2
2x2

5− x2x3x3
4 + x2

3x2
4 + x1x4

4−8x1x2
4x5 +16x1x2

5

)
(5.44)

where the subscript v indicates the analytical solutions by Vasconcelos et al. (2011).

The analytical solutions above can be verified by first substituting x1 to x9 in (5.42) to

(5.44) by their respective counterparts presented in (5.24), and then rewriting them in terms of

biases, scale factors and misalignments using (5.11) to (5.20). After simplifying, the following

results are obtained:

ρv =−ρ

φv =
2sz cosλ sinφ

sy cosρ

λv = λ

(5.45)

We can conclude from (5.45) that the analytical solutions proposed by Vasconcelos et

al. (2011) are only correct for λv, while ρv has a switched sign, and φv has the residual variables

displayed in (5.45). Since we have already derived analytical solutions for such variables, na-

mely, sy and sz, we can correct ρv and φv accordingly, yielding the following corrected analytical

solutions for the misalignments:

ρ =−arctan

 2x2x5− x3x4

2x2
5

√
−x5x2

2−x2x3x4+x2
3+x1x2

4−4x1x5

x3
5

 (5.46)
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φ =−arctan

 η3
√

η6η1

√
η7(η4−η5)

η2√
(η4−η5)η1

√
1− η2

3
η2

√
− η7η6

η5−η4+η10+η8−η9

√
η4−η5−η10−η8 +η9)


(5.47)

λ =−arctan

(
x4

x5

√
−

x2
5(x5x2

2− x2x3x4 + x2
3 + x1x2

4−4x1x5)

2x2
2x2

4x5−4x2
2x2

5− x2x3x3
4 + x2

3x2
4 + x1x4

4−8x1x2
4x5 +16x1x2

5

)
(5.48)

where

η1 =
4x2

6

x3
5
+

4x1x2
7

x3
5

+
4x1x2

8

x4
5

+
4x2

2x9

x3
5

+
4x2

3x9

x4
5
−

x2
2x2

8

x4
5
−

x2
3x2

7

x4
5
−

x2
4x2

6

x4
5
− 16x1x9

x3
5

+
4x1x2

4x9

x4
5

− 4x2x6x7

x3
5
− 4x3x6x8

x4
5
− 4x2x3x4x9

x4
5

− 4x1x4x7x8

x4
5

+
2x2x3x7x8

x4
5

+
2x2x4x6x8

x4
5

+
2x3x4x6x7

x4
5

(5.49)

η2 =
16x1
x3

5
− 4x2

2
x3

5
− 8x1x2

4
x4

5
+

x1x4
4

x5
5
+

2x2
2x2

4
x4

5
+

x2
3x2

4
x5

5
− x2x3x3

4
x5

5

η3 =
2x3
x2

5
− x2x4

x5

2

η4 =
4x1
x2

5

η5 =
x2

2
x2

5

η6 =
4x1
x5
− x2

3
x2

5

η7 =
4
x5
− x2

4
x2

5

η8 =
x1x2

4
x3

5

η9 =
x2x3x4

x3
5

η10 =
x2

3
x3

5

(5.50)

One may also numerically verify the adequacy of the proposed analytical solution for

the biases, scale factors and misalignments by implementing the numerical solution from the

previous section and comparing the results, as done in sequence.
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5.3 Simulated Experiments

The simulated experiments are divided into a calibration example using data corrupted

by arbitrary error parameters within the range expected for a consumer grade magnetometer,

followed by a Monte Carlo analysis that aimed at identifying the estimation error distribution

for each implemented method, which enables a more comprehensive comparison.

5.3.1 Calibration Example

In this section, we perform the three-dimensional calibration of a simulated magneto-

meter using the methodologies described in Chapter 3. Since Foster and Elkaim (2008) do not

provide a closed-form solution for their ETS method, the latter is employed with our numerical

and analytical solutions. In addition, since Vasconcelos et al. (2011) initialize their MLE algo-

rithm with a partially incorrect analytical solution from ETS (as demonstrated in Section 5.2),

we also alternatively use ours to initialize it, and compare the outcome.

The magnetometer data generated were corrupted by errors in the range expected for a

consumer grade sensor like the Honeywell HMC5883L used in the real data experiments, as

displayed in Table 5.1. There were no conventions about how the sensor should be rotated;

the idea was to rotate it in a way that enabled the full ellipsoid estimation. In this case, we

simulated the sensor continuously rotating in yaw, while oscillating in roll and pitch. The data

were generated at a rate of 15 Hz, with a total of 2500 samples.

Table 5.1 – Three-dimensional errors randomly chosen for corrupting the simulated measurements.

Error parameter Simulated value Unit
bx 39.8316 mG
by 27.1376 mG
bz -12.4947 mG
sx 0.8893 unitless
sy 0.9796 unitless
sz 0.8234 unitless
ρ 0.8234 deg
φ 0.6166 deg
λ 1.3106 deg
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After the generation, the data were then calibrated via the investigated calibration algo-

rithms. The resulting estimation errors are displayed in Tables 5.2 to 5.4 1.

Table 5.2 – Three-dimensional bias calibration results for a simulated data example.

Calibration bx estimation by estimation bz estimation
methodology error (mG) error (mG) error (mG)
TWOSTEP -3.1438×10−2 7.4135×10−3 -3.8911×10−2

ETS-N -3.1307×10−2 5.4035×10−3 -4.0235×10−2

ETS-A -3.1307×10−2 5.4035×10−3 -4.0235×10−2

ETS-V -3.1350×10−2 -5.5019×101 -3.9582×10−2

MLE-A -3.1179×10−2 5.5894×10−3 -4.0504×10−2

MLE-V -3.6706×102 -3.6932×102 -1.0032×102

CTLS -2.9226×10−2 3.8999×10−3 -4.2465×10−2

OML -2.9400×10−2 3.7572×10−3 -4.2646×10−2

MAG.I.C.AL -6.9230×10−1 -1.6244×100 4.4378×100

Table 5.3 – Three-dimensional scale factor calibration results for a simulated data example.

