Cinética de Secagem e Equilíbrio Higroscópico de Folhas de Alecrim-de-tabuleiro Drying Kinetics and Hygroscopic Balance of Rosemary Leaves Cinética de secado y equilibrio higroscópico de las hojas de romero

Recebido: 08/06/2020 | Revisado: 08/06/2020 | Aceito: 15/06/2020 | Publicado: 28/06/2020

Kátia Soares Moreira

ORCID: https://orcid.org/0000-0001-8724-3133 Universidade Federal de Lavras, Brasil E-mail: katiasoaresmoreira@hotmail.com **Ednilton Tavares de Andrade** ORCID: https://orcid.org/0000-0002-8448-8781 Universidade Federal de Lavras, Brasil E-mail: ednilton@ufla.br Paula de Almeida Rios ORCID: https://orcid.org/0000-0002-2836-918X Universidade Federal de Lavras, Brasil E-mail: paulariosagricola@gmail.com Filipe da Silva de Oliveira ORCID: https://orcid.org/0000-0003-3463-9630 Universidade Federal de Lavras, Brasil E-mail: filipe.oliveira@estudante.ufla.br Luís Gustavo Amaral Sálvio ORCID: https://orcid.org/0000-0002-9259-9780 Universidade Federal de Lavras, Brasil E-mail: luis.salvio@estudante.ufla.br

Resumo

As plantas medicinais do gênero *Lippia* é mundialmente utilizado por suas características medicinais. Todavia há a necessidade de se estudar a cinética de secagem e equilíbrio higroscópico das folhas de *Lippia gracilis* mediante a variação da temperatura de secagem. O objetivo deste trabalho foi estudar a cinética de secagem de folhas de alecrim-de-tabuleiro como também ajustar um modelo dentre os existentes na literatura que melhor representa o

comportamento da isoterma de sorção. As folhas de alecrim-de-tabuleiro foram processadas e submetidas às temperaturas de ar de secagem de 40, 50, 60 e 70 °C em secador mecânico de camada fixa. Para o estudo do fenômeno de higroscopicidade foram utilizadas as temperaturas de 20, 30, 55 e 70 °C com atividades de água entre 0,11 e 0,81. O modelo que melhor representou as curvas de secagem foi o modelo de Midilli com R² de 99,60. O modelo que melhor representou a curva de equilíbrio higroscópico das folhas de alecrim-de-tabuleiro foi o de Sabbah com R² de 93,33%.

Palavras-chave: Isotermas de sorção; Plantas medicinais; Modelagem matemática.

Abstract

The medicinal plants of genus *Lippia* is used worldwide for its medicinal characteristics. However, there is a need to study the drying kinetics and hygroscopic balance of *Lippia gracilis* leaves by varying the drying temperature. The objective of this work was to study the drying kinetics of *Lippia gracilis* as well as to adjust a model among those existing in the literature that best represents the behavior of the sorption isotherm. The rosemary leaves were processed and submitted to drying air temperatures of 40, 50, 60, and 70 °C in a fixed layer mechanical dryer. For the study of the hygroscopic phenomenon, temperatures of 20, 30, 55, and 70 °C were used with water activities between 0.11 and 0.81. The model that best represented the drying curves was the Midilli model with an R² of 99.60. The model that best represented the hygroscopic balance curve of *Lippia gracilis* was that of Sabbah with an R² of 93.33%.

Keywords: Sorption isotherms; Medicinal plants; Mathematical modelling.

Resumen

Las plantas medicinales del género *Lippia* se utilizan en todo el mundo por sus características medicinales. Sin embargo, es necesario estudiar la cinética de secado y el equilibrio higroscópico de las hojas de *Lippia gracilis* variando la temperatura de secado. El objetivo de este trabajo fue estudiar la cinética de secado de las hojas de romero, así como ajustar un modelo entre los existentes en la literatura que mejor represente el comportamiento de la isoterma de sorción. Las hojas de romero fueron procesadas y sometidas a temperaturas de aire de secado de 40, 50, 60 y 70 °C en un secador mecánico de capa fija. Para el estudio del fenómeno higroscópico, se utilizaron temperaturas de 20, 30, 55 y 70 °C con actividades de agua entre 0,11 y 0,81. El modelo que mejor representó las curvas de secado fue el modelo

Midilli con un R^2 de 99,60. El modelo que mejor representó la curva de equilibrio higroscópico de las hojas de romero fue el Sabbah con un R^2 de 93,33%.

Palabras llave: Isotermas de sorción; Plantas medicinales; Modelo matemático.

1. Introdução

O gênero *Lippia* contém aproximadamente 200 espécies, sendo que a maioria destas são encontradas no Brasil (Salimena, 2002). *Lippia gracilis* Schauer é popularmente conhecida como alecrim-de-tabuleiro, alecrim-da-chapada ou candeia-de-queimar. O alecrim-de-tabuleiro é uma planta nativa do nordeste brasileiro e possui utilização como planta medicinal. Sua utilização popular é relatada no tratamento de seborreia, dermatoses, acne e infecções na garganta (Moraes et al., 2018).

Apesar de atualmente não existirem muitos estudos específicos da *Lippia gracilis* na literatura, o gênero *Lippia* é amplamente conhecido em suas atividades antimicrobianas (Anaya-Castro et al., 2017), antioxidantes (Nunes et al., 2018), anti inflamatórias (Botelho et al., 2016) e larvicidas (Mar et al., 2018), sendo a maioria dos estudos concentrados em poucas espécies do gênero, como a *Lippia alba* (Barbosa et al., 2018) ou *Lippia sidoides* (Costa et al., 2018).

