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ABSTRACT 

 

Consistent weather data is obtained by weather stations. These data are important for different 

fields of science such as climatology, irrigation, and hydrology. The meteorological element 

and the agrometeorological parameter air temperature and evapotranspiration (ET), 

respectively, are fundamental for studies in these fields. The temperature indicates the amount 

of energy available in the water-soil-atmosphere system. This energy can influence various 

processes on the Earth's surface, among them the growth and development of plants. ET is the 

process of water transportation from a vegetated surface to the atmosphere including the 

evaporation and transpiration process. These meteorological variables and agrometeorological 

parameter can be monitored daily in weather stations, however, in the Minas Gerais State, the 

coverage of the weather stations network is limited. Besides, interruptions and errors in the 

database are quite common. In this sense, this research aimed to develop models that can 

reliably estimate air temperature and evapotranspiration through easily obtained input data 

such as geographic coordinates. As described in paper 1, the aim was to develop models of 

multiple linear regression (MLR), artificial neural network (ANN), and random forest (RF) to 

estimate the mean (Tmean), maximum (Tmax), and minimum (Tmin) monthly air 

temperatures as a function of geographic coordinates, altitude, and month for different 

localities in the Minas Gerais State, Brazil, with Köppen’s climatic classification Cwa or 

Cwb. The Tmax, Tmean and Tmin data were extracted from national network of 

climatological stations (INMET). MLR was implemented using the data analysis tool in 

Microsoft Excel®. ANN and RF were implemented using the WEKA. The results showed 

that the algorithms RF and ANN were used to estimate Tmean, Tmax, and Tmin with high 

accuracy. The best results were obtained using the RF model. The MLR did not present a 

good accuracy. In paper 2, the aim was to evaluates the performance of ANN, RF, Support 

Vector Machine (SVM) and MLR to estimate the monthly mean reference evapotranspiration 

(ET0) with four different input data combinations (I8, I6, I3 and I2) and in three scenarios: (SI) 

at the state level, where all climatological stations were used; and at regional level (SII and 

SIII), where the Minas Gerais state was divided into two areas  according to the climatic 

classification of each climatological stations. The climatic classifications proposed by 

Thornthwaite (SII) and by Köppen (SIII) were used. All models were implemented by 

WEKA. The results showed that ANN and RF performed better in SI, II, III with the I8 

(latitude, longitude, altitude, month, Tmean, Tmax, Tmin, and relative humidity) or I6 

(latitude, longitude, altitude, month, Tmean, and relative humidity) input data. The SVM and 

MLR performed better in all scenarios when only two input variables were used (I2 - mean 

temperature and relative humidity). Although dividing into scenarios results in less input data 

for models training, SII and SIII showed a slightly better result in the southern areas of the 

Minas Gerais state.  

 

Keywords: Artificial Neural Network. Random Forest. Support Vector Machine. Multiple 

Linear Regression.  



 

 

 

 

RESUMO 

 

Dados meteorológicos consistentes são obtidos por estações meteorológicas. Esses dados são 

importantes para diferentes campos da ciência, como climatologia, irrigação e hidrologia. O 

elemento meteorológico e o parâmetro agrometeorológico: temperatura do ar e a 

evapotranspiração (ET), respectivamente, são fundamentais para estudos nesses campos. A 

temperatura indica a quantidade de energia disponível no sistema água-solo-atmosfera. Essa 

energia pode influenciar vários processos na superfície da Terra, entre eles o crescimento e o 

desenvolvimento das plantas. ET é o processo de transporte de água de uma superfície 

vegetada para a atmosfera, que inclui o processo de evaporação e de transpiração. Essas 

variáveis meteorológicas podem ser monitoradas diariamente em estações meteorológicas, 

porém, no Estado de Minas Gerais, a cobertura da rede de estações meteorológicas é limitada. 

Além disso, interrupções e erros no banco de dados são bastante comuns. Nesse sentido, com 

esta pesquisa objetivou-se desenvolver modelos que possam estimar com segurança a 

temperatura do ar e a evapotranspiração por meio de dados de entrada de fácil obtenção, como 

coordenadas geográficas. Conforme descrito no artigo 1, o objetivo foi desenvolver modelos 

de regressão linear múltipla (RLM), rede neural artificial (RNA) e floresta aleatória (FA) para 

estimar as temperaturas média (Tmean), máxima (Tmax) e mínima (Tmin) mensais do ar em 

função de coordenadas geográficas, altitude e mês para diferentes localidades do Estado de 

Minas Gerais, Brasil, com classificação climática, segundo Köppen, Cwa ou Cwb. Os dados 

de Tmax, Tmean e Tmin foram extraídos da rede nacional de estações climatológicas 

(INMET). A RLM foi implementada por meio da ferramenta de análise de dados do Microsoft 

Excel®. RNA e FA foram implementadas usando o WEKA. Os resultados mostraram que os 

algoritmos FA e RNA foram usados para estimar Tmean, Tmax e Tmin com alta precisão. Os 

melhores resultados foram obtidos com o modelo FA. A RLM não apresentou uma boa 

acurácia. No artigo 2, o objetivo foi avaliar o desempenho da RNA, FA, Máquina de vetor de 

suporte (MVS) e RLM para estimar a evapotranspiração de referência média mensal (ET0) 

com quatro combinações diferentes de dados de entrada (I8, I6, I3 e I2) e em três cenários: (SI) 

a nível estadual, onde todas as estações climatológicas foram utilizadas; a nível regional (SII e 

SIII), onde o estado de Minas Gerais foi dividido em duas áreas de acordo com a classificação 

climática de cada estação climatológica. Foram utilizadas as classificações climáticas 

propostas por Thornthwaite (S II) e por Köppen (SIII). Todos os modelos foram 

implementados no software WEKA. Os resultados mostraram que RNA e a FA tiveram 

melhor desempenho nos SI, SII, SIII com I8 (latitude, longitude, altitude, mês, Tmédia, Tmax, 

Tmin, e umidade relativa do ar) ou I6 (latitude, longitude, altitude, mês, Tmédia e umidade 

relativa do ar). A MVS e a RLM tiveram melhor desempenho em todos os cenários quando 

apenas duas variáveis de entrada foram usadas (I2 - Tmédia e umidade relativa). Embora a 

divisão em cenários resulte em menos dados de entrada para o treinamento de modelos, os SII 

e SIII mostraram um resultado ligeiramente melhor nas áreas mais ao Sul do estado de Minas 

Gerais. 

 

Palavras-Chave: Rede Neural Artificial, Floresta Aleatória, Máquina de Vetor de Suporte, 

Regressão Linear Múltipla.  
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1 GENERAL INTRODUCTION 

 

Minas Gerais state is the fourth largest in territorial extension in Brazil. Minas Gerais 

has a territory of 586,513.993 km² (INSTITUTO BRASILEIRO DE GEOGRAFIA E 

ESTATISTICA - IBGE, 2020a). It is in the southeastern region of Brazil, between the 

parallels of 14° 13' 58" and 22° 54' 00", of south latitude, and the meridians of 39° 51' 32" and 

51° 02' 35" a west of Greenwich. The Minas Gerais state is the second most populous in the 

country and has the third largest Gross Domestic Product in Brazil of 2018 (IBGE, 2020b). 

The state has agriculture as its primary sector. In 2018, the economic result of Minas Gerais 

was strongly related to the performance of the agricultural sector within the scope of 

agricultural activity. Among the agricultural activities, the coffee crop stands out, which 

represents more than a third of the gross value of state agricultural production (FUNDAÇÃO 

JOÃO PINHEIRO, 2020). Thus, several researches are being conducted with the aim of 

further expanding the productive capacity of the state. 

Climatic studies are important allies in the state's agricultural growth. These studies 

are significant for producers to make decisions regarding activities and property protection 

(SOARES et al., 2018). In general, the meteorological data used in surveys are obtained from 

weather stations networks from agencies such as National Institute of Meteorology (INMET) 

and National Water Agency (ANA). Although the climatological data series from these 

weather stations networks are extensive and reliable, the coverage of the network is limited. 

In addition, failures, interruptions, and errors are quite common. The errors can be attributed 

to reading errors, damaged devices, and other unintended observational problems 

(DUMEDAH; COULIBALY, 2011; MWALE; ADELOYE; RUSTUM, 2012). According to 

Thom (1966), the interruptions that occur in the climatological data series do not make them 

unfeasible. These gaps are not filled since it is not possible to estimate the lost data without 

changing the frequency distribution dispersion scale.  

The weather stations provide different quantitative data that indicate the current 

weather state in each location (KUSRIYANTO; PUTRA, 2018). Among the data obtained are 

air temperature, relative humidity, precipitation, and atmospheric pressure. The air 

temperature, typically measured at the height of about 2 m above ground, is one of the most 

important meteorological elements (JANATIAN et al., 2017). The air temperature exhibits 

spatiotemporal patterns that can be highly variable and complex (BENALI et al., 2012). This 
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variable indicates the amount of energy available to the system. Changes in air temperature 

can alter all processes on the Earth's surface. These changes are visible in thermal comfort of 

people in urban spaces (TALEGHANI, 2018), and physiological processes occurring in a 

plant, such as the speed of chemical reactions (BENAVIDES et al., 2007).  

All plant species have an ideal air temperature range for development. This 

temperature range represented by a minimum, maximum, and optimum (HATFIELD; 

PRUEGER, 2015). When the air temperature exceeds the ideal range for each species, 

morphological, physiological, and biochemical changes may be induced, leading to adverse 

effects on plant growth (WAHID et al., 2007). Schlenker and  Roberts (2009) indicated that in 

the temperature range up to 29 °C to 32 °C, the yield for corn, soybean, and cotton would 

gradually increase and then yield would decline sharply with temperature increases beyond 

this range. In coffee crop, the optimum mean annual temperature falls in the range of 18 to 23 

°C for the proper growth of C. Arabica specie. The optimum temperature falls in the range of 

22 to 26 °C for the proper growth of C. Canephora (DAMATTA et al., 2018). Temperature 

extremely low or very high may cause a reduction in activity of the coffee crop and decrease 

in the net photosynthetic rates of the leaves (BATISTA-SANTOS et al., 2011; CANNELL, 

1985; PARTELLI et al., 2009). These studies show the importance of air temperature for the 

growth of agriculture. However, not only meteorological variables are important, but 

agrometeorological parameter such as evapotranspiration (ET) are of great importance in crop 

development and hydrological studies. 

ET is an important component of the water balance (KUMAR; RAGHUWANSHI; 

SINGH, 2011; WILCOX et al., 2003; XIANG et al., 2020). ET divides into two individual 

components: water evaporation from the soil and from water intercepted by the plant canopy 

and transpiration through the stomata of plants. Although both components are important, 

only transpiration associated with plant yield. Transpiration is commonly considered the more 

desirable component aiming to increase the water use efficiency (AGAM et al., 2012). 

Nevertheless, evaporation is a micro-climate moderator, and some studies claim that this 

ability may indirectly benefit growth and yield of the plants (BURT et al., 2005). 

ET can be measured using the lysimeter (evaporimeter) or water balance approach. 

These methods are ways to get ET directly and are typically used in the development and 

validation of other methods (ALLEN et al., 2011). However, not always possible to use. The 

lysimeter and water balance are a time-consuming method and needs precisely and carefully 
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planned experiments (KUMAR et al., 2002). Furthermore, these approaches may require 

skilled labor and high investments. Therefore, indirect estimation methods from weather data 

are used. These methods vary from an empirical relationship to combination methods based 

on physical processes. These indirect estimation methods have been the main way to obtain 

ET.  

ET can be found in the literature as crop evapotranspiration (ETc) or reference crop 

evapotranspiration (ET0). Both concepts measure the transfer rate of water from the soil plant 

system to the atmosphere. However, ETc measures ET for any crop, while ET0 is the ET rate 

from a reference crop surface. One of the ways to obtain the ETc is through the ET0 and the 

crop coefficient (Kc) (CARVALHO et al., 2011; SALAM et al., 2020).  

ET0 has also been applied in climatology (ALMOROX; QUEJ; MARTÍ, 2015; YANG 

et al., 2017), agronomy field (EWAID; ABED; AL-ANSARI, 2019; ISMAIL; 

EL‐NAKHLAWY, 2018), hydrology (MOJID; RANNU; KARIM, 2015; PHAM et al., 2018) 

among other science fields. ET0 originated from the of Penman (1948) equation. This equation 

is based on physical processes and compute the evaporation from an open water surface from 

climatological data. Later, Monteith (1965) introduced a surface conductance term that 

accounted for the response of leaf stomata to its hydrologic environment to the Penman 

equation. This combination method extended the application of the equation to cropped 

surfaces and gave rise to Penman-Monteith evapotranspiration equation. 

In the 1990s, the Food and Agriculture Organization (FAO) held a meeting with 

experts to analyze the concepts and procedures in ET calculate. From then on, the Penman-

Monteith equation was established as the recommended method for ET0 estimate. However, 

the Penman-Monteith equation was adapted. Specific and invariable parameters for crop were 

established according to the suggestions proposed by Allen et al. (1998), creating a reference 

crop. The FAO adopted this ET0 concept formally in FAO Irrigation and Drainage Paper N 56 

(ALLEN et al., 1998). Thus, with the crop parameterization, ET0 is obtained only through 

meteorological data. 

The FAO Penman-Monteith equation is a nonlinear and complex method. This method 

is considered more realistic physically and is well accepted in practical applications and 

academic research. However, it requires some additional meteorological variables when 

compared to other methods (YANG et al., 2017). This dependence on several meteorological 

data (temperature, relative humidity, solar radiation, soil heat flow, atmospheric pressure, and 
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wind speed) associated with the limited of surface weather stations network makes it difficult 

to measure ET0.  

