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RESUMO 
 

O desenvolvimento de novas ferramentas e avanços em tecnologias genômicas de alto 
rendimento têm facilitado a seleção genômica e a identificação regiões causais, especialmente 
de características complexas. Dessa forma, a disponibilidade de marcadores abundantes e 
baratos possibilitou a exploração das informações dos marcadores em programas de 
melhoramento. As ferramentas mais comuns usadas em programas de melhoramento que 
exploram a cobertura densa de marcadores são a predição genômica e estudos de associação 
genômica. Na predição genômica, os parâmetros do marcador são estimados a partir de um 
conjunto de dados de treinamento com indivíduos genotipados e fenotipados. Posteriormente, 
o modelo treinado é usado para predizer o desempenho de indivíduos que são apenas 
genotipados. Já os estudos de associação do genoma testam associações marcador-característica 
que podem ser responsáveis pela variação causal. Nós investigamos o desempenho de diferentes 
modelos de predição genômica para selecionar pais no estágio inicial de um programa de 
melhoramento híbrido usando a capacidade geral de combinação estimada e seu impacto na 
precisão da seleção e no ganho genético de longo prazo. Avaliamos o desempenho de cinco 
modelos de predição genômica sob diferentes densidades de marcadores SNP ou genótipos 
QTL usando simulações estocásticas de um programa de melhoramento híbrido completo. Nós 
também investigamos a capacidade de GWAS univariada e multivariada de identificar 
marcadores ligados a loci que contribuem para a resistência à podridão da espiga causada por 
Diplodia ou Fusarium ou ambas as doenças em linhagens de milho. Avaliamos as abordagens 
univariada e multivariada usando um painel diverso de milho avaliado para três características 
diferentes. 
 
Palavras-chave: Milho (Zea mays L.); Predição Genômica; Seleção de Pais; Mapeamento 

Associativo; Podridão de Espiga. 
 
 



 

ABSTRACT 
 

The development of new tools and advances in high throughput genomic technologies have 
facilitated genomic selection the identification of sources of variation, especially of complex 
traits. Therefore, the availability of abundant and cheap markers made it possible to exploit the 
marker information in breeding programs. The most common tools used in breeding programs 
that exploit the dense marker coverage are genomic prediction and genome-wide association 
studies. In the genomic prediction, marker parameters are estimated from a training dataset with 
genotyped and phenotyped individuals. Subsequently, the trained model is used to predict 
performance for individuals that are only genotyped. On the other hand, genome-wide 
association studies test marker-trait associations that may be responsible for the causal variation 
of interest. We investigated the performance of different genomic prediction models to select 
parents in the early stage of a hybrid breeding program using estimated general combining 
ability and their impact on selection accuracy and long-term genetic gain. We evaluated the 
performance of five genomic prediction models under different SNP marker densities or QTL 
genotypes using stochastic simulations of an entire hybrid breeding program. We also 
investigated the ability of univariate and multivariate GWAS identifying markers linked to loci 
that contribute to resistance to Diplodia ear rot or Fusarium ear rot or both diseases in maize 
inbred lines. We evaluated the univariate and multivariate approaches using a maize diverse 
panel evaluated for three different traits. 
 
Keywords: Maize (Zea mays L.); Genomic Prediction; Parent Selection; Association Mapping; 

Ear Rot. 
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PRIMEIRA PARTE 

 

1. GENERAL INTRODUCTION 

 

Plant breeding programs have been successful and efficient in providing improved 

cultivars over the centuries. Basically, the breeding process relies upon the identification of 

natural and mutant induced genetic variation and in the selection and the recombination of the 

best individuals. The classical evaluation and selection methods have essentially been based on 

phenotypic values (PROHENS, 2011).  In the last decades, the development of novel tools and 

advances in high throughput genomic technologies have facilitated the identification of sources 

of variation, especially of complex traits. With this, it became possible to exploit the markers 

information in breeding programs. The dense maker coverage made it possible to develop the 

genomic selection, which estimates all marker effects together and predicts the total genetic 

variance by summing all estimated marker effects (BERNARDO; YU, 2007; HEFFNER; 

SORRELLS; JANNINK, 2009; MEUWISSEN; HAYES; GODDARD, 2001). Jointly with 

genomic selection, modern genomic technologies made possible the development of 

association mapping tools. This approach exploits natural diversity through the linkage 

disequilibrium between markers and QTL to identify marker-trait associations (YU et al., 2006; 

YU; BUCKLER, 2006; ZHU et al., 2008). 

