

ERIK MICAEL DA SILVA SOUZA

ADAPTABILIDADE E ESTABILIDADE DE HÍBRIDOS DE MILHO (ZEA MAYS L.) VIA MODELOS MISTOS E ANÁLISE GRÁFICA

LAVRAS – MG 2021

ERIK MICAEL DA SILVA SOUZA

ADAPTABILIDADE E ESTABILIDADE DE HÍBRIDOS DE MILHO (ZEA MAYS L.) VIA MODELOS MISTOS E ANÁLISE GRÁFICA

Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do programa de Pós Graduação em Genética e Melhoramento de Plantas, área de concentração em Genética Quantitativa, para a obtenção do título de mestre.

Dr. João Cândido de Souza Orientador

LAVRAS – MG 2021

Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da Biblioteca Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a).

Souza, Erik Micael da Silva.

Adaptabilidade e Estabilidade de híbridos de milho (*Zea mays* L.) via modelos mistos e análise gráfica / Erik Micael da Silva Souza. - 2021.

66 p.: il.

Orientador(a): João Cândido de Souza.

Dissertação (mestrado acadêmico) - Universidade Federal de Lavras, 2021.

Bibliografia.

1. Interação genótipos x ambientes. 2. MHPRVG. 3. GGE Biplot. I. Souza, João Cândido de. II. Título.

ERIK MICAEL DA SILVA SOUZA

ADAPTABILIDADE E ESTABILIDADE DE HÍBRIDOS DE MILHO (ZEA MAYS L.) VIA MODELOS MISTOS E ANÁLISE MULTIVARIADA

ADAPTABILITY AND STABILITY OF MAIZE HYBRIDS (ZEA MAYS L.) USING MIXED MODELS AND GRAPHICAL ANALYSIS

Dissertação apresentada à Universidade Federal de Lavras, como parte das exigências do programa de Pós Graduação em Genética e Melhoramento de Plantas, área de concentração em Genética Quantitativa, para a obtenção do título de mestre.

APROVADA em 26 de fevereiro de 2021.

Dr. Deoclécio Domingos Garbuglio IDR-PR

Dr. Vinícius Quintão Carneiro UFLA

Dr. João Cândido de Souza Orientador

LAVRAS – MG 2021

AGRADECIMENTOS

A Deus, pela vida abençoada que tenho.

Aos meus pais, Elisangela e Humberto, ao meu irmão, Hubert, às minhas irmãs, Elissandra e Hilary, e à minha esposa, Yanna, por serem minha base na vida e não medirem esforços para a realização dos meus sonhos.

À Universidade Federal de Lavras, em especial ao programa de pós-graduação em Genética e Melhoramento de Plantas, pela oportunidade de crescimento proporcionada.

A Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) pela concessão da bolsa de mestrado.

Aos professores do programa de pós-graduação em Genética e Melhoramento de Plantas pelos valiosos ensinamentos, em especial ao professor João Cândido de Souza, pela confiança e suporte e pelos conhecimentos passados ao longo do mestrado.

A todos os amigos do programa de pós-graduação em Genética e Melhoramento de Plantas, em especial à toda a turma do semestre de 2019-1, pelos momentos de estudo, compartilhamento de conhecimento, diversão e amizade.

Aos amigos do grupo "MGM", Rodolfo, Diego, Paula, Hilda, Jean, Lorena e Leonardo por todos os momentos de companheirismo, amizade e colaboração na condução dos trabalhos de pesquisa.

Ao Dr. Deoclécio Domingos Garbuglio (IDR-PR) e ao Dr. Vinícius Quintão Carneiro (UFLA), por comporem a banca examinadora e contribuírem para a melhoria deste trabalho.

RESUMO

A interação híbridos x safras é um dos principais desafios nos programas de melhoramento genético de milho. As condições edafoclimáticas e de fitossanidade variam de uma safra para a outro e exercem grande influência sobre a resposta fenotípica de um dado genótipo em um dado local. Para explorar esse tipo de interação, o uso de ferramentas estatísticas sofisticas no estudo da adaptabilidade e estabilidade são alternativas para a escolha acurada de híbridos superiores com base no desempenho produtivo em uma mesma localidade. Neste sentido, o presente trabalho teve o objetivo de utilizar método da média harmônica relativa a performance dos valores genotípicos (MHPRVG) via REML/BLUP e o modelo Genotype plus Genotype-by-Enviroment (GGE) Biplot para selecionar genótipos híbridos superiores quanto a adaptabilidade e estabilidade com base em três safras na região de Lavras-MG. Os experimentos foram conduzidos, em delinemaneto alfa-látice na safra 2018/19 e em látice triplo nas safras 2019 e 2019/20, no Centro de Desenvolvimento Científico e Tecnológico da Universidade Federal de Lavras (UFLA). Considerando todas as safras, foram avaliados 112 híbridos no total, sendo cinco híbridos comerciais (testemunhas) e 107 híbridos (tratamentos genéticos) pertencentes ao programa melhoramento genético de milho da UFLA. Foram avaliados os seguintes caracteres: produtividade de grãos (ton.ha⁻¹), severidade da mancha branca e germinação (%). Para cada carácter foi realizada análise de deviance individual e conjunta. Todos os caracteres, em ambas análises, foram significativas (p<0,05) pelo do teste da razão de verossimilhança (LRT) e os parâmetros genéticos foram estimados. No estudo de adaptabilidade e estabilidade, os híbridos foram avaliados pelo MHPRVG e pela análise gráfica via GGE biplot. Ambas metodologias apresentaram resultados promissores e coincidentes.

Palavras-chave: Interação genótipos x ambientes. MHPRVG. GGE Biplot.

ABSTRACT

The interaction between hybrids and seasons is one of the obstacles in maize breeding programs. The edaphoclimatic and phytosanitary conditions vary from one season to the next and have a great influence on the phenotypic response of a given genotype at a given location. To explore this type of interaction, the use of sophisticated statistical tools in the study of adaptability and stability are necessary for the accurate choice of superior hybrids based on the productive performance in the same location. In this sense, the present work aimed to use the harmonic mean method relative to the performance of genotypic values (MHPRVG) via REML / BLUP and the Genotype plus Genotype-by-Environment (GGE) Biplot model to select superior hybrid genotypes for adaptability and stability based on three harvests in the Lavras-MG region. The experiments were carried out, in alpha-lattice design in the 2018/19 season and in triple lattice in the 2019 and 2019/20 seasons, at the Center for Scientific and Technological Development of the Federal University of Lavras (UFLA). Considering all harvests, 112 hybrids were evaluated in total, five commercial hybrids (controls) and 107 hybrids (genetic treatments) belonging to the UFLA maize breeding program. The following characters were evaluated: grain yield (ton.ha-1), severity of white spot and germination (%). An individual and joint deviance analysis was performed for each character. All characters, in both analyzes, were significant (p < 0.05) by the likelihood ratio test (LRT) and the genetic parameters were estimated. In the study of adaptability and stability, hybrids were evaluated by MHPRVG and by graphic analysis via GGE biplot. Both methodologies presented promising and coincident results.

Keywords: Genotype-by-Environment Interaction, MHPRVG, GGE Biplot.

LISTAS DAS FIGURAS

$Figura\ 1-Ordenamento\ dos\ híbridos\ com\ base\ nas\ médias\ BLUP\ gerais\ para\ os\ caracteres\ de$
produtividade de grãos (ton.ha $^{-1}$), de severidade da mancha branca e de germinação (%)30
Figura 2 – GGE Biplot, do tipo Ranking Genotypes, com base nas médias fenotípicas de
produtividade de grãos (ton.ha ⁻¹) dos híbridos em todas as safras42
Figura 3 - GGE Biplot, do tipo Ranking Genotypes, com base nas médias genotípicas de
produtividade de grãos (ton.ha ⁻¹) dos híbridos em todas as safras43
Figura 4 - GGE Biplot, do tipo Ranking Genotypes, com base nas médias fenotípicas das notas
de severidade da mancha branca dos híbridos em todas as safras
Figura 5 - GGE Biplot, do tipo Ranking Genotypes, com base nas médias genotípicas das notas
de severidade da mancha branca dos híbridos em todas as safras
Figura 6 - GGE Biplot, do tipo Ranking Genotypes, com base nas médias fenotípicas da
germinação dos híbridos em todas as safras
Figura 7 - GGE Biplot, do tipo Ranking Genotypes, com base nas médias genotípicas da
germinação dos híbridos em todas as safras
Figura 8 - Heatmap contendo os valores de correlação de postos de Spearman entre os
ordenamentos dos híbridos com base nas médias genotípicas preditas, na MHVG, na PRVG, na $$
MHPRVG, no GGE Biplot fenotípico e no GGE Biplot genotípico da análise conjunta das
safras para a produtividade de grãos (ton.ha ⁻¹)
Figura 9 - Heatmap contendo os valores de correlação de postos de Spearman entre os
ordenamentos dos híbridos com base nas médias genotípicas preditas, na MHVG, na PRVG, na $$
MHPRVG, no GGE Biplot fenotípico e no GGE Biplot genotípico da análise conjunta das
safras para a severidade da mancha branca
Figura 10 - Heatmap contendo os valores de correlação de postos de Spearman entre os
ordenamentos dos híbridos com base nas médias genotípicas preditas, na MHVG, na PRVG, na
MHPRVG, no GGE Biplot fenotípico e no GGE Biplot genotípico da análise conjunta das
safras para a germinação (%)

LISTA DAS TABELAS

$Tabela\ 1-Híbridos\ de\ milho\ avaliados\ nas\ safras\ 2018/19,\ 2019\ e\ 2019/20.\ (continua)18$
Tabela 2 - Estimativas dos componentes de variância, genética, bloco e residual e os parâmetros
de herdabilidade ampla, média genotípica, acurácia seletiva, coeficiente de variação
experimental com base nas análises individuais dos híbridos em cada safra
Tabela 3 - Estimativas dos componentes de variância, genética, bloco, residual e interação
híbridos x safras e os parâmetros de herdabilidade ampla, média genotípica, variância do erro
de predição, acurácia seletiva, coeficiente de variação experimental com base nas análises
conjuntos dos híbridos em todas safras
Tabela 4 - Ordenamento geral dos híbridos com base na MHVG. (continua)31
Tabela 5 - Ordenamento geral dos híbridos com base na PRVG. (continua)34
Tabela 6 - Ordenamento geral dos híbridos com base nas MHPRVG. (continua)38
$Tabela\ 7-Ordenamento\ dos\ híbridos\ com\ base\ nas\ estimativas\ dos\ valores\ genotípicos\ (BLUP)$
e das médias genotípicas (BLUPs) da análise conjunta dos caracteres avaliados em todas as
safras. (continua)
$Tabela\ 8-Ordenamento\ dos\ híbridos\ com\ estimativas\ de\ GGE\ dos\ valores\ fenotípicos\ para\ os\ pa$
caracteres avaliados. (continua)
Tabela 9 - Ordenamento dos híbridos com estimativas de GGE dos valores genotípicos para os
caracteres avaliados. (continua)

SUMÁRIO

1 INTE	RODUÇAO12
2 REF	ERENCIAL TEÓRICO13
2.1 N	Milho híbrido13
2.2 I	Interação Genótipos x Ambientes14
2.2.1	Adaptabilidade e Estabilidade15
2.2.2	Métodos de estudo de adaptabilidade e estabilidade15
3 MAT	TERIAL E MÉTODOS17
3.1 I	Local17
3.2 A	Área experimental17
3.3 I	Híbridos17
3.4	Safras19
3.5	Caracteres Avaliados20
3.6 A	Análises estatísticas21
3.6.1	Significância dos efeitos aleatórios e fixos21
3.6.2	Análises individuais21
3.6.3	Análises conjuntas
3.6.4	Parâmetros genéticos23
3.6.5	Análises de Adaptabilidade e Estabilidade24
3.6.6	Método MHPRVG24
3.6.7	Análise Gráfica – GGE Biplot25
3.6.8	Coeficientes de correlação26
4 RESU	ULTADOS26
4.1 A	Análises individuais26
4.2 A	Análises conjuntas28
4.3 N	Método MHPRVG31
4.4	GGE Biplot40
4.5	Coeficientes de correlação45
5 DISC	CUSSÃO47
6 CON	CLUSÕES53
REFERÊ	NCIAS54
ANEXOS	558

1 INTRODUÇÃO

Com o avanço da agricultura e a crescente importância da cultura do milho no cenário agrícola mundial, a necessidade de obter genótipos melhorados é um constante desafio aos programas de melhoramento genético. O principal foco dos melhoristas de milho é o lançamento de novas cultivares mais produtivas, estáveis e adaptáveis para atender as crescentes demandas pelo grão.

Para o desenvolvimento de novas cultivares, estudos das respostas dos genótipos frente as condições ambientais, resultando na interação genótipos x ambientes, são necessários em programas de melhoramento genético de milho. Essa interação genótipos x ambientes é um dos grandes empasses, principalmente nas fases finais de seleção de híbridos superiores. Além disso, os procedimentos estatísticos que auxiliam na tomada de decisão, também podem influenciar diretamente na recomendação de híbridos mais estáveis e adaptáveis com base nesta interação genótipos x ambientes para o caráter alvo.

Portanto, o estudo da adaptabilidade e estabilidade de genótipos por meio de ferramentas estatísticas sofisticas, como abordagens de modelos mistos e de análise multivariada, que permitam explorar a interação interação genótipos x ambientes em experimentos de melhoramento genético são importantes na a obtenção de cultivares. Neste sentido, o presente trabalho teve o objetivo de utilizar método da média harmônica relativa a performance dos valores genotípicos (MHPRVG) via REML/BLUP e o modelo *Genotype plus Genotype-by-Enviroment* (GGE) Biplot para selecionar genótipos híbridos superiores quanto a adaptabilidade e estabilidade com base em três safras na região de Lavras-MG.

2 REFERENCIAL TEÓRICO

2.1 Milho híbrido

O melhoramento genético tem contribuído expressivamente para o aumento na produtividade de diversas culturas agrícolas desde meados de 1950 (BORÉM, A; MIRANDA G. V.; FRITSCHE-NETO, 2017). Por exemplo, a cultura do milho (*Zea mays* L.) no Brasil, entre os anos 1970 e 2020, a produtividade passou de 1,63 para a 5,53 toneladas por hectare, o que representou um incremento de mais de cerca de 88 kg por hectare por ano (CONAB, 2020). Esse aumento na produtividade foi em grande parte devido a descoberta e exploração do vigor híbrido a partir dos trabalhos de East (1909) e Shull (1909) no século XX. Estes pesquisadores observaram que após sucessivas gerações de autofecundação, a produção e o vigor das plantas de milho reduziam em decorrência da depressão por endogamia. Por outro lado, quando duas linhagens endogâmicas eram intercruzadas, o vigor e a produção das plantas híbridas na F1 eram superiores à das linhas genitoras. Este fenômeno ficou conhecido como a heterose ou o vigor híbrido (EAST; SHULL, 1909).

No entanto, o desenvolvimento de sementes de milho híbrido não se tornou viável nos primeiros anos, em virtude do baixo vigor e produtividade das linhagens existentes na época, o que inviabilizava econômica a produção destes matérias em escala comercial (CROW; DOVE, 1998). Com objetivo de contornar esse problema, Jones (1918) sugeriu o desenvolvimento de híbridos duplos, oriundos do cruzamento de dois híbridos simples, e com desempenho produtivo superior as variedades cultivadas. Essa estratégia levou a uma maior adoção destes híbridos pelos agricultores, o que forteleceu a indústria sementeira de milho, entre os anos de 1920 e 1930, nos Estados Unidos.

Além do aumento da produtividade, a adoção do milho híbrido proporcionou uma maior uniformidade das plantas, o que possibilitou uma mecanização das lavouras nos EUA (CRABB, 1947). Conforme os anos foram passando, por meio do melhoramento genético foi possível obter ganhos na produtividade per se das linhagens e com isso, possibilitou economicamente a retomada da produção de sementes de híbridos simples em meados de 1960 (CROW; DOVE, 1998).

Entre os anos de 1930 e 1960, a adoção dos híbridos duplos proporcionou um incremento médio de produtividade 63 quilogramas por hectare por ano. Por outro lado, após a adoção de híbridos simples pelos agricultores, a produtividade aumentou cerca de 113 quilogramas por hectare por ano e em 1990, atingiu 207 quilogramas por hectare por ano com o uso da tecnologia de organismos geneticamente modificados (OGMs) (DUVICK;

CASSMAN, 1999; HALLAUER; CARENA; MIRANDA FILHO, 2010). Estes incrementos de produtividade foram em sua maior parte devido ao melhoramento genético, mas também ao avanço e a adoção de outras tecnologias, como a mecanização agrícola, a nutrição por fertilizantes e as novas práticas culturais por parte dos agricultores.