Conforme relatado por diversos autores na literatura, a temperatura de secagem implica em variações do teor do óleo essencial e da composição deste óleo presente nas plantas medicinais (Barbosa et al., 2017; Gomes et al., 2017; Souza et al., 2017). Desta forma, faz-se necessário estudar como é elucidada a secagem desta espécie de planta medicinal. Como forma de predizer o processo de secagem de produtos agrícolas, são utilizados modelos matemáticos que representam as curvas da cinética de secagem destes produtos (Avhad & Marchetti, 2016; Mghazli et al., 2017; Sampaio et al., 2017; Quequeto et al., 2019).

Ademais, para que as operações de secagem e armazenamento sejam realizadas adequadamente é necessário que seja conhecida a relação entre o produto e o ar que o circunda. As plantas medicinais são higroscópicas, ou seja, elas possuem capacidade de ceder ou absorver água do ambiente. O teor de água de equilíbrio de um produto agrícola é atingido quando a pressão parcial de vapor de água deste produto se iguala com a do ar que o envolve (Dincer & Zamfirescu, 2016). Esta característica é prescrita por modelos matemáticas que relacionam temperatura, umidade relativa e atividade de água da planta, sendo estudado por

diversos autores na literatura (Moussaoui et al., 2019; Silva et al., 2019; Ferreira Júnior et al., 2018).

Assim, o objetivo deste trabalho é estudar o equilíbrio higroscópico e a cinética de secagem de folhas de *Lippia gracilis* Schauer submetidas a diferentes temperaturas do ar de secagem, ajustando à modelos matemáticos.

2. Metodologia

Condução do Experimento

O método científico usado neste experimento foi uma pesquisa laboratorial utilizando o método quantitativo. Conforme Pereira et al. (2018) neste método promove-se a coleta de dados numéricos por meio do uso de medições de grandezas que geram conjuntos de dados os quais são analisados por técnicas matemáticas como equações aplicáveis para descrição do processo e análise estatística.

O experimento foi conduzido no Laboratório de Processamentos de Produtos Agrícolas (LPPA) no Departamento de Engenharia Agrícola da Universidade Federal de Lavras (UFLA). O material utilizado para o estudo foi o alecrim-de-tabuleiro (*Lippia gracilis*), procedente do Horto de Plantas Medicinais do Departamento de Agricultura da UFLA.

As folhas foram selecionadas de forma que apresentassem cor uniforme. Para tanto, foram retiradas as partes doentes e danificadas, assim como qualquer parte de outro vegetal ou material estranho. Para a secagem, utilizou-se um secador estático de laboratório com temperaturas do ar de 30, 40, 50 e 70°C.

Para o monitoramento da velocidade do ar de secagem nas bandejas do secador, utilizou-se um anemômetro de pás rotativas e se manteve o ar com velocidade constante, em aproximadamente 0,33 m.s⁻¹ durante o processo de secagem. As bandejas com as amostras foram pesadas periodicamente, durante o processo de secagem, com a intenção de acompanhar a perda de água. Foi utilizada balança de precisão Shimadzu modelo UX-8200S, realizadas pesagens desde o início do teste, e posteriormente, em intervalos regulares de 15 minutos, até que fosse atingida massa constante.

As medidas de temperatura do ar ambiente e umidade relativa ambiente foram feitas por meio de dois dataloggers, e para leitura da temperatura do ar de secagem utilizou-se três

termopares do tipo "T" conectados a uma central de aquisição de dados. A umidade relativa do ar secante foi determinada por meio do software GRAPSI 5.1[®].

O teor de água das amostras de alecrim-de-tabuleiro foi determinado utilizando-se o método da estufa com temperatura de $105 \pm 1^{\circ}$ C até peso constante, de forma gravimétrica, conforme Normas Analíticas (Instituto Adolfo Lutz, 2005).

A partir dos dados obtidos durante a secagem foram realizadas as análises de equilíbrio higroscópico e cinética de secagem e de cor.

Equilíbrio Higroscópico

Os testes de higroscopicidade foram realizados em câmara incubadora BOD e estufa. Entre o processo de secagem e os teses de higroscopicidade, as amostras ficaram armazenadas em embalagens herméticas de polietileno de baixa densidade com controle de temperatura e umidade relativa do ar. Para cada teste de equilíbrio higroscópico foram utilizadas amostras de, aproximadamente, 0,005 kg de folhas, colocadas em saches telados de plástico *nylon*, de forma a garantir uma maior superfície de contato do material com o ambiente.

As temperaturas dos experimentos foram obtidas a partir das regulagens das câmaras e estufas, e a umidade relativa a partir das soluções utilizadas, sendo as temperaturas experimentadas de 20, 30, 55 e 70 °C, por 96 horas. As soluções utilizadas para o experimento e suas respectivas umidades relativas de equilíbrio em função da temperatura do ar ambiente estão dispostas na Tabela 1 (Greenspan, 1977). Por meio destas umidades relativas proporcionadas pelos sais em diferentes temperaturas, consegue-se obter diferentes pontos de umidade relativa para formação de curvas de sorção que variam de 10,75 a 85,11%.