Given the importance of T and of ET0, besides the difficulties already mentioned in 

obtaining this data for any location and time, several studies have investigated alternative 

equations and methods to estimate T and ET0 with reduced data requirement. Classical 

regression analysis (e.g., Linear regression and Multiple linear regression -MLR) has been 

used, however it has some limitations (ALVARES et al., 2013; MALIK et al., 2019). 

Classical regressions analysis is recommended as a reference method. The MLR was used as a 

reference classical statistical method in this study. In recent years, machine learning models 

have been high capacity in estimating and forecasting meteorological data. These models can 

capture complex relationships between input and output data. In this study, we selected this 

machine learning models: Artificial Neural Network (ANN), Random Forest (RF) and 

Support Vector Machine (SVM) because these models showed high predictive capacity in the 

T and ET0 estimate in some articles (FERREIRA; DA CUNHA, 2020; HUANG et al., 2019; 

MOREIRA; CECÍLIO, 2016; NOI; DEGENER; KAPPAS, 2017). 

MLR is developed to formulate the complex input–output data relationship (WANG; 

HUANG; HE, 2012). MLR aim at explaining the collinearity between a dependent variable 

and independent by means of a linear combination of predictors independent variables (more 

than one). This model requires data from the past projects in order to evaluate the current 

projects (LEUNG; FAN, 2002). To assess the adequacy of the model, the statistical indicators 

as coefficient of determination R² they are used. According to (MARTÍ; GONZÁLEZ-

ALTOZANO; GASQUE, 2011), using the same input data, the studied ANNs present very 

similar accuracy indicators and performance trends as the MLR models in the ET0 estimate. 

This model also had good accuracy in estimating monthly air temperature (ALVARES et al., 

2013). However, the complexity of the input data can change this performance. 

The ANN is a promising and effective tool for non-linear modeling and complex time-

series. The ANN has performance characteristics resembling biology of the human brain that 

learn from trial and error. ANNs, in general, have an architecture with connections between 

neurons (neural networks) and methods to determine the connections weight (PATIL; DEKA, 

2016). Its customary architecture is composed of three layers: input, hidden, and output layers 

and each layer include an array of processing elements (FERREIRA et al., 2019; KUMAR et 

al., 2002; YIN et al., 2017). However, different architectures must be tested to achieve 
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maximum predictive performance. In this study, the ANN of the feed-forward multilayer 

perceptron (MLP) type was used (FAUSETT, 1994). In the training process of this ANN the 

input sign spreads layer-by-layer forward (forward pass) and, posteriorly, the sign is 

backpropagated for the correction of the error (reverse pass). ANN showed performed better 

than the others traditional machine learning models in certain scenarios and regions 

(SATTARI et al., 2021). However, in some situations the model does not perform well 

(BENALI et al., 2019). 

The RF method belongs to the regression tree (RT) family. RF is an ensemble learning 

technique based on a collection of tree predictors (XU; KNUDBY; HO, 2014). RF uses the 

Breiman’s “bagging” idea to ensemble many decision trees into a single but strong model 

(BREIMAN, 2001). It is a combination of many predictor trees (forest), in which each tree is 

generated from a random vector, sampled independently and with the same distribution for all 

trees in the forest. According to Wang et al. (2019), there are three simple steps to building an 

RF model: (i) Build n bootstrap samples from the original data; (ii) build an unpruned 

regression tree; (iii) and predict new data by aggregating the predictions of the n. As reported 

by (BENALI et al., 2019), this technique is recognized as one of the most effective machine 

learning models for forecasting. But, like ANN, in some scenarios the RF did not perform 

better than other models (FERREIRA; DA CUNHA, 2020). 

SVM is a supervised machine learning algorithm developed by Vapnik (2013). This 

algorithm is very powerful at recognizing subtle patterns in complex datasets with balanced 

accuracy and reproducibility (PISNER; SCHNYER, 2020). SVM is an optimal “hyperplane” 

that it aims to separate (i.e., “classify”) observed data according to its class based on patterns 

of information about those observations called features. An SVM can be linear or nonlinear, 

however the linear is the most used (PISNER; SCHNYER, 2020). SVM based on a statistical 

learning theory and concept of the structural risk minimization principle, which reduces the 

upper bound generalization error rather than the local training error (FENG; WEN; LI, 2015; 

SHIRI et al., 2014). Mehdizadeh, Behmanesh and Khalili (2017) observed a correlation 

coefficient above 0.97 (testing stage) in the ET0 estimate through the SVM. However, another 

algorithm used in the research showed better results.  This pattern was observed by other 

authors (KUMAR et al., 2016). Thus, evaluating other models is necessary. 

The WEKA (Waikato Environment for Knowledge Analysis), developed by the 

University of Waikato, Hamilton, New Zealand (WITTEN; FRANK, 2002), was data mining 
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tool used for the study to generate the models. WEKA is an open-source tool written in Java 

that is widely used by the data miners (KABAKCHIEVA, 2013). Weka has several 

classification and regression algorithms such as J48, Bayesian Network, Random Tree and 

Simple Linear Regression (in addition to the algorithms used in the present study). This tool 

facilitates the use of the algorithms, making it possible to configure the model’s boundary 

conditions. Besides, it allows other analyzes such as the rank of the input attributes and the 

comparison of different algorithms. WEKA has been used frequently in studies related to 

agrometeorology, climatology, hydrology, and irrigation (ERECHTCHOUKOVA; 

KHAITER, 2017; PATEL et al., 2014; SATTARI et al., 2021). Furthermore, these papers 

presented a positive evaluation of the tool. 

Two articles were developed to compose the present thesis that has as general 

objective the study the predictive capacity of classical statistical method (MLR) and machine 

learning models (ANN, RF and SVM) to estimate the mean (Tmean), maximum (Tmax), and 

minimum (Tmin) air temperatures and the mean reference evapotranspiration (ET0), in the 

Minas Gerais State, with different input meteorological data combinations. 

The first manuscript, entitled “Air temperature estimation techniques in the Minas 

Gerais state, Brazil, Cwa and Cwb climate regions according to the Koppen- Geiger climate 

classification system” was accepted for publication by journal Ciência e Agrotecnologia. This 

article aimed to determine a model that is efficient in estimating the mean, maximum, and 

minimum monthly air temperatures in any location in the Minas Gerais state with climatic 

classification Cwa or Cwb (KÖPPEN; GEIGER, 1928). The main result of this study was to 

analyze the ability of classical statistical methods (MLR) and machine learning methods 

(ANN and RF) when input data is restricted to geographic coordinates, altitude, and month. In 

addition, to assessing the importance of each input data in the estimate.  

The second manuscript, entitled “Evaluation of monthly mean reference 

evapotranspiration estimation techniques in the Minas Gerais state, Brazil” is being prepared 

with the aim of submitting it to a high impact scientific journal. This article aimed to develop 

effective models to estimate the monthly mean ET0 with different input data combinations and 

in different scenarios. The different combinations of input data make it possible to analyze the 

model's performance under limited data conditions. Three different scenarios were analyzed: 

At state level (scenario II – SI) and at regional level. At the regional level, the Minas Gerais 

state was divided into two areas with climatic similarity according to the Classification 
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Systems proposed by Thornthwaite (1948) (scenario II - SII) and Köppen (1936) (scenario III 

- SIII). The scenarios aimed to group data from similar regions and thus increase the capacity 

of the models. 
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2 GENERAL CONSIDERATIONS 

 

This thesis focused on improving techniques that provide conditions of access to 

estimated data with high efficiency for any location in Minas Gerais state. Thus, it is intended 

to offer subsidies for different areas of knowledge such as irrigation, hydrology, and 

climatology. 

Studies of estimation of meteorological data are not able to remedy the deficit of 

climatic data. The filling of these deficits by estimated data would cause a change in the 

frequency distribution dispersion scale (THOM, 1966). Therefore, the estimation models aim 

to find patterns of behavior, learn from these patterns, and expand their application capacity to 

different locations.  

The development of models requires a solid and reliable database, however, according 

to Thom (1966), the interruptions that occur in the series of climatological data do not make 

them unfeasible. These models, most of the time, need knowledge of the technology used or 

of palpable forms of application such as a web site or application so that its applicability is 

available to those who need it (farmers, technicians, researchers, government officials, etc.).  

However, studies like the ones presented are fundamental to understand the behavior and the 

relationships between the input data and estimated data. In addition, the results obtained may 

guide similar future studies in other regions. We emphasize that special attention should be 

paid to regions where data are not available and/or regions with low development and high 

potential 

The meteorological variables and agrometeorological parameter analyzed are 

fundamental for several areas, as already mentioned. Although the thesis focuses on these 

variables and parameter, the knowledge produced can be expanded to other meteorological 

variables such as relative humidity and solar radiation.  

Future scenarios indicate a reduction in rainfall and an increase in temperature and, 

consequently, an increase in evapotranspiration. Updates to these scenarios are essential for 

good management of natural resources and urban planning. Thus, ways of estimating climate 

data with excellence can be a way to improve and expand these forecasts, since these data are 

the basis for the forecasts.  

New technologies such as machine learning methods are being highly efficient in 

estimating and classifying climate data. There is still a lot to develop, however tools such as 



20 

 

 

 

WEKA help in the implementation of these models in an easier and safer way. However, 

knowledge of the techniques is indispensable when using WEKA. Using these models and 

tools incorrectly can lead to inconsistent results and conclusions.  
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Cwa e Cwb segundo sistema de classificação climática de Koppen-Geiger. 

Pietros André Balbino dos Santos1 

Cassio Augusto Ussi Monti2 

Luiz Gonsaga de Carvalho1 

Wilian Soares Lacerda3 

Felipe Schwerz1 

 

1Universidade Federal de Lavras/UFLA, Departamento de Engenharia Agrícola, Lavras, MG, 

Brasil  

2North Carolina State University, Department of Forestry and Environmental Resources, 

Jordan Hall, 2800 Faucette Dr 3120, 27607, Raleigh, NC, U.S.A.  

3Universidade Federal de Lavras/UFLA, Departamento de Automática, Lavras, MG, Brasil  

 

Abstract: Air temperature significantly affects the processes involving agricultural and 

human activities. The knowledge of the temperature of a given location is essential for 

agricultural planning. It also helps to make decisions regarding human activities. However, it 

is not always possible to determine this variable. It is necessary to make a precise estimate, 

using methods that are capable of detecting the existing variations. The aim of this study was 

to develop models of multiple linear regression (MLR), artificial neural network (ANN), and 

random forest (RF) to estimate the mean (Tmean), maximum (Tmax), and minimum (Tmin) 

monthly air temperatures as a function of geographic coordinates and altitude for different 
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localities in Minas Gerais state, Brazil, with climatic classification Cwa or Cwb. The average 

monthly data (Tmean, Tmax, and Tmin), over a period of 30 years, were collected from 20 

climatological stations. The MLR was able to estimate the Tmax with accuracy. However, the 

predictive capacity of estimating Tmean and Tmin was low. The algorithms RF and ANN 

were used to estimate Tmean, Tmax, and Tmin with high accuracy. The best results were 

obtained using the RF model. 

Keywords: Artificial Neural Network, Random Forest, Multiple Linear Regression, 

Geographic Coordinates. 

Resumo: A temperatura do ar afeta significativamente os processos que envolvem atividades 

agrícolas e humanas. O conhecimento da temperatura de um determinado local é fundamental 

para o planejamento agrícola. Também ajuda a tomar decisões sobre as atividades humanas. 

No entanto, nem sempre é possível determinar essa variável. É necessário fazer uma 

estimativa precisa, utilizando métodos que sejam capazes de detectar as variações existentes. 

O objetivo deste estudo foi desenvolver modelos de regressão linear múltipla (RLM), rede 

neural artificial (RNA) e floresta aleatória (FA) para estimar a temperatura média (Tmean), 

máximo (Tmax), e mínimo (Tmin) mensal do ar em função de coordenadas geográficas e 

altitude para diferentes áreas do Estado de Minas Gerais, Brasil, com classificação climática 

Cwa ou Cwb. Os dados médios mensais (Tmean, Tmax e Tmin), ao longo de um período de 

30 anos, foram coletados em 20 estações climatológicas. O RLM foi capaz de estimar o Tmax 

com precisão. Porém, a capacidade preditiva de estimar Tmean e Tmin foi baixa. Os 

algoritmos FA e RNA foram usados para estimar Tmean, Tmax e Tmin com alta precisão. Os 

melhores resultados foram obtidos com o modelo RF. 

Palavras-chave: Rede Neural Artificial, Floresta Aleatória, Regressão Linear Múltipla, 

Coordenadas Geográficas. 
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INTRODUCTION 

It is important to monitor the meteorological elements to achieve proper growth and 

yield of crops. Efficient monitoring can help in evapotranspiration estimates, irrigation 

planning, pest and disease risk zoning, animal comfort index mapping, etc. One of the most 

important meteorological elements is air temperature, which influences plant physiology. 

Changes in air temperature can lead to change in the growth and development of plants 

(Benlloch-González et al., 2016; Cardoso et al., 2012; Wahid et al., 2007). The air 

temperature influences various physiological processes occurring in a plant, such as the speed 

of chemical reactions (Benavides et al., 2007) that occur in the temperature range of 0 – 40 

°C. The extent of influence exerted depends on the plant species. When the air temperature 

exceeds the ideal range for each species, morphological, physiological, and biochemical 

changes may be induced, leading to adverse effects on plant growth (Wahid et al., 2007). 

Studies on the characterization of air temperature, precipitation, and the climatic classification 

of the regions where agriculture predominates should be conducted to improve crop yields 

(Cardoso et al., 2015; Costa et al., 2012). 