Calibration sx estimation sy estimation sz estimation
methodology error (unitless) error (unitless) error (unitless)
TWOSTEP -7.1609×10−5 5.3208×10−5 4.7034×10−4

ETS-N 1.7792×10−5 -1.3877×10−4 2.4373×10−4

ETS-A 1.7792×10−5 -1.3877×10−4 2.4373×10−4

ETS-V -8.8931×10−1 -9.7958×10−1 -8.2339×10−1

MLE-A -3.6319×10−6 -5.7832×10−5 2.0570×10−4

MLE-V 2.1835×10−1 -1.9650×100 -1.0834×101

CTLS -2.1696×10−5 -5.9601×10−5 1.7982×10−4

OML -1.1752×10−5 -5.2080×10−5 1.8910×10−4

MAG.I.C.AL -1.8075×10−3 -8.8932×10−3 1.3748×10−2

1 Abbreviations: TWOSTEP refers to the method presented by Alonso and Shuster (2002b); ETS-N
refers to the method by Foster and Elkaim (2008) solved with our proposed numerical solution; ETS-A
denotes the method by Foster and Elkaim (2008) solved with our proposed analytical solution; ETS-V
represents the method by Foster and Elkaim (2008) solved with the analytical solution proposed by
Vasconcelos et al. (2011); MLE-A corresponds to the method by Vasconcelos et al. (2011) initialized
with our proposed analytical solution; MLE-V corresponds the method by Vasconcelos et al. (2011)
initialized with the solution proposed by Vasconcelos et al. (2011); CTLS refers to the method by Wu
et al. (2013); OML refers to th method by Wu and Shi (2015); and MAG.I.C.AL refers to the method
by Papafotis and Sotiriadis (2019).
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Table 5.4 – Three-dimensional misalignment calibration results for a simulated data example.

Calibration ρ estimation φ estimation λ estimation
methodology error (deg) error (deg) error (deg)
TWOSTEP -8.8220×10−2 2.0321×10−2 1.3756×10−1

ETS-N -1.7941×10−2 8.1703×10−3 1.0490×10−2

ETS-A -1.7941×10−2 8.1703×10−3 1.0490×10−2

ETS-V -2.6321×100 4.3397×10−1 1.0583×10−2

MLE-A -1.1050×10−2 7.3031×10−3 -1.4013×10−2

MLE-V 6.1042×101 3.5609×101 -3.0913×101

CTLS -2.0024×10−2 7.7144×10−3 1.0317×10−2

OML 1.0562×10−4 -9.9392×10−17 -1.9878×10−16

MAG.I.C.AL -1.1968×100 -6.8887×10−1 -9.5995×10−1

It is also interesting to graphically evaluate the calibration performances. Figure 5.2

shows the corrupted data plotted with the reference sphere of radius mt (computed via WMM),

while Figure 5.3 displays the corrected measurements via the calibration algorithms presented.

Notice that ETS-V and MLE-V are omitted, since they performed poorly.

Figure 5.2 – Corrupted data plotted with the reference sphere of radius mt .
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Figure 5.3 – Corrected data plotted with the reference sphere of radius mt . The data corrected by each
calibration arrangement is distinguished by color, in accordance with the legend.

Even though Tables 5.2 to 5.4 and Figure 5.3 are a good indicator of the calibration

effectiveness, it is not possible to clearly evaluate the differences between the methods. That is

why further analysis is necessary.

5.3.2 Monte Carlo Analysis

A Monte Carlo analysis was conducted in order to further evaluate the performance of

each calibration algorithm. The objective was to identify the estimation error distribution for

each method, so that their statistical properties were adequately assessed. In the experiment, the

calibration using each methodology was performed in 3500 runs with random error parameters

within the expected range (for the Honeywell HMC5883L used in the real data experiments)

corrupting the measurements, as displayed in Table 5.5. In addition, the calibration location

(on Earth) and time were randomly selected for each run in order to avoid a dependency of the

results with respect to the place or time when the calibration occurs, since the Earth’s magnetic

field models are functions of these two variables.
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Table 5.5 – Error parameters used to generate the data for the Monte Carlo analysis for the three-
dimensional case.

Error Parameter Mean Standard Deviation Unit
bx 0 50 mG
by 0 50 mG
bz 0 50 mG
sx 1 0.1 unitless
sy 1 0.1 unitless
sz 1 0.1 unitless
ρ 0 1 deg
φ 0 1 deg
λ 0 1 deg

Figures 5.4 to 5.12 show a line histogram, where the probability (occurrence divided by

the total number of runs) of estimation error is presented for bx, by, bz, sx, sy, sz, ρ , φ and λ ,

respectively. Notice that the probabilities for the methods ETS-V and MLE-V are not displayed,

since their estimates did not converge to reasonable parameters in most cases, so they could be

displayed in the same scale as the others.

Figure 5.4 – Probability of bx estimation error for each calibration methodology.
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Figure 5.5 – Probability of by estimation error for each calibration methodology.

Figure 5.6 – Probability of bz estimation error for each calibration methodology.
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Figure 5.7 – Probability of sx estimation error for each calibration methodology.

Figure 5.8 – Probability of sy estimation error for each calibration methodology.
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Figure 5.9 – Probability of sz estimation error for each calibration methodology.

Figure 5.10 – Probability of ρ estimation error for each calibration methodology.
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Figure 5.11 – Probability of φ estimation error for each calibration methodology.

Figure 5.12 – Probability of λ estimation error for each calibration methodology.

Firstly, Figures 5.4 to 5.6 present the estimation error histograms for the biases, showing

that the methods TWOSTEP, ETS-N, ETS-A, MLE-A, CTLS and OML presented similar per-

formances and were clearly superior to MAG.I.C.AL, which visually exhibited a much wider

error distribution.

The scale factor estimation error histograms are presented in Figures 5.7 to 5.9, where

we can see that as for the biases, a very poor performance was achieved by the MAG.I.C.AL.
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method. ETS-N, ETS-A, MLE-A, CTLS and OML performed similarly for sx and sz, but ETS-

A and ETS-N showed a slight shift to the left for sy, meaning that their mean is not as close to

zero. Even though superior to MAG.I.C.AL, TWOSTEP performed substantially worse than the

others, with a right shift for sx and a left shift for sy and sz, in addition to a broader distribution.