Temperatura (°C)	Sais	UR (%)	
	Cloreto de Magnésio	MgCl ₂	$33,\!07\pm0,\!18$
	Cloreto de Lítio	LiCl	$11,31 \pm 0,31$
20	Cloreto de Potássio	KCl	$85,11 \pm 0,29$
	Nitrato de Magnésio	Mg(NO ₃)	$54,\!38 \pm 0,\!23$
	Acetato de Potássio	CH ₃ COOK	$23,11 \pm 0,25$
	Cloreto de Magnésio	MgCl ₂	$32,44 \pm 0,14$
	Cloreto de Lítio	LiCl	$11,\!28 \pm 0,\!24$
30	Cloreto de Potássio	KCl	$83,\!62 \pm 0,\!25$
	Nitrato de Magnésio	Mg(NO ₃)	$51,\!40 \pm 0,\!24$
	Acetato de Potássio	CH ₃ COOK	$21,\!61 \pm 0,\!53$
	Cloreto de Lítio	LiCl	$11,03 \pm 0,23$
55	Cloreto de Potássio	KCl	$80{,}70\pm0{,}35$
33	Brometo de Sódio	NaBr	$50,\!15\pm0,\!65$
	Cloreto de Magnésio	MgCl ₂	$29,93 \pm 0,16$
70	Cloreto de Lítio	LiCl	$10,75 \pm 0,33$
70	Cloreto de Potássio	KCl	$79{,}49\pm0{,}57$

Tabela 1	l – Umida	de relativa	de equil	íbrio (%)	de soluc	ões salinas	saturadas.
----------	-----------	-------------	----------	-----------	----------	-------------	------------

Fonte: Greenspan (1977).

Para a verificação e quantificação do fenômeno de equilíbrio higroscópico, ainda em laboratório, as amostras foram pesadas antes e depois de serem, respectivamente, colocadas e retiradas da câmara e estufa, após entrarem em equilíbrio térmico com o ambiente circundante em condições herméticas. As pesagens foram realizadas em balança semi analítica, GEHAKA modelo BK600, com precisão de 3 casas decimais. Dessa maneira, foram verificados os diversos teores de água de equilíbrio para as várias combinações de temperatura e umidade relativa do ar. Para um melhor tratamento dos dados foram utilizadas, para cada combinação de umidade relativa do ar e temperatura, a média de 3 repetições.

De acordo com Teixeira, Andrade, & Silva (2012), os modelos matemáticos obtidos na literatura e representativos da higroscopicidade de produtos agrícolas, utilizados para análise do alecrim-de-tabuleiro, foram escolhidos aleatoriamente em função da avaliação da temperatura e umidade relativa do ar ambiente, para a verificação do que melhor se ajustasse à realidade empírica do produto, de maneira a melhor representar sua isoterma. Os modelos utilizados estão presentes na Tabela 2.

Modelo	Equação	
Chung Pfost	$U_e = a - b*ln[-(T + c)*ln(UR)]$	(1)
Copace	$U_e = exp[a-(b*T) + (c*UR)]$	(2)
GAB Modificado	$Ue = ab(c / T)UR \{ [1-b UR] [1-b UR + b(c / T)UR] \}$	(3)
Halsey Modificado	$U_e = [exp(a - bT) / - ln(UR)]^{1/c}$	(4)
Henderson	$U_e = [ln(1 - UR) / (-a*T_{abs})]^{1/b}$	(5)
Henderson Mod-	$U_{e} = \{ \ln(1 - UR) / [-a^{*}(T + b)] \}^{1/c}$	(6)
Oswin	$U_e = (a - b*T) / [(1 - UR) / UR]^{1/c}$	(7)
Sabbab	$U_e = a (UR^b / T^c)$	(8)
Sigma Copace	$U_e = \exp\{a_{-}(bT) + [c \exp(UR)]\}$	(9)
Andrade	$U_e = exp((a UR) + (T^b) + (((T-UR)/UR)^b))^c$	(10)

Tabela 2 –	Modelos	matemáticos	usados	para a re	presentaç	cão do e	quilíbrio	higroscóp	pico.
								()	

Fonte: Andrade et al. (2017).

Onde,

Ue: Teor de água do produto, b.s.;

UR: Umidade relativa do ar, decimal;

T: Temperatura do ar ambiente, °C;

T_{abs}: Temperatura absoluta do ar ambiente,

K; a, b, c: Parâmetros que dependem da natureza do produto.

Segundo Teixeira, Andrade, & Silva (2012), para a análise dos dados foi considerada a atividade de água (a_w) como sendo igual a umidade relativa do ar, em decimal. Para estimar os parâmetros dos modelos matemáticos ajustados aos dados experimentais foi utilizado o programa STATISTICA versão 5.0, com modelagem não linear.

Na análise de representatividade de higroscopicidade dos modelos, os dados experimentais foram comparados com os valores estimados por cada modelo, verificando-se o coeficiente de determinação (\mathbb{R}^2), a porcentagem de erro médio relativo (P), o erro médio estimado (SE), e o teste do qui-quadrado (χ^2), de acordo, respectivamente, com as equações a seguir (Mathai & Haubold, 2017).

$$R^{2} = \sum \frac{(Y - \hat{Y})^{2}}{(Y_{0} - \hat{Y})^{2}}$$

(11)

$$P = \frac{100}{n} \sum \frac{|Y - \hat{Y}|}{Y}$$

(12)

$$SE = \sqrt{\frac{\sum \frac{(Y - \hat{Y})^2}{Y}}{GLR}}$$

(13)

$$\chi^2 = \sum \frac{(Y - \hat{Y})^2}{GLR}$$

(14)

onde:

Y: valor observado experimentalmente;

Y₀: valor calculado pelo modelo;

n: número de observações experimentais;

GLR: graus de liberdade do modelo.