In coffee crop science, one of the main crop types grown in the Minas Gerais State, 

Brazil (Compahia Brasileira de Abastecimento - CONAB, 2020), the optimum mean annual 

temperature falls in the range of 18 – 23 °C for the proper growth of C. Arabica specie. The 

optimum temperature falls in the range of 22 – 26 °C for the proper growth of C. Canephora 

(Damatta et al., 2018). Temperatures that fall outside this range influence the growth and 

yields of the crops. When the temperature is extremely low, the activity of the coffee crop 

reduces, and the photosynthetic performance is noticeably affected. The net photosynthetic 

activity ceases almost completely (Batista-Santos et al., 2011; Partelli et al., 2009). On the 

other hand, very high temperatures may cause a decrease in the net photosynthetic rates of the 
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leaves (Cannell, 1985). The ideal temperature interval produces a high crop yield over the 

years. The temperature outside the optimal range results in reduced crop yield. Therefore, it is 

important to determine the mean air temperature and the extreme temperatures (maximum and 

minimum). Furthermore, considering the characteristics of the relief and location of the Minas 

Gerais State, the accurate estimation of extreme temperatures is important because the state 

exhibits topographic conditions that allow the formation of frosts on an annual basis in the 

southern region. The maximum temperatures (40–42 °C) are recorded in the northern regions 

of the state. 

The mean, maximum, and minimum air temperatures can be monitored on a daily 

basis in weather stations. However, in the Minas Gerais region, the coverage of the official 

network of surface weather stations is limited. Besides, interruptions and errors in the 

database generated by these stations are quite common. The errors can be attributed to reading 

errors, damaged devices, and other unintended observational problems (Dumedah; Coulibaly, 

2011; Mwale; Adeloye; Rustum, 2012). These factors limit climatic studies, e.g., studies on 

the climatic characterization of the region and studies on meteorological elements that slow 

down the development of agriculture. 

 Considering the fact that the average monthly air temperature varies with geographic 

coordinates and altitude, several researchers working in different regions of Brazil have been 

trying to develop techniques and models for estimating the air temperature. The multiple 

linear regression (MLR) model considers the latitude, longitude, and altitude of the location as 

independent variables (Alvares et al., 2013; Cargnelutti Filho; Maluf; Matzenauer, 2008; 

Pezzopane et al., 2004; Sediyama; Melo Júnior, 1998). These estimates have been made with 

different levels of precision and accuracy. However, the development of new tools such as the 
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Artificial Neural Network and Random Forests technique can maximize the performance, 

precision, and accuracy of estimating the air temperature.  

The new techniques have been developed with the aim of achieving higher accuracy 

during the estimation of variables. The Artificial Neural Network (ANN) is a promising and 

effective tool for non-linear modeling and complex time-series. It has been used in different 

fields of science such as medicine (Muhammad et al., 2019), hydrology (Asadi et al., 2019), 

and agriculture (De Oliveira Aparecido et al., 2020). The ANN model is a mathematical 

model in which the architecture is analogous to brain functioning. The interconnecting 

processing elements are arranged in several layers (Kumar; Raghuwanshi; Singh, 2011). The 

ANN method helps understand and generalize the relationships between complex datasets. 

This expands the scope of the application of the method (Wu; Dandy; Maier, 2014).  

ANNs have been used for the estimation of meteorological variables with good 

accuracy. Estimation of reference evapotranspiration (Antonopoulos; Antonopoulos, 2017; 

Kumar; Raghuwanshi; Singh, 2011), solar radiation (Bou-Rabee et al., 2017), and air 

temperature (Moreira; Cecílio, 2016) have been carried out using this technique. It is 

important to conduct this study to verify the applicability of the ANN method for estimating 

the mean, maximum, and minimum air temperature. The efficiency of the technique has been 

investigated. Reports on the use of ANNs (used to estimate the temperature in the region 

under study) are scarce. 

The Random Forest (RF) is non-parametric statistical data modeling methods 

(Breiman, 2001). The models have been used to analyze data in different fields of science, 

such as medicine (Xie et al., 2020), biology (Fabris et al., 2018), and geoprocessing (Vogels 

et al., 2017). According to James et al. (2013), decision trees detect non-linear relationships in 

the evaluated system when the use of linear relationships, e.g., linear regression analysis, is 
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restricted. According to Seyedhosseini and Tasdizen (2015), RF is a classification and 

regression technique used to grow ensemble decision trees such that the correlation between 

the trees remains as low as possible. This condition can be achieved by the method of 

bootstrap sampling. In this method, resamples are replaced by simulating a single random 

sample. It must represent samples taken from the original population. Data from previously 

conducted analytical experiments are required to enhance the predictive and generalization 

abilities (Hesterberg et al., 2002). 

RF has also been adopted to predict meteorological variables such as solar radiation 

(Benali et al., 2019) and air temperature (Noi; Degener; Kappas, 2017). RF has been found to 

be a more efficient predicting tool compared to other tools like ANN (Benali et al., 2019; 

Zhou et al., 2016). The RF is still little applied, and the interest in this predictive tool is 

increasing as it exhibits a good practical performance (Scornet, 2016). Therefore, it is 

important to evaluate the RF potential for estimating air temperature and to compare it with 

different methods. 

The objective of this study was to develop and compare the performances of multiple 

linear regression (MLR), Artificial Neural Networks (ANN), and Random Forests (RF) 

models for estimating the mean, maximum, and minimum monthly air temperatures using 

input variables such as geographical coordinates and altitude for different areas in the Minas 

Gerais State with climatic classification Cwa or Cwb (Köppen; Geiger, 1928). 

 

MATERIAL AND METHODS 

STUDY AREA AND DATA SOURCES 

The present study was developed for municipalities in the Minas Gerais state that are 

within the regions classified as Cwa (humid temperate climate with dry winter and hot 
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summer) and Cwb (humid temperate climate with dry winter and moderately hot summer). 

This classification was proposed by Köppen and Geiger (1928) (Figure 1). This Climatic 

Classification Systems (CMS) was developed by Köppen in 1918, and its most popular 

version was published in 1928 in collaboration with Rudolf Oskar Robert Williams Geiger. 

The Köppen and Geiger (1928) CMS a simple and comprehensive system, and hence it is 

widely used. The mean annual rainfall recorded in the region under study is 1379 mm (Brasil, 

1992). The study was limited to the areas classified as Cwa and Cwb. The aim was to 

determine the maximum efficiency of the models tested. Highly accurate data were obtained 

when the models were used in regions exhibiting similar climatic characteristics.  

 
 

Figure 1 - Climate zoning in the state of Minas Gerais. Zoned according to the Köppen and Geiger (1928) 

climatic classification. Codes of the climatological stations of the National Institute of Meteorology. Source: 

Adapted from De Sá Júnior et al. (2012). 
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According to De Sá Júnior et al. (2012), the regions classified as Cwa and Cwb 

represent 21% and 11% of the area of the Minas Gerais state, respectively. There are 20 

climatological stations located in the region under study. The regions fall under the realm of 

the national network of climatological stations (National Institute of Meteorology (INMET)). 

The respective geographical coordinates and climatic classification have been presented in 

Table 1. The average monthly data (mean (Tmean), maximum (Tmax), and minimum (Tmin) 

air temperature) over a period of 30 years, from 1987 to 2017, of each conventional station 

were used for the studies. The data were extracted from the Meteorological Database for 

Teaching and Research - BDMEP of INMET. Although some locations do not have a record 

of 30 years of data (Table 1), all stations presented more than 90% of the consistent data. 

Table 1 - Principal climatological station of the INMET used to estimate the mean, maximum, 

and minimum air temperature. 

ID Climatological 

stations location  

Latitude 

(S°) 

Longitude 

(W°) 

Altitude 

(m) 

Climatic 

classes 

Period 

(years) 

1 Araxá 19.56 46.93 1004 Cwa 1887 - 2017 

2 Bambuí 20.00 45.98 661 Cwa 1887 - 2017 

3 Barbacena 21.25 43.76 1126 Cwb 1890 - 2017 

4 Bom Despacho 19.68 45.36 695 Cwa 1887 - 2017 

5 Caparaó 20.51 41.86 843 Cwb 1890 - 2017 

6 Caratinga 19.80 42.15 609 Cwa 1887 - 2017 

7 Cal. Pacheco 21.58 43.25 453 Cwa 1887 - 2009 

8 C. Mato Dentro 19.03 43.43 652 Cwa 1887 - 2017 

9 Diamantina 18.25 43.60 1296 Cwb 1887 - 2017 

10 Florestal 19.88 44.41 760 Cwa 1887 - 2017 

11 Ibirité 20.01 44.05 815 Cwa 1887 - 2015 

12 Itamarandiba 17.85 42.85 1097 Cwb 1887 - 2017 

13 Juiz de Fora 21.76 43.35 940 Cwa 1887 - 2017 

14 Lavras 21.23 45.00 919 Cwa 1888 - 2017 

15 Machado 21.66 45.91 874 Cwa 1891 - 2017 

16 Poços de Caldas 21.91 46.38 1150 Cwb 1892 - 2015 

17 São Lourenço 22.10 45.01 900 Cwa 1887 - 2017 

18 S. Seb. do Paraíso 20.91 47.11 820 Cwb 1887 - 2013 

19 Sete Lagoas 19.46 44.25 732 Cwa 1892 - 2015 

20 Viçosa 20.75 42.85 690 Cwa 1890 - 2017 
Source: Adapted from De Sá Júnior et al. (2012). 
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MULTIPLE LINEAR REGRESSION (MLR) METHOD 

Based on the independent variables (geographic coordinates and altitude), MLR was 

developed to estimate the mean, maximum, and minimum average temperature of each month 

of the year for each location. The average temperatures were calculated as follows (Equation 

1): 

                                                                                          (1)  

where Yi is Tmean, Tmax, or Tmin in °C and is the dependent variable. ALT represents the 

altitude in m, LAT represents the latitude in degrees, and LON represents the longitude in 

degrees, which are independent variables. β0, β1, β2, and β3, are the regression coefficients. 

MLR was implemented using the data analysis tool in Microsoft Excel®. Contrary to the 

methodology applied for ANN and RF, the month was not used as an input variable. 

Therefore, the data for Tmean, Tmax, and Tmin were classified based on the month. 

Subsequently, the MLRs were adjusted. Each month had a characteristic equation generating 

a specific statistical result. The methodology reported by Sediyama and Melo Júnior (1998) 

were used for the studies. This methodology increases the predictive capacity of MLR and 

facilitates the analysis of each independent variable in the month. The influence of each 

variable on the result can also be analyzed.  

ARTIFICIAL NEURAL NETWORKS (ANNS) MODEL DEVELOPMENT 

ANN was implemented using the Waikato Environment for Knowledge Analysis 

(WEKA; version 3.8.2 © 1999 – 2017) developed by the University of Waikato, Hamilton, 

New Zealand. The algorithm used for ANN was the Multilayer Perceptron (MLP) algorithm 

(Fausett, 1994). The architecture consisted of the input layer, hidden layers (where the data 

are processed), and output layer (where the results of processing are compiled) (Figure 2). 
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Figure 2 - Network structure scheme consisting of five neurons in the hidden layer built by WEKA (ANN2) to 

estimate Tmax (Source: The Authors). 

The input data consisted of the month, latitude, longitude, and altitude of each 

evaluated location. Each ANN setting estimated the Tmean, Tmax, or Tmin for all the 

months. There are good reasons behind using these variables for these studies. The temporal 

variable consists of the cumulative month component, which is required to execute the 

projections. The latitude and longitude are the variables related to the position. The 

temperature changes with the position as the position changes from the Poles to the Equator 

Line. The temperature gradually increases from the poles to the equator. The altitude variable 

is regarded as the surface component. It can be stated that the higher the altitude, the lower the 

temperature. The ANN follows a mathematical structure connecting the processing nodes 

(neurons). The output of a neuron is the input of the subsequently combined neurons. The 

final model is built based on various assumptions on activation function (Equations 2 – 8). 

The equations are as follows: 

( )1,1 2,1 3,1 4,1 5,1

1
n(1

LAT LON ALT MONTH Bw w w w w
N L e

 +  +  +  + 

= + ,                      (2)  
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Equations 2–5 represent the mathematical abstraction of the ANN built in Figure 2 

extracting the neurons equations. Equations 6–8 are the estimate vectors of each output. Wi,j 

represents the weights estimated using the backpropagation algorithm during ANN 

processing. The value of Bi,j represents the bias associated with each measurer. The activation 

function applied was sigmoidal with non-linear output. 

All adjustments were cross-assessed. Twenty folds of the sample set were used for the 

assessment for training to compensate for the reduced number of instances. Two different 

configurations were evaluated (Table 2). Results from the preliminary tests indicated that 

changes in the number of training epochs and the number of neurons present in the hidden 

layer interfered with the performance of the models. However, changes in the other 

parameters did not significantly influence the model performances. 
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Table 2. WEKA configuration in the ANN implementation. 

 

DEVELOPMENT OF THE RANDOM FOREST (RF) MODEL 

The implementation of RF in WEKA has its basis on a previously reported study 

(Breiman, 2001). Two configurations of RF were used, with the input variables being month, 

latitude, longitude, and altitude of each evaluated location. Thus, each RF setting could be 

used to estimate Tmean, Tmax, or Tmin for all the months under study. The steps followed 

has been presented in Figure 3. 

 

Figure 3–Schematic representation of the steps used in the RF model following the resampling strategy (Source: 

Wang et al., 2019). 

 Tmean  Tmax  Tmin 

 ANN1 ANN2  ANN1 ANN2  ANN1 ANN2 

Learning rate 0.3 0.3  0.3 0.3  0.3 0.3 

Momentum 0.2 0.2  0.2 0.2  0.2 0.2 

Number of training epochs  500 1000  500 500  500 1000 

Number of hidden layers 1 1  1 1  1 1 

Number of neurons into the 

hidden layer 
5 6 

 
6 5  6 6 
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In this study, preliminary examinations were conducted for several configurations. The 

configurations with 100 and 500 interactions exhibited better performance compared to other 

values obtained in the preliminary analysis. The preliminary tests revealed that the changes in 

the other parameters did not positively influence the model performance. The tests exhibited 

two distinct configurations for better results (Table 3). 