For the misalignment estimation errors, the histograms are displayed in Figures 5.10 to

5.12. Regarding ρ (Figure 5.10), OML presented a superior performance, followed by ETS-N,

ETS-A and CTLS, which performed similarly, MLE-A and TWOSTEP, with poorer perfor-

mances. MAG.I.CAL, again, had the worst performance. It is interesting to notice that MLE-A,

which employed ETS-A’s solutions as initial conditions, worsened the estimates, instead of im-

proving them. The same pattern persists for φ and λ (Figures 5.11 and 5.12, respectively),

except for MLE-A, which approximated its performance to the ones by ETS-N, ETS-A and

CTLS.

The overall conclusions from Figures 5.4 to 5.12 are: (a) MAG.I.C.AL showed, by

far, the worst performance in terms of accuracy and precision for biases, scale factors and

misalignments; (b) TWOSTEP, ETS-A, ETS-N, MLE-A, CTLS and OML performed similarly

for biases; (c) for scale factors, OML, CTLS, MLE-A, ETS-N and ETS-A performed well,

with the last two slightly behind, while TWOSTEP showed a substantially worse performance.

(d) for misalignments, OML presented the best performance, followed by ETS-N, ETS-A and

CTLS (very similar), MLE-A and TWOSTEP.

Even though Figures 5.4 to 5.12 provide rich information for analyzing the robustness

of the calibration methods, they should not be considered alone in order to establish a solid con-

clusion, since they do not account for the cases in which the methods diverge (prone to happen

specially in the iterative methods). Such eventual divergences are considered in Tables 5.6 to

5.11, which display the estimation error distribution in terms of mean and standard deviation

for each error parameter.
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Table 5.6 – Mean of the bias estimation errors (including eventual divergent estimations).

Calibration bx estimation error by estimation error bz estimation error
methodology mean (mG) mean (mG) mean (mG)
TWOSTEP −4.9221×10−3 2.4261×10−3 −1.8908×10−4

ETS-N 7.8058×10−1 6.1418×10−2 −9.1687×10−2

ETS-A −5.8442×10−3 2.8462×10−3 1.3294×10−5

ETS-V −5.8526×10−3 −7.6831×100 4.0700×10−4

MLE-A 5.9211×100 −4.9102×101 −1.7652×101

MLE-V 6.5960×103 2.6754×104 −2.2921×104

CTLS −6.6007×10−3 2.8248×10−3 −9.2190×10−4

OML −6.6025×10−3 2.8441×10−3 −9.2258×10−4

MAG.I.C.AL 4.6092×10−1 −2.2128×10−1 −4.6044×10−1

Table 5.7 – Standard deviations of the bias estimation errors (including eventual divergent estimations).

Calibration bx estimation error by estimation error bz estimation error
methodology standard deviation (mG) standard deviation (mG) standard deviation (mG)
TWOSTEP 2.8847×10−1 2.9594×10−1 3.4122×10−1

ETS-N 4.9777×101 3.8070×101 4.9958×101

ETS-A 2.8498×10−1 2.9268×10−1 3.3762×10−1

ETS-V 2.8501×10−1 9.9723×102 3.3804×10−1

MLE-A 3.5064×102 2.9051×103 1.0443×103

MLE-V 6.2591×105 9.2455×105 1.1177×106

CTLS 2.8355×10−1 2.9170×10−1 3.3603×10−1

OML 2.8353×10−1 2.9171×10−1 3.3607×10−1

MAG.I.C.AL 3.0635×101 2.4528×101 4.0761×101

Table 5.8 – Mean of the scale factor estimation errors (including eventual divergent estimations).

Calibration sx estimation error sy estimation error sz estimation error
methodology mean mean mean
TWOSTEP -6.1157×10−5 9.5149×10−5 2.4604×10−4

ETS-N 1.6516×10−4 3.5678×10−4 1.0939×10−4

ETS-A 3.2206×10−5 -5.4367×10−5 4.4503×10−5

ETS-V 2.0795×104 2.0788×104 2.0814×104

MLE-A 3.1839×108 2.9541×107 -3.0988×108

MLE-V Infinite∗ 8.7390×1012 3.3130×1014

CTLS -3.6265×10−6 -4.1380×10−6 -1.0661×10−6

OML 4.7168×10−6 4.2183×10−6 7.3496×10−6

MAG.I.C.AL -6.9909×10−4 -2.0697×10−4 4.8312×10−4

∗Numeric solution classified by MATLAB R© as Inf
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Table 5.9 – Standard deviations of the scale factor estimation errors (including eventual divergent esti-
mations).

Calibration sx estimation error sy estimation error sz estimation error
methodology standard deviation standard deviation standard deviation
TWOSTEP 1.5175×10−4 2.1426×10−4 2.9017×10−4

ETS-N 7.4667×10−3 8.8041×10−3 6.6859×10−3

ETS-A 1.2673×10−4 1.2453×10−4 1.7056×10−4

ETS-V 5.7474×103 5.8274×103 5.8272×103

MLE-A 1.8836×1010 1.7477×109 1.8333×1010

MLE-V 1.1955×1015 1.7683×1015 1.9851×1016

CTLS 1.2535×10−4 1.2064×10−4 1.6896×10−4

OML 1.2536×10−4 1.2062×10−4 1.6888×10−4

MAG.I.C.AL 4.3141×10−3 3.2015×10−3 8.6997×10−3

Table 5.10 – Mean of the misalignment estimation errors (including eventual divergent estimations).

Calibration ρ estimation error φ estimation error λ estimation error
methodology mean (deg) mean (deg) mean (deg)
TWOSTEP 2.7829×10−4 −1.0933×10−3 −4.8143×10−4

ETS-N −9.5639×10−4 −1.1186×10−3 1.5978×10−3

ETS-A 2.0282×10−4 1.2189×10−4 −2.8400×10−4

ETS-V −1.5827×10−2 2.0468×10−2 −2.8517×10−4

MLE-A 2.0405×10−2 −5.2992×10−3 9.5832×10−3

MLE-V −1.1745×10−1 −6.1037×10−1 −2.6362×10−1

CTLS −3.7615×10−5 1.3473×10−4 −2.7273×10−4

OML −1.2179×10−6 −5.1442×10−18 4.5314×10−18

MAG.I.C.AL −3.7953×10−2 −1.4547×10−2 −8.4498×10−2

Table 5.11 – Standard deviations of the misalignment estimation errors (including eventual divergent
estimations).