Genomic prediction consists of setting a statistical model and estimating its parameters 

from a training dataset with genotyped and phenotyped individuals. Subsequently, the trained 

model is used to predict phenotype performance for individuals that are only genotyped 

(MEUWISSEN; HAYES; GODDARD, 2001). The approach allows carrying selection without 

the need of further phenotypic evaluations. Genomic selection is an advantageous approach 

when there are too many candidates to phenotype and when the breeder wants to increase the 

genetic gain per unit time by increasing the generations of selection by year (BERNARDO, 

2020). In hybrid breeding programs, the genomic prediction has been useful in predicting 

hybrid performance. Most studies have focused on predicting hybrid performance in the late 

stage of breeding programs, in which hybrids are generated from advanced inbred lines and 

testers from the opposite heterotic pools (ALBRECHT et al., 2011, 2014; MASSMAN et al., 

2013; TECHNOW et al., 2012, 2014). Although hybrid prediction of untested hybrids in late 

stages of breeding programs have shown to be effective, it is still necessary to evaluate the 

genomic prediction of general combining ability (GCA) for inbred lines in the early stages of 
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breeding programs. The GCA of inbred lines is estimated based on phenotypic information and 

the new parents are selected in the late stages of the breeding program. Therefore, genomic 

prediction can be used to identify promising inbred lines sooner and use them as parents of 

subsequent breeding cycles earlier in a breeding program. 

In the genome-wide association study, differently of genomic selection, there is a 

systematic search in the genome for a causal genetic variation. A large number of markers are 

tested for association with the trait of interest. This approach identifies quantitative trait loci 

(QTL) by examining the marker-trait associations that can be attributed to the strength of the 

linkage disequilibrium between markers and functional polymorphisms. This approach uses a 

set of diverse germplasm, so it is possible to exploit evolutionary and historical recombination 

events (NORDBORG; TAVARÉ, 2002; ZHU et al., 2008).  Several studies have shown that 

GWAS is an effective approach for identifying loci underlying variation for traits (XIAO et al., 

2017). Although many traits are evaluated, the association analyses are performed using a single 

trait. Multivariate approaches have been suggested to exploit the complexity and quantity of 

traits available. In plant breeding programs, diseases are one of the most limiting factors in 

production. Ear rots are one of the most important diseases in maize. Therefore, the multivariate 

GWAS is an interesting approach for the identification of markers linked to loci related to the 

resistance. 

In the first chapter, we investigated the performance of different genomic prediction 

models to select parents in the early stage of a hybrid breeding program using estimated general 

combining ability and their impact on selection accuracy and long-term genetic gain. We 

evaluated the performance of five genomic prediction models under different SNP marker 

densities or QTL genotypes using stochastic simulations of an entire hybrid breeding program. 

In the second chapter, we investigated the ability of univariate and multivariate GWAS to 

identifying markers linked to loci that contribute to resistance to Diplodia ear rot or Fusarium 

ear rot or both diseases in maize inbred lines. We evaluated the univariate and multivariate 

approaches using a maize diverse panel evaluated for three different traits. 
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ABSTRACT 

 
Genomic prediction studies in maize have a primary focus on the prediction of hybrids 

in the late stages of the breeding program and have largely ignored the selection of inbred lines 
for use as parents in subsequent breeding cycles. The aim of this study was to evaluate the 
performance of different genomic prediction models to select parents in the early stage of a 
hybrid breeding program using estimated general combining ability and their impact on 
selection accuracy and long-term genetic gain. We evaluated the performance of genomic 
prediction models for the selection of parents in subsequent breeding cycles using estimated 
general combining ability. Five genomic prediction models were evaluated under different 
scenarios, SNP marker densities or true QTL genotypes, using stochastic simulations of entire 
maize breeding programs. The simulated maize breeding programs were modeled over 20 years 
of breeding using AlphaSimR. The performance of the genomic prediction models was 
measured at the double haploid stage by tracking genetic gain and heterosis for all possible 
hybrids formed by crossing all inbred lines from different heterotic pools. The results showed 
that the performance of the genomic prediction models depends on the marker density. Under 
low-density, the models that included pool-specific effects showed higher genetic gain than the 
models that have a common additive effect for both heterotic pools. In contrast, the performance 
of the models was similar when high-density markers were used. True QTL genotypes showed 
the superiority of the models that included dominance effects. For heterosis, under low-density, 
the genomic prediction models showed a different performance. While using high-density 
markers and true QTL genotypes, the models that included dominance effects showed higher 
heterosis than the models that included only additive effects. To sum up, the genetic gain and 
heterosis increased with higher marker density, the performance of the genomic prediction 
models depends on the marker density and, there is a significant difference in the genetic gain 
between markers and true QTL genotypes. 
 
Keywords: Stochastic Simulations; Genomic Prediction; Parent Selection.
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1. INTRODUCTION 
 

In this study, we evaluated the performance of genomic prediction models to select 

inbred lines as parents of subsequent breeding cycles based on their general combining ability. 

Breeding programs are structured in different components. One of these components is inbred 

line development, in which inbred lines are selected based on general combining ability (GCA), 

which is the average performance of a line in hybrid combinations. GCA is used to identify the 

best inbred lines that can be used as parents of new hybrids or new inbred lines. Genomic 

prediction has revolutionized the evaluation of per-se and hybrid performance. Consequently, 

genomic prediction could also identify promising inbred lines and use them as parents of 

subsequent breeding cycles in the earlier stages of a hybrid breeding program. 