Table 3: WEKA configuration in the RF implementation process. 

 Tmean  Tmax  Tmin 
 RF1 RF2  RF1 RF2  RF1 RF2 

Break ties randomly when several 

attributes look equally good 
 x   x  x x 

Size of each bag, as percentage of the 

training set size 
100 100  100 100  100 100 

Number of iterations 500 500  500 500  100 500 

Minimum number of instances per leaf 1 1  1 1  1 1 

Maximum depth of the tree unl. unl.  unl. unl.  unl. unl. 

 

STATISTICAL TESTS 

Various statistical indices were used to assess the predictive quality of each technique 

in terms of variation, precision, accuracy, and performance. The mean absolute error (MAE) 

and root mean square error (RMSE) indicates revealed how close the predicted values were to 

the observed value. Thus, the accuracy of each model could be predicted. The variation was 

quantified by the determination coefficient (R²), which represents the percentage of the 

variation of the dependent variable explained by the independent variable. The best model 

should produce an R² value close to unity. The precision of the models was quantified based 

on Pearson’s correlation coefficient (r), which indicates the degree of dispersion of the data 

obtained in terms of the mean. Accuracy was quantified using Willmott’s index of agreement 

(d) and the performance index (c) (Camargo; Sentelhas, 1997). The performance index was 

calculated using the equation c = r. d. This equation was also used to quantify the 

performance of the model. The performances were classified as: Excellent (1 – 0.85), Very 
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good (0.85 – 0.76), Good (0.76 – 0.66), Average (0.66 – 0.61), Poor (0.61 – 0.51), Bad (0.51 

– 0.41), and Terrible (less than 0.41).  

Weka provides a tool to compare different combinations and different algorithms 

called WEKA Experiment Environment (Figure 4). This tool was used to compare the 

performance of each algorithm and configuration used in the present study conducted using 

the cross-validation technique. According to Noi, Degener, and Kappas, (2017), cross-

validation is one of the most popular validation methods used to compare different 

combinations and different algorithms. In the cross-validation method, the dataset is divided 

into k groups (k-fold) of approximately the same size. Due to the number of observations, a 

20-fold cross-validation method was used. The algorithms were applied for each fold, 

generating statistical performance values. Later, these average performance values were 

compared by Tukey’s test at 5% probability. The statistical software Sisvar (Ferreira, 2019) 

was used for analysis. The MLR method was not implemented in WEKA. The approach was 

different from that was used in the ANN and RF methods. Hence, it was not possible to 

compare the MLR method with the other techniques using Tukey’s test. The comparison 

between MLR and other techniques was made by comparing the statistical performance 

indicators. 

 

Figure 4–WEKA Experiment Environment workflow of the experiment (Source: The Authors). 
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RESULTS AND DISCUSSION 

The MLR method coefficients were adjusted to estimate the Tmean, Tmax, and Tmin 

monthly air temperatures. The respective mean absolute errors (MAE), root mean square 

errors (RMSE), determination coefficient (R²), Pearson’s correlation coefficient (r), 

Willmott’s index of agreement (d), and the consistency index (c) are shown in Table 4. 

Table 4. Coefficients of the monthly air temperature models and statistical performance 

indicators. 

Month 

MLR method coefficients MAE RMSE R² r d c 

(β0) Alt (β1) Lat (β2) Lon (β3) (°C) (°C)     

Tmean  

Jan 26.18 0.2980* -0.144* 0.004* 0.25 0.33 0.88 0.94 0.97 0.90 

Feb 26.41 -0.0030* -0.346* 0.143ns 0.33 0.41 0.75 0.86 0.92 0.80 

Mar 27.05 -0.0040* -0.311* 0.114ns 0.28 0.34 0.85 0.92 0.96 0.89 

Apr 22.87 -0.0046* -0.363* 0.214* 0.38 0.45 0.82 0.90 0.95 0.86 

May 28.84 -0.0026* -0.760* 0.162ns 0.47 0.56 0.75 0.87 0.92 0.80 

Jun 33.19 -0.0011ns -0.917* 0.080ns 0.62 0.72 0.65 0.80 0.88 0.71 

Jul 25.62 -0.0011ns -0.718* 0.156ns 0.86 0.99 0.38 0.62 0.73 0.45 

Aug 21.73 -0.0014ns -0.779* 0.307ns 0.75 0.87 0.51 0.71 0.81 0.58 

Sep 17.94 -0.0028* -0.828* 0.491* 0.63 0.72 0.71 0.84 0.91 0.77 

Oct 18.72 -0.0046* -0.613* 0.442* 0.44 0.49 0.85 0.92 0.96 0.88 

Nov 18.29 -0.0061* -0.409* 0.387* 0.27 0.32 0.93 0.97 0.98 0.95 

Dec 21.63 -0.0053* -0.173* 0.205* 0.23 0.30 0.91 0.95 0.98 0.93 

Tmax 

Jan 35.07 -0.0051* -0.468* 0.179ns 0.52 0.61 0.76 0.87 0.93 0.81 

Feb 36.87 -0.0037* -0.483* 0.141ns 0.60 0.70 0.63 0.80 0.88 0.70 

Mar 31.98 -0.0058* -0.332* 0.199ns 0.46 0.51 0.83 0.91 0.95 0.87 

Apr 25.54 -0.0061* -0.511* 0.407* 0.50 0.58 0.83 0.91 0.95 0.87 

May 25.88 -0.0055* -0.885* 0.509* 0.49 0.58 0.86 0.93 0.96 0.89 

Jun 23.46 -0.0068* -0.753* 0.514* 0.62 0.69 0.83 0.91 0.95 0.87 

Jul 20.14 -0.0059* -0.747* 0.577* 0.55 0.66 0.82 0.91 0.95 0.86 

Aug 13.30 -0.0067* -0.704* 0.762* 0.53 0.64 0.86 0.93 0.96 0.89 

Sep 15.71 -0.0054* -0.992* 0.855* 0.64 0.74 0.84 0.91 0.95 0.87 

Oct 15.63 -0.0069* -0.690* 0.753* 0.61 0.69 0.84 0.92 0.95 0.88 

Nov 17.02 -0.0071* -0.480* 0.609* 0.52 0.60 0.85 0.92 0.96 0.88 

Dec 22.13 -0.0071* -0.101* 0.336* 0.45 0.51 0.84 0.92 0.96 0.88 

Tmin 

Jan 19.08 -0.0038* -0.071ns 0.090ns 0.35 0.42 0.71 0.84 0.91 0.77 
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Fev 22.79 -0.0025* -0.188ns 0.031ns 0.49 0.56 0.47 0.69 0.80 0.55 

Mar 25.67 -0.0023 ns -0.241ns 0.019ns 0.51 0.66 0.43 0.66 0.78 0.51 

Abr 30.60 -0.0032 ns -0.222ns 0.164ns 0.77 0.97 0.41 0.64 0.78 0.50 

Maio 39.19 -0.0005 ns -0.690ns 0.262ns 0.92 1.16 0.37 0.60 0.73 0.44 

Jun 40.56 0.0004 ns -0.653ns 0.362ns 1.17 1.49 0.25 0.50 0.62 0.31 

Jul 33.88 0.0015 ns -0.577ns 0.287ns 1.52 1.92 0.10 0.32 0.40 0.13 

Ago 30.86 0.0001 ns -0.578ns 0.173ns 1.43 1.71 0.12 0.35 0.47 0.17 

Set 30.06 -0.0002 ns -0.733ns 0.021ns 1.20 1.37 0.22 0.47 0.61 0.29 

Out 26.21 -0.0028 ns -0.506ns 0.067ns 0.66 0.81 0.50 0.71 0.81 0.57 

Nov 23.23 -0.0049* -0.344ns 0.126ns 0.31 0.40 0.86 0.93 0.96 0.89 

Dez 22.09 -0.0039* -0.133ns 0.054ns 0.29 0.36 0.82 0.91 0.94 0.86 
ns no significant. *significant at 5% probability by F-test. 

The models used to estimate Tmean (Table 4) reveal that R² values were in the range 

of 0.38 – 0.93 and the r valued ranged from 0.62 to 0.97. The models for estimating the data 

for the months of July and August exhibited a “bad” and “poor” performance (Camargo; 

Sentelhas, 1997), respectively. For these months, these models are not recommended to 

estimate the Tmean values. The model performances were “Good” when the other months 

were analyzed. The linear coefficients altitude (β1) and latitude (β2) were significant. A 

negative correlation was observed between altitude and Tmean and between latitude and 

Tmean, exhibiting a decrease in Tmean values with increasing altitude and latitude. These 

results were expected and in accordance with the vertical thermal gradient in the troposphere. 

Cargnelutti Filho, Maluf and Matzenauer (2008) and Gomes et al. (2014) reported a negative 

correlation between altitude and Tmean (Rio de Janeiro state and the Rio Grande do Sul state, 

respectively). However, there was no significant influence in latitude.  

During the estimation of Tmax, RMSE was found to be in the range of 0.51 – 0.74. 

The R² values ranged between 0.63 and 0.86, and the r values ranged between 0.80 and 0.93 

(Table 4). The model for February exhibited the lowest statistical indicators, and the model’s 

performance was “Good” (Camargo; Sentelhas, 1997). The linear coefficient of altitude (β1) 

was significant in all models. There was no significant influence of the linear coefficients 
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longitude (β3) on the months of January, February, and March. In the other months, a 

significant influence of β2, β3, and β4 was observed. Gomes et al. (2014) analyzed the models 

to estimate the maximum monthly air temperature of Rio de Janeiro. R² values were found to 

be in the range of 0.51 – 0.71. A significant influence of the altitude and latitude was 

observed. However, the linear coefficient of longitude did not significantly affect the data of 

most months. This difference can be explained by the small longitudinal difference between 

the meteorological stations in Rio de Janeiro state compared to the region evaluated in this 

study. The meteorological stations under consideration are at a sufficient longitudinal distance 

to be influenced by the continentality effect.  

While estimating Tmin, it was observed that the r values ranged between 0.32 and 

0.93. The R² values ranged between 0.10 and 0.86, and the RMSE values ranged between 

0.36 – 1.92 (Table 4). The models used for estimating the Tmin values for the months 

between February and October exhibited a “Poor”, “Bad”, or “Terrible” performance index 

(Camargo; Sentelhas, 1997), reflecting the low precision and degree of accuracy. 

Furthermore, significant β1, β2, and β3 values were not recorded when these models were 

used to study the data corresponding to the abovementioned months. 

The Tmin, corresponding to these months, varied due to the variation in other factors, 

such as wind, ocean currents, local topographic conditions, rain, cloudiness, and passage of 

the cold front (Aguado; Burt, 2010). According to Silveira et al. (2019), in addition to the 

statistical factors (vegetation, maritime, continentality, geographic coordinates, etc.), climatic 

conditions are influenced by dynamic atmospheric systems such as cold fronts. After the 

passage of the cold front, under conditions of clear skies and low atmospheric humidity, the 

heat loss by irradiation during the night is very high. This results in a drop in temperature, 



46 

 

 

 

mainly during winter, autumn, and spring. In some cases, this facilitates the occurrence of 

radioactive frosts (Escobar, 2007). 

 Therefore, the Tmin values could not be estimated with high precision using these 

models. In the other months (November, December, and January), the models performed well, 

and a significant influence of altitude was observed. Medeiros et al. (2005) (the Northeast 

region of Brazil) Cargnelutti Filho et al. (2006) (the Rio Grande do Sul state), and Gomes et 

al. (2014) (the Rio de Janeiro state), observed similar results. The altitude influenced the Tmin 

values the most.  

The ANN and RF statistical performance indicators for estimating Tmean, Tmax, and 

Tmin in the regions classified as Cwa and Cwb (Minas Gerais state) are shown in Table 5. 

Contrary to the MLR model, which used separate equations for each month, the architectures 

chosen for the ANN and RF models could be used to estimate the Tmean, Tmax, and Tmin of 

all months together. Thus, to estimate the Tmean, Tmax, or Tmin of a given location, latitude, 

longitude, altitude, and the month were used as the input data. Moreover, the statistics for 

each configuration (Table 5) refer to all the months of the year. The model performance 

indices for each month need not be distinguished (unlike the MLR model). 
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Table 5. Summary of the statistical tests conducted using the ANN and RF models. 

Mean values followed by the same letter in a column do not differ significantly (Tukey’s test 

(p≤0.05)). 

The lower RMSE and MAE were observed when the RF technique was used 

(compared to the case when ANN was used). A significant difference was observed in the 

results obtained using these techniques (ANN and RF). There was no significant difference 

between the different configurations tested within each technique. The RMSE and MAE were 

higher estimating Tmin values compared to the Tmax and Tmean values, suggesting more 

variation within the Tmin estimates. The r values, calculated using the RF method, were 

higher than those calculated using the ANN method during the calculation of the Tmean, 

Tmax, and Tmin values. The values of the coefficient r did not differ significantly when these 

two techniques (and different configurations of the techniques) were used to determine the 

Tmean and Tmin values. Nevertheless, a significant difference was observed in the Tmax 

values when these two techniques were used. The other indices indicate that the RF model 

was superior to the ANN model. However, both the techniques could be used to estimate the 

Tmean, Tmax, and Tmin values with very high accuracy (Table 5). The fit quality of both 

Tmean 

 MAE RMSE R² r d c 

RF1 0.47 a 0.61 a 0.94 0.97 a 0.98 0.95 

RF2 0.43 a 0.57 a 0.95 0.98 a 0.99 0.96 

ANN1 0.67 b 0.80 b 0.90 0.96 a 0.97 0.92 

ANN2 0.64 b 0.78 b 0.91 0.96 a 0.98 0.93 

Tmax 

RF1 0.46 a  0.55 a 0.94 0.97 a  0.98 0.95 

RF2 0.44 a  0.56 a 0.94 0.97 a 0.98 0.95 

ANN1 0.73 b 0.86 b 0.85 0.93 b 0.96 0.88 

ANN2 0.65 b 0.79 b 0.87 0.94 b 0.97 0.90 

Tmin 

RF1 0.59 a 0.77 a 0.94 0.96 a 0.98 0.95 

RF2 0.58 a 0.76 a 0.94 0.97 a 0.98 0.95 

ANN1 0.88 b 1.07 b 0.89 0.94 a 0.97 0.91 

ANN2 0.87 b 1.03 b 0.89 0.94 a 0.97 0.92 
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models can be confirmed by the high values of the performance index (c). These values were 

“Excellent” according to the evaluation criteria proposed by Camargo and Sentelhas (1997). 