No cenário mundial, o Brasil foi o segundo país a adotar a tecnologia de sementes de milho híbrido, iniciando em 1939 com o desenvolvimento do primeiro híbrido duplo Brasileiro realizado Instituto Agronômico de Campinas (IAC) (SAWAZAKI, E.; PATERNIANI, 2004). Em adição, o primeiro híbrido comercial foi desenvolvido pelo cruzamento das variedades Cateto com Amarelão, realizado na Escola Superior de Agricultura de Viçosa (SOUZA SOBRINHO, 2001). Atualmente, a indústria brasileira de milho é praticamente focada no desenvolvimento de híbridos simples.

Apesar das vantagens na utilização do milho híbrido, o processo de desenvolvimento requer, não só a escolha dos híbridos com a maior heterose na produtividade, mas também seleção daqueles que são mais estáveis e mais adaptáveis as regiões de produção (BECKER; LÉON, 1988).

2.2 Interação Genótipos x Ambientes

Garrod (1902) foi o primeiro pesquisador perceber a influência do ambiente sobre a expressão dos genes. Essa ação do ambiente resulta em diferentes respostas de genótipos em diferentes ambientes, dando origem ao fenômeno conhecido como a interação genótipos x ambientes e que é presente em todas as espécies cultivadas (BORÉM, A; MIRANDA G. V.; FRITSCHE-NETO, 2017). No caso do milho, diversos programas de melhoramento têm explorado essa interação com o intuito de híbridos adaptados e estáveis a cada ambiente, seja em clima e solo, local, manejo de adubação, safras e épocas de plantio e a tecnologia aplicada (BORGHI et al., 2017).

Existem diversas metodologias destinadas à avaliação da interação genótipos x ambientes e a escolha do método mais adequado depende dos dados experimentais, especialmente do número de ambientes disponíveis, da precisão requerida e do tipo de informação desejada. Entretanto, todas as metodologias envolvidas no estudo da interação genótipos x ambientes visam explor a estabilidade e a adaptabilidade dos genótipos nos diferentes ambientes (BORÉM, A; MIRANDA G. V.; FRITSCHE-NETO, 2017).

2.2.1 Adaptabilidade e Estabilidade

A adaptabilidade pode ser caracterizada como a habilidade dos genótipos em responder favoravelmente aos estímulos ambientais, como por exemplo,. Por outro lado, a estabilidade é a capacidade dos genótipos em apresentarem comportamento constante e previsível mesmo em diferentes condições ambientais (CRUZ; CARNEIRO, 2006; VENCOVSKY; BARRIGA, 1992).

A adaptabilidade pode ser classificada no sentido amplo, quando são caracterizados genótipos com um desempenho bom em todos ou na maioria dos ambientes, ou no sentido específico, quando são caracterizados genótipos com um bom desempenho em poucos ou apenas um ambiente bem definido de cultivo (ANNICCHIARICO, 2002).

A estabilidade por sua vez é dividida em estática e dinâmica (BECKER; LÉON, 1988). Estabilidade estática ocorre quando o genótipo exibe desempenho constante em meio as variações ambientais, por exemplo, a baixa resposta na produtividade do genótipo com o aumento da adubação (SQUILASSI, 2003). Por outro lado, a estabilidade dinâmica ocorre quando o genótipo responde às variações do ambiente de forma previsível (BORÉM; MIRANDA, 2013), isto é, em cada ambiente o desempenho do genótipo está associado ao nível estimado pela resposta média dos genótipos testados (BECKER; LÉON, 1988).

A adaptabilidade e a estabilidade são fenômenos relacionados, entretanto, não devem ser considerados como um só. Nesse contexto, vários métodos estatísticos foram propostos para medir a estabilidade e a adaptabilidade fenotípica e genotípica. Suas diferenças provêm dos vários conceitos empregados e dos diferentes procedimentos estatísticos utilizados para suas determinações.

2.2.2 Métodos de estudo de adaptabilidade e estabilidade

Um dos métodos mais clássicos para o estudo da adaptabilidade e estabilidade dos genótipos é o método de Eberhart e Russell (1966) que tem como base procedimentos de regressão linear. Entretanto, outros métodos têm se destacado nos estudos de interações de genótipos x ambientes são o método da média harmônica relativa a performance dos valores genotípicos (MHPRVG) via REML/BLUP e o modelo *Genotype plus Genotype-by-Enviroment* (GGE) Biplot (RESENDE, 2007; YAN *et al.*, 2000). Ambos os métodos estão sendo bastante utilizados na cultura do milho para estudos de diversos caracteres, inclusive produtividade de grãos (DE ABREU *et al.*, 2019; YAMAMOTO *et al.*, 2018; SHIRI, 2013; TONK *et al.*, 2011).

A metodologia GGE Biplot é uma análise estatística multivariada que remove o efeito principal do ambiente, faz o agrupamento dos efeitos principais dos genótipos com os efeitos multiplicativos das interações GE e simultaneamente, submete esses efeitos à análise de componentes principais resultando também em gráficos Biplot de fácil interpretação (YAN, 2011; YAN et al., 2000). A visualização conjunta dos efeitos dos genótipos e da interação genótipos x ambientes nos gráficos Biplot resulta em gráficos com boa acurária para seleção de genótipos quanta a estabilidade e a adaptabilidade (YAN et al., 2007; BALESTRE *et al.*, 2009; BALESTRE *et al.*, 2010).

Para explicar a interação genótipos x ambientes, os melhoristas geralmente utilizam as médias ajustadas dos valores fenotípicos observados para a criação dos gráficos GGE Biplot. Todavia, de acordo com Balestre *et al.* (2009), em análises de adaptabilidade e estabilidade via o método GGE Biplot, o uso da matriz conjunta de efeitos de genótipos e da interação genótipos x ambientes composta por valores genotípicos de cada genótipo em cada ambiente tem maior eficiência e poder preditivo que a utilização de médias fenotípicas. Neste contexto, os modelos mistos são utilizados, considerando os efeitos de genótipos e da interação genótipos x ambientes como sendo aleatórios, para as predições BLUP dos valores genotípicos em cada ambiente.

Na análise da interação genótipos x ambientes, o método MHPRVG via REML/BLUP é um dos mais utilizados para lidar com dados desbalanceados, delineamentos não ortogonais ou com a heterogeneidade de variâncias entre os diferentes ambientes de experimentação. Este procedimento apresenta interpretações mais simples e diretas para a seleção de materiais promissores quanto à produtividade, adaptabilidade ampla e estabilidade de uma maneira simples e direta com ordenamento dos genótipos (RESENDE, 2007).

No método MHPRVG são obtidas também estimativas da média harmônica dos valores genotípicos (MHVG), que é uma medida de estabilidade, e o valor da performance relativa dos valores genotípicos (PRVG), que é uma medida de adaptabilidade. A medida MHVG considera a média dos valores genotípicos preditos para cada caráter em cada ambiente, penalizada pelas variações decorrentes da instabilidade interambientes (RESENDE, 2007). Já na PRVG, os valores genotípicos são expressos como proporções da média geral de cada ambiente e, posteriormente, é obtida a média dessas proporções através dos ambientes, resultando em uma medida de performance relativa (RESENDE, 2007).

3 MATERIAL E MÉTODOS

3.1 Local

Os experimentos foram conduzidos no Centro de Desenvolvimento Científico e Tecnológico da UFLA em Lavras – MG. O local é situado a 951 metros de altitude, 21°12' de latitude sul e 45°59' de longitude oeste. O clima da região segundo classificação Köppen, é Cwa, clima temperado úmido com inverno seco e verão quente (KOTTEK et al., 2006).

3.2 Área experimental

Em todas as safras, foram coletadas amostras de solo para análise de rotina de fertilidade 30 dias antes do plantio. A área foi submetida a dessecação 10 dias antes do plantio com os herbicidas Roundup WG® (Glifosato) + Aurora 400 EC® (Triazolona) nas doses de 3 L/ha e 30 ml/ha, respectivamente. A área foi sulcada no espaçamento de 0,6 m entre linhas. A adubação de plantio em ambas as safras foi de 350 kg.ha-1 do formulado comercial 8(N): $28(P_2O_5)$: $16(K_2O)$ e a adubação de cobertura foi de 200 kg.ha-1 de uréia (45% N), realizada no estádio fenológico V4. Os tratos culturais foram realizados de acordo com recomendações de Borém, Galvão e Pimentel (2017).

3.3 Híbridos

Neste estudo, os híbridos comerciais DKB177, DKB230, DKB390, 30F53 e BM820 foram utilizados como testemunhas. Os híbridos com o código RD são oriundos do cruzamento entre as progênies de dois grupos denominados VAV e NAY em um dialelo parcial, cujas sementes foram obtidas na safra de 2018 em Lavras – MG (Tabela 1). Para tal, houve a proteção das espigas antes da emissão dos estilo-estigmas em todas as progênies dos dois grupos. Após a emissão do pendão, efetuou-se a coleta de pólen, aos quais foram transportados de um grupo para o outro até as espigas protegidas, gerando irmãos germanos em cruzamentos recíprocos entre grupos.

O grupo VAV do dialelo foi constituído por onze progênies parcialmente endogâmicas, as quais foram obtidas por Cardoso (2018). Para tal, foram utilizadas progênies S_1 remanescentes das populações "A" e "B" (grupos heteróticos) dos ciclos 0, 3 e 6 de seleção recorrente recíproca (SRR) de milho da UFLA. O grupo VAV foi composto das onze progênies com as estimativas mais favoráveis de capacidade de combinação, independente do ciclo. Posteriormente, as populações foram conduzidas até $S_{2:3}$ para realização dos cruzamentos e obtenção dos híbridos avaliados nas três safras deste trabalho (Tabela 1). O método de condução

das populações foi o "espiga por fileira". Neste trabalho, apenas uma amostra das progênies selecionadas dos ciclos 0, 3 e 6 foram utilizadas para compor o grupo I (testadores).

O grupo NAY do dialelo foi constituído por dez progênies parcialmente endogâmicas, as quais foram obtidas por Oliveira (2018) (em fase de elaboração)¹. Para compor o grupo NAY, foram selecionadas as dez melhores progênies provenientes de populações obtidas de híbridos comerciais por estimativas de m + a'e d. Para a obtenção dos híbridos foi utilizada a geração $S_{2:3}$. O método de condução das populações também foi o "espiga por fileira".

Tabela 1 – Híbridos de milho avaliados nas safras 2018/19, 2019 e 2019/20. (continua)

CÓDIGO	PEDIGREE	DETENTOR	CÓDIGO	PEDIGREE	DETENTOR
30F53*	30F53	DuPont	RD052	VAV3xNAY19	UFLA
D) (000)	D) 5020	Pioneer	DD050	******	X X EX
BM820*	BM820	Biomatrix	RD053	VAV3xNAY20	UFLA
DKB177*	DKB177	Monsanto	RD054	VAV3xNAY21	UFLA
DKB230*	DKB230	Monsanto	RD055	VAV3xNAY22	UFLA
DKB390*	DKB390	Monsanto	RD056	VAV4xNAY13	UFLA
RD001	VAV10xNAY13	UFLA	RD057	VAV4xNAY14	UFLA
RD002	VAV10xNAY14	UFLA	RD058	VAV4xNAY15	UFLA
RD003	VAV10xNAY15	UFLA	RD059	VAV4xNAY16	UFLA
RD004	VAV10xNAY16	UFLA	RD060	VAV4xNAY17	UFLA
RD005	VAV10xNAY17	UFLA	RD061	VAV4xNAY18	UFLA
RD006	VAV10xNAY18	UFLA	RD062	VAV4xNAY20	UFLA
RD007	VAV10xNAY19	UFLA	RD063	VAV4xNAY22	UFLA
RD008	VAV10xNAY20	UFLA	RD064	VAV5xNAY13	UFLA
RD009	VAV10xNAY21	UFLA	RD065	VAV5xNAY14	UFLA
RD010	VAV10xNAY22	UFLA	RD066	VAV5xNAY16	UFLA
RD011	VAV11xNAY14	UFLA	RD067	VAV5xNAY17	UFLA
RD012	VAV11xNAY15	UFLA	RD068	VAV5xNAY18	UFLA
RD013	VAV11xNAY16	UFLA	RD069	VAV5xNAY20	UFLA
RD014	VAV11xNAY17	UFLA	RD070	VAV5xNAY21	UFLA
RD015	VAV11xNAY18	UFLA	RD071	VAV5xNAY22	UFLA
RD016	VAV11xNAY20	UFLA	RD072	VAV6xNAY13	UFLA
RD017	VAV11xNAY22	UFLA	RD073	VAV6xNAY14	UFLA
RD018	VAV12xNAY13	UFLA	RD074	VAV6xNAY15	UFLA
RD019	VAV12xNAY14	UFLA	RD075	VAV6xNAY16	UFLA
RD020	VAV12xNAY15	UFLA	RD076	VAV6xNAY17	UFLA
RD021	VAV12xNAY16	UFLA	RD077	VAV6xNAY20	UFLA
RD022	VAV12xNAY17	UFLA	RD078	VAV6xNAY21	UFLA
RD023	VAV12xNAY18	UFLA	RD079	VAV6xNAY22	UFLA

¹ OLIVEIRA, N. N. S. DE. **Métodos de escolha de populações para extração de linhagens de milho**. Lavras: UFLA, 2018.

RD024	VAV12xNAY20	UFLA	RD080	VAV7xNAY13	UFLA
RD025	VAV12xNAY21	UFLA	RD081	VAV7xNAY14	UFLA
RD026	VAV12xNAY22	UFLA	RD082	VAV7xNAY15	UFLA
RD027	VAV1xNAY13	UFLA	RD083	VAV7xNAY16	UFLA
RD028	VAV1xNAY14	UFLA	RD084	VAV7xNAY18	UFLA
RD029	VAV1xNAY16	UFLA	RD085	VAV7xNAY19	UFLA
RD030	VAV1xNAY17	UFLA	RD086	VAV7xNAY20	UFLA
RD031	VAV1xNAY18	UFLA	RD087	VAV7xNAY21	UFLA
RD032	VAV1xNAY19	UFLA	RD088	VAV7xNAY22	UFLA
RD033	VAV1xNAY20	UFLA	RD089	VAV8xNAY13	UFLA
RD034	VAV1xNAY21	UFLA	RD090	VAV8xNAY14	UFLA
RD035	VAV1xNAY22	UFLA	RD091	VAV8xNAY15	UFLA
RD036	VAV2xNAY13	UFLA	RD092	VAV8xNAY16	UFLA
RD037	VAV2xNAY14	UFLA	RD093	VAV8xNAY17	UFLA
RD038	VAV2xNAY15	UFLA	RD094	VAV8xNAY18	UFLA
RD039	VAV2xNAY16	UFLA	RD095	VAV8xNAY19	UFLA
RD040	VAV2xNAY17	UFLA	RD096	VAV8xNAY20	UFLA
RD041	VAV2xNAY18	UFLA	RD097	VAV8xNAY21	UFLA
RD042	VAV2xNAY19	UFLA	RD098	VAV8xNAY22	UFLA
RD043	VAV2xNAY20	UFLA	RD099	VAV9xNAY13	UFLA
RD044	VAV2xNAY21	UFLA	RD100	VAV9xNAY14	UFLA
RD045	VAV2xNAY22	UFLA	RD101	VAV9xNAY15	UFLA
RD046	VAV3xNAY13	UFLA	RD102	VAV9xNAY16	UFLA
RD047	VAV3xNAY14	UFLA	RD103	VAV9xNAY17	UFLA
RD048	VAV3xNAY15	UFLA	RD104	VAV9xNAY18	UFLA
RD049	VAV3xNAY16	UFLA	RD105	VAV9xNAY20	UFLA
RD050	VAV3xNAY17	UFLA	RD106	VAV9xNAY21	UFLA
RD051	VAV3xNAY18	UFLA	RD107	VAV9xNAY22	UFLA
•					

Legenda: Os híbridos destacados com "*" foram utilizados como testemunhas.

3.4 Safras

Os híbridos foram avaliados nas safras 2018/19, 2019 e 2019/20. O espaçamento foi de 0,6 m entre linhas e 0,25 m entre plantas. As datas da semeadura foram 17/11/2018, 07/02/2019 e 15/11/19 para a primeiro, segundo e terceiro experimento, respectivamente.

Na safra 2018/19, foram avaliados com 87 tratamentos (Tabela 4) e três testemunhas (DKB390, 30F53 e BM820) (Tabela 1), totalizando 90 tratamentos, avaliados em três repetições. O delineamento experimental foi o alfa látice triplo 10x9 (k.s). As 270 parcelas foram constituídas por uma linha de quatro metros, com densidade de plantio de quatro plantas.m⁻¹, sendo utilizado uma semente por cova. O experimento teve área total de 729 m².