De acordo com Simha et al. (2016), a capacidade de um modelo para descrever com finalidade um determinado processo físico é inversamente proporcional ao desvio-padrão da estimativa (SE). O grau de ajuste de cada modelo irá considerar a magnitude do coeficiente de determinação (R²), a magnitude do erro médio relativo (P), do erro médio estimado (SE) e do teste do qui-quadrado (χ^2).

Cinética de Secagem

A partir dos dados obtidos durante a secagem foram construídos gráficos de curva de secagem em função do tempo. Para estimar os parâmetros dos modelos matemáticos ajustados aos dados experimentais foi utilizado o programa STATISTICA versão 5.0, pelo método quase-Newton, com modelagem não linear. Os modelos de cinética de secagem foram ajustados aos dados experimentais utilizando-se doze diferentes equações empíricas e semi-empíricas relacionadas conforme apresentadas na Tabela 3.

Tabela 3 –	Modelos	matemáticos	utilizados	para	predizer	0	fenômeno	de	secagem	de
produtos agr	ícolas.									

Modelo	Equação	
Dois Termos	$\mathbf{RU} = \mathbf{a} \exp \left(-\mathbf{k}_0 \mathbf{t}\right) + \mathbf{b} \exp \left(-\mathbf{k}_1 \mathbf{t}\right)$	(15)
Henderson e Pabis Mod [.]	$RU = a \exp(-k t) + b \exp(-k_0 t) + c \exp(-k_1 t)$	(16)
Henderson e Pabis	$\mathbf{RU} = \mathbf{a} \exp\left(-\mathbf{k} t\right) + \mathbf{c}$	(17)
Midilli	$\mathbf{RU} = \mathbf{a} \exp\left(-\mathbf{k} \mathbf{t}^{\mathbf{n}}\right) + \mathbf{bt}$	(18)
Newton	RU = exp(-kt)	(19)
Page	$\mathbf{RU} = \exp\left(-\mathbf{k} \mathbf{t}^{\mathrm{n}}\right)$	(20)
Thompson	$RU = \exp((-a(a^2 + 4bt)^{0.5})/2b)$	(21)
Verma	$RU = a \exp(-kt) + (1-a) \exp(-kt)$	(22)
Wang & Sing	$\mathbf{RU} = 1 + \mathbf{a} \mathbf{t} + \mathbf{b} \mathbf{t}^2$	(23)
Valcam	$RU = a + b t + c t^{1,5} + d t^2$	(24)
Exponencial de Dois Termos	$RU = a \exp(-kt) + (1-a) \exp(-kat)$	(25)
Aproximação da Difusão	$RU = a \exp(-kt) + (1-a) \exp(-kbt)$	(26)

Fontes: Andrade et al. (2019); Oliveira et al. (2020).

em que,

RU - razão de umidade do produto, adimensional;

t - tempo de secagem, h;

k, k₀, k₁ - coeficientes de secagem, h^{-1} ;

a, b, c, n - constantes dos modelos, adimensional.

Para o cálculo da razão de umidade (RU) durante as secagens nas diferentes temperaturas, utilizou-se a Equação (27). O teor de água de equilíbrio (Ue) empregado na Equação (27) foi calculado por meio da equação que melhor representou o fenômeno de sorção conforme metodologia apresentada anteriormente.

$$RU = (U - Ue) / (Ui - Ue)$$

(27)

em que,

U - teor de água do produto, decimal b.s.

Ui - teor de água inicial do produto, decimal b.s.

Ue - teor de água de equilíbrio do produto, decimal b.s.

Para a análise de representatividade da cinética de secagem dos modelos, os dados experimentais foram comparados com os valores estimados por cada modelo, verificando-se os parâmetros (R², P, SE e χ^2) (Simha et al., 2016).

3. Resultados e Discussão

Equilíbrio Higroscópico

O teor de água de equilíbrio das folhas de *Lippia gracilis* para as temperaturas de 20, 30, 55 e 70 °C, com atividade de água entre 0,11 e 0,81 foram entre 0,06 e 0,22 (b.s.), conforme valores apresentados na Tabela 4.

Tabela 4 – Valores médios do teor de água de equilíbrio (b.s.) para as diferentes combinações de atividade de água e temperatura após 96 h.

Temperatura (°C)	Sais		$a_{ m w}$	Teor de Água de Equilíbrio (b.s.)
20	Acetato de Potássio	CH3COOK	$0,2311 \pm 0,25$	0,1314
20	Cloreto de Magnésio	MgCl ₂	$0,\!3307\pm0,\!18$	0,2245
20	Nitrato de Magnésio	Mg(NO ₃)	$0,\!5438\pm0,\!23$	0,2702
30	Cloreto de Lítio	LiCl	$0,\!1128\pm0,\!31$	0,0560
30	Acetato de Potássio	CH3COOK	$0,2161 \pm 0,25$	0,0840
30	Cloreto de Magnésio	MgCl ₂	$32,\!44 \pm 0,\!14$	0,1845
30	Nitrato de Magnésio	Mg(NO ₃)	$0,514 \pm 0,23$	0,2175
55	Cloreto de Lítio	LiCl	$11,03 \pm 0,23$	0,0459
55	Cloreto de Magnésio	MgCl	$0,\!2993 \pm 0,\!16$	0,1520
55	Cloreto de Potássio	KcCl	$0,\!807\pm0,\!35$	0,2160
70	Cloreto de Potássio	KCl	$79{,}49 \pm 0{,}57$	0,2013

Fonte: Os autores.