There was no significant difference between the RF configurations. However, the use 

of the concept of Break ties randomly when several attributes look equally good, a WEKA 

solution, increased the predictive capacity of the model. That option gets triggered when the 

output reaches a local optimum. When this condition becomes true, the algorithm initializes a 

random process to escape from a local optimal spot to reach the bests solutions. This 

procedure has been explained in detail by Breiman (2001). The previous studies suggest the 

execution of 100 interactions; however, 500 interactions were required to improve the RF 

performance. Were et al. (2015) reported more stable results using a higher number of 

interactions. 

The changes made to the ANN parameters did not significantly influence the Tmean, 

Tmax, and Tmin values. However, increasing the Number of Training Epochs from 500 to 

1000 improved the Tmean and Tmin predictive capacity of ANN. This Number of Training 

Epochs is a hyperparameter that defines the number of times the learning algorithm works 

through the entire training dataset. The best results were obtained when six neurons were 

integrated into one hidden layer during the estimation of Tmean and Tmin. However, the best 

result was obtained when five neurons were integrated into the hidden layer during the 

estimation of Tmax. The choice of the size of the hidden layer is very important because 

underestimated numbers of neurons can lead to poor approximation and generalization 

capabilities, while the use of excessive neurons can potentially result in overfitting. This can 

eventually make the search for the global optimum more difficult (Lee; Lam, 1995).  

Although the MLR model could be used to estimate the Tmean, Tmax, and Tmin for 

some months of the year, in general, the RF and ANN models exhibited superior predictive 
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abilities (for all the analyzed statistical indices) than the MLR models. The RF model was 

found to be superior to the ANN model. Moreover, the low MLR predictive capacity (Tmin 

estimation) can cause problems for producers who need this information because the regions 

categorized as Cwa and Cwb are more suitable for the development of agricultural activities 

that require lower temperatures and average temperatures during the winter (below 20 °C; De 

Sá Júnior et al., 2012). Therefore, RF and ANN methods are more suitable for this region.  

Several literature reports (reporting various applications) have indicated the 

superiority of the RF model in the regression estimation (Benali et al., 2019; Noi; Degener; 

Kappas, 2017; Rodríguez-Lado et al., 2015). The superiority of the RF model can be 

attributed to the advantages of the method, which include not making distributive assumptions 

about the predictors. The importance of each variable can be determined using this model, and 

the method is less sensitive to noise or overfitting (Armitage; Ober, 2010; Ismail; Mutanga, 

2010). Even though RF is superior to ANN, the ANN method can be used to determine the 

Tmean, Tmax, and Tmin values with high accuracy. This has also been reported by Hasni et 

al. (2012). They concluded that the ANN technique could be reliably used for determining the 

temperatures.  

The plot, shown in Figure 5, indicates the importance of each input attribute in the 

response variable of the evaluated algorithms. The most important contribution toward the 

estimation of the Tmean value was for the month. This was followed by the effect of the 

altitude (for all the evaluated models). In the estimate of Tmax by RF1 and RF2, the altitude 

exerted the maximum effect. However, when the ANN1 and ANN2 methods were used, the 

month was found to exert the maximum effect on the results. This was followed by the 

contribution of the altitude. The trend was similar to the trend observed when the MLR 

method was used. A significant influence of the altitude was observed for all months when the 
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MLR model was used for the calculations. The month attribute had the largest contribution to 

the Tmin estimate. This contribution was the maximum. These results can potentially explain 

the low capacity of the MLR model toward the estimation of Tmin as the month is not 

considered a variable in this model. 

 

Figure 5. Attribute importance plots for the RF1, RF2, ANN1, and ANN2 models (Source: The Authors). 

The results revealed that, for locations where it is difficult to collect data from weather 

stations (due to lack of infrastructure, reading errors, or use of damaged devices), the use of 

RF and ANN models is recommended for estimating the Tmean, Tmax, and Tmin values. In 

addition, researchers and producers can use such methods to create a risk zoning of pests and 

diseases, develop works related to plant growth, and develop crop varieties based on the 

temperature of the region.  

An estimation of the Tmin values can help prevent the formation of frost in all the 

locations under study. This is because the region under analysis is susceptible to the 

occurrence of this phenomenon. According to Pimenta, Angélico and Chalfoun (2018), 
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adverse weather conditions (such as the formation of frost) can harm the production of the 

coffee fruit, affecting productivity and thereby changing the market value of the product. It is 

important to develop an efficient technique to determine the Tmax and Tmin values to 

develop a more accurate agricultural zoning of climatic risk. This can assist the producers in 

the choice of sowing time and harvest planning. Extreme weather conditions, especially in 

less developed regions, can be avoided. However, no statistical method can produce results 

that are exactly the same as the observed and/or recorded data. Hence, it is important that the 

weather stations function continuously (Alves et al., 2020).  Furthermore, it is important to 

have computational knowledge to implement the RF and ANN models, therefore, mobile 

applications are needed to facilitate the use of these techniques. Further studies in the area are 

needed, and the results of the present study may support future forecasts. 

CONCLUSION 

The results of this study can help farmers, researchers, technicians, and local 

government officials in urban planning. Urbanization is characterized by surface alterations. 

Vegetated areas are replaced with impervious surfaces and buildings. This surface change 

alters the energy balance, increasing absorption and heat transfer between the earth’s surface 

and the lower atmosphere, resulting in increased surface air temperatures (Song; Wu, 2016). 

Accelerated urban growth has been observed in the region under study. An effective tool for 

estimating the air temperature can assist in the application of new technologies that can 

potentially reduce the surface heating process.  

The RF model exhibited a greater predictive performance compared to the ANN and 

MLR models for estimating the Tmean, Tmax, and Tmin values. The RF model explains at 

least 94% of the variability of the variables estimated using the independent dataset, i.e., only 

6% of the response variable could not be predicted by the model. The RF is the most suitable 
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technique for estimating the air temperature. The input attributes were sufficient for the 

estimation. Therefore, this model is recommended for conducting studies in this specific 

region. 
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EVALUATION OF MONTHLY MEAN REFERENCE EVAPOTRANSPIRATION 

ESTIMATION TECHNIQUES IN THE MINAS GERAIS STATE, BRAZIL.  

AVALIAÇÃO DE TÉCNICAS DE ESTIMATIVAS DA EVAPOTRANSPIRAÇÃO DE 

REFERÊNCIA MÉDIA MENSAL NO ESTADO DE MINAS GERAIS. 

Abstract: Reference evapotranspiration (ET0) is one important agrometeorological parameter 

for hydrological studies and agricultural water management. The ET0 esteemed by the 

Penman-Monteith - FAO method requires several input data. However, in the Minas Gerais 

region, the meteorological data are limited. The aim of this study was to evaluates the 

performance of Artificial Neural Network (ANN), Random Forest (RF), Support Vector 

Machine (SVM) and Multiple Linear Regression (MLR) to estimate the monthly mean ET0 

with different input data combinations and in three scenarios: (Scenario I - SI) at the state 

level, where all climatological stations were used; and at regional level, where the Minas 

Gerais state was divided according to the climatic classification of each climatological 

stations. The climatic classifications proposed by Thornthwaite (Scenario II - SII) and by 

Köppen (Scenario III - SIII) were used. ANN and RF performed better in SI, SII and SIII with 

the I8 (latitude; longitude; altitude; month; mean, maximum and minimum temperature; and 

relative humidity) or I6 (latitude; longitude; altitude; month; mean temperature; and relative 

humidity) input data. The SVM and MLR performed better in all scenarios when only two 

input variables were used (I2 - mean temperature and relative humidity). Although dividing 

into scenarios results in less input data for models training, SII and SIII showed a slightly 

better result in the southern areas of the Minas Gerais state.  

Keywords: Artificial Neural Network, Random Forest, Support Vector Machine, Multiple 

Linear Regression,  

Resumo: A evapotranspiração de referência (ET0) é um parâmetro agrometeorológico 

importante para estudos hidrológicos e gestão de água na agricultura. A ET0 estimado pelo 

método Penman-Monteith - FAO requer vários dados de entrada. Porém, na região de Minas 

Gerais, os dados meteorológicos são limitados. O objetivo deste estudo foi avaliar o 

desempenho de Redes Neurais Artificiais (RNA), Floresta Aleatória (FA), Máquina de 

Vetores de Suporte (MVS) e Regressão Linear Múltipla (RLM) na estimativa da ET0 média 

mensal com diferentes combinações de dados de entrada e em três cenários: a nível estadual 
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(cenário I - SI ), em que todas as estações climatológicas foram utilizadas; e a nível regional, 

em que o estado de Minas Gerais foi dividido de acordo com a classificação climática de cada 

estação climatológica. Foram utilizadas as classificações climáticas propostas por 

Thornthwaite (cenário II - SII ) e por Köppen (cenário III - SIII ). RNA e FA tiveram melhor 

desempenho nos SI, SII, SIII com a combinação de dados de entrada I8 (latitude; longitude; 

altitude; mês; temperatura média, máxima e mínima; e umidade relativa) ou I6 (latitude; 

longitude; altitude; mês; temperatura média; e umidade relativa). O MVS e o RLM tiveram 

melhor desempenho em todos os cenários quando apenas duas variáveis de entrada foram 

usadas (I2 - temperatura média e umidade relativa). Embora a divisão em cenários resulte em 

menos dados de entrada para o treinamento de modelos, os cenários II e III mostraram um 

resultado ligeiramente melhor nas áreas mias ao Sul do estado de Minas Gerais. 

Palavras-chave: Rede Neural Artificial, Floresta Aleatória, Máquina de vetor de suporte, 

Regressão Linear Múltipla. 

 

INTRODUCTION 

Evapotranspiration (ET) is the process of water transportation from the Earth’s surface 

to the atmosphere including the evaporation process and transpiration process. The ET is 

important in estimating crop water requirements, irrigation water requirements and control 

several hydrological processes (MATTAR, 2016; WEN et al., 2015; YASSIN; ALAZBA). 

ET is an agrometeorological parameter that can be measured using the lysimeter or water 

balance approach. These methods for measuring ET are not always possible to use. The 

lysimeter and water balance approach are a time-consuming method and needs precisely and 

carefully planned experiments (KUMAR et al., 2002). Therefore, it uses estimation methods 

from climatological data.  

ET can be found in the literature as crop evapotranspiration (ETc) or reference crop 

evapotranspiration (ET0). Both concepts measure the transfer rate of water from the soil plant 

system to the atmosphere. However, ETc measures ET for any crop, while ET0 is the ET rate 

from a reference crop surface. One of the ways to obtain the ETc is through the ET0 and the 

crop coefficient (Kc) (CARVALHO et al., 2011; SALAM et al., 2020).  
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In this study, we focus on the use of ET0. The ET0 can be used on a large area, e.g., 

climatic classification of a region (ALMOROX; QUEJ; MARTÍ, 2015; YANG et al., 2017), 

or small areas, e.g., obtaining crop water requirements or crop evapotranspiration (ETc) 

(EWAID; ABED; AL-ANSARI, 2019; XIANG et al., 2020). ET0 originated from the of 

Penman (1948) equation. This equation was perfected by Monteith (1965). Monteith 

introduced a surface conductance term that accounted for the response of leaf stomata to its 

hydrologic environment to the Penman equation, originating the equation called Penman-

Monteith evapotranspiration model. Later, the Food and Agriculture Organization (FAO) of 

the United Nations adopted standard parameters for the culture data, creating a reference crop 

published in FAO Irrigation and Drainage Paper N 56 (ALLEN et al., 1998). This process 

gave rise to the FAO standard reference crop evapotranspiration model (ETPM). More 

information can be obtained in Xiang et al. (2020). 

The FAO Penman-Monteith method is a nonlinear and complex. This method is 

considered more realistic physically, but it requires some additional meteorological variables 

when compared to other methods (YANG et al., 2017). This dependence on several 

meteorological variables associated with the limited of weather stations network and 

interruptions and errors in the database makes it difficult to measure ET0. Thus, some models 

are used to estimate ET0. These models seek less dependence on many weathers inputs e high 

predictive power.  

Artificial Neural Network (ANN), Random Forest (RF), Support Vector Machine 

(SVM), and multiple linear regression (MLR), are models that showed a different levels 

predictive capacity of different meteorological variables and in other fields of science. The 

ANN, RF, and SVM models can capture complex relationships between input and output 

data, which makes them powerful models in modeling. These machine learning models have 

been successfully used to estimate ET0 with fewer input meteorological data (FERREIRA et 

al., 2019; FERREIRA; DA CUNHA, 2020; YIN et al., 2017;). Although the inability of MLR 

to handle non-linear relationships between dependent and independent variables is evident in 

some studies, the MLR have been successfully used to estimate ET0 (MALIK et al., 2019; 

MARTÍ; GONZÁLEZ-ALTOZANO; GASQUE, 2011). 