Na safra 2019, foram avaliados 79 tratamentos (Tabela 5) e duas testemunhas (DKB390 e 30F53) (Tabela 1), totalizando 81 tratamentos avaliados em três repetições. Na safra 2019/20 foram avaliados 78 tratamentos e três testemunhas (DKB177, DKB230 e DKB390). Nestas duas safras, o delineamento experimental foi o látice quadrado triplo 9x9 (k²). As 243 parcelas foram constituídas por uma linha de quatro metros, com densidade de plantio de quatro plantas.m⁻¹, sendo utilizado uma semente por cova. O experimento teve área total de 656.1 m².

3.5 Caracteres Avaliados

Foram avaliados os seguintes caracteres agronômicos:

- 1. Estande final (STD): corresponde ao número de plantas por parcela;
- 2. Germinação (GER): a razão entre o estande final e o estande esperado expresso em porcentagem (%).
- 3. Severidade da mancha branca (SMB): as avaliações foram realizadas utilizando a escala diagramática para o complexo mancha branca (*Phaeosphaeria maydis / Pantoea ananatis*) proposto por Sachs et al. (2011), no estádio fenológico R4. Três plantas de cada parcela foram selecionadas ao acaso, sendo avaliadas três folhas em cada planta (folha imediatamente abaixo da espiga, folha da espiga e folha imediatamente acima da espiga).
- 4. Produtividade de grãos (PROD): peso de grãos da parcela, obtido em kg.parcela⁻¹, corrigido para o teor de umidade de 13% e transformado para kg.ha⁻¹. 1. Fórmula para correção do peso de grãos para o teor de 13% de umidade:

$$P_{13\%} = \frac{P_i(100 - U)}{87} \tag{1}$$

Em que:

 $P_{13\%}$: é o peso de grãos corrigido para 13%, em kg.parcela⁻¹;

Pi: é o peso de grãos inicial, não corrigido em kg.parcela⁻¹; *U*: é o teor de umidade de grãos da parcela.

A extrapolação para PROD em kg.ha⁻¹ foi estimada utilizando a produção de grãos por parcela à 13% de umidade ($P_{13\%}$), área útil da parcela (2,4 m²) e a área equivalente a um hectare (10000 m²), de acordo com a seguinte equação:

$$PROD = \frac{(P_{13\%}X10000)}{2.4} \tag{2}$$

O teor de umidade dos grãos (U), isto é, o teor de umidade médio em porcentagem (%), foi obtido de uma amostra das sementes de 20 espigas aleatória do ensaio. A umidade final foi obtida da média de cinco medições da amostra de sementes, utilizando o determinador eletrônico de umidade Gehaka G650.

3.6 Análises estatísticas

Anteriormente as análises individuais, o atendimento ao pressuposto para normalidade dos erros foi verificado pelo teste de Shapiro e Wilk (1965), e o da homogeneidade das variâncias residuais pelo teste de Bartlett (1937). As análises individuais e conjunta foram realizadas via abordagem de modelos mistos e os componentes de variância estimados utilizando o método da máxima verossimilhança residual (REML). Os dados para as análises foram relativos a três variáveis: produtividade de grãos, severidade da mancha branca e germinação.

3.6.1 Significância dos efeitos aleatórios e fixos

Para verificar a significância de cada um dos efeitos dos modelos, foram realizadas análises de deviance individuais e conjunta das safras, com auxílio do teste da razão de verossimilhança (LRT) para testar a significância dos efeitos aleatórios por meio da função "ranova" no pacote "lmerTest" (KUZNETSOVA et al., 2017), segundo recomendações de Resende (2007) em ambiente R (R CORE TEAM, 2018).

3.6.2 Análises individuais

Foi realizada inicialmente a análise com recuperação da informação interblocos para cada safra, conforme o modelo estatístico:

$$y_{ijk} = \mu + r_i + b_{(i)j} + g_k + e_{ijk} \tag{3}$$

Em que:

 μ é uma constante associada às observações;

 r_i é o efeito fixo da repetição i;

 $b_{(i)j}$ é o efeito aleatório do bloco j dentro da repetição i, $b_{(i)j} \sim N(0, \sigma_b^2)$, sendo σ_b^2 a variância de blocos dentro das repetições;

 g_k é o efeito aleatório do híbrido k;

 e_{ijk} , é o erro experimental associado à parcela y_{ijk} , $e_{ijk} \sim (0, \sigma_e^2)$, sendo σ_e^2 a variância do erro.

3.6.3 Análises conjuntas

A análise conjunta foi realizada para cada caráter, conforme o seguinte modelo:

$$y_{ijkl} = \mu + a_l + r_{i(l)} + b_{(il)j} + g_k + ga_{kl} + e_{ijkl}$$
 (4)

Em que:

 y_{ijkl} é a observação da parcela do bloco j dentro da repetição i no local l que recebeu o genótipo k;

 μ é uma constante associada às observações;

aı é o efeito fixo da safra l;

 $r_{i(l)}$ é o efeito aleatório da repetição i dentro da safra l;

 $b_{(il)j}$ é o efeito aleatório do bloco j dentro da repetição i no safra l, $b_{(il)j} \sim N(0, \sigma_b^2)$ sendo σ_b^2 a variância de blocos dentro das repetições;

 g_k é o efeito aleatório do híbrido k;

 ga_{kl} é o efeito aleatório da interação do híbrido k com a safra l;

 e_{ijkl} , é o erro experimental associado à observação y_{ijkl} , $e_{ijkl} \sim N$ (0, σ^2) sendo σ_e^2 a variância do erro.

Foi verificada para a análise conjunta, a homogeneidade das variâncias residuais entre os locais pelo teste de Levene implementado no pacote 'car' no ambiente R (FOX *et al.*, 2012). O exame da normalidade dos resíduos foi feito pelo método QQ-Plot (KOSAK; PIEPHO, 2018). As análises estatísticas foram em ambiente R (R CORE TEAM, 2018).

As significâncias das variâncias dos efeitos aleatórios foram avaliadas pelo teste LRT e o valor das predições BLUP pelo erro padrão associado a estimativa BLUP, ambos a 5% de significância. A precisão experimental foi avaliada segundo recomendações de Resende e Duarte (2007), utilizando estimativas do coeficiente de variação experimental (CV(%)) e acurácia seletiva (rgg).

3.6.4 Parâmetros genéticos

Estimaram-se os componentes da variância pelo método da máxima verossimilhança restrita (REML). Para aferir a qualidade experimental, foram estimados o coeficiente de variação (CV%) e acurácia seletiva proposta por Resende e Duarte (2007). A acurácia seletiva foi determinada pelo seguinte estimador (GEZAN; MUNOZ, 2014):

$$r\hat{g}g = \sqrt{1 - (\frac{PEV}{\sigma_g^2})} \tag{5}$$

Em que:

PEV é a variância do erro de predição dos BLUP;

 σ_q^2 é a variância genotípica.

Por sua vez, os coeficientes de variação (CV%) foram estimados por:

$$CV(\%) = \frac{\sqrt{\sigma_e^2}}{\bar{Y}} \tag{6}$$

em que:

 σ_e^2 é a variância ambiental (das safras);

Y é a média fenotípica geral.

As estimativas das herdabilidades (h^2), em nível de híbrido, foram obtidas de acordo com o estimador proposto por Piepho e Mohring (2007):

$$h^2 = \frac{\sigma_g^2}{\sigma_g^2 + \frac{\sigma_g^2}{n} + \frac{\sigma_e^2}{nr}} \tag{7}$$

Em que:

 σ_q^2 é a variância genotípica dos híbridos;

 σ_{ge}^2 é a variância da interação híbridos x safras;

 σ_e^2 é a variância ambiental;

n é o número de ambientes;

r é a média harmônica no número de repetições.

3.6.5 Análises de Adaptabilidade e Estabilidade

3.6.6 Método MHPRVG

Para os caracteres de produtividade, severidade de mancha branca e germinação, os índices da Média Harmônica dos Valores Genotípicos (MHVG), da Performance Relativa dos Valores Genotípicos (PRVG) e da Média Harmônica da Performance Relativa dos Valores Genotipicos (MHPRVG) foram calculados de acordo com as seguintes equações descritas por Resende (2007, 2004).

$$VG_{ij} = \mu_j + g_i + gl_{ij} \tag{8}$$

$$MHVG_{i} = \frac{1}{e} \sum_{i=1}^{e} \frac{1}{VG_{ij}}$$
 (9)

$$PRVG_i = \frac{1}{e} \sum_{i=1}^{e} \frac{VG_{ij}}{\mu_j} \tag{10}$$

$$MHPRVG_i = \frac{1}{e} \sum_{j=1}^{e} \frac{1}{VG_{ij}/VG_{.j}}$$
 (11)

Em que:

e é o número de safras incluídos na análise;

 VG_{ij} é o valor genotípico do híbrido i na safra j para o caráter em questão, expresso como proporção da média dessa safra;

 μ_i é a média do ambiente j;

 g_i é o BLUP do híbrido i;

e gl_{ij} é o BLUP da interação entre o híbrido i e a safra j;

 $VG_{.j}$ é a média de todos os valores genotípicos na safra j para o caráter em questão.

Posteriormente, novas estimativas de média dos híbridos foram realizadas a partir destes índices (MHVG_m, PRVG_m e MHPRVG_m) com intuito de ordenamento por estabilidade, adaptabilidade, e estabilidade e adaptabilidade, respectivamente, por caráter.

3.6.7 Análise Gráfica – GGE Biplot

A metodologia GGE biplot foi aplicada às médias fenotípicas e genotípicas preditas dos híbridos nas três safras deste estudo, o que resultou em análises de estabilidade e adaptabilidade fenotípica e genotípica. Para a análise GGE biplot fenotípica, o modelo utilizado foi proposto por Yan et al. (2000), abaixo:

$$y_{ij} - e_{.j} = \sum_{k=1}^{n} \lambda_k \gamma_{ik} \alpha_{jk} + \rho_{ij}$$
 (12)

Em que:

 y_{ij} é a média fenotípica ajustada do híbrido i na safra j;

 $e_{.j}$ é a média fenotípica de todos os híbridos na safra j;

 λ_k é correspondente ao valor singular do k-ésimo eixo da análise de componentes principais (ACP);

 γ_{ik} é o k-ésimo autovetor do n-ésimo componente principal genotípico, correspondente ao escore do n-ésimo componente principal do híbrido i;

 α_{jk} é o k-ésimo autovetor do n-ésimo componente principal ambiental, correspondente ao escore do n-ésimo componente principal da safra j;

 ρ_{ij} é o resíduo referente ao ajuste.

Para a análise GGE biplot genotípica, o modelo utilizado foi:

$$VG_{ij} - e_{.j} = \sum_{k=1}^{n} \lambda_k \gamma_{ik} \alpha_{jk} + \rho_{ij}$$
(13)

Em que:

 VG_{ij} é o valor genotípico do híbrido i na safra j, obtido pela soma dos efeitos genéticos (BLUPs) do híbrido i e da interação do híbrido i com a safra j;

 $e_{.j}$ é o efeito genotípico da safra j, obtido somando os efeitos genotípicos de todos os híbridos nessa safra;

 λ_k é o correspondente ao valor singular do k-ésimo eixo da análise de componentes principais (ACP);

 γ_{ik} é o k-ésimo autovetor do n-ésimo componente principal genotípico, correspondente ao escore do n-ésimo componente principal do híbrido i;

 α_{jk} é o k-ésimo autovetor do n-ésimo componente principal ambiental, correspondente ao escore do n-ésimo componente principal do safra j;

 ρ_{ij} é o resíduo referente ao ajuste.

Ambas abordagens de GGE biplot foram usadas para gerar gráficos biplots do tipo *Ranking Genotypes*, por meio do pacote metan (OLIVOTO, 2019) em ambiente R (R CORE TEAM, 2018). As estimativas dos híbridos nos GGE biplots foram extraídos com objetivo de ordenamento para o estudo da estabilidade dos caracteres de PROD, SMB e GER dos híbridos em todas as safras.

3.6.8 Coeficientes de correlação

Para observar a magnitude da associação entre os caracteres estudados (PROD, SMB e GER) e o ordenamentos com base nas médias BLUP, nos índices MHVG, PRVG, MHPRVG, e nos GGE biplots fenotípicos e genotípicos foram obtidos os coeficientes de correlação de Spearman, para a confecção de gráficos de matriz de correlação utilizando o pacote corrplot (WEI *et al.*, 2017) em ambiente R (R CORE TEAM, 2018). A significância das estimativas dos coeficientes de correlação foi verificada pelo teste t, com n-2 graus de liberdade, (PIMENTEL-GOMES, 2009).

4 RESULTADOS

4.1 Análises individuais

As estimativas dos componentes de variância e dos parâmetros genéticos e fenotípicos para as análises individuais das safras estão apresentadas na Tabela 2. Com base nos resultados, foi observado que a variância genética entre híbridos foi significativa (p < 0,05) para os caracteres produtividade de grãos (PROD), severidade da mancha branca (SMB) e germinação (GER). Para estes mesmos caracteres, as maiores variâncias genéticas foram observadas nos experimentos da safra 2018/19, da safra 2019 e da safra 2019/20, respectivamente (Tabela 2).

Tabela 2 - Estimativas dos componentes de variância, genética, bloco e residual e os parâmetros de herdabilidade ampla, média genotípica, acurácia seletiva, coeficiente de variação experimental com base nas análises individuais dos híbridos em cada safra. (continua)

CARÁTER	PARÂMETRO -		SAFRA		
	FARAMETRO	2018/19	2019	2019/20	

	σ_g^2	3,133*	1,561*	1,698*
	σ_b^2	0,028*	0,180*	0,245*
	σ_e^2	3,185	1,673	4,962
PROD ¹	h^2	0,747	0,737	0,507
	$\mu \mathrm{BLUP}$	9,599	5,987	12,202
	$r\hat{g}g$	85,602	85,102	68,924
	CV(%)	18,59	21,605	18,255
	σ_g^2	0,410*	0,671*	1,175*
	σ_b^2	0,153*	0,126*	0,014*
	σ_e^2	0,516	0,775	0,564
SMB ²	h^2	0,704	0,722	0,862
	μ BLUP	2,77	4,827	3,204
-	$r\hat{g}g$	82,586	83,999	92,033
	CV(%)	25,941	18,236	23,432
	σ_g^2	43,543*	75,791*	6,465*
	σ_b^2	1,886*	18,996*	0,325*
	σ_e^2	118,999	95,274	17,669
GER ³	h^2	0,523	0,705	0,523
-	μBLUP	82,750	82,235	84,665
-	$r\hat{g}g$	71,042	82,835	70,485
-	CV(%)	13,183	11,869	4,965

Legenda: ¹produtividade de grãos (ton.ha⁻¹); ²severidade da mancha branca; ³germinação (%). '*' Significativo a 5% pelo teste LRT.

Fonte: do autor (2021)

Para os caracteres avaliados, a variância entre blocos também foi significativa (p < 0,05) nos experimentos de cada uma das safras (Tabela 2). A acurácia seletiva e o coeficiente de variação são estimadores da precisão experimental e evidenciam a qualidade dos experimentos conduzidos. As estimativas de acurácia seletiva variaram de 68,924%, para a PROD, na safra 2019/20, até 92,033%, para a SMB na mesma safra. Por sua vez, o menor coeficiente de variação foi observado para o caráter GER, 4,965%, na safra 2019/20 e a maior estimativa foi para a SMB, sendo igual a 25,941% na safra 2018/19 (Tabela 2).

A proporção da variação fenotípica observada e explicada pelo efeito genético é evidenciada pela herdabilidade. Grande variação nas estimativas deste parâmetro foi observada. Considerando todos os caracteres avaliados, as estimativas de herdabilidade

variaram de 0,507, para PROD na safra 2019/20, a 0,862 para SMB na mesma safra (Tabela 2). Em relação as estimativas das médias genotípicas preditas (μBLUP) dos híbridos, a maior média foi observada na safra 2019/20, 12,202 e a menor, 5,987, na safra 2019 para a PROD. A safra 2019 foi mais acometida pela doença mancha branca, apresentando a maior média, 4,827, para a SMB. A maiores e menores médias da GER foram observadas nas safras 2019/20 e 2019, iguais a 84,665% e 82,235%, respectivamente.