Conforme há o aumento da temperatura, para uma mesma atividade de água, se observa aumento do teor de água de equilíbrio. Os valores experimentais das curvas de sorção em diferentes temperaturas foram obtidos por meio da média dos teores de água de equilíbrio. A partir destes resultados foram modelados por meio de equações matemáticas e foram determinados seus respectivos parâmetros, os coeficientes de determinação (R²), o erro relativo médio (P) e o erro relativo estimado médio (SE). Na Tabela 5, a seguir, são

apresentados os valores estimados a partir dos modelos de teor de água de equilíbrio em folhas de *L. gracilis*.

	а	b	С	R²	P (%)	SE (decimal)	χ^2
Chung Pfost	0,4217	0,0761	-3,5281	81,84	15,53	0,0619	3,83E-03
Copace	1,8837	0,0150	1,5904	83,59	16,71	0,0589	3,46E-03
GAB Mod.	0,3167	0,1645	580,4716	90,93	8,42	0,0438	1,91E-03
Halsey Mod.	2,5256	0,0334	2,0114	81,27	17,88	0,0629	3,95E-03
Henderson	0,3849	3,1324		63,85	22,74	0,1235	1,53E-02
Henderson Mod.	0,8648	2,2879	2,2710	90,34	11,55	0,0452	2,04E-03
Oswin	0,2922	0,0025	2,9878	85,16	15,84	0,0560	3,13E-03
Sabbah	1,3380	0,5976	0,4114	93,33	9,01	0,0375	1,41E-03
Sigma Copace	2,6874	0,0167	0,9804	79,00	19,29	0,0666	4,43E-03
Andrade	2,0024	0,2420	-0,3901	89,79	11,26	0,0464	2,16E-03

Tabela 5 – Parâmetros estimados, coeficientes de determinação (R²), erro relativo médio (P) e erro estimado médio (SE) para cada modelo analisado.

Fonte: Os autores.

Os modelos devem representar de maneira satisfatória as curvas de equilíbrio higroscópico. Conforme Teixeira e outros colaboradores (2012), os valores de P e R² devem ser menores que 10% e próximos de 100%, respectivamente. Desta forma, de acordo com os resultados apresentados na Tabela 5, os modelos que melhor representam este processo são os de Sabbah e GAB Modificado. Ambos os modelos apresentaram ajustes satisfatórios de R² e P.

Assim, o modelo de Sabbah foi escolhido por apresentar um maior valor de R². Logo, este modelo pode ser empregado para representar o teor de água de equilíbrio de folhas de *L. gracilis* em outras aplicações. O modelo de Sabbah é amplamente utilizado na literatura para testar a descrição do fenômeno de higroscopicidade (Andrade et al., 2017; Botelho et al., 2019; Granella et al., 2020).

Logo a umidade de equilíbrio (Ue) é calculada pela equação 28, descrita pelo modelo de Sabbah, utilizando as constantes obtidas no presente trabalho.

Ue = 1,338 (UR^{0,598}/T^{0,411})

em que,

Ue: Teor de água do produto, b.s.;

UR: Umidade relativa do ar de secagem, decimal;

T: Temperatura do ar de secagem, °C

Cinética de Secagem

Por meio da Figura 1 são apresentados os valores experimentais da secagem de folhas de *L. gracilis* mediante diferentes temperaturas do ar de secagem. Pode-se observar considerável redução do período de secagem conforme o aumento da temperatura. Houve redução de quatro horas para quarenta minutos, quando comparadas as temperaturas de 70°C e 40 °C.

Figura 1 – Razão de umidade em função do tempo para diferentes temperaturas do ar de secagem das folhas de *Lippia gracilis*.

Fonte: Os autores.

Para a realização da modelagem matemática representativa da cinética de secagem foram utilizados os modelos descritos na Tabela 3, e para cada modelo foram determinados seus respectivos parâmetros, coeficientes de determinação (R^2), erros médios relativos (P), erros médios estimados (SE) e teste de qui-quadrado (X^2). A seguir, são apresentados os

(28)

resultados estimados conforme modelos matemáticos de cinética de secagem ajustados para folhas de *L. gracilis*.

Ao se analisar os resultados dos modelos matemáticos da Tabela 6, observa-se que o modelo de Midilli foi o que melhor representou o fenômeno de secagem de folhas de *L. gracilis*. Desta forma, na Tabela 6 são apresentados os parâmetros, coeficientes de determinação (R²), erros médios relativos (P), erros médios estimados (SE) e teste de qui-quadrado (X²), ajustados ao modelo de Midilli.