  The ANN is a promising and effective tool for non-linear modeling and complex time-

series. The ANNs are parallel distributed systems, which are composed of simple processing 
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units that calculate some mathematical functions.  Its customary architecture is composed of 

three layers: input, hidden, and output layers and each layer include an array of processing 

elements (FERREIRA et al., 2019; KUMAR et al., 2002; YIN et al., 2017). According to Yin 

et al., 2017, experimental works have shown that a single hidden layer is sufficient for ANNs 

to approximate any complex nonlinear function. However, different architectures must be 

tested. Several papers showed the excellent predictive capacity of the ANN model with 

different architectures in studies with ET0 (FERREIRA; DA CUNHA, 2020; NOURANI; 

ELKIRAN; ABDULLAHI, 2019; SATTARI et al., 2021). 

The RF is non-parametric statistical data modeling methods that is decision tree-based 

and uses the Breiman’s “bagging” idea to ensemble many decision trees into a single but 

strong model (BREIMAN, 2001). This model generates original training samples (N), and 

from these samples generates new training random sample sets (k). During the overall 

selecting process, some samples may be collected more than once. Trees alone are considered 

a weak learner. However, the ensemble trees result in a model with high predictive capacity 

(HUANG et al., 2019). RF is a classification and regression technique that also has been 

adopted to predict agrometeorological parameter such ET0 (FERREIRA; DA CUNHA, 2020; 

FENG et al., 2017; WANG et al., 2019b). RF has been found to be a more efficient predicting 

tool compared to other tools like ANN (BENALI et al., 2019; ZHOU et al., 2016). 

SVM is a supervised machine learning algorithm developed by (VAPNIK, 2013). The 

SVM is used for regression, classification, pattern recognition and forecasting. SVM based on 

a statistical learning theory and concept of the structural risk minimization principle, which 

reduces the upper bound generalization error rather than the local training error (SHIRI et al., 

2014; FENG; WEN; LI, 2015). This model has been used in the meteorological variables 

estimation and shown a high predictive power. The same training conditions and in some 

locations, the SVM has proven superior performance in the ET0 estimate over other 

methodologies as ANN and GEP (Gene expression programming) 

(MOHAMMADREZAPOUR; PIRI; KISI, 2019; SHIRI et al., 2014). 

 The MLR aim at explaining the collinearity between a dependent variable and 

independent by means of a linear combination of predictors independent variables (more than 

one). This regression technique has been adopted in several fields of science, including 

climatology, hydrology, and irrigation, with different performances. According to Martí,  
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González-Altozano and Gasque (2011), using the same input data, the studied ANNs present 

very similar accuracy indicators and performance trends as the multiple linear regression 

models. However, the complexity of the input data can change this performance. 

 Specifically, this paper focuses on ET0 estimation in the Minas Gerais state, Brazil. 

Agriculture is an important source of income in the Minas Gerais state. Coffee crop science is 

the main cultivated culture in the state (COMPAHIA BRASILEIRA DE ABASTECIMENTO 

- CONAB, 2020). In addition, the Minas Gerais state brings together water springs of 

important rivers as São Francisco River. The ET0 is a fundamental variable in the study of 

water springs and in the agricultural development, because through this variable it is possible 

to measure the volume of water transferred from a hydrological basin or from a cultivated 

area to the atmosphere. The presence of gaps or discontinuities in the data series can delay the 

state development. 

The ET0 calculated by the FAO Penman-Monteith method requires several input data. 

This amount of input data makes it difficult to use this method. New technologies can make it 

easier to obtain ET0 reliably. In this context, the objective of this study was to develop, 

evaluate and compare the performance of ANN, RF, SVM and MLR models in estimating 

ET0 (average monthly) with four different combinations of input data (I8, I6, I3 and I2) in three 

scenarios: at the state level (SI), in which all climatological stations are used in the models 

build; at regional level, in which the climatological stations were divided into two areas, 

according to the Thornthwaite climate classification (SII) and Köppen climate classification 

(SIII). The models were developed for each area in SII and SIII. The three distinct scenarios 

build seeks to achieve the maximum predictive capacity of each model 

 

MATERIALS AND METHODS 

STUDY AREA AND DATA SOURCES 

The Minas Gerais state is the fourth largest in territorial extension with 586,513.993 

km² (IBGE, 2020). Minas Gerais is in the southeastern region of Brazil, between the parallels 

of 14° 13' 58" and 22° 54' 00", of south latitude, and the meridians of 39° 51' 32" and 51° 02' 

35" a west of Greenwich. Monthly data from 56 climatological stations of the Brazilian 

National Institute of Meteorology (INMET) were used. The respective geographical 

coordinates, altitude and climatic classification have been presented in Table 1.  
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Table 1 - Principal climatological station of the INMET used to estimate estimating ET0. 

ID CS 
Lat/Lon/Alt 

(°/°/m) 
K Tho 

1 Aimorés -19.49 / -41.07 / 79.93 Aw D 
2 Araçuaí -16.84 / -42.06 / 317.67 As D 

3 Araxá -19.6 / -46.94 / 1018.28 Cwb B2 

4 Arinos -15.91 / -46.1 / 523 Aw C1 

5 Bambuí -20.03 / -46 / 684.43 Cwa B2 

6 Barbacena -21.23 / -43.78 / 1128.8 Cwb B3 

7 Belo Horizonte -19.93 / -43.95 / 915.47 Cwb B2 

8 Bocaiúva -17.1 / -43.8 / 633 Cwa C1 

9 Bom Despacho -19.72 / -45.36 / 695 Cwa B1 

10 Caparaó -20.52 / -41.9 / 836.25 Cwb B2 

11 Capinópolis -18.72 / -49.56 / 608.98 Aw C2 

12 Caratinga -19.73 / -42.13 / 609.56 Cwa C2 

13 Conceição do Mato 

Dentro 

-19.02 / -43.43 / 663.02 Cwa B1 

14 Coronel Pacheco -21.54 / -43.26 / 411.03 Cwa B2 

15 Curvelo -18.74 / -44.45 / 668.26 Cwa C1 

16 Diamantina -18.23 / -43.61 / 1318.05 Cwb B2 

17 Divinópolis -20.17 / -44.87 / 787.42 Cwa B1 

18 Espinosa -14.91 / -42.8 / 565.52 Cwb D 

19 Florestal -19.88 / -44.41 / 753.51 Cwa B2 

20 Formoso -14.94 / -46.23 / 854.6 Aw C2 

21 Frutal -20.03 / -48.93 / 547.09 Aw C2 

22 Governador Valadares -18.84 / -41.9 / 156.54 Aw C1 

24 Itamarandiba -17.85 / -42.85 / 919.37 Cwb C2 

25 Ituiutaba -18.95 / -49.52 / 540.09 Aw C2 

26 Jaíba -15.08 / -44.01 / 453.62 As D 

26 Jaíba -19.49 / -42.54 / 298 As C2 

27 Janaúba -15.8 / -43.29 / 534.61 As D 

28 Januária -15.44 / -44.36 / 480 Aw C1 

29 João Monlevade -19.82 / -43.14 / 859.84 Cwb B2 

30 João Pinheiro -17.74 / -46.17 / 759.62 Aw C2 

31 Juiz de Fora -21.77 / -43.36 / 936.9 Cwb B3 

32 Juramento -16.77 / -43.66 / 655.59 Cwb C1 

33 Lambari -21.94 / -45.31 / 884.56 Cwb B3 

34 Lavras -21.22 / -44.97 / 916.19 Cwb B2 

35 Machado -21.68 / -45.94 / 892.44 Cfb B2 

36 Maria da Fé -22.31 / -45.37 / 1281.36 Cwb A 

37 Monte azul -15.16 / -42.86 / 623.22 As D 

38 Montes Claros -16.68 / -43.84 / 645.87 Cwa C1 

39 Paracatu -17.24 / -46.88 / 711.41 Aw C2 

40 Patos de Minas -18.52 / -46.44 / 947.68 Cwa B1 

41 Pedra Azul -16 / -41.28 / 647.97 As C1 

42 Pirapora -17.34 / -44.92 / 509.52 Aw C1 

43 Poços de Caldas -21.91 / -46.38 / 1077.08 Cwb B3 
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44 Pompéu -19.22 / -45 / 692.21 Cwa C2 

45 Salinas -16.15 / -42.28 / 476.07 As D 

46 São João Del Rei -21.3 / -44.27 / 991 Cwb B3 

47 São Lourenço -22.12 / -45.04 / 930.65 Cwb B3 

48 São Sebastião do 

Paraíso 

-20.9 / -47.11 / 820 Cwb B3 

49 Serra Azul de Minas -20.02 / -44.35 / 765 Cwa B2 

50 Serra dos Aimorés -17.79 / -40.25 / 211.92 Aw C1 

51 Sete Lagoas -19.48 / -44.17 / 753.68 Cwa B1 

52 Teófilo Otoni -17.86 / -41.5 / 349.11 Aw C1 

53 Uberaba -19.73 / -47.95 / 753.41 Cwa B2 

54 Uberlândia -18.91 / -48.25 / 874.6 Cwa B2 

55 Unaí -16.36 / -46.88 / 595.59 Aw C1 

56 Viçosa -20.76 / -42.86 / 697.53 Cwa B1 
CS: Climatological stations location; K: Köppen climatic classification; Tho: Thornthwaite climatic 

classification; Cwb, Cwa, Cfb, As and Aw are Humid subtropical with dry winter and temperate summer, Humid 

subtropical with dry winter and hot summer, Humid subtropical with oceanic climate, without dry season and 

temperate summer, Tropical with dry summer, Tropical with dry winter, respectively. A, B4, B3, B2, B1, C2, 

C3, and D are perhumid, humid, humid, humid, humid, moist subhumid, dry subhumid and semiarid, 

respectively. 

Source: The Authors (2021) 

The average monthly data mean, maximum, and minimum air temperatures (Tmean, 

Tmax, Tmin), relative humidity (RH), atmospheric pressure (P), wind speed (U2), and 

insolation (n) of climatological stations with at least 10 years of flawless data (no missing or 

faulty data) from a period between 1989 to 2019 (30 years) were used for the studies. Wind 

speed, measured at 10 m height, was converted to 2 m (ALLEN et al., 1998). Days with 

missing or faulty data were removed. Faulty data were identified when Tmin was higher than 

Tmax or Tmean; Tmean was higher than Tmax; RH out of the range 0 – 100 %; P was higher 

than 101.4 kPa and U2 and n were negative.  

The reasons for using these variables were: The latitude and longitude are the 

variables related to the position. The solar radiation intensity changes as the position changes 

on the terrestrial globe. The altitude variable is regarded as the surface component. It can be 

stated that the higher the altitude, the lower the temperature. Temperature is the availability of 

energy in the system, and the relative humidity is the difference in gradient, the lower the 

humidity, the greater the capacity of the environment to absorb humidity. All these factors can 

influence evapotranspiration. 

The models were developed in three different scenarios (SI, SII and SIII) build seeks 

to achieve the maximum predictive capacity of each model: SI - At State Level: the models 
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were trained and tested with data from the 56 climatological stations. The resulting model 

estimates evapotranspiration in any location within the Minas Gerais state.  

SII - At Regional Level: The Minas Gerais state was divided into two regions. The 

region with climate classification A, B4, B3, B2 and B1 (Tho1 - 27 climatological stations), 

and the region with climate classification C2, C1 and D (Tho2 - 29 climatological stations) 

Climatic Classification Systems proposed by Thornthwaite (1948). The models were trained 

and tested with data from climatological stations of each climatic region (Figure 1a). 

  SIII - At Regional Level: The Minas Gerais state was divided into two regions. The 

region with climate classification Cwb, Cwa and Cfb (K1 - 35 climatological stations) and the 

region with climate classification Aw and As (K2 - 21 climatological stations) Climatic 

Classification Systems proposed by Köppen (1936). The models were trained and tested with 

data from climatological stations of each climatic region (Figure 1b).  
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Figure 1. Climate classification for Minas Gerais State, according to the Thornthwaite (1948) 

(Source: The Authors, 2021) (a), and Köppen (1936) (Source: Alvares et al., 2013) 

(b).  
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FAO PENMAN–MONTEITH FAO MODEL 

The FAO Penman–Monteith equation (FPM) was used to estimate ET0. This method is 

described by Allen et al. (1998). It is a common practice to use ET0 estimated by the FPM 

equation as reference data. Climatological stations used in the study do not provide Rn data. 

The Rn data were obtained by means of insolation, latitude, day of the year and other 

variables. They are calculated using the equations detailed by Allen et al. (1998). 

MODEL DEVELOPMENT AND STATISTICAL TESTS 

In this study, different input combinations of the average monthly data were used as 

inputs to estimate ET0. The input data were geographic coordinates, altitude, month, Tmean, 

Tmax, Tmin and RH. In the search for better performance, the four input combinations (In – n 

is the amount of input data) evaluated in this paper were: (I8) latitude, longitude, altitude, 

month, Tmean, Tmax, Tmin, and UR; (I6) latitude, longitude, altitude, month, Tmean and RH; 

(I3) month, Tmean and UR; (I2) Tmean and RH. The ANN, RF, SVM and MLR model were 

trained for each combination. The models were developed using data from each scenery. 

These combinations were compared to each other in each model. 

The predictive quality of each models in terms of variation, precision, accuracy, and 

performance were evaluated by four statistical criteria. The statistical criteria were: the mean 

absolute error (MAE), root mean square error (RMSE), Pearson’s correlation coefficient (r). 

The MAE and RMSE indicates revealed how close the predicted values were to the observed 

value. Thus, the accuracy of each model could be predicted. The R² represents the percentage 

of the variation of the dependent variable explained by the independent variable. The r 

indicates the degree of dispersion of the data obtained in terms of the mean. 

ARTIFICIAL NEURAL NETWORKS (ANN)  

The ANN has performance characteristics resembling biology of the human brain. 