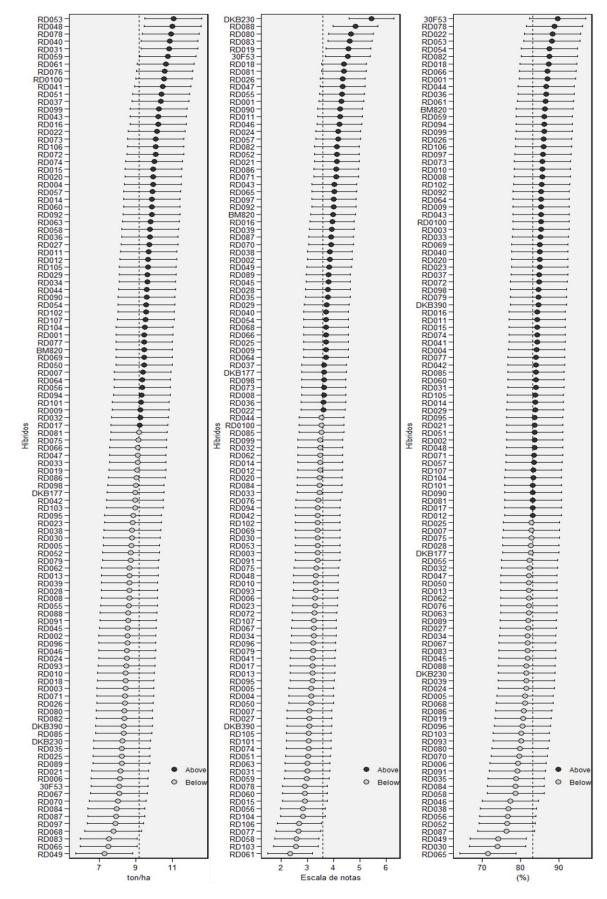
4.2 Análises conjuntas

Com base nos resultados, foi observado que a variância genética entre híbridos foi significativa (p < 0,05) para os caracteres PROD, SMB e germinação GER. A acurácia seletiva, considerando a análise conjunta das safras variou de 67,863% (GER) até 80,319% (SMB). Observa-se, ainda, que o maior coeficiente de variação foi observado, para o caráter SMB, 21,876%, e o menor para GER, 10,690% (Tabela 3).

O componente genético da interação híbridos x safras foi elevada magnitude e significativo (p<0,05) para os caracteres avaliados (Tabela 3). A significância deste parâmetro evidencia o comportamento não coincidente dos híbridos nos experimentos das diferentes safras. Por outro lado, as estimativas da herdabilidade foram de 0,672 para a PROD, de 0,738 para a SMB e de 0,568 para a GER (Tabela 3).

Tabela 3 - Estimativas dos componentes de variância, genética, bloco, residual e interação híbridos x safras e os parâmetros de herdabilidade ampla, média genotípica, variância do erro de predição, acurácia seletiva, coeficiente de variação experimental com base nas análises conjuntos dos híbridos em todas safras. (continua)

PARÂMETRO	CARACTERES				
PARAMETRO	PROD ¹	SMB ²	GER ³		
σ_g^2	1,291*	0,474*	20,886*		
σ_b^2	0,164*	0,103*	7,267*		
σ_e^2	3,218	0,614	79,063		
σ_{ge}^2	0,820*	0,299*	21,342*		
h^2	0,672	0,738	0,568		
μBLUP	9,192	3,581	83,177		
PEV	0,557	0,168	11,267		
$r\widehat{g}g$	75,384	80,319	67,863		
<i>CV</i> (%)	19,518	21,876	10,690		


Legenda: ¹produtividade de grãos (ton.ha⁻¹); ²severidade da mancha branca; ³germinação (%). '*' Significativo a 5% pelo teste LRT.

Fonte: do autor (2021)

Considerando todas as safras, as estimativas dos valores genotípicos e das médias genotípicas preditas (BLUPs) dos híbridos encontram-se na Tabela 7. As médias genotípicas preditas dos híbridos e os respectivos intervalos de confiança para os caracteres avaliados são apresentadas na Figura 1. Nota-se que os híbridos RD053 (11,05), RD048 (11,01), RD078 (10,91), RD040 (10,84) e RD031 (10,83) apresentaram as maiores médias genotípicas e diferiram da média geral, 9,19 ton.ha⁻¹, para a PROD. Considerando o mesmo caráter, os híbridos RD049, RD065 e RD083 apresentaram também diferiram da média geral, no entanto, apresentaram as menores médias genotípicas correspondentes a 7,27, 7,51 e 7.53 ton.ha⁻¹, respectivamente (Tabela 7 e Figura 1).

Já para o caráter SMB, os híbridos RD061, RD103, RD058, RD077 e RD106 foram os menos acometidos pela mancha branca e apresentaram médias genotípicas, diferentes da média geral (3,58), equivalentes 2,34, 2,56, 2,59, 2,66 e 2,69, respectivamente, na escala de notas da doença. Por outro lado, os híbridos DKB230 (5,43), RD088 (4,83), RD080 (4,64), RD083 (4,61), RD019 (4,56) e 30F53 (4,54) apresentaram as maiores notas médias e também diferiram da média geral para a SMB (Tabela 7 e Figura 1).

Figura 1 – Ordenamento dos híbridos com base nas médias BLUP gerais para os caracteres de produtividade de grãos (ton.ha⁻¹), de severidade da mancha branca e de germinação (%).

Fonte: do autor (2021)

Para a GER, a média geral genotípica foi de 83,18% (Tabela 7). A maioria dos híbridos apresentaram desempenho similar a média geral genotípica, com exceção os híbridos RD065, RD030 e RD049 que apresentaram as menores médias genotípicas iguais a 71,57, 74,05 e 74,17%, respectivamente.

4.3 Método MHPRVG

Para os caracteres avaliados, o ordenamento dos híbridos com base na média harmônica dos valores genotípicos (MHVG), na performance relativa dos valores genotípicos (PRVG) e a médias harmônica da performance relativa dos valores genotípicos (MHPRVG) encontra-se nas tabelas 4, 5 e 6, respectivamente. Segundo Resende (2007), a MHVG, a PRVG e a MHPRVG são medidas de adaptabilidade, de estabilidade e de adaptabilidade e estabilidade, respectivamente.

Observando os resultados da MHVG, os híbridos RD041, RD037, RD016, RD015 e RD074 foram apresentam as maiores médias 14,186, 14,138, 13,701, 13,533 e 13,434 ton.ha⁻¹, respectivamente, para a PROD (Tabela 4). Por outro lado, os híbridos RD087, RD046, 30F53, RD097 e RD068 apresentaram os desempenhos menos estáveis de PROD, visto que apresentaram as menores médias, 3,942, 4,850, 5,337, 5,612 e 5,697 ton.ha⁻¹, respectivamente, para a MHVG (Tabela 4).

Quanto à SMB, os híbridos RD061 (1,824), RD015 (1,906), RD101 (2,198), RD105 (2,211) e RD034 (2,221) foram os primeiros do ordenamento com base na MHVG, indicando as maiores estabilidades e as menores severidade da doença ao longo das safras neste estudo (Tabela 4). Quanto à GER, os híbridos RD011, RD037, 30F53 (Testemunha), BM820 e RD016 foram os primeiros do ordenamento com base na MHVG, indicando uma maior estabilidade da germinação destes materiais ao longo das safras neste estudo (Tabela 4).

Tabela 4 - Ordenamento geral dos híbridos com base na MHVG. (continua)

HÍBRIDO -	PR	ROD	SI	МВ	G	ER
півкіро	Ordem	MHVG	Ordem	MHVG	Ordem	MHVG
30F53	110	5.337	110	5.075	1	90.966
BM820	35	10.020	66	3.424	9	88.496
DKB177	18	11.829	63	3.364	61	83.746
DKB230	24	10.685	112	6.468	81	81.475
DKB390	84	7.387	28	2.733	47	84.974
RD001	53	8.767	99	4.299	11	88.354
RD002	76	7.694	87	3.933	68	83.248

RD003	85	7.378	50	3.164	32	86.245
RD004	7	13.305	19	2.503	29	86.445
RD005	67	8.117	37	2.913	90	80.322
RD006	99	6.819	36	2.885	100	77.919
RD007	75	7.701	33	2.837	74	82.501
RD008	70	7.916	72	3.598	31	86.286
RD009	87	7.337	81	3.791	42	85.493
RD010	83	7.422	39	2.941	33	86.182
RD0100	30	10.449	59	3.289	27	86.576
RD011	8	13.050	104	4.434	19	87.081
RD012	11	12.972	48	3.112	52	84.729
RD013	21	11.328	21	2.572	72	82.617
RD014	6	13.353	45	3.033	37	85.958
RD015	4	13.532	2	1.906	18	87.138
RD016	3	13.702	82	3.805	28	86.565
RD017	15	12.170	17	2.470	53	84.694
RD018	78	7.622	106	4.540	8	88.503
RD019	68	8.096	108	4.665	92	79.749
RD020	47	9.299	58	3.278	43	85.313
RD021	106	5.959	100	4.303	73	82.576
RD022	55	8.710	77	3.716	2	90.781
RD023	97	6.898	60	3.301	54	84.648
RD024	74	7.740	96	4.199	87	81.122
RD025	104	6.226	76	3.643	77	81.938
RD026	90	7.242	103	4.407	15	87.520
RD027	63	8.258	15	2.426	82	81.356
RD028	19	11.472	62	3.338	57	83.978
RD029	48	9.108	69	3.527	65	83.385
RD030	73	7.746	31	2.834	110	70.182
RD031	26	10.668	23	2.613	49	84.953
RD032	80	7.583	43	2.999	79	81.704
RD033	60	8.296	46	3.073	41	85.593
RD034	31	10.358	5	2.221	95	79.476
RD035	93	7.112	71	3.576	101	77.390
RD036	44	9.368	65	3.381	7	88.504
RD037	2	14.138	61	3.316	10	88.421
RD038	66	8.130	74	3.604	105	74.740
RD039	71	7.871	86	3.907	89	80.564
RD040	29	10.527	67	3.502	25	86.650
RD041	1	14.187	18	2.498	23	86.689
RD042	98	6.892	53	3.233	67	83.248
RD043	38	9.801	83	3.819	34	86.170
RD044	51	8.993	64	3.375	13	87.977

RD045	36	9.945	49	3.133	85	81.259
RD046	111	4.850	98	4.260	108	71.594
RD047	58	8.506	95	4.149	70	82.686
RD048	27	10.647	35	2.864	66	83.297
RD049	103	6.272	70	3.545	109	71.076
RD050	52	8.803	27	2.722	76	82.000
RD051	33	10.250	12	2.387	58	83.973
RD052	95	7.004	89	3.960	107	72.648
RD053	25	10.682	34	2.842	4	89.467
RD054	69	8.081	68	3.518	5	89.147
RD055	101	6.439	107	4.639	83	81.323
RD056	57	8.612	9	2.312	106	72.690
RD057	46	9.322	88	3.960	63	83.483
RD058	45	9.355	7	2.238	102	77.371
RD059	50	9.080	30	2.827	24	86.673
RD060	43	9.450	22	2.595	62	83.731
RD061	32	10.324	1	1.824	14	87.606
RD062	22	11.314	47	3.091	71	82.646
RD063	42	9.613	16	2.433	78	81.763
RD064	79	7.589	85	3.900	39	85.899
RD065	105	6.196	84	3.858	112	67.523
RD066	92	7.129	78	3.726	12	88.086
RD067	88	7.297	40	2.954	88	80.601
RD068	108	5.697	80	3.778	94	79.560
RD069	56	8.667	56	3.252	35	85.983
RD070	107	5.907	93	4.064	99	77.971
RD071	94	7.083	92	4.044	56	84.022
RD072	17	12.039	11	2.381	40	85.842
RD073	37	9.829	54	3.239	30	86.425
RD074	5	13.434	8	2.280	21	86.853
RD075	16	12.125	32	2.837	59	83.900
RD076	34	10.121	55	3.239	80	81.661
RD077	86	7.364	6	2.232	60	83.896
RD078	28	10.576	14	2.413	3	90.299
RD079	77	7.692	42	2.981	55	84.518
RD080	89	7.267	109	4.935	98	79.069
RD081	14	12.267	105	4.485	48	84.968
RD082	102	6.360	94	4.139	6	89.035
RD083	59	8.363	102	4.329	86	81.227
RD084	100	6.807	57	3.259	103	77.113
RD085	62	8.260	24	2.633	46	85.004
RD086	64	8.248	90	3.999	91	80.075

RD088	23	11.187	111	5.362	84	81.297
RD089	41	9.620	52	3.171	75	82.029
RD090	9	13.046	97	4.251	45	85.098
RD091	40	9.762	25	2.668	104	77.036
RD092	65	8.221	101	4.312	26	86.629
RD093	82	7.472	41	2.977	97	79.087
RD094	72	7.855	51	3.168	16	87.421
RD095	96	6.992	38	2.920	64	83.452
RD096	81	7.495	44	3.002	93	79.722
RD097	109	5.613	91	4.004	36	85.969
RD098	61	8.289	75	3.636	44	85.272
RD099	54	8.750	73	3.602	17	87.167
RD101	13	12.303	3	2.198	51	84.831
RD102	20	11.345	29	2.753	20	87.060
RD103	91	7.151	10	2.353	96	79.101
RD104	49	9.094	20	2.557	69	82.908
RD105	10	13.039	4	2.211	38	85.928
RD106	39	9.771	13	2.407	22	86.853
RD107	12	12.672	26	2.721	50	84.948
Máximo		14.187	-	6.468		90.966
Mínimo	-	3.941	-	1.824	-	67.523

Legenda: ¹produtividade de grãos (ton.ha⁻¹); ²severidade da mancha branca; ³germinação (%).

Fonte: do autor (2021)

Observando os resultados da PRVG, os híbridos RD053, RD059, RD048, RD031 e RD078 apresentaram as maiores médias 11,505, 11,446, 11,427, 11,380 e 11,370 ton.ha⁻¹, respectivamente, logo, as maiores adaptabilidades para a PROD (Tabela 5). Por outro lado, os híbridos RD087, RD049, RD065, RD068, RD097 apresentaram os desempenhos com menores adaptabilidades de PROD, visto que apresentaram as menores médias, 6,052, 6,866, 6,979, 7,044 e 7,108 ton.ha⁻¹, respectivamente, para a PRVG (Tabela 5).

Quanto à SMB, os híbridos RD061 (1.992), RD015 (2.130), RD077 (2.330), RD058 (2.364) e RD103 (2.393) foram os primeiros do ordenamento com base na PRVG, indicando as maiores adaptabilidades e as menores severidade da doença ao longo das safras neste estudo (Tabela 5). Quanto à GER, os híbridos 30F53 (Testemunha), RD022, RD078, RD054 e RD082 foram os primeiros do ordenamento com base na PRVG, indicando as maiores estabilidades da germinação destes materiais ao longo das safras neste estudo (Tabela 5).