Temperatura (°C)		а	k	b	k0	с	k1	n	d	R ²	Р	SE (decimal)	χ^2 (decimal)
	Dois Termos	0,4987		0,4987	0,8792		0,8792			99,9460	0,0654	0,0073	5,37E-05
	Henderson e Pabis Mod.	0,3324	0,8792	0,3324	0,8792	0,3324	0,8792			99,9460	0,0654	0,0073	5,37E-05
	Henderson e Pabis	0,9973	0,8792							99,9460	0,0654	0,0073	5,37E-05
	Midilli	1,0034	0,8657	-0,0052				0,9588		99,9860	0,0299	0,0037	1,39E-05
	Newton		0,8819							99,9450	0,0657	0,0074	5,46E-05
40	Page		0,8820					0,9996		99,9450	0,0656	0,0074	5,46E-05
40	Thompson	-1,1503		-0,0116						99,9490	0,0623	0,0071	5,06E-05
	Verma	0,0030	-0,3674				0,8586			99,9740	0,0404	0,0051	2,55E-05
	Wang e Sing	-0,6022		0,0910						97,1550	0,4762	0,0530	2,80E-03
	Valcam	1,0080		-1,1880		0,7282			-0,1289	99,9820	0,0318	0,0042	1,79E-05
	Exp. De Dois Termos	1,2243	0,9205							99,9460	0,0649	0,0073	5,29E-05
	Aprox. da Difusão	0,0097	0,8819	1,0000						99,9450	0,0657	0,0074	5,46E-05
	Dois Termos	0,5177		0,5177	1,4907		1,4907			99,2200	0,3103	0,0285	8,15E-04
	Henderson e Pabis Mod.	0,3452	1,4907	0,3452	1,4907	0,3452	1,4907			99,2200	0,3103	0,0285	8,15E-04
	Henderson e Pabis	1,0355	1,4907							99,2200	0,3103	0,0285	8,15E-04
	Midilli	1,0153	1,2840	-0,0403				0,9807		99,6950	0,2006	0,0179	3,19E-04
	Newton		1,4301							99,0380	0,3626	0,0317	1,00E-03
	Page		1,4865					1,1197		99,4420	0,2799	0,0241	5,83E-04
50	Thompson	-0,8060		-0,0802						99,6320	0,2110	0,0196	3,84E-04
	Verma	0,0030	-1,6420				1,3343			99,5900	0,2387	0,0207	4,29E-04
	Wang e Sing	-1,0697		0,2955						99,0850	0,3903	0,0309	9,56E-04
	Valcam	1,0199		-1,7586		1,2155			-0,2345	99,6880	0,2039	0,0181	3,26E-04
	Exp. De Dois Termos	1,6086	1,8244							99,4320	0,2811	0,0244	5,94E-04
	Aprox. da Difusão	0,7860	1,4301	1,0000						99,0380	0,3626	0,0317	1,00E-03
60	Dois Termos	0,4972		0,4972	2,5831		2,5831			99,7660	0,2842	0,0155	2,41E-04

Tabela 6 – Parâmetros obtidos dos modelos ajustados aos dados de secagem das folhas de *L. gracilis* para as temperaturas do ar de secagem.

		Resea	arch, Soci	ety and D 525-3409)evelopn } ∣ DOI · }	nent, v. 9, http://dx/c	n. 8, e14 10i org/1	4798540 0 33448	1, 2020 /rsd-v9i8	5401			
	Handarson a Dahis Mod	0.2215	2 5 9 2 1	0 2215	2 5 9 2 1	0 2215	2 5921	0.55110	154 1910	00.7660	0 2842	0.0155	2 41E 04
	Henderson e Fabis Mou.	0,5515	2,3631	0,5515	2,3831	0,3313	2,3831			99,7000	0,2042	0,0155	2,41E-04
	Henderson e Pabis	0,9944	2,5831							99,7660	0,2842	0,0155	2,41E-04
	Midilli	0,9940	2,3164	-0,0347				0,9475		99,9260	0,1579	0,0087	7,57E-05
	Newton		2,5998							99,7610	0,2734	0,0157	2,46E-04
	Page		2,6369					1,0160		99,7680	0,2546	0,0154	2,39E-04
	Thompson	-0,4051		-0,0160						99,8270	0,1998	0,0133	1,78E-04
	Verma	0,0075	-1,1059				2,4533			99,9020	0,1495	0,0100	1,01E-04
	Wang e Sing	-1,8748		0,8828						97,8220	0,8839	0,0473	2,24E-03
	Valcam	0,9920		-3,2219		3,1710			-0,8828	99,9540	0,0984	0,0069	4,77E-05
	Exp. De Dois Termos	1,3745	2,9005							99,7920	0,2347	0,0146	2,14E-04
	Aprox. da Difusão	45,4788	3,2547	1,0053						99,7970	0,2313	0,0145	2,09E-04
	Dois Termos	0,4894		0,4894	3,9467		3,9467			98,3350	0,9786	0,0410	1,68E-03
	Henderson e Pabis Mod.	0,3263	3,9467	0,3263	3,9467	0,3263	3,9467			98,3350	0,9786	0,0410	1,68E-03
	Henderson e Pabis	0,9788	3,9467							98,3350	0,9786	0,0410	1,68E-03
	Midilli	1,0013	1,6607	-0,3933				0,5982		99,5960	0,4722	0,0202	4,09E-04
	Newton		4,0387							98,2520	0,9677	0,0421	1,77E-03
	Page		3,6580					0,9215		98,4350	0,7800	0,0398	1,58E-03
70	Thompson	-0,2354		0,0095						98,2840	0,8747	0,0417	1,74E-03
	Verma	0,0000	- 47,4563				3,9549			98,9160	0,7079	0,0331	1,10E-03
	Wang e Sing	-2,9849		2,3421						95,8160	1,7009	0,0651	4,23E-03
	Valcam	0,9998		-7,0248		12,6343			-7,1938	99,7360	0,3551	0,0164	2,68E-04
	Exp. De Dois Termos	0,5976	5,0141							98,2690	0,8920	0,0419	1,75E-03
	Aprox. da Difusão	0,9167	3,6780	74,9008						98,5890	0,7104	0,0378	1,43E-03

Fonte: Os autores.