ANNs, in general, have an architecture with connections between nodes (neural networks) 

and methods to determine the connections weight. In this study, the ANN of the feed-forward 

multilayer perceptron (MLP) type was used (FAUSETT, 1994). The training in this ANN 

involves two phases. In the first phase or forward pass, the input sign spreads layer-by-layer 

forward. In the second phase or reverse pass, the sign is backpropagated for the correction of 

the error. 

ANN was implemented using the Waikato Environment for Knowledge Analysis 

(WEKA; version 3.8.2 © 1999–2017) developed by the University of Waikato, Hamilton, 
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New Zealand. The input data consisted of different combinations of the latitude, longitude, 

altitude, month, Tmean, Tmax, Tmin and UR of each evaluated location, using ET0 as the 

output variable.  

All adjustments were by cross-validation. According to Sattari et al. (2021), the cross-

validation approach enables successful results. This technique separates the data into two 

categories, where the first is used to train the model and the second part is processed as test 

data to determine the model’s performance. After preliminary tests, the architecture with the 

best performance for each data input combination was obtained (Figure 2). The ANN 

different configurations and number of folds in cross-validation are shown in Table 2. 

Figure 2. Network structure scheme built by WEKA to estimate ET0. 

 

Source: The Authors (2021) 



69 

 

 

 

Table 2. WEKA configuration in the ANN implementation. 

 

 

 

 

 

 
In italics WEKA default values 

Source: The Authors (2021). 

 

SUPPORT VECTOR MACHINE (SVM) 

 In this study, it was applied SVM equations based on Vapnik’s theory (VAPNIK, 

2013). SVM are separated into two main categories: (1) the classifier model and (2) the 

regression model (SVR). SVR is used to take a hyperplane suitable for the data used. The 

distance to any point in this hyperplane shows the error of that point (SATTARI et al., 2021). 

SVR can be translated into the following equation: 

y = f (x) = wφ (xi) + b (1) 

where x is the input data; φ(x) represents a function, which can transfer the x into the high-

dimensional feature spaces; ω (weight vector) and b are coefficients which are estimated by 

minimizing the regularized risk function. The error function in SVM model (Equation 2) is 

minimized based on mentioned constraints in Equations 3.  Further details on the application 

of SVM can be found in Chang & Lin (2012). 

 

(2) 

 

(3) 

where, C is the capacity or penalty parameter, yi is the estimated output by SVM, ξi and ξ*
i are 

slack variables which must satisfy the function constraints. The SVM model changes the scale 

of the problem by using kernel functions to solve non-linear problems. SVM provides four 

different kernel functions: sigmoid, linear, polynomial, and radial basis functions. In this 

study, during SVM modelling, all kernel functions have been tested. The linear Kernel 

 ANN 

 I1 I2 I3 I4 

Learning rate 0.3 0.3 0.3 0.3 

Momentum 0.2 0.2 0.2 0.2 

Number of training epochs  1000 1000 1000 1000 

Number of input data 8 6 3 2 

Number of hidden layers 2 2 1 1 

Number of neurons into the hidden layer 7,7 7,7 7,7 7 

Number of folds in cross-validation 18 18 8 8 
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function proved to be more efficient in estimating ET0. The linear kernel function is as 

follows: 

 
(4) 

where xi and xj are vectors in the input space. The SVM was implemented by WEKA. The 

input data consisted of different combinations (I8, I6, I4 and I2) and were evaluated in the three 

different scenarios. WEKA configuration parameters in the SVM implementation were: SVM 

Type, ϵ-SVR and cost parameter C, 0.01. The other WEKA configuration parameters were 

kept as standard. Eighteen folds of the sample set were used in cross-assessed. The same 

WEKA configuration parameters were used in all input data combinations and in all 

scenarios. 

RANDOM FOREST (RF) 

RF is an ensemble learning technique based on a collection of tree predictors (XU; 

KNUDBY; HO, 2014). It is a combination of many predictor trees (forest), in which each tree 

is generated from a random vector, sampled independently and with the same distribution for 

all trees in the forest. The operating steps of the RF model were presented in Figure 3. 

According to Wang et al. ( 2019b), there are three simple steps to building an RF model: (i) 

Build n bootstrap samples from the original data; (ii) build an unpruned regression tree; (iii) 

and predict new data by aggregating the predictions of the n. Further details can be found in 

Wang et al. (2019a) and  Wang et al. (2019b). 
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Figure 3 - Schematic representation of the steps used in the RF model following the 

resampling strategy. 

 

Source: Wang et al. (2019a). 

RF was implemented by the WEKA. The WEKA configuration that resulted in the 

greatest predictive capacity was: 100 is the size bag, as percentage of the training set size and 

500 iterations. The other WEKA configuration parameters were kept as standard. All 

adjustments were by cross-validation and twenty folds of the sample set were used. The same 

WEKA configuration parameters were used in all input data combinations and in all 

scenarios. 

MULTIPLE LINEAR REGRESSION (MLR) 

 MLR was developed to estimate the ET0 based on different combinations of the 

independent variables. The base regression equation can be expressed as:  

 
(5) 

where Yi is the dependent variable (ET0); lat, lon, alt, month, Tmean, Tmax, Tmin and UR are 

independent variables; and β0, β1, β2, β3, β4, β5, β6, β7 and β8 are the regression coefficients. 

MLR was implemented using the WEKA. The attribute selection method used in the 

WEKA configuration was M5 method. This method initially builds the MLR model with all 
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independent variables. Then, independent variables with the smallest standardized coefficient 

are step-wisely removed until no improvement is observed in the estimate of the error given 

by the Akaike information criterion (AIC). The AIC seeks the best model in terms of 

complexity and performance. This technique evaluates different models relative to each other, 

therefore, by adding the more parameters, the AIC of the model may present inadequate 

performance (SAMADIANFARD et al., 2018). The other WEKA configuration parameters 

were kept as standard. Eighteen folds of the sample set were used in cross-assessed. The same 

WEKA configuration parameters were used in all input data combinations and in all 

scenarios. 

 

RESULTS AND DISCUSSIONS 

The linear correlation between the input data and the ET0 are shown in Figure 4. The 

variables Tmean, Tmax, and Tmin showed the best correlation. The other variables have low 

(lat, alt and RH) or no (lon and month) correlation with ET0. The inversely proportional 

behavior with ET0 was observed in the lat, alt and RH variable. High latitudes tend to be 

cooler regions, with less energy available for the ET0 process. Increasing the altitude 

decreases the temperature according to the vertical thermal gradient in the troposphere. The 

increase in RH increases the potential gradient, increasing the water transfer rate from the 

soil-plant system to the atmosphere. However, a proportional behavior was observed between 

the Tmean, Tmax and Tmin variables with ET0. The increase in Tmean, Tmax and Tmin 

results in more energy available for ET0. Sattari et al. (2021) observed the same behavior of 

the variables Tmen, Tmax, Tmin and RH when estimating ET0. The variables Tmean, Tmax, 

and Tmin were all highly correlated with ET0 and the RH mean was the least correlated 

variable.  
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Figure 4. Scatter plots of the relationship between ET0 and each input data 

 

Source: The Authors (2021) 

 The ability of machine learning approaches in different conditions and scenarios was 

investigated. The ANN, RF, SVM and MLR statistical performance indicators for estimating 

ET0 in any location within the Minas Gerais state (SI: data from the 56 climatological stations 

- 100% of the input data available -) is presented in Table 3. All the models developed with 

the I8 and I6 input combination exhibited better performances than their versions developed 

with the I3 and I2. The lowest predictive capacity was observed when the RF model was used 

with the I8 input combination. The greatest predictive capacity, in SI, was observed when the 

RF and ANN models was used with the I6 and I8 input combination, respectively. The models 

SVM and MLR exhibited better performances than ANN and RF when only Tmean and 

HRmean (I2) were used as input data.  
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 When comparing the combination I8 with I6, the average r, MAE and RMSE of all 

models does not show high variations. The removal of the geographic coordinate (I6 to I3) 

resulted in a more expressive performance reduction of the SVM and MLR models. The 

highest impact on performance was observed in the ANN and RF when the month variable 

was removed (I3 to I2). The average r decreased by 8%; MAE and RMSE increased by 52.2% 

and 43.9%, respectively. The removal of month did not impact the SVM and MLR models 

performance. 

Table 3. Performances of the ANN, RF, SVM and MLR models in SI. 

                

 SI 

 I8  I6  I3  I2 

 r MAE RMSE  r MAE RMSE  r MAE RMSE  r MAE RMSE 

ANN 0.966 0.167 0.215  0.963 0.178 0.224  0.943 0.21 0.278  0.860 0.332 0.429 

RF 0.955 0.191 0.25  0.966 0.166 0.22  0.934 0.22 0.296  0.859 0.335 0.426 

SVM 0.933 0.23 0.29  0.927 0.242 0.31  0.878 0.311 0.399  0.877 0.312 0.399 

MLR 0.933 0.231 0.298  0.928 0.241 0.308  0.877 0.313 0.399  0.877 0.312 0.398 

Value in bold indicates the best result within each model; value in italics indicates the best result within input 

data combination 

Source: The Authors (2021) 

 

 The statistical performance indicators of the models used in the ET0 estimation in SII 

is showed in Table 4. The Minas Gerais state was divided into two areas (Tho1 and Tho2) for 

application of model. Tho1 and Tho2 had 48.2% and 51.8, respectively, of the data available 

as input data. The highest predictive capacity in Tho1 and Tho2 area was observed when the 

ANN model was used with the I8 input combination and RF model was used with the I6 input 

combination, respectively. The removal of the Tmax and Tmin input data (I6) did not increase 

the model’s predictive capacity in Th1 area, except for the RF model. This behavior is similar 

to that observed in SI. However, all models performed better when the I6 input combination in 

Tho2 area was used (better results).  

The removal of the month variable (I3 to I2) resulted in the highest impact on the ANN 

and RF models quality. When comparing the combination I8 with I3, the average r of the ANN 

and RF models decreased by 7.2% and 5.7%, respectively. The MAE of the ANN and RF 

models increased by 36.4% and 31.6%, respectively. However, no expressive variation was 

observed in the performance of SVM and MLR models.  
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Table 4. Performances of the ANN, RF, SVM and MLR models in SII. 

 SII 

 Tho.1 (A, B4, B3, B2 and B1) 

 I8  I6  I3  I2 

 r MAE RMSE  r MAE RMSE  r MAE RMSE   r MAE RMSE 

ANN 0.976 0.135 0.168  0.965 0.156 0.196  0.959 0.169 0.212  0.904 0.266 0.322 

RF 0.964 0.164 0.198  0.973 0.143 0.174  0.963 0.16 0.198  0.920 0.234 0.291 

 
SVM 0.955 0.181 0.219  0.948 0.191 0.235  0.925 0.232 0.281  0.924 0.235 0.284 

MLR 0.957 0.178 0.216  0.949 0.19 0.233  0.927 0.23 0.278  0.925 0.233 0.282 

 Tho.2 (C2, C1 and D) 

 I8  I6  I3  I2 

 r MAE RMSE  r MAE RMSE  r MAE RMSE  r MAE RMSE 

ANN 0.940 0.211 0.269  0.944 0.21 0.26  0.895 0.269 0.353  0.818 0.377 0.462 

RF 0.925 0.227 0.302  0.943 0.2 0.267  0.879 0.29 0.374  0.817 0.35 0.453 

SVM 0.893 0.276 0.353  0.898 0.271 0.346  0.840 0.342 0.427  0.840 0.34 0.427 

MLR 0.898 0.269 0.345  0.899 0.267 0.342  0.839 0.339 0.427  0.839 0.339 0.427 

Value in bold indicates the best result within each model; value in italics indicates the best result within input 

data combination 

Source: The Authors (2021) 

 

The statistical performance indicators of models in SIII are showed in Table 5. This 

scenario, the Minas Gerais state was divided K1 and K2 area. 62.5% and 37.5% of the 

climatological stations are distributed in areas K1 and K2, respectively. In general, the ANN 

and RF models were superior to the SVM and RLM models with the input combinations I8, I6 

and I3. When the I2 combination is used, the SVM and RLM models were superior. The 

model with highest predictive capacity in K1 area was the ANN with the I8 input 

combination. The RF model with the I6 input combination showed highest predictive capacity 

in K2 area. 

In the K1 area, the removal of the month variable resulted in the highest impact on the 

ANN and RF models performance. The removal of the alt, lat and lon variable resulted in the 

highest impact on the SVM and MLR performance. In the K2 area, the behavior of the RF, 

SVM and MLR were similar to that observed in the K1 area. However, the withdrawal of the 

alt, lat and lon variable resulted in the highest impact ANN in the area K2. 
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Table 5. Performances of the ANN, RF, SVM and MLR models in SIII. 