Calibration ρ estimation error φ estimation error λ estimation error
methodology standard deviation (deg) standard deviation (deg) standard deviation (deg)
TWOSTEP 7.5036×10−2 7.0293×10−2 7.4678×10−1

ETS-N 9.4975×10−2 8.1608×10−2 7.7945×10−2

ETS-A 1.1493×10−2 1.0981×10−2 1.1664×10−2

ETS-V 2.0287×100 1.0655×100 1.1659×10−2

MLE-A 1.4317×100 2.2120×10−1 3.6895×10−1

MLE-V 3.4788×101 3.2622×101 2.5139×101

CTLS 1.1382×10−2 1.0962×10−2 1.1591×10−2

OML 1.9264×10−4 1.9799×10−16 2.3607×10−16

MAG.I.C.AL 1.3312×100 1.1254×100 1.0059×100
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In order to identify the number of divergences in the calibration methods analysis, we

have established a threshold for an estimate to be considered a divergence: the mean absolute

estimation error should be larger than 5 mG, 0.1 and 1 deg, for biases, scale factors and misa-

lignments, respectively. These values were defined based on what we consider to be reasonable

estimation errors. Table 5.12 displays the number of divergences for each method, where any

divergent estimate at a given run is considered divergence.

Table 5.12 – Number of divergences for each method along the Monte Carlo runs.

Method Number of divergences
TWOSTEP 0

ETS-N 28
ETS-A 0
ETS-V 3500
MLE-A 69
MLE-V 3500
CTLS 0
OML 0

MAG.I.C.AL 2393

The results displayed in Tables 5.6 to 5.12 confirmed most of the verification outlined

for Figures 5.4 to 5.12. Firstly, it confirms that ETS-V and MLE-V presented serious diver-

gence problems and shall not be used for magnetometer calibration. The MAG.I.C.AL method

also performed poorly, especially for misalignments estimation, having 2393 divergences in

3500 runs. It is also interesting to notice that even though MLE-A performed mostly well in

Figures 5.4 to 5.12, its 69 divergences strongly compromised its overall performance in terms

of mean and standard deviation, especially for biases and scale factors. The ETS-N method

had 28 divergences, but this did not compromise its general performance in terms of mean and

standard deviation. Lastly, the TWOSTEP, ETS-A, CTLS and OML methods did not present

any divergence. In terms of mean and standard deviation, they performed almost similarly for

biases and scale factors, but OML was clearly superior for misalignments, especially for φ and

λ .

Lastly, it is important to analyze the methods in terms of computational effort required

for calibration. Since these algorithms are often intended to be implemented in embedded

systems, with limited computational power, they should be as simple as possible, under the risk

of precluding implementation. For this purpose Table 5.13 displays the mean execution time

required for each method to complete a calibration procedure implemented in MATLAB R©,
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running in a Windows 10 computer with 8GB RAM, and an Intel I5 processor. The methods

ETS-V and MLE-V are not included, since they do not converge in any of the runs.

Table 5.13 – Mean execution time taken by each method to complete a calibration procedure.

Method Time [s]
TWOSTEP 3.3442 ×10−3

ETS-N 1.0165 ×101

ETS-A 1.3271 ×10−3

MLE-A 7.2554 ×10−1

CTLS 2.8341 ×102

OML 9.8737 ×101

MAG.I.C.AL 8.9197 ×10−2

From Table 5.13 we can indirectly analyze the computational effort required by each ca-

libration methodology. The most efficient algorithm, in this perspective, was the ETS-A, which

took only 1.3271 ms to perform the calibration, less than half of the time taken by TWOSTEP

(3.3442 ms), the second most timely efficient. The MAG.I.C.AL methodology stands in the

third place, with 89.197 ms of execution time, despite the poor performance with respect to

the other metrics evaluated before. The last method that took less than 1 s to execute was the

MLE-A, with 725.54 ms. The ETS-N spent, in average, 10.165 s to perform calibration, about

10,000 times the time taken by ETS-A, which is expected, since ETS-N is based on a nume-

rical solution, while ETS-A offers a straightforward analytical alternative. The OML method,

despite the great performances evidenced in Figures 5.4 to 5.12, had the second worst result

in terms of computational efficiency, taking 98.737s to perform a single calibration, which is

about 75,000 times the time required by ETS-A. The CTLS performance is even worse, with

283.41s to perform a calibration, about 200,000 times ETS-A.

In conclusion, we classify ETS-A as the most recommended method, especially if con-

sidering application in real-time embedded systems. This analysis is based on: (a) the results

from Figures 5.4 to 5.12, which revealed that ETS-A has good performances in terms of accu-

racy and precision; (b) the results from Tables 5.4 to 5.12, which indicated reduced estimation

error mean and standard deviations, as well as showed that no divergences occurred; and (c) the

results from Table 5.13, which displayed a very computationally efficient method, compared to

the others. The TWOSTEP method had regular overall performances, suggesting robustness,

but was inferior to ETS-A in scale factor and misalignment estimation (Figures 5.7 to 5.12)

and computational efficiency (Table 5.13). Other methods, namely ETS-N, MLE-A, CTLS and
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OML also had good overall performances, particularly the former, despite some particular we-

aknesses, especially time inefficiency for the last two. Lastly, MAG.I.C.AL performed mostly

poorly compared to the other methods, except in terms of computational efficiency.

5.4 Real Data Experiments

In order to validate the ETS calibration methodology by Foster and Elkaim (2008) with

the new numerical and analytical solutions proposed in this chapter, and compare their per-

formance with the other implemented calibration techniques, we conduct experiments with a

real triaxial magnetometer, namely, the same Honeywell HMC5883L used in Chapter 4. The

experiments were performed in two different scenarios. Firstly, the data acquired for the cali-

bration procedures were sampled while the sensor was rotated by hand; this scenario emulates

the calibration of a magnetometer fixed into a small vehicle that can be rotated manually. In the

second scenario, a robot arm Motoman MH5, the same used in Chapter 4, was used to produce

the rotations.