Tabela 5 - Ordenamento geral dos híbridos com base na PRVG. (continua)

HÍBRIDO	PROD ¹		SMB^2		GER^3	
нівкіро	Ordem	PRVG	Ordem	PRVG	Ordem	PRVG

30F53	107	7.168	108	5.068	1	91.724
BM820	44	9.594	98	4.428	7	88.952
DKB177	64	8.910	71	3.760	74	82.274
DKB230	94	8.049	112	7.228	91	80.042
DKB390	91	8.092	21	2.866	45	85.028
RD001	48	9.512	100	4.465	11	88.374
RD002	83	8.355	86	4.089	64	83.246
RD003	90	8.147	48	3.344	29	86.242
RD004	31	10.022	18	2.797	46	84.926
RD005	69	8.698	29	3.039	89	80.342
RD006	101	7.670	31	3.101	100	77.970
RD007	46	9.549	25	2.877	67	83.188
RD008	73	8.537	69	3.753	28	86.295
RD009	57	9.161	78	3.837	27	86.300
RD010	89	8.155	35	3.144	30	86.217
RD0100	7	11.136	57	3.479	24	86.545
RD011	34	9.830	106	4.955	35	85.551
RD012	38	9.772	56	3.477	65	83.240
RD013	75	8.533	23	2.874	82	81.165
RD014	28	10.058	50	3.389	49	84.447
RD015	22	10.193	2	2.130	34	85.606
RD016	18	10.321	93	4.252	44	85.043
RD017	56	9.167	16	2.760	66	83.206
RD018	84	8.255	103	4.715	9	88.553
RD019	63	8.930	105	4.899	95	79.784
RD020	30	10.032	53	3.432	38	85.338
RD021	102	7.538	94	4.299	63	83.302
RD022	12	10.787	66	3.731	2	91.536
RD023	72	8.544	46	3.323	36	85.458
RD024	82	8.412	99	4.445	83	81.097
RD025	100	7.721	67	3.749	69	82.810
RD026	92	8.083	101	4.585	16	87.509
RD027	23	10.169	20	2.844	76	82.033
RD028	71	8.642	65	3.730	71	82.501
RD029	37	9.803	63	3.701	60	83.386
RD030	79	8.506	33	3.140	110	70.640
RD031	4	11.382	26	2.896	43	85.046
RD032	52	9.410	47	3.327	73	82.414
RD033	59	9.050	43	3.262	33	85.636
RD034	33	9.918	22	2.871	92	79.887
RD035	98	7.908	74	3.786	102	77.488
RD036	29	10.050	61	3.650	10	88.484
RD037	14	10.650	64	3.705	19	86.867

RD038	66	8.769	80	3.874	105	74.862
RD039	74	8.534	83	4.068	87	80.576
RD040	6	11.308	68	3.752	23	86.628
RD041	13	10.686	17	2.791	42	85.166
RD042	68	8.698	44	3.303	54	83.954
RD043	15	10.504	85	4.085	31	86.209
RD044	39	9.721	59	3.570	13	87.994
RD045	78	8.507	72	3.772	84	80.757
RD046	104	7.445	96	4.354	108	72.414
RD047	55	9.188	97	4.379	70	82.687
RD048	3	11.429	36	3.152	61	83.355
RD049	111	6.866	70	3.758	109	71.193
RD050	45	9.554	27	2.957	77	82.032
RD051	9	10.949	12	2.674	53	83.989
RD052	70	8.663	88	4.162	106	73.252
RD053	1	11.506	37	3.160	6	89.443
RD054	32	9.959	62	3.692	4	89.921
RD055	87	8.209	102	4.664	75	82.126
RD056	43	9.654	10	2.557	107	73.013
RD057	27	10.074	89	4.172	57	83.487
RD058	26	10.080	4	2.364	101	77.675
RD059	2	11.449	19	2.832	17	87.455
RD060	24	10.126	15	2.759	55	83.701
RD061	8	11.067	1	1.992	15	87.588
RD062	76	8.522	55	3.454	81	81.194
RD063	21	10.212	13	2.701	79	81.779
RD064	50	9.444	81	3.899	22	86.639
RD065	110	6.968	87	4.109	112	67.926
RD066	60	9.007	76	3.820	8	88.849
RD067	99	7.852	32	3.113	86	80.613
RD068	109	7.045	75	3.813	88	80.576
RD069	49	9.508	52	3.423	32	86.012
RD070	105	7.334	84	4.079	99	78.835
RD071	95	7.945	91	4.207	52	84.047
RD072	19	10.282	24	2.875	40	85.307
RD073	16	10.495	58	3.556	26	86.429
RD074	25	10.120	9	2.547	39	85.326
RD075	58	9.133	39	3.170	72	82.425
RD076	10	10.927	49	3.372	78	81.879
RD077	51	9.416	3	2.330	47	84.694
RD078	5	11.371	11	2.647	3	90.286
RD079	77	8.520	34	3.141	48	84.517
RD080	93	8.077	109	5.168	98	79.061

RD081	54	9.240	107	5.012	58	83.475
RD082	96	7.934	90	4.203	5	89.781
RD083	106	7.241	110	5.219	85	80.722
RD084	103	7.496	54	3.454	103	77.139
RD085	97	7.909	51	3.405	37	85.443
RD086	62	8.974	92	4.224	90	80.088
RD087	112	6.050	79	3.862	111	68.972
RD088	81	8.426	111	5.992	93	79.868
RD089	88	8.200	77	3.825	80	81.581
RD090	35	9.827	104	4.750	56	83.602
RD091	80	8.447	41	3.212	104	76.810
RD092	20	10.227	95	4.308	18	87.352
RD093	85	8.241	38	3.169	97	79.179
RD094	42	9.677	42	3.249	12	88.148
RD095	67	8.708	28	2.961	51	84.153
RD096	86	8.234	40	3.197	94	79.787
RD097	108	7.109	82	4.055	21	86.689
RD098	61	8.978	73	3.779	41	85.260
RD099	11	10.834	60	3.616	14	87.891
RD101	53	9.267	6	2.456	62	83.340
RD102	41	9.683	45	3.314	25	86.527
RD103	65	8.859	5	2.393	96	79.764
RD104	40	9.683	14	2.736	68	82.981
RD105	36	9.822	7	2.471	50	84.417
RD106	17	10.435	8	2.526	20	86.830
RD107	47	9.545	30	3.041	59	83.455
Máximo	-	11.506	-	7.228	-	91.724
Mínimo	-	6.050	-	1.992	-	67.926
T 1 1 1		· / 1 -1\	2 • 1 1	1 1 1	3	. ~ (0/)

Legenda: ¹produtividade de grãos (ton.ha⁻¹); ²severidade da mancha branca; ³germinação (%).

Fonte: do autor (2021)

Com base na MHPRVG, os híbridos com as maiores adaptabilidades e estabilidades da produtividade de grãos (ton.ha⁻¹) foram RD053, RD059, RD048, RD078 e RD031, respectivamente (Tabela 6). Para este mesmo caráter, os híbridos menos adaptáveis e estáveis foram RD087, RD049, RD065, 30F53 e RD068, respectivamente (Tabela 6).

Ainda observando os resultados da MHPRVG na Tabela 6, os híbridos mais adaptáveis e estáveis foram RD061 (1,960), RD015 (2,130), RD077 (2,317), RD058 (2,361) e RD103 (2,393), respectivamente, enquanto que os menos adaptáveis e estáveis, em ordem, foram DKB230 (Testemunha), RD088, RD083, RD080 e RD081, para a SMB. Já para a GER, os híbridos 30F53 (Testemunha), RD022, RD078, RD054 e RD082 foram os mais adaptáveis e

estáveis. Para este mesmo caráter, os menos estáveis foram RD065, RD087, RD030, RD049 e RD046, com base na MHPRVG (Tabela 6).

Tabela 6 - Ordenamento geral dos híbridos com base nas MHPRVG. (continua)

	P	ROD ¹	S	SMB ²	(GER ³
HÍBRIDO	Ordem	MHPRVG	Ordem	MHPRVG	Ordem	MHPRVG
30F53	109	6.932	106	4.947	1	91.720
BM820	44	9.594	99	4.428	7	88.952
DKB177	63	8.910	72	3.760	74	82.274
DKB230	92	8.049	112	7.228	91	80.042
DKB390	91	8.072	22	2.861	46	84.917
RD001	47	9.509	100	4.430	11	88.300
RD002	83	8.353	85	4.066	65	83.211
RD003	89	8.120	47	3.309	29	86.192
RD004	31	10.022	19	2.797	45	84.926
RD005	68	8.686	29	3.031	88	80.293
RD006	101	7.599	33	3.071	100	77.916
RD007	46	9.544	26	2.876	67	83.187
RD008	73	8.533	64	3.698	27	86.228
RD009	57	9.160	78	3.836	28	86.212
RD010	90	8.120	36	3.129	31	86.128
RD0100	7	11.061	56	3.476	24	86.540
RD011	34	9.830	107	4.955	35	85.551
RD012	38	9.772	57	3.477	64	83.240
RD013	74	8.533	24	2.874	82	81.165
RD014	27	10.058	51	3.389	49	84.447
RD015	21	10.193	2	2.130	33	85.606
RD016	18	10.321	94	4.252	43	85.043
RD017	56	9.167	17	2.760	66	83.206
RD018	84	8.251	102	4.640	10	88.434
RD019	64	8.904	105	4.871	95	79.745
RD020	29	10.026	53	3.414	40	85.291
RD021	102	7.517	93	4.243	63	83.267
RD022	11	10.776	67	3.716	2	91.536
RD023	72	8.536	48	3.315	37	85.342
RD024	82	8.407	96	4.266	83	81.093
RD025	100	7.716	70	3.744	70	82.631
RD026	94	8.031	101	4.552	16	87.473
RD027	24	10.107	14	2.645	75	82.031
RD028	71	8.642	68	3.730	71	82.501
RD029	37	9.796	63	3.693	60	83.364
RD030	78	8.481	31	3.071	110	70.223
RD031	5	11.325	21	2.825	44	84.934

RD032	51	9.406	41	3.207	73	82.378
RD033	59	9.040	44	3.250	34	85.562
RD034	32	9.918	23	2.871	92	79.887
RD035	98	7.861	74	3.782	101	77.394
RD036	28	10.036	59	3.553	9	88.457
RD037	14	10.650	65	3.705	19	86.867
RD038	66	8.767	80	3.851	105	74.750
RD039	76	8.521	83	4.056	87	80.543
RD040	6	11.294	69	3.733	22	86.624
RD041	13	10.686	18	2.791	42	85.166
RD042	69	8.680	45	3.303	53	83.943
RD043	15	10.488	86	4.068	30	86.129
RD044	39	9.720	60	3.567	13	87.938
RD045	77	8.507	73	3.770	84	80.757
RD046	104	7.445	97	4.353	108	72.414
RD047	55	9.180	98	4.369	69	82.661
RD048	3	11.419	34	3.095	62	83.287
RD049	111	6.847	71	3.751	109	71.087
RD050	48	9.505	27	2.923	77	81.962
RD051	12	10.753	11	2.596	54	83.933
RD052	70	8.649	88	4.128	106	73.252
RD053	1	11.467	32	3.071	6	89.422
RD054	33	9.914	62	3.664	4	89.881
RD055	87	8.163	103	4.651	76	81.988
RD056	43	9.598	7	2.458	107	72.552
RD057	26	10.065	89	4.171	58	83.462
RD058	30	10.022	4	2.361	102	77.382
RD059	2	11.428	20	2.814	17	87.400
RD060	25	10.104	16	2.735	55	83.696
RD061	8	11.043	1	1.960	15	87.564
RD062	75	8.522	55	3.454	81	81.194
RD063	23	10.112	13	2.635	78	81.740
RD064	50	9.444	81	3.857	23	86.607
RD065	110	6.902	87	4.078	112	67.562
RD066	60	8.985	76	3.818	8	88.822
RD067	99	7.838	35	3.111	86	80.560
RD068	108	7.033	75	3.809	89	80.204
RD069	49	9.492	49	3.358	32	85.950
RD070	105	7.332	84	4.062	99	78.606
RD071	97	7.879	90	4.179	52	83.995
RD072	19	10.279	25	2.874	39	85.305
RD073	16	10.398	58	3.489	26	86.375
RD074	22	10.120	10	2.547	38	85.326

RD075	58	9.133	40	3.170	72	82.425
RD076	9	10.894	50	3.362	79	81.676
RD077	52	9.353	3	2.317	47	84.602
RD078	4	11.357	12	2.604	3	90.252
RD079	79	8.464	37	3.141	48	84.481
RD080	93	8.036	109	5.060	98	79.053
RD081	54	9.240	108	5.012	57	83.475
RD082	95	7.934	91	4.202	5	89.777
RD083	106	7.210	110	5.219	85	80.722
RD084	103	7.461	54	3.444	103	77.089
RD085	96	7.909	52	3.405	36	85.443
RD086	62	8.969	92	4.220	90	80.066
RD087	112	6.050	79	3.850	111	68.972
RD088	80	8.426	111	5.992	93	79.868
RD089	88	8.159	77	3.824	80	81.488
RD090	35	9.827	104	4.750	56	83.602
RD091	81	8.413	42	3.210	104	76.604
RD092	20	10.226	95	4.256	18	87.350
RD093	86	8.173	38	3.152	97	79.087
RD094	41	9.629	43	3.247	12	88.148
RD095	67	8.708	28	2.960	51	84.142
RD096	85	8.198	39	3.155	96	79.701
RD097	107	7.087	82	4.054	21	86.685
RD098	61	8.977	66	3.713	41	85.225
RD099	10	10.823	61	3.601	14	87.890
RD101	53	9.267	6	2.456	61	83.340
RD102	40	9.677	46	3.305	25	86.503
RD103	65	8.851	5	2.393	94	79.760
RD104	42	9.616	15	2.716	68	82.863
RD105	36	9.822	8	2.471	50	84.417
RD106	17	10.391	9	2.504	20	86.819
RD107	45	9.545	30	3.041	59	83.455
Máximo	-	11.467	-	7.228	-	91.720
Mínimo	-	6.050	-	1.960	-	67.562
_ 1			1, 2		2	

Legenda: ¹produtividade de grãos (ton.ha⁻¹); ²severidade da mancha branca; ³germinação (%).

Fonte: do autor (2021)

4.4 GGE Biplot

Para ordenamento dos genótipos considerando todas as safras foram gerados gráficos GGE Biplots do tipo *Ranking Genotypes* (Figuras 2, 3, 4, 5 e 6). Os gráficos GGE Biplots com base nos valores fenotípicos para os caracteres PROD, SMB e GER são apresentados nas

Figuras 2, 4 e 6, respectivamente. Já os gráficos GGE Biplots com base nos valores genotípicos para os caracteres PROD, SMB e GER são apresentados nas Figuras 3, 5 e 7, respectivamente.

Na abordagem considerando as médias fenotípicas, a porcentagem acumulada pelos dois primeiros componentes principais PC1 e PC2 explicaram 93,07% (17,40% + 75,67%) para a PROD, 93,89% (12,63% + 81,26%) para a SMB e para 90,84% (17,42% + 73,42%) a GER da variação total existente nos efeitos dos híbridos somados aos da interação híbridos x safras (Figuras 2, 4 e 6).

Por outro lado, na abordagem considerando os valores genotípicos, os valores de PC1 e PC2 somados explicaram 96,83% (6,70% + 90,13%) para a PROD, 96,55% (7,67% + 88,88%) para a SMB e 95,99% (8,40% + 87,59%) para a GER da variação total existente nos efeitos dos híbridos somados aos da interação híbridos x safras (Figuras 3, 5 e 7).

Com isso, notou-se que os modelos GGE fenotípicos e genotípicos explicaram grande parte das variações totais existentes (>90%) para os caracteres avaliados. No entanto, utilizando GGE genotípicos foi possível incrementar em 3,76% para a PROD, 2,66% para a SMB e 5,15% para a GER nas explicações das variações dos efeitos dos híbridos somados aos da interação híbridos x safras (Figuras 2 a 7).

Observando os GGE Biplots fenotípicos, os híbridos RD059 (1), RD053 (2), RD048 (3), RD078 (4) e RD040 (5) apresentaram as maiores estabilidades, respectivamente, para a PROD em todos as safras. Para o mesmo caráter, os RD087 (112), RD049 (111), RD068 (110), RD065 (109) e RD070 (108) foram os menos estáveis em todas as safras (Figura 2 e Tabela 8). Já para a SMB, os híbridos RD061 (112), RD015 (111), RD103 (110), RD058 (109) e RD077 (108) apresentaram as menores estabilidades, respectivamente (Figura 4 e Tabela 8). Para a GER, os híbridos 30F53 (1), RD022 (2), RD078 (3), RD053 (4) e RD082 (5) apresentaram as maiores estabilidades em com base em todas as safras. Em contraste, os híbridos RD065 (112), RD087 (111), RD030 (110), RD049 (109) e RD046 (108) foram os menos estáveis para a GER em todos as safras (Figura 6 e Tabela 8).

Observando os GGE Biplots genotípicos, os híbridos RD059 (1), RD053 (2), RD048 (3), RD078 (4) e RD041 (5) apresentaram as maiores estabilidades, respectivamente, para a PROD em todos as safras. Para o mesmo caráter, os RD087 (112), RD068 (111), RD070 (110), RD049 (109) e RD097 (108) foram os menos estáveis em todas as safras (Figura 3 e Tabela 9). Já para a SMB, os híbridos RD061 (112), RD015 (111), RD103 (110), RD077 (109) e RD058 (108) apresentaram as menores estabilidades, respectivamente (Figura 5 e Tabela 9). Para a

GER, os híbridos 30F53 (1), RD022 (2), RD078 (3), BM820 (4) e RD053 (5) apresentaram as maiores estabilidades em com base em todas as safras. Em contraste, os híbridos RD065 (112), RD087 (111), RD030 (110), RD046 (109) e RD049 (108) foram os menos estáveis para a GER em todos as safras (Figura 7 e Tabela 9).

Figura 2 – GGE Biplot, do tipo *Ranking Genotypes*, com base nas médias fenotípicas de produtividade de grãos (ton.ha⁻¹) dos híbridos em todas as safras.

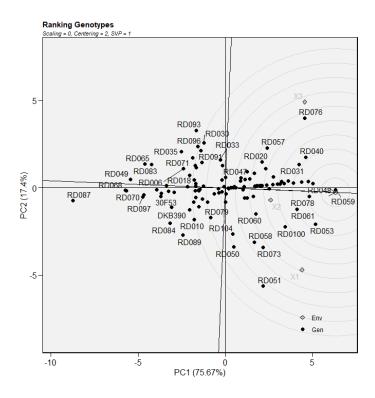


Figura 3 - GGE Biplot, do tipo *Ranking Genotypes*, com base nas médias genotípicas de produtividade de grãos (ton.ha⁻¹) dos híbridos em todas as safras.