 SIII 

 K1 (Cwa, Cwb and Cfb) 

 I8  I6  I3  I2 

  r MAE RMSE  r MAE RMSE  r MAE RMSE  r MAE RMSE 

ANN 0.966 0.17 0.209  0.968 0.163 0.204  0.961 0.180 0.225  0.912 0.270 0.334 

RF 0.963 0.175 0.221  0.973 0.15 0.191  0.962 0.174 0.222  0.920 0.261 0.318 

SVM 0.949 0.199 0.256  0.944 0.209 0.267  0.927 0.247 0.305  0.926 0.248 0.306 

MLR 0.950 0.204 0.253  0.945 0.212 0.266  0.928 0.245 0.303  0.917 0.247 0.305 

 K2 (Am and Aw) 

 I8  I6  I3  I2 

 r MAE RMSE  r MAE RMSE  r MAE RMSE  r MAE RMSE 

ANN 0.964 0.16 0.201  0.889 0.269 0.350  0.895 0.263 0.340  0.817 0.36 0.447 

RF 0.924 0.23 0.294  0.943 0.203 0.258  0.885 0.285 0.352  0.826 0.347 0.429 

SVM 0.889 0.270 0.347  0.89 0.274 0.347  0.846 0.329 0.405  0.847 0.326 0.403 

MLR 0.892 0.269 0.343  0.894 0.269 0.340  0.846 0.325 0.404  0.848 0.323 0.403 

Value in bold indicates the best result within each model; value in italics indicates the best result within input 

data combination 

Source: The Authors (2021) 

 

 The ANN and RF models showed greater predictive capacity in all scenarios when 

compared to the SVM and MLR models. This high capacity is achieved with the data input 

combination I8 or I6. Both models had similar performances, but on average the RF showed 

slight superiority. Ferreira et al. (2019) and Ferreira & Da Cunha (2020) conducted studies 

aimed at evaluating the performance of different machine learning in the ET0 estimate for all 

states in Brazil and for Minas Gerais state, respectively. In these studies, it was observed that, 

in general, ANN performed slightly better than the other traditional machine learning models 

(i.e., RF and Extreme gradient boosting - XGBoost). Nevertheless, in some studies the RF 

model performed slightly better than other models (i.e., Generalized regression neural 

networks - GRNN) to estimating ET0 (FENG et al., 2017; WANG et al., 2019b). There are 

papers suggesting better performance than other machine learning models in different 

situations and regions (MEHDIZADEH; BEHMANESH; KHALILI, 2017; SHIRI et al., 

2014). Therefore, there is a need for studies that address more than one models. 

The SVM and MLR models showed similar statistical indices and behavior in all 

scenarios. These results can be explained by the use of the linear Kernel function by SVM that 

probably presented behavior similar to an MLR. Tests with the nonlinear Kernel function did 
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not result in improvements in prediction. According to Pisner and Schnyer  (2020), this SVM 

is used to recognize patterns in complex databases. Possibly the data used does not present a 

complexity that justifies the use of SVM. 

 The SVM and MLR models showed a greater predictive capacity in all scenarios when 

the input data limited to only Tmean and HR (I6). This result may indicate a low predictive 

capacity of the ANN and RF models in situations of low variability in the input data. This low 

variability may hinder the search for patterns that justify variations in ET0.  

 In some scenarios the withdrawal of Tmax and Tmin gave the best result. Sattari et al. 

(2021) observed an increase in the accuracy of the support vector regression (SVR) and 

Gaussian process regression (GPR) models with the removal of some input data, including 

Tmax and Tmin.  

Although the Tmax and Tmin showed a good correlation with ET0 (Figure 4), the 

weight of Tmax and Tmin is diluted in the calculation of the Tmean used in the calculation of 

ET0. Thus, adding Tmax and Tmin can make the ET0 estimate more complex or confusing. 

This fact can decrease the accuracy of the models, and the removal of this input data can 

improve the prediction. Determining the input data is critical to the success of the models. 

This selection can facilitate the training and testing processes, improving the understanding of 

the system (BOWDEN; DANDY; MAIER, 2005; MAIER; DANDY, 2000). However, this 

result shows that only linear regression is not enough to decide which input data should be 

removed in order to increase the predictive performance.  

When the independent variables lat, lon and alt were removed (I3), a reduction in the 

statistical indexes of all models was observed. These variables are related to the spatial 

location of the observed data. Although the correlation observed between these variables and 

ET0 is low (Figure 4), the joint removal of these data negatively impacted the model’s 

performance. According to Mehdizadeh, Behmanesh and Khalili (2017), temperature and 

solar radiation are one of the main impact data on ET0. Several studies have indicated the 

influence of lat, lon and alt variables on temperature and solar radiation (ALVARES et al., 

2013b; OZGOREN; BILGILI; SAHIN, 2012) Thus, variations in lat, lon and alt may 

indirectly impact ET0. This can explain these observed results.  

The division of the input data into two areas with climatic similarity aimed to increase 

the performance of the models. The division presented in SII and SIII managed to slightly 

increase the capacities of the models in relation to SI. However, this increase was only 
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observed in the Tho1 and K1 areas. Thus, we can infer that, although the division into areas 

with climatic similarity can reduce the amount of input data for training, in some situations 

this division is valid, and the models can respond more accurately. Machine learning models 

developed for broader scenarios (e.g., SI) typically have reduced predictive capacity due to 

the high nonlinearity and low similarity between input data; however, these models have a 

greater ability to generalize (SHIRI et al., 2014). According to Ferreira et al. (2019), although 

the models developed locally perform better, these models may have low predictive capacity 

when used in other regions, since they can be highly specific to the location. 

 The plot, show in Figure 6, 7 and 8, indicates the importance of each input variable in 

the response variable of the evaluated algorithms. The WEKA was used to select attributes. 

Attributes were selected using the "ClassifierAttributeEval" tool associated with "Ranker" 

method. These tools rank attributes by their individual evaluations. The correlation coefficient 

was the measure used to evaluate the performance of attribute combinations in the Ranker 

configuration. Using this the ranking method of WEKA in a similar way, Yadav, Malik and 

Chandel (2014) verified the importance of each input variable in the solar radiation 

prediction. The rank of each input variable helped to build more efficient models. Wang et al. 

(2019b) also verified the importance of the meteorological data, but by different methodologic 

show in present study. As reported by Yin, Wu and Dai, (2010), it is necessary to analyze the 

relative importance of meteorological variables is to be understanding of the impact of global 

climate change on evapotranspiration, and for water resource management.   

Different ANN settings were used for each input data (Table 2). These ANN settings 

resulted in different weights for each input attribute (Figure 6). However, a similar behavior 

was observed between the different configurations. In all scenarios, Tmean, Tmax and Tmin 

had a greater weight in the estimate. In SIII K2, the relative importance of Tmax surpassed 

Tmed (Figure 5e). This result may explain the decrease in ANN's performance in this scenario 

when Tmax and Tmin are removed (Table 5). The variables lat, and month had a similar 

weight in all scenarios. Although similar, the removal of the month variable resulted in a 

greater reduction in the ANN performance when compared to the removal of the variables lal, 

lon and alt.  
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Figure 5. Importance of the input variable of ANN models 

 

Source: The Authors (2021) 

 

Ranked value of each input variable of RF is show in Figure 6. The Tmean and month 

variable had a higher weight in the ET0 estimate. In SII Tho1 and SIII K2 (Figure 6c and 6e), 

the month variable was more important than Tmean variable. This result may explain the drop 

in the RF model performance when it removed the month variable (I3 to I2). The Tmax and 

Tmin variables also had a high weight in the ET0 estimate. However, the removal of these 

variables increased the capacity of the RF model as observed (Table 3, 4 and 5) and discussed 

previously. 
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Figure 6. Importance of the input variable of RF models 

 

Source: The Authors (2021) 

 

The relative importance of each input variable of SVM is show in Figure 7. Tmean, 

Tmax and Tmin variable had a higher weight in the ET0 estimate. Followed by HR and lat. 

The month variable was of low importance in the ET0 estimate. In SI, the month showed a 

negative weight. Therefore, this input data can negatively impact the ET0 estimate. In the 

performance results of the SVM model (Table 3, 4 and 5), there was no significant variation 

in performance when the month variable is removed. Both results make it possible to state 

that, for this region, the month variable does not contribute to the performance of the SVM 

model. 
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Figure 7. Importance of the input variable of SVM models 

 

Source: The Authors (2021) 

 

Although each model has a different pattern in the ranking of the input variables 

(Figure 5, 6 and 7), air temperature was the most important attribute. The observed correlation 

between temperature and ET0 (Figure 4) may explain the importance of temperature in the 

estimate. This behavior was not observed in SIII K2 and SII Tho2. However, in these 

scenarios, no significant difference was observed between the month and Tmean variables.  

Wang et al. (2019b) observed the rank of importance of meteorological variables based on the 

RF method. The three most important variables were: insolation (n), Tmax and RH. The high 

relative importance observed corroborates the results of the present study.   
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The other variables presented different weights according to each model applied. 

These results indicate a peculiarity of the models experienced. In this way, new research or 

applications can base on these results and choose the best method that suits the conditions of 

the input data. However, it is recommended that the models be previously experimented with 

different input data, as noted, some variables may have a relatively high weight in the ET0 

estimate, but their use can decrease the predictive performance of the model. This behavior 

was observed when using the RF model. In this model, the removal of the variables Tmax and 

Tmin increased the predictive capacity, although these variables have shown high relative 

importance.  

It is important to note that the month variable was highly important in estimating 

through the RF. However, a low importance was observed when the SVM model was used. 

This variable was not correlated with ET0 (Figure 4). These results reinforce the need for 

more techniques to select the meteorological variables used in the modeling. Linear regression 

alone is not sufficient to identify the relevance of the input data. Furthermore, different 

models may present different behaviors regarding the classification of the importance of the 

input variable and still present satisfactory results.  

 The adjusted MLR method coefficients are shown in Table 4. Different from the 

attribute importance assessment of ANN, RF and SVM, the attribute selection method was 

applied (M5 method), which indicates the importance of each input attribute in the generated 

model. It is observed that in some models the method used (M5 method) excluded the month 

variable. This behavior indicates a low importance of this variable in the MLR estimate. This 

result is similar to that observed in the analysis of the importance of the input variables in the 

SVM. The exclusion of lat and Tmax was also observed in some cases. 
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Table 6. Coefficients of the multiple linear regression models in SI, SII and SIII 

  MLR method coefficients 

  lat lon alt month Tmax Tmean Tmin RH  

  β1 β2 β3 β4 β5 β6 β7 β8 β0 

S
I 

I8 -0.0208 0.0579 0.0016 0.0091 0.0758 0.2966 -0.0396 -0.02 -1.8209 

I6 -0.0222 0.0402 0.0013 0.0065 - 0.2972 - -0.0264 -0.4453 

I3 - - - ø - 0.2262 - -0.0234 0.4921 

I2 - - - - - 0.2262 - -0.0234 0.4921 

  Tho.1 (A, B4, B3, B2 and B1) 

S
II

 

I8 -0.0343 0.06 0.0012 0.0172 0.0633 0.3096 -0.0532 -0.0229 -1.2174 

I6 -0.0523 0.0294 0.0008 0.0159 - 0.2807 - -0.0278 -0.7404 

I3 - - - 0.0159 - 0.2521 - -0.0234 -0.0037 

I2 - - - - - 0.2498 - -0.0251 0.2709 

 Tho.2 (C2, C1 and D) 

I8 ø 0.0517 0.0017 ø ø 0.3857 -0.0447 -0.0215 -1.344 

I6 ø 0.0511 0.0016 ø - 0.331 - -0.0247 -0.6378 

I3 - - - ø - 0.2858 - -0.0297 -0.6149 

I2 - - - - - 0.2858 - -0.0297 -0.6149 

  K1 (Cwa and Cwb) 

S
II

I 

I8 ø 0.0713 0.0013 0.0149 0.091 0.2515 -0.0203 -0.0231 -0.1477 

I6 -0.0166 0.0461 0.0009 0.0122 - 0.2861 - -0.029 0.6759 

I3 - - - 0.0128 - 0.256 - -0.0243 -0.0213 

I2 - - - - - 0.254 - -0.0257 0.2013 

 K2 (Am and Aw) 

I8 -0.0428 0.0595 0.002 ø 0.066 0.3543 -0.0588 -0.0139 -3.4505 

I6 ø 0.0316 0.0014 ø - 0.3329 - -0.0208 -1.7699 

I3 - - - ø - 0.3172 - -0.029 -1.5306 

I2 - - - - - 0.3172 - -0.029 -1.5306 

Ø: input data excluded by the M5 method. 

Source: The Authors (2021) 

 

 The results presented revealed that, for locations in the Minas Gerais state, the models 

can be used safely. The ANN and RF models are recommended to estimate ET0 when 

considering a wider range of input data, as they have a better predictive capacity in this 

situation. The SVM and MLR models are recommended in situations where only temperature 

and relative humidity data are available. However, between these two models, MLR is 

recommended because it presents less computational effort. The models, although they have a 
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high predictive capacity, cannot be perfect. Other meteorological variables not considered as 

input data (e.g., radiation and wind speed) and other factors (e.g., data recorded in error) 

contributed to the decrease in the predictive capacity of these models.  

 No statistical method or machine learning can produce results that are the same as the 

observed and/or recorded data. There will always be some error, no matter how small.  

Therefore, it is important that the weather stations function continuously (ALVES et al., 

2020). These models developed in this study are expected to help decision-making by 

different professionals, mainly farmers. Agricultural companies are responsible for a 

considerable part of the Brazilian gross domestic product (BRUGNARO; BACHA, 2006) and 

the Minas Gerais state has the third largest Gross Domestic Product in Brazil of 2018 (IBGE, 

2020). The results of these models assist in the management of irrigation, in climatic zoning, 

in the construction of productivity models among other applications. In addition, the 

approaches used in the present study have the potential to benefit the development of other 

types of models and studies from other regions. 

 

CONCLUSION 

 The combination of input data I6 (alt, lat, lon, month, Tmean and RH), in general, 

provided the best results in the ET0 estimate between the evaluated models, so this 

combination is the recommended one. The RF and ANN models presented the highest 

predictive ability in the ETo estimate. Both models in best-case scenarios with input data I6 or 

I8 explains more than 96% of the variability of the variables estimated using the independent 

dataset. However, the RF model presented a small superiority when compared to the ANN 

model. Temperature was the input meteorological variable that presented the greatest relative 

importance. The month variable presented the greatest variation of importance in relation to 

the model used. The month variable presented median importance (ANN), high importance 

(RF) and low importance (SVM). Therefore, it is concluded that although the temperature is 

fundamental for the estimation of ET0, other variables can present different levels of 

importance in the prediction of ET0.  
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