Na Figura 2 são apresentados os valores de razão de umidade experimental e estimada pelo modelo de Midilli para as temperaturas estudadas. De acordo com os resultados obtidos experimentalmente, o teor de água de equilíbrio foi atingido em diferentes períodos conforme temperatura do ar de secagem. Os períodos de secagem das temperaturas de 30, 40, 50 e 70 °C foram respectivamente de 4,3; 2,0; 1,3 e 0,7 h.

Conforme relatado na literatura, o modelo matemático de Midilli é amplamente utilizado para predizer o fenômeno da secagem de diversas espécies do gênero *Lippia*, como por exemplo, *Lippia alba* (Barbosa et al., 2006) e *Lippia citriodora* (Soodmand-Moghaddam et al., 2020).

Figura 2 – Razão de umidade experimental e estimada pelo modelo de Midilli para as temperaturas de (a) 40 °C, (b) 50 °C, (c) 60 °C e (d) 70 °C.

Fonte: Os autores.

4. Conclusões

O modelo de Sabbah foi o que melhor descreveu o fenômeno de equilíbrio higroscópico de folhas de alecrim-de-tabuleiro;

O modelo de Midilli foi o que melhor descreveu o fenômeno de secagem das folhas de alecrim-de-tabuleiro.

Como proposição para trabalhos futuros, recomenda-se estudar se há variação do teor e da composição do óleo essencial das folhas de alecrim-de-tabuleiro secadas em diferentes temperaturas do ar.

Referências

Anaya-Castro, M. A., Ayala-Zavala, J. F., Muñoz-Castellanos, L., Hernández-Ochoa, L., Peydecastaing, J., & Durrieu, V. (2017). β-Cyclodextrin inclusion complexes containing clove (*Eugenia caryophyllata*) and Mexican oregano (*Lippia berlandieri*) essential oils: Preparation, physicochemical and antimicrobial characterization. *Food Packaging and Shelf Life*, 14(1), 96-101.

Andrade, E. T., Figueira, V. G., Teixeira, L. P., Taveira, J. H. D. S., & Borém, F. M. (2017). Determination of the hygroscopic equilibrium and isosteric heat of aji chili pepper. *Revista Brasileira de Engenharia Agrícola e Ambiental*, 21(12), 865-71.

Andrade, E. T., Figueira, V. G., Teixeira, L. P., Martinazzo, A. P., & Araujo, K. G. D. L. (2019). Effect of drying kinetics on color of "dedo de moça" chili peppers (*Capsicum baccatum*). *Engenharia Agrícola*, 39(5), 659-667.

Avhad, M. R., & Marchetti, J. M. (2016). Mathematical modelling of the drying kinetics of Hass avocado seeds. *Industrial Crops and Products*, 91(1), 76-87.

Barbosa, C. K. R., de Souza, C. E., Fonseca, M. C. M., & Casali, V. W. D. (2017). Teor de óleo essencial e caracterização organoléptica de hortelã-pimenta após fragmentação e secagem. *Magistra*, 28(2), 279-84.

Barbosa, C. S., Pereira, R. F., & Fortuna, J. L. (2018). Atividade antifúngica do óleo essencial de erva-cidreira *Lippia alba* (Mill.) NE Brown (Verbenaceae) sobre *Candida albicans*. *Revista Biociências*, 23(1), 53-60.

Barbosa, F. D. F., Barbosa, L. C., Melo, E. C., Botelho, F. M., & Santos, R. H. (2006). Influência da temperatura do ar de secagem sobre o teor e a composição química do óleo essencial de *Lippia alba* (Mill) NE Brown. *Química Nova*, 29(6), 1221-5.

Botelho, F. M., Boschiroli Neto, N. J., Botelho, S. D. C., de Oliveira, G. H., & Hauth, M. R. (2019). Sorption isotherms of Brazil nuts. *Revista Brasileira de Engenharia Agrícola e Ambiental*, 23(10), 776-81.

Botelho, M. A., Barros, G., Queiroz, D. B., Carvalho, C. F., Gouvea, J., Patrus, L., & Campus, G. (2016). Nanotechnology in phytotherapy: antiinflammatory effect of a nanostructured thymol gel from *Lippia sidoides* in acute periodontitis in rats. *Phytotherapy research*, 30(1), 152-9.

Costa, R. A., Cavalcante, T. T. A., de Melo, C. T. V., Barroso, D. L. A. U., Melo, H. M., de Carvalho, M. A. G., & Júnior, F. E. A. C. (2018). Antioxidant and antibacterial activities of essential oil of *Lippia sidoides* against drug-resistant *Staphylococcus aureus* from food. *African Journal of Biotechnology*, 17(8), 232-8.

Dinçer, İ., & Zamfirescu, C. (2016). *Drying phenomena:* theory and applications. West Sussex: John Wiley & Sons.

Ferreira Junior, W. N., Resende, O., de Oliveira, D. E., & Costa, L. M. (2018). Isotherms and isosteric heat desorption of *Hymenaea stigonocarpa* Mart. seeds. *Journal of Agricultural Science*, 10(10), 504-12.

Gomes, N. H. F., Neto, H. C. D. S., Alves, J. J. L., Rodovalho, R. S., & Sousa, C. M. (2017). Cinética de secagem de folhas de *Cymbopogon citratus*. *Engevista*, 19(2), 328-38.

Granella, S. J., Bechlin, T. R., & Christ, D. (2020). Modelagem das isotermas de dessorção e do calor isostérico de sementes de crotalária. *Pesquisas Agrárias e Ambientais*, 8(1), 124-8.