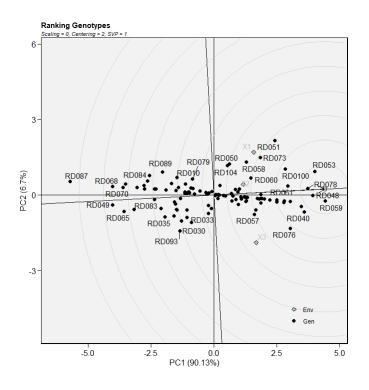


Figura 4 - GGE Biplot, do tipo *Ranking Genotypes*, com base nas médias fenotípicas das notas de severidade da mancha branca dos híbridos em todas as safras.

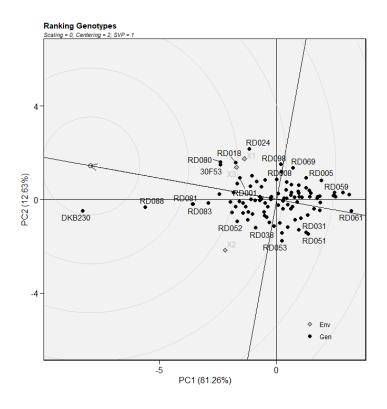


Figura 5 - GGE Biplot, do tipo *Ranking Genotypes*, com base nas médias genotípicas das notas de severidade da mancha branca dos híbridos em todas as safras.

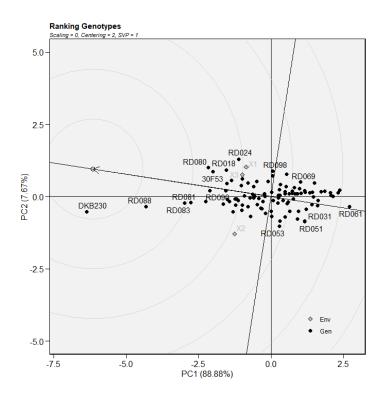


Figura 6 - GGE Biplot, do tipo *Ranking Genotypes*, com base nas médias fenotípicas da germinação dos híbridos em todas as safras.

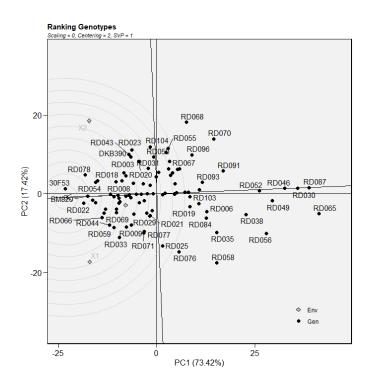
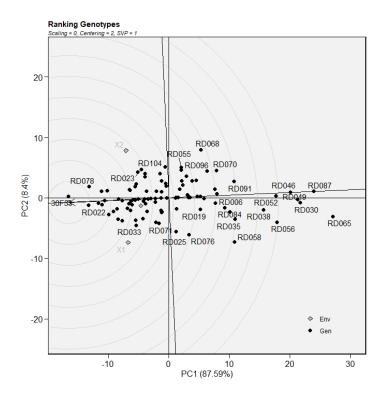



Figura 7 - GGE Biplot, do tipo *Ranking Genotypes*, com base nas médias genotípicas da germinação dos híbridos em todas as safras.

4.5 Coeficientes de correlação

Os valores de correlação de postos de Spearmen foram significativos (p < 0,5) entre os ordenamentos dos híbridos com base nas médias genotípicas preditas, MHVG, PRVG, MHPRVG, GGE fenotípico e GGE genotípico da análise conjunta das safras para os caracteres avaliados nas Figuras 8, 9 e 10. Para a PROD, o ordenamento dos híbridos com base nas médias genotípicas preditas apresentou uma elevada correlação (0,99) com o ordenamento dos híbridos com base na PRVG, na MHPRVG, nos GGE Biplots fenotípicos e genotípicos, respectivamente (Figura 8). Ainda para o mesmo caráter, o ordenamento dos híbridos com base na MHVG apresentou uma boa correlação com o ordenamento dos híbridos com base nas médias genotípicas preditas (0,69), na PRVG (0,69), na MHPRVG (0,70), nos GGE Biplots fenotípicos (0,72) e genotípicos (0,71).

Para a SMB, o ordenamento dos híbridos com base nas médias genotípicas preditas apresentou uma elevada correlação com o ordenamento dos híbridos com base na MHVG (0,95), na PRVG (0,98), na MHPRVG (0,98), nos GGE Biplots fenotípicos (0,98) e genotípicos (0,99), respectivamente (Figura 9). Já para a GER, o ordenamento dos híbridos com base nas médias genotípicas preditas apresentou uma elevada correlação com o ordenamento dos

híbridos com base na MHVG (0,96), na PRVG (0,99), na MHPRVG (0,99), nos GGE Biplots fenotípicos (0,99) e genotípicos (0,99), respectivamente (Figura 10).

Figura 8 - Heatmap contendo os valores de correlação de postos de Spearman entre os ordenamentos dos híbridos com base nas médias genotípicas preditas, na MHVG, na PRVG, na MHPRVG, no GGE Biplot fenotípico e no GGE Biplot genotípico da análise conjunta das safras para a produtividade de grãos (ton.ha⁻¹).

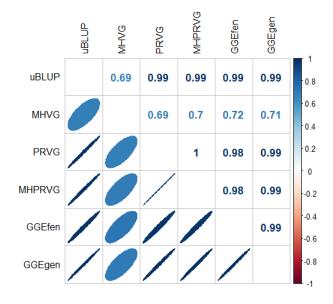


Figura 9 - Heatmap contendo os valores de correlação de postos de Spearman entre os ordenamentos dos híbridos com base nas médias genotípicas preditas, na MHVG, na PRVG, na MHPRVG, no GGE Biplot fenotípico e no GGE Biplot genotípico da análise conjunta das safras para a severidade da mancha branca.

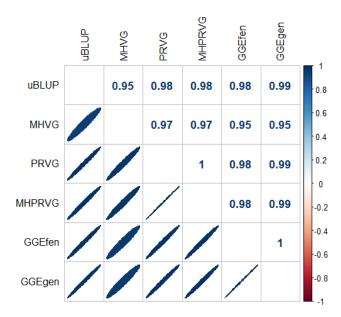
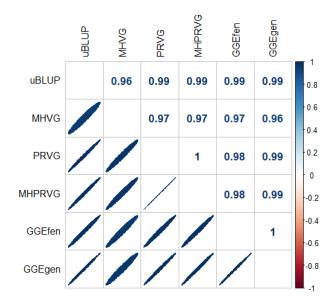



Figura 10 - Heatmap contendo os valores de correlação de postos de Spearman entre os ordenamentos dos híbridos com base nas médias genotípicas preditas, na MHVG, na PRVG, na MHPRVG, no GGE Biplot fenotípico e no GGE Biplot genotípico da análise conjunta das safras para a germinação (%).

Fonte: do autor (2021)

5 DISCUSSÃO

A experimentação no melhoramento genético de plantas é essencial para o contínuo desenvolvimento de novas cultivares. Para se obter sucesso na escolha dos genótipos superiores é desejável que a precisão experimental seja alta para uma boa inferência dos valores genotípicos dos tratamentos (RESENDE; DUARTE, 2007). A precisão experimental deste trabalho foi avaliada pela acurácia seletiva $(r\hat{g}g)$ e coeficiente de variação experimental (CV(%)) para as análises individuais e conjunta.

Os valores de acurácia seletivas maiores que 90% são classificados como muito altos, entre 70 a 90% são classificados como altos, entre 40 a 70% são classificados como médios e entre 10 a 40% são classificados como baixos (RESENDE; DUARTE, 2007). Neste sentido, as acurácias seletivas para os caracteres avaliados foram altas nas análises individuais, com exceção para a PROD (68,924%) na safra 2019/20, na conjunta das safras, com exceção para a GER (67,863%) (Tabelas 2 e 3). Segundo Resende (2002), a acurácia seletiva informa sobre o correto ordenamento dos genótipos para fins de seleção e sobre a eficácia da inferência acerca dos valores genotípicos. Portanto, estes resultados viabilizam o sucesso na prática da seleção de híbridos com alta precisão para todos os caracteres avaliados neste trabalho, pois os respectivos valores genéticos foram inferidos com alta precisão.

Em relação aos coeficientes de variação experimental, a maioria foi abaixo de 20% nas análises individuais, com exceção da safra 2019 para a PROD (21,605%) e das safras 2018/19 (25,941%) e 2020 (23.432) para a SMB (Tabela 2). Já para a análise conjunta, apenas a PROD (19,518%) e a GER (10,690) apresentaram *CV*s inferior a 20%. Pimentel Gomes (2009) destaca que coeficiente de variação inferior a 10% é um indicativo de ótima qualidade experimental, por sua vez, um experimento é considerado de boa qualidade, quando apresenta CV% entre 10 e 20%, regular de 20 a 30% e ruim ou baixa qualidade, quando a estimativa do coeficiente de variação for maior do que 30%. Logo, apesar das exceções, os *CV*s no geral indicaram a qualidade na condução dos experimentos e também, uma boa precisão experimental, visto que esse parâmetro mede o nível de variação residual como proporção da média do experimento, de modo que quanto maior é o erro, menor é o poder do teste em descriminar os tratamentos (FRITSCHE NETO et al., 2012, PIMENTEL GOMES, 1985).

Para a PROD, *CV*s de grande magnitude são muito comuns e esperados, visto que se trata de um caráter quantitativo, isto é, controlado por muitos genes e que sofre grande influência ambiental (RESENDE; DUARTE, 2007). Já para a SMB, altos *CV*s podem estar relacionados a desuniformidade da doença, uma vez que não houve inoculação do patógeno e a intensidade da doença ocorreu de forma natural no campo (COLOMBO et al., 2014). Outros trabalhos na literatura apresentaram *CV*s semelhantes aos encontrados neste trabalho, para a PROD (BUZINARO, 2017; FERNANDO; PINTO, 2017; RODRIGUES, 2019); e para a SMB (AMARAL, 2005; BERGHETTI, 2018; TEIXEIRA et al., 2017). Já para a GER era esperado CV de baixa magnitude, visto que este parâmetro é facilitado pela boa armazenagem das sementes e do preparo do solo antes da semeadura (CARVALHO; NAKAGAWA, 2012).

Analisando a significância das variâncias dos blocos observada nas análises individuais e conjunta, é possível concluir que o delineamento experimental em látice se justificou para todos os caracteres avaliados. A existência de heterogeneidade dentro das repetições completas justifica o uso dos blocos incompletos para controlar a heterogeneidade ambiental e a comparação dos tratamentos mais adequadamente em todas as safras (Tabela 2 e 3).

A estimação da herdabilidade é essencial em programas de melhoramento genético. Esta informação auxilia os melhoristas de plantas nas tomadas de decisões quanto à seleção. Visto que a herdabilidade representa a proporção fenotípica explicada pelo efeito genético, espera-se valores menores deste parâmetro ao se trabalhar com caráter de controle genético

quantitativo. Como esperado, a herdabilidade do caráter PROD (0,672) e do caráter GER (0,568) foram as menores entre os três caracteres avaliados (Tabela 3).

A existência de variabilidade genética é fundamental para se realizar a seleção em programa de melhoramento genético. Neste sentido, o componente de variância genética entre híbridos foi significativo (p < 0,05) para todos os caracteres avaliados em nas análises individuais e conjuntas (Tabelas 2 e 3). Estes resultados revelam a existência de variabilidade genética entre os híbridos avaliados para o caráter PROD, SMB e GER, o que viabilizaria a seleção de híbridos tanto por meio das análises individuais, como pelas análises conjuntas, sem a presença da interação híbridos x safras. Entretanto, a interação entre híbridos e safras foi significativa (p < 0,05) para todos os caracteres, evidenciando que os híbridos se comportam diferentemente ao longo das safras para todos os caracteres (Tabela 3).

Neste estudo, o efeito significativo da interação híbridos x safras já era esperado, pois houve a avaliação dos híbridos em condições de safra de verão, caso das safras 2018/19 e 2019/20, e de safrinha, caso da safra 2019. Os fatores ambientais como o regime pluviométrico e a temperatura são contrastantes entre as safras de verão e de safrinha (BUZINARO, 2017). Diante disso, para os caracteres avaliados, o estudo de adaptabilidade e estabilidade por meio do método MHPRVG via REML/BLUP e do GGE Biplot (fenotípicos e genotípicos) se mostrou importante para ordenar e selecionar os híbridos com bos melhores desempenhos gerais, isto é, considerando todas as safras.

No método MHPRVG via REML/BLUP, as estimativas de MHVG, PRVG e MHPRVG são respectivamente medidas indicativas de estabilidade, de adaptabilidade e de adaptabilidade e estabilidade dos híbridos no caráter em estudo (RESENDE, 2007). Para a PROD, considerando apenas a estabilidade, os híbridos RD041, RD037, RD016, RD015 e RD074 são selecionados, pois apresentaram as maiores médias com base na MHVG, 14,186, 14,138, 13,701, 13,533 e 13,434 ton.ha⁻¹, respectivamente (Tabela 4). Por outro lado, caso a seleção seja com enfoque apenas na adaptabilidade, os híbridos selecionados foram o RD053, RD059, RD048, RD031 e RD078 com as maiores médias com base na PRVG, 11,505, 11,446, 11,427, 11,380 e 11,370 ton.ha⁻¹, respectivamente (Tabela 5). Finalmente, com objetivo de selecionar os híbridos com as produtividades de grãos mais estáveis e adaptáveis simultaneamente, os híbridos selecionados são RD053, RD059, RD048, RD078 e RD031, visto que apresentaram as maiores médias MHPRVG equivalentes a 11,467, 11,428, 11,419, 11,357 e 11,325 ton.ha⁻¹ respectivamente (Tabela 6).

Já para a SMB, os híbridos foram ordenados decrescentemente, visto que a menor severidade da doença mancha branca pode refletir em uma maior resistência. Logo, os híbridos mais estáveis (MHVG) selecionados para esse caráter foram os RD061 (1,824), RD015 (1,906), RD101 (2,198), RD105 (2,211) e RD034 (2,221). Ainda para a SMB, os híbridos mais adaptáveis (PRVG) selecionados foram o RD061 (1.992), RD015 (2.130), RD077 (2.330), RD058 (2.364) e RD103 (2.393) (Tabela 5). Por fim, os híbridos mais estáveis e adaptáveis selecionados com base na severidade da mancha branca foram RD061 (1,960), RD015 (2,130), RD077 (2,317), RD058 (2,361) e RD103 (2,393) (Tabela 6).

Quanto à GER, os híbridos mais estáveis (MHVG) selecionados para esse caráter foram os RD022 (90,781%), RD078 (90,2995%), RD053 (89,467%), RD054 (89,147%) e RD082 (89,035%). Ainda para a GER, os híbridos mais adaptáveis (PRVG) selecionados foram o RD022 (91,536%), RD078 (90,286%), RD054 (89,921%), RD082 (89,781%) e RD053 (89,443%) (Tabela 5). Por fim, os híbridos mais estáveis e adaptáveis selecionados com base na germinação foram RD022 (91,720%), RD078 (91,536%), RD054 (90,252%), RD082 (89,881%) e RD053 (89,777%) (Tabela 6).

Com base nos valores fenotípicos, os GGE Biplot explicaram 93,07% para a PROD, 93,89% para a SMB e 90,84% para a GER da variação total existente nos efeitos dos híbridos somados aos da interação híbridos x safras (Figuras 2, 4 e 6). Por outro lado, na abordagem considerando os valores genotípicos, os GGE Biplot explicaram 96,83% para a PROD, 96,55% para a SMB e 95,99% para a GER da variação total existente nos efeitos dos híbridos somados aos da interação híbridos x safras (Figuras 3, 5 e 7). Esses valores de já foram observados em outros estudos envolvendo a seleção de genótipos de milho (OLIVEIRA *et al.*, 2010; HONGYU *et al.*, 2015; SANTOS et al., 2017).

Com o uso dos GGE genotípicos foi possível incrementar em 3,76% para a PROD, 2,66% para a SMB e 5,15% para a GER nas explicações das variações dos efeitos dos híbridos somados aos da interação híbridos x safras (Figuras 2 a 7). Esses resultados comprovaram que a utilização dos valores genotípicos em análises de GGE Biplot captam melhor os efeitos da interação híbridos x safras, apresentando um maior potencial nos estudos de adaptabilidade e estabilidade em comparação as médias fenotípicas ajustadas, fato já observado em estudo da interação genótipos x ambientes com genótipos de arroz e de milho (BALESTRE *et al.*, 2010; 2009).