5.4.1 Manual Calibration

In this experiment, the data used in the three dimensional calibration methodologies

were acquired, at a rate of 15 Hz while the sensor was rotated by hand. Firstly, a total of 17170

measurements were sampled. However, as demonstrated in Section 5.3.2, some methods, such

as CTLS and OML, require too much computational effort if the data size is large, which may

even preclude the estimation process. For instance, if all of the 17170 were considered, a 64

bits PC, with an Intel I5 processor and 8GB of RAM, running MATLAB R© 2019a, could not

solve the estimation problem due to memory insufficiency, as MATLAB R© displays the error

message "out of memory". Notice that this limitation is troublesome, since in many cases the

calibration is expected to be performed in the initialization process of an embedded navigation

system, which provides limited computational power. Therefore, the data size was reduce from

17170 to 1010, which is more compatible with the iterative calibration methods. The calibration

results plotted with the reference sphere of radius mt (computed via WMM) are displayed in

Figures 5.13 to 5.16. The magnitude errors for each sample, before and after each calibration

procedure are shown in Table 5.14, displaying the so called Mean Absolute Magnitude Error

(MAME), and Figures 5.17 to 5.19, where ETS-V is omitted due to scale incompatibility.
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Figure 5.13 – Measured, corrupted measurements plotted with the reference sphere of radius mt .

Figure 5.14 – Corrected measurements for TWOSTEP, ETS-N and ETS-A plotted with the reference
sphere of radius mt .
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Figure 5.15 – Corrected measurements for ETS-V, MLE-A and MLE-V plotted with the reference sphere
of radius mt .

Figure 5.16 – Corrected measurements for CTLS, OML and MAG.I.C.AL plotted with the reference
sphere of radius mt .
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Table 5.14 – Mean Absolute Magnitude Error (MAME) for each method used in the manual calibration.

Method Error Unit
Before calibration 78.0483 mG

TWOSTEP 6.9294 mG
ETS-N 4.6621 mG
ETS-A 4.6621 mG
ETS-V 5.7339 ×104 mG
MLE-A 4.6466 mG
MLE-V 48.3276 mG
CTLS 5.2309 mG
OML 4.7363 mG

MAG.I.C.AL 4.7423 mG

Figure 5.17 – Magnitude error for each measurement, before and after TWOSTEP, ETS-N and ETS-A
calibration procedures.
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Figure 5.18 – Magnitude error for each measurement, before and after MLE-A and MLE-V calibration
procedures.

Figure 5.19 – Magnitude error for each measurement, before and after CTLS, OML and MAG.I.C.AL
calibration procedures.

From Figures 5.13 to 5.19 and Table 5.14, we can see that most procedures performed

well and similarly, except for ETS-V and MLE-V. What these methodologies have in common,

as stated before, is that they rely on the partially incorrect analytical initialization solution pro-

posed by Vasconcelos et al. (2011). In Figure 5.14, particularly, we can clearly see that the

ETS-V method impaired the measurements to such an extent that the graphical scale with res-

pect to mt became incompatible, so that they could not be plotted together; the same occurred

in Figure 5.18, where the ETS-V magnitude error is omitted due to scale incompatibility. The
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MLE-V also performed poorly, but, at least, its results could still be graphically represented in

Figures 5.15 and 5.18 in the same scale of the other methods.

As expected, and confirming the simulated analyses from Section 5.3, TWOSTEP, ETS-

N, ETS-A, MLE-A, CTLS, OML and MAG.I.C.AL performed well, with very similar results in

terms of magnitude error. Among them, the best performance, as displayed in Table 5.14, came

from the MLE-A method, followed by ETS-N/ETS-A, OML, MAG.I.C.AL and CTLS, respec-

tively. Notice, however, that MLE-A used the estimates from ETS-A as initial guesses, and not

much improvement was noted. Therefore, using MLE-A may not be worth the computational

effort, since the estimates from ETS-A are already accurate and the method requires much less

computational power.

5.4.2 Robot Arm Aided Calibration

In this section, the calibration of a triaxial Honeywell HMC5883L magnetometer is per-

formed with data acquired while the sensor was rotated with a robot arm Motoman MH5, using

the same setup presented in Section 4.4.2. In this case, consecutive rotations were performed in

one axis, while the other were monotonically rotated. As in the previous section, the original

size of the data had to be reduced by calculating subsequent means, resulting in 1010 measu-

rements. The calibration performance of each methodology can be observed in Figures 5.20 to

5.23, where the measured, corrupted and the corrected data by each methodology are plotted

with the reference sphere of radius mt (computed via WMM). Figures 5.24 to 5.26 and Table

5.15 show the magnitude error before and after each calibration procedure.
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Figure 5.20 – Measured, corrupted measurements plotted with the reference sphere of radius mt .

Figure 5.21 – Corrected measurements for TWOSTEP, ETS-N and ETS-A plotted with the reference
sphere of radius mt .
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Figure 5.22 – Corrected measurements for ETS-V, MLE-A and MLE-V plotted with the reference sphere
of radius mt .

Figure 5.23 – Corrected measurements for CTLS, OML and MAG.I.C.AL plotted with the reference
sphere of radius mt .
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Table 5.15 – Mean Absolute Magnitude Error (MAME) for each method used in the manual calibration.

Method Error Unit
Before calibration 90.0533 mG

TWOSTEP 6.9425 mG
ETS-N 6.5866 mG
ETS-A 6.5866 mG
ETS-V 1.2814 ×105 mG
MLE-A 6.5559 mG
MLE-V 82.1072 mG
CTLS 6.5064 mG
OML 6.5389 mG

MAG.I.C.AL 28.2798 mG

Figure 5.24 – Magnitude error for each measurement, before and after TWOSTEP, ETS-N and ETS-A
calibration procedures.
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Figure 5.25 – Magnitude error for each measurement, before and after MLE-A and MLE-V calibration
procedures.

Figure 5.26 – Magnitude error for each measurement, before and after CTLS, OML and MAG.I.C.AL
calibration procedures.

Figures 5.20 to 5.26 show that most methodologies performed well, except for those

two relying on the inaccurate analytical initialization solution proposed in (VASCONCELOS

et al., 2011), i.e. ETS-V and MLE-V, and MAG.I.C.AL, even though this last one performed

well in the manual calibration. On the other hand, CTLS, OML, MLE-A, ETS-N/ETS-A and

TWOSTEP had the best results, respectively, which also validates the analyses and verifications

presented in Section 5.3. As in the manual calibration, the MAME from MLE-A is slightly
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smaller than that from ETS-N/ETS-A, but such a small difference may not justify the use of the

former, since it requires much more computational effort.