Greenspan, L. (1977). Humidity fixed points of binary saturated aqueous solutions. *Journal of research of the national bureau of standards*, 81(1), 89-96.

Instituto Adolfo Lutz (2005). *Métodos físico-químicos para análise de alimentos:* normas analíticas do Instituto Adolfo Lutz. 4^a ed. Brasília (DF): ANVISA, 1018pp.

Mar, J. M., Silva, L. S., Azevedo, S. G., França, L. P., Goes, A. F., Santos, A. L., ... & Sanches, E. A. (2018). *Lippia origanoides* essential oil: An efficient alternative to control *Aedes aegypti, Tetranychus urticae* and *Cerataphis lataniae*. *Industrial crops and products*, 111(1), 292-7.

Mathai, A. M., Haubold, H. J. (2017). *Probability and Statistics:* A Course for Physicists and Engineers. Walter de Gruyter GmbH & Co KG.

Mghazli, S., Ouhammou, M., Hidar, N., Lahnine, L., Idlimam, A., & Mahrouz, M. (2017). Drying characteristics and kinetics solar drying of Moroccan rosemary leaves. *Renewable Energy*, 108(1), 303-10.

Moraes, V. R. S., Nogueira, P. C. L., Costa, E. V., Santos, L. S., Silva, V. R., Bomfim, L. M.,
& Bezerra, D. P. (2018). Phytochemical and Biological Properties of *Lippia gracilis*. In *Anticancer plants: Properties and Application* (pp. 37-55). Springer, Singapore.

Moussaoui, H., Bahammou, Y., Idlimam, A., Lamharrar, A., & Abdenouri, N. (2019). Investigation of hygroscopic equilibrium and modeling sorption isotherms of the argan products: A comparative study of leaves, pulps, and fruits. *Food and bioproducts processing*, 114(1), 12-22.

Nunes, M. R., Castilho, M. D. S. M., Veeck, A. P. L., Rosa, C. G., Noronha, C. M., Maciel,M. V., & Barreto, P. M. (2018). Antioxidant and antimicrobial methylcellulose films

containing *Lippia alba* extract and silver nanoparticles. *Carbohydrate polymers*, 192(1), 37-43.

Oliveira, F. S., Andrade, E. T., Rios, P. A., Moreira, K. S., & Salvio, L. G. A. (2020). Mathematical modeling of drying kinetics and hygroscopic balance of *Cymbopogon flexuosus* leaves. *Research, Society and Development*, 9(7), 10973594.

Pereira, A. S., Shitsuka, D. M., Parreira, F. J., & Shitsuka, R. (2018). Metodologia da Pesquisa científica. [e-book]. Santa Maria. Ed. UAB/NTE/UFSM. Disponível em: https://repositorio.ufsm.br/bitstream/handle/1/15824/Lic_Computacao_Metodologia-Pesquisa-Cientifica.pdf?sequence=1. Acesso em: 04 Junho 2020.

Quequeto, W. D., Siqueira, V. C., Mabasso, G. A., Isquierdo, E. P., Leite, R. A., Ferraz, L. R., ... & Martins, E. A. S. (2019). Mathematical Modeling of Thin-Layer Drying Kinetics of *Piper aduncum* L. Leaves. *Journal of Agricultural Science*, 11(8), 225-35.

Salimena, F. R. G. (2002). Novos sinônimos e tipificações em *Lippia* sect. *Rhodolippia* (Verbenaceae). *Darwiniana*, 40(1), 121-5.

Sampaio, R. M., Monteles Neto, J. P., Perez, V. H., Marcos, S. K., Boizan, M. A., & Silva, L.
R. (2017). Mathematical modeling of drying kinetics of persimmon fruits (*Diospyros kaki* cv.
Fuyu). *Journal of Food Processing and Preservation*, 41(1), e12789.

Silva, N. C. B., dos Santos, S. G., da Silva, D. P., Silva, I. L., & Rodovalho, R. S. (2019). Drying kinetics and thermodynamic properties of boldo (*Plectranthus barbatus* Andrews) leaves. *Científica*, 47(1), 01-7.

Simha, P., Mathew, M., & Ganesapillai, M. (2016). Empirical modeling of drying kinetics and microwave assisted extraction of bioactive compounds from *Adathoda vasica* and *Cymbopogon citratus*. *Alexandria Engineering Journal*, 55(1), 141-50.

Soodmand-Moghaddam, S., Sharifi, M., Zareiforoush, H., & Mobli, H. (2020). Mathematical modeling of lemon verbena leaves drying in a continuous flow dryer equipped with a solar pre-heating system. *Quality Assurance and Safety of Crops & Foods*, 12(1), 57-66.

Souza, A. V. V. D., de Britto, D., Soares dos Santos, U., Bispo, L. P., Turatti, I. C. C., Lopes, N. P., & Almeida, J. R. G. C. (2017). Influence of season, drying temperature and extraction time on the yield and chemical composition of 'marmeleiro'(*Croton sonderianus*) essential oil. *Journal of Essential oil Research*, 29(1), 76-84.

Teixeira, L. P., Andrade, E. T., Da Silva, P. G. L. (2012). Determinação do equilíbrio higroscópico e do calor isostérico da polpa e da casca do abacaxi. *Engevista*, 14(2), 172-84.

Porcentagem de contribuição de cada autor no manuscrito

Kátia Soares Moreira – 25% Ednilton Tavares de Andrade – 20% Paula de Almeida Rios – 20% Filipe da Silva de Oliveira – 20% Luís Gustavo Amaral Sálvio – 15%