Observando os GGE Biplots fenotípicos, os híbridos que apresentaram as maiores estabilidades foram o RD059 (12,767), RD053 (12,174), RD048 (12,035), RD078 (11,927) e RD041 (11,878) para a produtividade de grãos (ton.ha⁻¹) (Figura 2 e Tabela 8). Já para a SMB, os híbridos RD061 (1,767), RD015 (1,887), RD103 (2,045), RD077 (2,214) e RD058 (2,228) foram selecionados por apresentarem as menores estabilidades, respectivamente (Figura 4 e Tabela 8). Para a GER, os híbridos RD022 (93,447%), RD078 (93,072%), RD053 (92,195%), RD082 (91,745%) e RD054 (91,643%) apresentaram as maiores estabilidades em com base em todas as safras e foram selecionados para este caráter.

Com base nos GGE Biplots genotípicos, os híbridos que apresentaram as maiores estabilidades foram o RD059 (11,742), RD053 (11,545), RD048 (11,467), RD078 (11,362) e RD040 (11,259) para a produtividade de grãos (ton.ha⁻¹) (Figura 3 e Tabela 9). Já para a SMB, os híbridos RD061 (2,037), RD015 (2,289), RD103 (2,305), RD058 (2,394) e RD077 (2,442) foram selecionados por apresentarem as menores estabilidades, respectivamente (Figura 5 e Tabela 9). Para a GER, os híbridos RD022 (90,754%), RD078 (90,665%), RD053 (89,828%), RD082 (89,498%) e RD054 (89,473%) apresentaram as maiores estabilidades em com base em todas as safras e foram selecionados para este caráter (Figura 7 e Tabela 9).

Nas Figuras 8, 9 e 10, encontram-se os valores dos postos da correlação de Spearman usados para verificar a associação entre os ordenamentos dos híbridos pelos métodos de MHPRVG, considerando MHVG e PRVG, e de GGE Biplot (genotípicos e fenotípicos) com o ordenamento utilizando as médias genotípicas preditas para todos os caracteres avaliados nas análises conjunta. Para a PROD, o ordenamento dos híbridos com base nas médias genotípicas preditas apresentou uma elevada correlação (> 0,90) com o ordenamento dos híbridos com base na PRVG, na MHPRVG, nos GGE Biplots fenotípicos e genotípicos (Figura 8). Já para a SMB e a GER, resultados semelhantes foram observados, visto que o ordenamento com base nas médias genotípicas preditas dos híbridos apresentou também uma elevada correlação (> 0,90) com o ordenamento dos híbridos com base na PRVG, na MHPRVG, nos GGE Biplots fenotípicos e genotípicos. Esse tipo de associação já foi observada em estudos de adaptabilidade e estabilidade envolvendo os métodos MHPRVG e GGE Biplots para a seleção de genótipos de soja e de milho (NAZATO, 2019; YAMAMOTO, 2018).

Neste contexto, o ordenamento dos híbridos pelas médias genotípicas também serve para a seleção com base na adaptabilidade e estabilidade e reforça a ideia proposta por Resende (2007). Logo, para a PROD, os híbridos mais estáveis e adaptáveis foram o RD053 (11,05), RD048 (11,01), RD078 (10,91), RD040 (10,84) e RD031 (10,83), respectivamente, pois,

apresentaram as maiores médias genotípicas e também diferiram da média geral, 9,19 ton.ha⁻¹ (Figura 1). Já para a SMB, os híbridos mais adaptáveis e estáveis seriam o RD061, RD103, RD058, RD077 e RD106 foram os menos acometidos pela mancha branca e apresentaram médias genotípicas, diferentes da média geral (3,58), equivalentes 2,34, 2,56, 2,59, 2,66 e 2,69, respectivamente, na escala de notas da doença (Figura 1).

6 CONCLUSÕES

A interação híbridos x safras influenciou os caracteres de produtividade de grãos, da severidade da mancha e da germinação nas safras de 2018/19, 2019 e 2019/20.

Pelo o método MHPRVG, os híbridos mais adaptáveis e estáveis selecionados foram o RD053, RD059, RD048, RD078 e RD031 para a produtividade de grãos, o RD061, RD015, RD077, RD058 e RD103 para a severidade da mancha branca e o RD022, RD078, RD054, RD082 e RD053 para a germinação.

O GGE Biplot com base nos valores genotípicos foi mais acurado e permitiu a seleção dos híbridos RD059, RD053, RD048, RD078 e RD041 mais estáveis para a produtividade de grãos, dos híbridos RD061, RD015, RD103, RD077 e RD058 mais estáveis para a severidade da mancha branca e dos híbridos RD022, RD078, RD053, RD082 e RD054 mais estáveis para a germinação para todas as safras em Lavras-MG.

O ordenamento considerando as médias genotípicas gerais dos híbridos mostrou elevada associação com o ordenamento dos híbridos pelos métodos MHPRVG e GGE Biplot neste estudo.

REFERÊNCIAS

ABUZAR, M. R. et al. Effect of plant population densities on yield of maize. **The Journal of Animal & Plant Sciences**, v. 21, n. 4, p. 692-695, 2011.

AMARAL, A. L. DO. **Etiologia e genética da resistência à Mancha Branca do milho**. Porto Alegre: Universidade Federal do Rio Grande do Sul, 2005.

ANNICCHIARICO, P. **Genotype x environment interactions:** challenges and opportunities for plant breeding and cultivar recommendations. Rome: Food and Agriculture Organization, Plant Production and Protection Paper, no 174, 2002. 119p

BALESTRE, M; SANTOS, V.B.D.; SOARES, A.A.; REIS, M.S. Stability and adaptability of upland rice genotypes. **Crop Breeding and Applied Biotechnology**, Viçosa, v.10, n.4, p.357-363, 2010.

BALESTRE, M.; VON PINHO, R.G.; SOUZA, J.C.; OLIVEIRA, R.L. Genotypic stability and adaptability in tropical maize based on AMMI and GGE biplot analysis. **Genetics and Molecular Research**, Ribeirão Preto, v.8, n.4, p. 1311-1322, 2009.

BARTLETT, M. S. Properties of sufficiency and statistical tests. **Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences**, v. 160, n. 901, p. 268–282, 1937.

BECKER, H. C.; LEON, Ji. Stability analysis in plant breeding. **Plant breeding**, v. 101, n. 1, p. 1-23, 1988.

BERGHETTI, J. Intensidade da Mancha Branca, podridões de colmo e qualidade de grãos em híbridos de milho sob épocas de semeadura e doses de nitrogênio. Lages: Universidade do Estado de Santa Catarina, 2018.

BORGHI, E. et al. Dez dicas para produção de milho. **Embrapa Milho e Sorgo-Documentos** (**INFOTECA-E**), 2017.

BORÉM, A; GALVÃO, J. C. C.; PIMENTEL, M. A. **Milho: do plantio à colheita**. 2. ed. Viçosa: Ed. UFV, 2017.

BORÉM, A; MIRANDA G. V.; FRITSCHE-NETO, R. **Melhoramento de plantas**. 7. ed.Viçosa: Ed. UFV, 2017.

BUZINARO, R. Capacidade combinatória de linhagens e seleção de híbridos eficiente no uso de Azospirillum brasilense e nitrogênio em milho. Jaboticabal: Universidade Estadual Paulista, 2017.

CARDOSO, G. A. **Progresso genético e análise de trilha na seleção recorrente em milho**. Lavras: UFLA, 2018.

CARVALHO, N.M.; NAKAGAWA, J. **Sementes: ciência, tecnologia e produção**. 5 ed. Jaboticabal: FUNEP, 2012. 588p

COLOMBO, G. A. et al. Análise dialélica para resistência a ferrugem polissora em milho em diferentes níveis de adubação fosfatada. **Bragantia**, v. 73, n. 1, p. 65–71, 2014.

CONAB. **Acompanhamento da safra Brasileira de grãos 2019/2020**: Décimo segundo levantamento, setembro, 2020, Brasília. Disponível em: https://www.conab.gov.br/infoagro/safras/graos/boletim-da-safra-de-graos. Acesso em: 01 jan 2021.

CRABB, A. R. The hybrid-corn makers: prophets of plenty. New Brunswick: Rutgers University, 1947.

CROW, J. F.; DOVE, W. F. The Beginning of Hybrid Maize. **Genetics**, v. 148, n. 3, p. 923–928, 1998.

CRUZ, C. D.; CARNEIRO, P. C. S. **Modelos biométricos aplicados ao melhoramento genético**. 2. ed. rev. Viçosa-MG: UFV, 2006. v. 2, 585 p

DE ABREU, Hadassa Kathyuci Antunes et al. Adaptability and stability of cowpea genotypes via REML/BLUP and GGE BIPLOT. **Bioscience Journal**, v. 35, n. 4, 2019.

DUVICK, D.N.; CASSMAN, K. G. Post – Green Revolution Trends in Yield Potential of Temperate Maize in the. **Crop Science**, v. 39, n. 6, p. 1622–1630, 1999.

EAST, E. M. The distinction between development and heredity in inbreeding. **American Naturalist**, v. 43, p. 173–181, 1909.

EBERHART, S.A.; RUSSELL, W.A. Stability parameters for comparing varieties. **Crop Science**, Madison, v. 6, n. 1, p. 36-40, 1966.

FERNANDO, J.; PINTO, N. **Adaptabilidade e estabilidade em populações de milho**. Jataí: Universidade Federal de Goiás, 2017.

FRITSCHE-NETO, Roberto et al. Seleção genômica ampla e novos métodos de melhoramento do milho. **Revista Ceres**, v. 59, n. 6, p. 794-802, 2012.

FOX, John et al. Package 'car'. Vienna: R Foundation for Statistical Computing, 2012.

GARROD, ArchibaldE. The incidence of alkaptonuria: a study in chemical individuality. **The Lancet**, v. 160, n. 4137, p. 1616-1620, 1902.

GEZAN, S. A.; MUNOZ, P. R. **Analysis of experiments using ASReml:** with emphasis on breeding trials. 2014. Disponível em: https://www.biostatsgen.com/uploads/3/8/9/6/38964623/alldiap_sa_oct2014.pdf>. Acesso em: 21 dez. 2020.

HALLAUER, A. R. .; CARENA, M. J. .; MIRANDA FILHO, J. D. Quantitative genetics in maize breeding. 3. ed. New York: Springer-Verlag, 2010.

HONGYU, K.; GARCIA-PEÑA, M.; ARAÚJO, L. B.; DIAS, C. T. S. Statistical analysis of yield trials by AMMI analysis of genotype x environment interaction. **Biometrical Letters**, v. 51, p. 89-102, 2014.

JONES, D. F. **The effects of inbreeding and crossbreeding upon development**. New Haven: Bulletin of the Connecticut Agricultural Experimental Station, , 1918. (Nota técnica).

KOZAK, M.; PIEPHO, H.-P. What's normal anyway? Residual plots are more telling than significance tests when checking ANOVA assumptions. **Journal of Agronomy and Crop Science**, v. 204, n. 1, p. 86-98, 2018.

KOTTEK, M. et al. World Map of the Köppen-Geiger climate classification updated. **Meteorologische Zeitschrift**, v. 15, p. 259–263, 2006.

KUZNETSOVA, A. et al. lmerTest package: tests in linear mixed effects models. **Journal of statistical software**, v. 82, n. 13, p. 1-26, 2017.

LEIBMAN, M. SHRYOCK, J.J.; CLEMENTS, M. J.; HALL, M. A.; LOIDA, P. J.; MCCLERREN, A. L.; MCKINESS, Z. P.; PHILLIPS, J. R.; RICE, E. A.; STARK, S. B. Comparative analysis of maize (*Zea mays*) crop performance: natural variation, incremental improvements and economic impacts. **Plant Biotechnology Journal**, v. 12, p. 941–950, 2014.

OLIVEIRA, N. N. S. DE. **Métodos de escolha de populações para extração de linhagens de milho**. Lavras: UFLA, 2018b.

OLIVEIRA, R. B. R.; MOREIRA, R. M. P.; FERREIRA J. M. Adaptability and stability of maize landrace varieties. **Semina**, v. 34, n. 6, p. 2555-2564, 2013.

OLIVOTO, Tiago et al. Mean performance and stability in multi-environment trials I: Combining features of AMMI and BLUP techniques. **Agronomy Journal**, v. 111, n. 6, p. 2949-2960, 2019.

PIEPHO, H. P.; MOHRING, J. Computing heritability and selection response from unbalanced plant breeding trials. **Genetics**, Austin, v. 177, n. 3, p. 1881-1888, 2007.

PIMENTEL GOMES, F. **Curso de estatística experimental**. 15. ed. Piracicaba: Ed. ESALQ, 2009. 451 p.

PIMENTEL GOMES, F. A estatística moderna na pesquisa agropecuária. **BRAZILIAN JOURNAL OF AGRICULTURE-Revista de Agricultura**, v. 60, n. 3, p. 232, 1985.

R CORE TEAM. **R:** a language and environment for statistical computing. Viena: R Foundation for Statistical Computing, 2018. Disponível em: https://www.Rproject.org/>. Acesso em: 10 dez. 2020.

RESENDE, M.D.V. de. **Matemática e estatística na análise de experimentos e no melhoramento genético**. Brasília: Embrapa Florestas, 2007. 362p. RESENDE, M.D.V. de; DUARTE, J.B. Precisão e controle de qualidade em experimentos de

avaliação de cultivares. **Pesquisa Agropecuária Tropical**, Goiânia, v. 37, n.3, p.182-194, 2007.

RODRIGUES, M. C. Capacidade de combinação e efeito recíproco de linhagens de milho tropical em ambientes contrastantes de nitrogênio. Viçosa: Universidade Federal de Viçosa, 2019.

SACHS, P. J. D. et al. Escala diagramática para avaliação da severidade da mancha branca em milho. **Summa Phytopathologica**, v. 37, n. 4, p. 202–204, 2011.

SANTOS, A.; AMARAL JÚNIOR, A. T.; KUROSAWA, R. N. F.; GERHARDT, I. F. S.; FRITSCHE NETO, R. GGE Biplot projection in discriminating the efficiency of popcorn lines to use nitrogen. **Ciência e Agrotecnologia**, v. 41, n.1, p. 22-31, 2017

SAWAZAKI, E.; PATERNIANI, M. E. A. G. Z. Evolução dos cultivares de milho no Brasil. In: **Tecnologias de produção do milho**. 20. ed. Viçosa: Ed. UFV, 2004. p. 13–53.

SHIRI, M. R. Grain yield stability analysis of maize (Zea mays L.) hybrids under different drought stress conditions using GGE biplot analysis. 2013.

SHULL, G. H. The composition of a field of maize. **American Breeders Association Report**, v. 4, p. 296–301, 1908.

SHULL, G. H. **A pure line method of corn breeding**. Washington: Americam Breeders Association Report, 1909.

SOUZA SOBRINHO, F. Divergência genética de híbridos simples e alternativas para a obtenção de híbridos duplos de milho. Lavras: Lavras, 2001.

SQUILASSI, Márcio Gomes. Interação de genótipos com ambientes. Embrapa Tabuleiros Costeiros-Livro técnico (INFOTECA-E), 2003.

TEIXEIRA, F. F. et al. Maize pre-breding for resistance to white spot and polysora rust. **Revista Brasileira de Milho e Sorgo**, v. 16, n. 2, p. 273–286, 2017.

TONK, Fatma Aykut; ILKER, Emre; TOSUN, Muzaffer. Evaluation of genotype x environment interactions in maize hybrids using GGE biplot analysis. **Crop Breeding and Applied Biotechnology**, v. 11, n. 1, p. 01-09, 2011.

VENCOVSKY, Roland; BARRIGA, Patrício. **Genética biométrica no fitomelhoramento**. 1992.

WEI, Taiyun et al. Package 'corrplot'. Statistician, v. 56, n. 316, p. e24, 2017.

YAMAMOTO, E. L. M et al. Interação genótipos x ambientes e variação espacial em experimentos de avaliação de genótipos de milho no Brasil Central. 2018.

YAN, W.; HUNT, L.A.; SHENG, Q.; SZLAVNICS, Z. Cultivar evaluation and megaenvironment investigation based on GGE biplot. **Crop Science**, Madison, v.40, n. 3, p.597-605, 2000.