5.4.3 Brief Comparison between Manual and Robot Aided Calibration

In Sections 5.4.1 and 5.4.2, some calibration methodologies were shown not to converge,

resulting in even more incorrect results. On the other hand, the ones that performed well,

may have not been sufficiently compared regarding their ability of keeping the magnetic field

density magnitude error close to zero. For this reason, Table 5.16 displays the Mean Absolute

Magnitude Error (MAME) before and after each calibration procedure, for both manual and

robot arm-aided calibration scenarios, as in Tables 5.14 and 5.15.

Table 5.16 – MAME before and after each calibration procedure for the manual and robot arm aided
calibration.

Calibration methodology Manual MAME (mG) Robot Arm Aided MAME (mG)
None 78.0483 90.0533

TWOSTEP 6.9294 6.9425
ETS-N 4.6621 6.5866
ETS-A 4.6621 6.5866
ETS-V 5.7339×104 1.2814 ×105

MLE-A 4.6466 6.5559
MLE-V 48.3276 82.1072
CTLS 5.2309 6.5064
OML 4.7363 6.5389

MAG.I.C.AL 4.7423 28.2798

We can see from Table 5.16 that the data acquired while the sensor was fixed in the robot

arm was corrupted to a larger extent, if compared to the manual data acquisition. As previously

suggested, this may be due to hard and soft iron effects caused by the robot structure itself.

As can also been seen, the calibration performances follow the same pattern in both scenarios,

suggesting that the robot arm aided calibration also introduces errors that fit less accurately to

the systematic error models adopted in the methodologies.
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6 ADAPTATION OF THE EXTENDED TWO-STEP CALIBRATION METHODOLOGY

FOR ACCELEROMETERS

In this Chapter, we present another contribution regarding the ETS methodology presen-

ted by Foster and Elkaim (2008): the adaptation of such technique for accelerometer calibration.

Foster and Elkaim (2008) suggested that their method could be adapted for accelerometers, but

no further information or experiments were provided. Using the same calibration algorithm for

both magnetometers and accelerometers can be of significant practical value, since it could save

computational power and require less movements in the calibration process. The following sec-

tions provide the adapted calibration method, simulated and real data experiments, respectively.

6.1 Adapted Calibration Method

Before tackling the calibration problem itself, let us remember the measurement model

adopted here for accelerometers, described in (2.4):

f̃ff =CsCm fff + cccb + cccµ , (6.1)

Therefore, as well as in the magnetometer calibration, the accelerometer measurement

model considers three types of systematic errors: biases, scale factors and misalignments, as

well as a white, zero-mean Gaussian noise.

Once we have the measurement model, considered mathematically the same as for mag-

netometers, we can move forward to the calibration method. The key concept in the work by

Foster and Elkaim (2008) is that if an uncorrupted triaxial magnetometer was rotated into dif-

ferent orientations, the magnitude the three sensors would always lie on the top a sphere with

radius equal to the magnitude of the Earth magnetic filed density. However, because of biases,

scale factors and misalignments, the sphere becomes a shifted, rotated ellipsoid, whose estima-

tion as a quadric surface is the first step in the calibration. After the quadric surface parameters

are found, they are converted back into error parameters by the numerical or analytical me-

ans presented in Chapter 5, since they have not been originally provided by Foster and Elkaim

(2008).

In order to make this valid for accelerometers, we first need a constant, known reference

signal: the acceleration of gravity. For the acceleration of gravity to be the only signal measured

by the sensors, the measurements should be taken only while the accelerometer is static. Thus,
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the procedure consists of positioning the triaxial accelerometers into different orientations and

acquiring the data while motionless. Finally, the exact same algorithms described in Chapter

5 are used. In order to have the measurements compensated for the systematic errors, the

following equation shall be used:

f̂ff = Ĉ−1
m Ĉ−1

s ( f̃ff − ĉccb), (6.2)

6.2 Simulated Experiments

In order to verify the performance of the ETS calibration methodology for accelerome-

ters, the procedure has been first assessed using simulated data generated in accordance with the

model from Section 6.1. The sensor was supposed to be located at a latitude of 21.758254◦S,

a longitude of 41.341711◦W, and a height of 17 m and the gravity model described by Groves

(2013) was adopted to generate the constant reference signal. A total of 17 different random ori-

entations were simulated, and the sets of stationary accelerometer data, containing 360 samples

each, were generated at a rate of 15 Hz. A random noise with variance of 0.16 mg2 was also

added. The systematic error parameters corrupting the sensor measurements are displayed in

Table 6.1; the parameters were randomly chosen, according to the error ranges expected to exist

for the real sensor used in Section 6.3. Figures 6.1 and 6.2 show the corrupted and calibrated

data, respectively, plotted around the ideal sphere of radius g (magnitude of local gravity acce-

leration, computed via the aforementioned model). The data were generated via a MATLAB R©

implementation of the error model described in Section 6.1, in the aforementioned scenario.

The analytical solution proposed in Chapter 5 was used to compute the biases, scale factors and

misalignments.

Notice in Fig. 6.1 that the red dots, representing to corrupted measurements, do not lie

on top of the reference sphere, meaning that they have a magnitude different from the expected

one. In contrast, Fig. 6.2 shows the set of calibrated measurements lying on the top of the

sphere, evidencing the effectiveness of the ETS calibration methodology for accelerometers.

The latter can also be observed in Fig. 6.3, where the magnitude error is plotted before and

after calibration, as a function of the accelerometer samples.
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Table 6.1 – Calibration results for accelerometer simulated data

Error
component Original Estimated Error (%) Unit

bx -0.79 -0.7900 0.0012 m/s2

by 0.85 0.8501 0.0123 m/s2

bz 0.94 0.9401 0.0054 m/s2

sx 0.98 0.9800 0.0017 unitless
sy 1.09 1.0899 0.0049 unitless
sz 1.11 1.1100 0.0017 unitless
ρ -6.00 -5.9990 0.0175 deg
φ 3.00 2.9996 0.0150 deg
λ 5.00 5.0022 0.0444 deg

In order to evaluate the minimum number of orientations required to adequately perform

the accelerometer calibration, the Mean Absolute Percentage Error (MAPE) of the estimated

error parameters was calculated for different numbers of orientations randomly selected. Figure

6.4 shows, in logarithmic scale, how the MAPE behaves as the number of orientations increases.