ANEXOS

Tabela 7 – Ordenamento dos híbridos com base nas estimativas dos valores genotípicos (BLUP) e das médias genotípicas (BLUPs) da análise conjunta dos caracteres avaliados em todas as safras. (continua)

HÍDDIDA		PROD1			SMB ²			GER ³	
HÍBRIDO	Ordem	ĝ	$\hat{\mu} + \hat{g}$	Ordem	ĝ	$\hat{\mu} + \hat{g}$	Ordem	ĝ	$\hat{\mu} + \hat{g}$
30F53	103	-1.09	8.10	107	0.96	4.54	1	6.48	89.66
BM820	45	0.26	9.46	86	0.40	3.98	13	3.11	86.28
DKB177	64	-0.21	8.98	66	0.05	3.63	72	-0.47	82.70
DKB230	97	-0.94	8.25	112	1.85	5.43	88	-1.59	81.59
DKB390	95	-0.84	8.35	18	-0.52	3.06	39	1.50	84.67
RD001	43	0.28	9.47	101	0.71	4.29	9	3.80	86.98
RD002	83	-0.66	8.53	81	0.27	3.85	57	0.46	83.63
RD003	90	-0.76	8.43	43	-0.20	3.38	29	2.19	85.37
RD004	23	0.75	9.94	22	-0.44	3.14	45	0.99	84.16
RD005	71	-0.43	8.76	23	-0.44	3.14	91	-1.98	81.20
RD006	102	-1.08	8.11	35	-0.30	3.28	100	-3.81	79.36
RD007	48	0.18	9.38	19	-0.51	3.07	69	-0.36	82.82
RD008	78	-0.54	8.65	64	0.04	3.62	22	2.54	85.72
RD009	53	0.07	9.26	69	0.11	3.69	26	2.21	85.38
RD010	88	-0.74	8.46	37	-0.28	3.30	22	2.54	85.72
RD0100	9	1.35	10.54	58	-0.04	3.54	29	2.19	85.37
RD011	32	0.51	9.70	100	0.65	4.23	41	1.20	84.37
RD012	33	0.49	9.68	53	-0.10	3.48	65	0.08	83.26
RD013	74	-0.53	8.66	27	-0.40	3.18	77	-1.03	82.15
RD014	25	0.69	9.88	52	-0.10	3.48	52	0.64	83.82
RD015	21	0.76	9.96	8	-0.70	2.89	42	1.19	84.37
RD016	15	1.03	10.22	85	0.35	3.93	41	1.20	84.37
RD017	55	0.01	9.20	26	-0.40	3.18	65	0.08	83.26
RD018	89	-0.75	8.44	106	0.81	4.39	7	4.10	87.28
RD019	61	-0.11	9.08	108	0.98	4.56	94	-2.43	80.75
RD020	22	0.75	9.95	49	-0.12	3.46	33	1.84	85.02
RD021	101	-1.04	8.15	93	0.53	4.11	55	0.50	83.67
RD022	16	0.95	10.14	60	0.01	3.59	3	5.20	88.38
RD023	68	-0.35	8.84	34	-0.30	3.28	34	1.78	84.96
RD024	86	-0.67	8.52	97	0.59	4.17	90	-1.70	81.48
RD025	99	-0.97	8.22	71	0.11	3.69	69	-0.36	82.82
RD026	92	-0.79	8.41	103	0.74	4.33	17	2.89	86.06
RD027	31	0.55	9.75	20	-0.51	3.07	82	-1.21	81.96
RD028	77	-0.54	8.65	76	0.20	3.78	72	-0.47	82.70

RD029	35	0.45	9.64	74	0.15	3.73	53	0.60	83.78
RD030	70	-0.41	8.78	42	-0.20	3.38	111	-9.13	74.05
RD031	5	1.64	10.83	13	-0.60	2.99	50	0.80	83.98
RD032	54	0.05	9.24	56	-0.09	3.49	74	-0.79	82.39
RD033	60	-0.09	9.11	50	-0.12	3.46	30	1.99	85.16
RD034	36	0.44	9.63	30	-0.35	3.23	83	-1.34	81.84
RD035	98	-0.96	8.23	75	0.19	3.77	102	-4.28	78.89
RD036	30	0.58	9.77	61	0.01	3.59	11	3.50	86.68
RD037	12	1.16	10.35	65	0.05	3.63	35	1.75	84.93
RD038	69	-0.39	8.81	80	0.27	3.85	106	-6.28	76.90
RD039	76	-0.53	8.66	84	0.34	3.92	89	-1.64	81.54
RD040	4	1.65	10.84	73	0.11	3.69	32	1.85	85.02
RD041	10	1.27	10.46	25	-0.40	3.18	44	1.19	84.37
RD042	65	-0.23	8.96	47	-0.20	3.38	47	0.92	84.10
RD043	14	1.03	10.22	90	0.43	4.01	27	2.19	85.37
RD044	37	0.42	9.61	59	-0.04	3.54	10	3.58	86.76
RD045	82	-0.63	8.56	77	0.21	3.79	86	-1.40	81.78
RD046	85	-0.66	8.53	98	0.63	4.21	105	-5.80	77.38
RD047	59	-0.08	9.11	104	0.74	4.33	75	-0.93	82.24
RD048	2	1.82	11.01	36	-0.28	3.30	58	0.46	83.63
RD049	112	-1.92	7.27	79	0.24	3.82	110	-9.01	74.17
RD050	47	0.26	9.45	21	-0.44	3.14	76	-0.97	82.21
RD051	11	1.19	10.38	14	-0.56	3.02	56	0.48	83.66
RD052	72	-0.46	8.73	95	0.53	4.11	108	-6.66	76.52
RD053	1	1.86	11.05	44	-0.20	3.38	4	4.97	88.15
RD054	39	0.38	9.58	68	0.11	3.69	5	4.35	87.52
RD055	79	-0.56	8.63	102	0.73	4.31	74	-0.79	82.39
RD056	50	0.16	9.35	6	-0.75	2.83	107	-6.53	76.64
RD057	24	0.71	9.90	96	0.58	4.17	60	0.30	83.47
RD058	29	0.59	9.79	3	-0.99	2.59	104	-4.41	78.77
RD059	6	1.55	10.75	11	-0.61	2.97	14	3.06	86.24
RD060	26	0.69	9.88	10	-0.67	2.91	49	0.80	83.98
RD061	7	1.44	10.63	1	-1.24	2.34	12	3.28	86.46
RD062	75	-0.53	8.66	54	-0.10	3.48	78	-1.03	82.15
RD063	28	0.63	9.82	12	-0.60	2.99	80	-1.03	82.14
RD064	49	0.16	9.35	67	0.11	3.69	25	2.21	85.38
RD065	111	-1.68	7.51	89	0.43	4.01	112	-11.61	71.57
RD066	58	-0.07	9.12	72	0.11	3.69	8	3.92	87.09
RD067	104	-1.11	8.08	31	-0.34	3.24	84	-1.40	81.78
RD068	109	-1.42	7.77	70	0.11	3.69	92	-2.07	81.11

_	RD069 RD070	46 105	0.26	9.45	41	-0.20	3.38	32	1.85	85.02
- -	RD070	105	1 10							
_			-1.18	8.01	82	0.32	3.90	99	-3.46	79.72
_	RD071	91	-0.77	8.42	91	0.51	4.09	59	0.42	83.59
	RD072	19	0.88	10.07	33	-0.31	3.27	36	1.60	84.77
	RD073	17	0.89	10.08	62	0.04	3.62	20	2.54	85.72
	RD074	20	0.81	10.00	17	-0.55	3.03	44	1.19	84.37
	RD075	57	-0.05	9.15	39	-0.24	3.34	70	-0.40	82.77
	RD076	8	1.38	10.57	48	-0.18	3.41	79	-1.03	82.14
	RD077	44	0.27	9.46	4	-0.92	2.66	46	0.92	84.10
	RD078	3	1.72	10.91	9	-0.67	2.91	2	5.67	88.84
	RD079	73	-0.47	8.72	29	-0.36	3.22	38	1.50	84.68
	RD080	93	-0.82	8.38	110	1.06	4.64	98	-3.37	79.81
_	RD081	56	-0.01	9.18	105	0.80	4.38	65	0.08	83.26
	RD082	94	-0.83	8.37	94	0.53	4.11	6	4.35	87.52
	RD083	110	-1.67	7.53	109	1.03	4.61	86	-1.40	81.78
_	RD084	106	-1.25	7.94	51	-0.12	3.46	103	-4.41	78.77
	RD085	96	-0.85	8.34	57	-0.05	3.53	48	0.88	84.06
	RD086	62	-0.14	9.05	92	0.51	4.09	93	-2.32	80.85
	RD087	107	-1.26	7.93	83	0.32	3.90	109	-6.91	76.27
	RD088	80	-0.59	8.60	111	1.25	4.83	88	-1.59	81.59
	RD089	100	-0.97	8.22	78	0.21	3.79	81	-1.17	82.01
	RD090	38	0.39	9.58	99	0.65	4.23	65	0.08	83.26
	RD091	81	-0.61	8.58	40	-0.21	3.37	101	-3.96	79.21
	RD092	27	0.67	9.86	87	0.42	4.00	24	2.21	85.39
_	RD093	87	-0.71	8.49	38	-0.28	3.30	97	-3.02	80.16
_	RD094	51	0.14	9.33	46	-0.20	3.38	15	3.06	86.24
_	RD095	67	-0.34	8.85	24	-0.40	3.18	54	0.50	83.68
_	RD096	84	-0.66	8.53	28	-0.36	3.22	95	-2.67	80.51
_	RD097	108	-1.30	7.89	88	0.42	4.00	19	2.64	85.81
_	RD098	63	-0.18	9.01	63	0.04	3.62	38	1.50	84.68
_	RD099	13	1.05	10.25	55	-0.09	3.49	16	3.06	86.24
_	RD101	52	0.08	9.27	16	-0.55	3.03	65	0.08	83.26
_	RD102	40	0.37	9.56	45	-0.20	3.38	23	2.29	85.47
_	RD103	66	-0.24	8.95	2	-1.02	2.56	96	-2.93	80.25
_	RD104	42	0.29	9.48	7	-0.75	2.83	62	0.11	83.28
_	RD105	34	0.47	9.66	15	-0.55	3.03	52	0.64	83.82
_	RD106	18	0.89	10.08	5	-0.89	2.69	18	2.84	86.01
_	RD107	41	0.35	9.54	32	-0.33	3.25	61	0.24	83.41
	Máximo	-	1.859	11.050	-	1.848	5.428	-	6.483	89.661
_	Mínimo	_	-1.920	7.272	_	-1.241	2.340	_	-11.609	71.568

Legenda: ¹produtividade de grãos (ton.ha-¹); ²severidade da mancha branca; ³germinação (%). Fonte: do autor (2021)

Tabela 8 – Ordenamento dos híbridos com estimativas de GGE dos valores fenotípicos para os caracteres avaliados. (continua)

HÍBRIDO	$PROD^1$	SMB^2	GER ³
IIIBRIDO	Ordem	Ordem	Orden
30F53	98	105	1
BM820	42	102	4
DKB177	64	68	72
DKB230	97	112	91
DKB390	91	26	40
RD001	43	98	10
RD002	81	77	56
RD003	86	43	26
RD004	14	7	31
RD005	69	30	88
RD006	95	32	100
RD007	49	25	70
RD008	73	62	19
RD009	53	69	27
RD010	83	41	17
RD0100	13	58	30
RD011	26	107	33
RD012	28	50	63
RD013	75	17	85
RD014	19	49	48
RD015	17	2	34
RD016	11	96	32
RD017	51	16	62
RD018	92	103	8
RD019	57	104	93
RD020	27	57	46
RD021	103	90	57
RD022	15	61	2
RD023	82	36	42
RD024	87	95	83
RD025	104	73	69
RD026	84	99	18
RD027	37	27	82

RD028	78	83	73
RD029	38	66	55
RD030	70	47	110
RD031	9	21	66
RD032	58	60	75
RD033	63	52	20
RD034	32	13	89
RD035	96	76	102
RD036	35	54	13
RD037	8	67	21
RD038	67	79	105
RD039	71	81	87
RD040	6	71	45
RD041	5	15	36
RD042	65	46	52
RD043	18	86	38
RD044	39	59	12
RD045	77	78	80
RD046	106	97	109
RD047	61	100	78
RD048	3	40	68
RD049	109	75	108
RD050	46	28	74
RD051	21	20	53
RD052	93	94	106
RD053	2	44	5
RD054	45	74	7
RD055	79	101	76
RD056	56	11	107
RD057	23	92	67
RD058	33	5	101
RD059	1	14	14
RD060	31	18	51
RD061	10	1	11
RD062	76	51	86
RD063	44	22	79
RD064	50	65	29
RD065	107	88	112
RD066	55	72	9
RD067	101	35	77

RD068	111	70	92
RD069	41	48	37
RD070	110	82	103
RD071	90	89	49
RD072	20	31	39
RD073	24	64	23
RD074	16	8	35
RD075	54	24	71
RD076	7	45	84
RD077	36	4	50
RD078	4	19	3
RD079	66	34	41
RD080	89	106	97
RD081	52	110	65
RD082	100	93	6
RD083	105	109	81
RD084	99	56	99
RD085	102	55	44
RD086	59	91	94
RD087	112	84	111
RD088	85	111	90
RD089	94	80	59
RD090	34	108	64
RD091	74	38	104
RD092	22	85	28
RD093	88	39	98
RD094	60	42	15
RD095	72	29	58
RD096	80	37	95
RD097	108	87	24
RD098	62	63	43
RD099	12	53	16
RD101	47	10	61
RD102	40	33	22
RD103	68	3	96
RD104	48	12	60
RD105	30	9	47
RD106	25	6	25
RD107	29	23	54

Legenda: ¹produtividade de grãos (ton.ha-¹); ²severidade da mancha branca; ³germinação (%).

Tabela 9 - Ordenamento dos híbridos com estimativas de GGE dos valores genotípicos para os caracteres avaliados. (continua)

HÍBRIDO	PROD ¹	SMB^2	GER ³
	Ordem	Ordem	Ordem
30F53	102	104	1
BM820	43	99	7
DKB177	63	67	72
DKB230	94	112	92
DKB390	93	24	42
RD001	45	98	10
RD002	82	78	59
RD003	87	44	29
RD004	21	10	45
RD005	69	28	88
RD006	97	35	100
RD007	48	23	69
RD008	77	62	21
RD009	53	68	25
RD010	85	41	20
RD0100	10	58	30
RD011	29	106	36
RD012	31	50	64
RD013	73	19	83
RD014	24	49	50
RD015	19	2	37
RD016	14	94	35
RD017	52	18	63
RD018	90	103	8
RD019	61	105	90
RD020	25	54	41
RD021	104	89	57
RD022	15	61	2
RD023	76	37	33
RD024	88	96	81
RD025	103	73	68
RD026	89	101	17
RD027	30	25	82
RD028	75	83	73

RD029	38	70	54
RD030	70	47	110
RD031	6	21	56
RD032	57	57	76
RD033	62	52	26
RD034	33	16	89
RD035	95	75	103
RD036	32	60	13
RD037	11	66	24
RD038	67	80	105
RD039	78	81	87
RD040	5	71	40
RD041	7	17	39
RD042	65	46	48
RD043	16	87	31
RD044	40	59	12
RD045	81	77	85
RD046	105	97	108
RD047	59	102	78
RD048	3	40	60
RD049	111	76	109
RD050	46	26	75
RD051	13	20	53
RD052	71	95	107
RD053	2	45	4
RD054	42	74	6
RD055	84	100	77
RD056	51	11	106
RD057	26	93	67
RD058	28	4	102
RD059	1	15	14
RD060	27	13	51
RD061	9	1	11
RD062	74	51	84
RD063	36	22	74
RD064	49	65	28
RD065	109	88	112
RD066	58	72	9
RD067	100	32	79
RD068	110	69	93

RD069	44	48	32
RD070	108	82	99
RD071	92	90	52
RD072	20	30	34
RD073	18	64	22
RD074	17	7	38
RD075	56	27	71
RD076	8	43	80
RD077	39	5	47
RD078	4	14	3
RD079	68	33	43
RD080	91	108	98
RD081	54	109	66
RD082	98	92	5
RD083	106	110	86
RD084	101	53	101
RD085	99	56	46
RD086	60	91	94
RD087	112	84	111
RD088	80	111	91
RD089	96	79	70
RD090	37	107	65
RD091	79	39	104
RD092	23	85	27
RD093	86	38	96
RD094	55	42	15
RD095	72	29	58
RD096	83	34	95
RD097	107	86	18
RD098	64	63	44
RD099	12	55	16
RD101	50	9	62
RD102	41	36	23
RD103	66	3	97
RD104	47	12	61
RD105	34	8	49
RD106	22	6	19
RD107	35	31	55

Legenda: ¹produtividade de grãos (ton.ha⁻¹); ²severidade da mancha branca; ³germinação (%).