Notice that nine seems to be the minimum number of orientations for a reasonable MAPE,

which is logical, since there are also nine error parameters to estimate and nine parameters that

model the ellipsoid. This could have been also analyzed in terms of system observability, by

examining the rank.

Figure 6.1 – Generated corrupted measurements, in red, plotted with the reference sphere of radius g.
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Figure 6.2 – Calibrated measurements, in green, plotted with the reference sphere of radius g.

Figure 6.3 – Magnitude error for simulated corrupted and calibrated data, in red and blue, respectively.
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Figure 6.4 – MAPE for each calibration scenario with simulated data, varying the number of orientations.

6.3 Real Data Experiments

Finally, calibration with real sensor data was performed in order to validate the adap-

ted ETS methodology. Since one of the motivations of this work is integrated navigation, a

consumer-grade triaxial accelerometer was chosen. The ADXL335 by Analog Devices uses

a 10-bit Analog to Digital (A/D) converter with a range of ±2g, resulting in a resolution of

0.0039g. The sensor was kept static in 13 different (and arbitrary) orientations, and a total of

6000 samples were acquired at a frequency of 100 Hz, which resulted in a minute procedure,

not considering the transitions.

The estimated calibration parameters are displayed in Table 6.2. Notice, however, that

they cannot be verified from means other than how well the corrected measurements fit the

sphere of radius g. Figures 6.5 and 6.6, then, show the measured and corrected outputs of the

ADXL335, respectively, plotted around the reference sphere. Notice that the same phenomenon

observed in Figs. 6.1 and 6.2 is present in Figs. 6.5 and 6.6. As expected, the measurements

in Fig. 6.5 do not lie on the surface of the reference sphere, but on top of a shifted, rotated

ellipsoid. By estimating the ellipsoid as a quadric surface, converting its parameters into cali-

bration parameters, and using them in (6.2) to correct the data, Fig. 6.6 is achieved, where the

measurement magnitudes lie close to the sphere surface.
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Table 6.2 – Calibration results for experimental data

Error Estimated
component value Unit

bx 0.1005 m/s2

by 0.6907 m/s2

bz 0.9464 m/s2

sx 1.0408 unitless
sy 1.0463 unitless
sz 1.0030 unitless
ρ 0.3939 deg
φ 0.2956 deg
λ 0.5411 deg

Figure 6.5 – ADXL335 corrupted measurements, in red, plotted with the reference sphere of radius g.
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Figure 6.6 – ADXL335 calibrated measurements, in green, plotted with the reference sphere of radius g.

An additional way of evaluating the calibration performance is by looking at the magni-

tude of the specific force measurements, before and after the procedure, against the magnitude

of the local gravity acceleration, calculated via the model by Groves (2013) (Fig. 6.7). Again,

the plot suggests a substantial improvement.

Figure 6.7 – Magnitude error before (red) and after (blue) calibration.
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Lastly, because calibration is meant to be performed in real navigation applications, with

limited computational resources, we evaluate how the correction process (6.2) performs in an

embedded system using fixed-point arithmetic. For this task, we used a platform with a 32-bit

computation in Q15.16 format, namely, QFire R© by MWF-Dynamics, which provides a MA-

TLAB Simulink R© library for simulation and code generation. Since the correction stage must

be performed in real-time, after the parameters being estimated, computation is expected to be

fast enough so it does not affect the navigation solution rate. Figure 6.8 shows the implementa-

tion, where ax, ay and az are the measured (corrupted) data.

Figure 6.8 – Block diagram developed in Simulink, where the central block represents a QFire hardware
implementation running a correction algorithm based on the estimated error parameters and
the error model presented in Section 6.1.

The implementation in the QFire simulator revealed good statistics with respect to pro-

cessing, where the whole correction computation took only 0.1010 ms, using 1.01% of the

platform’s computational power. Considering, for example, a navigation system with an update

rate of 100 Hz, the measurement correction time is far below the threshold of 10 ms. These

values are quite representative of an embedded application, since the QFire library generates

code for hardware implementation in the exact same conditions as the Simulink simulation.
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7 CONCLUSION

In this work, we revisited the topic of magnetic and inertial sensor calibration, with fo-

cus on magnetometers. After briefly reviewing the concepts about accelerometers, gyroscopes

and magnetometers, and presenting their measurement models with respect to systematic and

stochastic errors, a bibliography review on calibration techniques was conducted. A few cali-

bration methodologies were fully mathematically described and implemented, and contributions

related to them were presented.

Chapter 1 introduced the context of this paper, which is closely related to navigation

systems and its applications, such as precision agriculture, particularly important in Brazil. In

sequence, the problem of costly navigation systems and their possible low-cost counterparts was

described, including their issue of strongly corrupted measurements due to many sources of er-

ror, especially in magnetometers; this introduced the need for calibration in low-cost navigation

systems.

In Chapter 2, the basic concepts regarding accelerometers, gyroscopes and magnetome-

ters were reviewed. In addition, the errors that corrupt the measurements of these sensors were

characterized, and models including the systematic and stochastic errors for each sensor were

defined.

In Chapter 3, we reviewed the literature on the calibration of accelerometers, magneto-

meters, and techniques used for multiple sensors. In sequence, some of the most referred ones,

i.e. TWOSTEP (ALONSO; SHUSTER, 2002b), ETS (FOSTER; ELKAIM, 2008), MLE (VAS-

CONCELOS et al., 2011), CTLS (WU et al., 2013), OML (WU; SHI, 2015) and MAG.I.C.AL

(PAPAFOTIS; SOTIRIADIS, 2019), were fully mathematically described.

In Chapter 4, novel derivations for the two-dimensional ETS magnetometer calibration

methodology by Foster and Elkaim (2008) were proposed, including numerical and analyti-

cal closed-form solutions. From the latter, the ellipse (intermediate) parameters estimated in

the technique could be adequately converted into the actual error parameters, namely, biases,

scale factors and misalignment. In sequence, simulated experiments were performed, including

a calibration example, with data generated by a model that randomly determined the corrup-

ting errors, within the range of expected values for a consumer-grade sensor. In addition, a

Monte Carlo analysis was performed in order to identify the statistical properties of the esti-

mation errors for the proposed solutions. Finally, experiments using a real magnetometer, the

HMC5883L, were conducted in two scenarios, with manual and robot aided rotation of the sen-
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sor. Both simulated and real experiments demonstrated that the algorithm performs consistently

and that the proposed solutions are correct.

In Chapter 5, novel numerical and analytical solutions for the three-dimensional ETS

magnetometer calibration methodology presented by Foster and Elkaim (2008) were proposed.

The solutions included the calculation of the biases, scale factors and misalignments, from the

least squares solution of the ellipsoid fitting problem. In sequence, the new solutions were tes-

ted via simulated experiments, including a calibration example using data generated via a model

whose error parameters were randomly selected within the range expected for consumer-grade

magnetometers. In addition, a Monte Carlo analysis was conducted in order to evaluate the

estimation error distribution resulted by the new solutions. Finally, real data experiments were

performed using a Honeywell HMC5338L magnetometer. In the first scenario, the calibration

was performed with data acquired while the sensor was being rotated by hand; in the second, a

robot arm was used to produce the motion. Both in simulated and real data experiments, the so-

lutions were compared with the other implemented methods, namely, TWOSTEP (ALONSO;

SHUSTER, 2002b), MLE (VASCONCELOS et al., 2011), CTLS (WU et al., 2013), OML

(WU; SHI, 2015) and MAG.I.C.AL (PAPAFOTIS; SOTIRIADIS, 2019). The performances of

the methodologies in the experiments, in terms of accuracy, were mostly reasonable, except

for some methods that presented divergence problems. The solutions proposed here performed

very similarly to other traditional methods like TWOSTEP (ALONSO; SHUSTER, 2002b) and

OML (WU; SHI, 2015). However, due to its characteristic of not being iterative, in the analy-

tical case, the computational effort required is lower than in most methods, which makes the

analytical solution presented here accurate, fast and straightforward. Besides, it does not incur

in the problem of estimation divergence, as the iterative methods (and the proposed numerical

solution) eventually do.

In Chapter 6, we presented an adaptation of the three-dimensional ETS calibration

methodology proposed by Foster and Elkaim (2008) for accelerometers. The adaptation used

the same solutions proposed in Chapter 5 in order to estimate the error parameters. Even though

the possibility of using the ETS methodology for accelerometers was mentioned by Foster and

Elkaim (2008), it had never been particularly addressed and analyzed (to the best knowledge of

the author). The key point in this adaptation is the substitution of the reference signal, originally

the magnitude of the Earth’s local magnetic field density, by the Earth’s local gravity, while the

sensor is static. Simulated and real data experiments were performed in order to validate the
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test. The results suggested that the calibration of accelerometers can be conducted without loss

in performance.

In conclusion, the main contributions of this work were successfully presented, i.e. (a) a

comprehensive bibliography review on the topic of inertial and - primarily - magnetic sensor ca-

libration, (b) novel numerical and analytical solutions for the two- and three-dimensional ETS

calibration technique proposed by Foster and Elkaim (2008), where the authors only provide

an intermediate estimation. The other contributions, including the adaptation of the ETS cali-

bration (FOSTER; ELKAIM, 2008) for accelerometers were also well described and validated.

Preliminary contributions of this work have already been published by Filho et al. (2020a) and

Filho et al. (2020b).

If one wishes to continue this research, we suggest the following topics for future works:

(a) an analysis of how the rotations affect the calibration procedures, aiming at establishing stan-

dard movements necessary for good magnetometer and accelerometer calibrations, considering

their respective particularities. (b) an analysis of how calibration of inertial and magnetic sen-

sors influences the navigation solution in different scenarios. (c) since the presented calibration

methods always rely on some kind of motion, and since such movements are often unpractical, a

promising topic of research is the investigation of static calibration methodologies, like the one

proposed by Silva et al. (2020). (d) as a new calibration method, implementing a least squares

algorithm to directly solve for the errors, i.e. biases, scale factors and misalignments, may also

be worth exploring.
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APPENDIX A

In this Section, we explain the Kronecker product, also referred to as direct or ten-

sor product, which was used in Section 3.4.3. It is defined for the multiplication of matrices

with arbitrary sizes (HORN; HORN; JOHNSON, 1994). By definition, the Kronecker product,

whose operator is ⊗, of A = [ai j] ∈Mm,n and B = [bi j] ∈Mp,q is:

A⊗B =


a11B . . . a1nB

... . . . ...

am1B . . . amnB

 ∈Mmp,nq (A.1)

Therefore, it consists of multiplying each element of matrix A by the entire matrix B,

and organizing the results as in the former. Notice hence, that A⊗B 6= B⊗A. More properties

of the Kronecker product can be found in (HORN; HORN; JOHNSON, 1994).
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APPENDIX B

In this section, we explain the Modified Gram-Schmidt algorithm used in Chapter 3 for

decomposing the true error matrix Mt =CsCm into the product of a positive diagonal, upper (or

lower) triangular matrix times and orthogonal one. In the following routine, the Modified Gram-

Schmidt algorithm by Stewart (1998) is presented, where the n× p matrix X is factorized into

QR, where Q is the orthonormal matrix and R is a positive diagonal, upper triangular matrix.

for k = 1:p

Q(:,k) = X(:,k);

for i = 1:k-1

R(i,k) = Q(:,i)’*Q(:,k);

Q(:,k) = Q(:,k) - R(i,k)*Q(:,i);

end

R(k,k) = norm(Q(:,k))’;

Q(:,k) = Q(:,k)/R(k,k);

end

The Modified Gram-Schmidt algorithm was used in Chapter 3 as we wanted to decom-

pose Mt into the product of a positive diagonal upper triangular matrix, times an orthogonal

one, and not the opposite, as generally provided by the Modified Gram-Schmidt decomposition

algorithm. To solve that, it sufficed applying the decomposition over the inverse of Mt .

Conversely, for obtaining the decomposition of Mt as the product of a positive diago-

nal, lower triangular matrix times an orthogonal one, it sufficed applying the Modified Gram-

Schimdt decomposition on the transpose of Mt . Such Mt decomposed matrices, when algebraic

related, allowed us to convert the positive diagonal upper triangular matrix TTT provided by OML

into the sought diagonal positive lower triangular matrix CsCm, as showed in Chapter 3.4.5.
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