Breeding programs are divided into different components of which inbred line 

development and hybrid development are arguably the most important (EATHINGTON et al., 

2007). The inbred line development component focuses on the early stages of a breeding 

program to develop new inbred lines. The two main goals at this stage are to identify inbred 

lines as parents of new hybrids and as parents of subsequent breeding cycles. The hybrid 

development comes at the late stage of a breeding program to test inbred line combinations and 

commercialize the best ones. 

At the early stages, the highest performing inbred lines are selected based on their 

combining ability. The combining ability is used to rank inbred lines according to their hybrid 

performance (HALLAUER; CARENA; MIRANDA FILHO, 2010). The concept was first 

presented by Sprague and Tatum (1942), where they defined general combining ability (GCA) 

as the average performance of a line in hybrid combinations and specific combining ability 

(SCA) as deviation in performance from the GCA of the lines in hybrid combinations. To 

evaluate the combining abilities of inbred lines we would require a complete factorial trial to 

test the possible hybrids between the inbred lines from opposite heterotic pools. However, 

complete factorial trials are impractical with a large number of inbred lines. Especially with the 

broad use of the double haploid (DH) technology in plant breeding, the development of new 

inbred lines has accelerated (GEIGER; GORDILLO, 2009). As a result, general combining 

ability of inbred lines is assessed via testcross trials in the line development component. In 

testcross trials, inbred lines are crossed with a limited number of testers and their hybrid 

performance is evaluated to estimate GCA of the inbred lines. These testcross trials are planted 

in a limited number of locations and years to balance an expected genetic gain against costs of 

these trials. 
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Genomic prediction is now an established strategy to evaluate and select the best 

individuals in plant breeding programs (BERNARDO; YU, 2007; HEFFNER et al., 2010). 

Genomic prediction consists of setting a statistical model and estimating its parameters from a 

training dataset with genotyped and phenotyped individuals. Subsequently, the trained model 

is used to predict phenotype performance for individuals that are only genotyped 

(MEUWISSEN; HAYES; GODDARD, 2001). So, it is possible to predict the performance of 

individuals without testing them all in trials. Most genomic prediction models consider only 

breeding values. Although breeding values capture a large part of total genetic variation 

(FALCONER; MACKAY; FRANKHAM, 1996; HILL; GODDARD; VISSCHER, 2008), they 

miss a part of dominance and epistatic components of genetic variation, which are important in 

hybrid crops. The inclusion of both additive and dominance effects may increase genomic 

prediction accuracy, and guide exploitation of complementarity between heterotic pools and 

heterosis (SU et al., 2012; TORO; VARONA, 2010; VARONA et al., 2018; WELLMANN; 

BENNEWITZ, 2012). 

In hybrid breeding programs, genomic prediction has been useful in predicting hybrid 

performance. Most studies have focused on predicting hybrid performance in the late stage of 

breeding programs, in which hybrids are generated from advanced inbred lines and testers from 

the opposite heterotic pool (ALBRECHT et al., 2011, 2014; MASSMAN et al., 2013; 

TECHNOW et al., 2012, 2014). In another study, (Kadam et al. (2016) evaluated the potential 

of genomic prediction to identify superior hybrids at the early stage of a breeding program. 

Although these studies have shown the value in genomic prediction of untested hybrids, we still 

have to evaluate genomic prediction of GCA for inbred lines. Traditionally, the GCA of inbred 

lines was estimated from phenotype information collected from their testcrosses. Furthermore, 

new parents of subsequent breeding cycles are selected late in a breeding program to accumulate 

the phenotype information. Within this context, genomic prediction can be used to identify 

promising inbred lines sooner and use them as parents of subsequent breeding cycles earlier in 

a breeding program. Thus, genomic prediction would be an efficient tool to reduce the breeding 

cycle and with this increase genetic gain per year (HEFFNER; SORRELLS; JANNINK, 2009).  

The aim of this study was to evaluate the performance of different genomic prediction 

models to select parents in the early stage of a hybrid breeding program using estimated general 

combining ability and their impact on selection accuracy and long-term genetic gain. We 

evaluated the performance of five genomic prediction models under different SNP marker 

densities or QTL genotypes using stochastic simulations of an entire hybrid breeding program. 

The results show that the performance of the genomic prediction models is dependent on SNP 
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marker density and type of a model: higher SNP marker densities increase the rate of genetic 

gain and heterosis, and models with average or additive effects specific to each heterotic pool 

as well as dominance effects provide a better fit.
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2. MATERIALS AND METHODS 
 

Stochastic simulations of a hybrid crop breeding program were used to compare the 

performance of different genomic prediction models for selection of inbred lines as parents of 

subsequent breeding cycles based on their predicted general combining ability. Different 

scenarios were simulated to test five genomic prediction models using two SNP marker 

densities (low and high-density) or QTL at the early stage of a hybrid breeding program.  

The breeding programs were compared across 40 years using 100 replicates of 

stochastic simulations. The simulations consisted of two phases, burn-in and future breeding 

phase (Figure 1). The first phase of the simulations consisted of burn-in, which was identical 

for all scenarios. In the burn-in a conventional breeding program was simulated for 20 years 

based only on phenotypic selection. After the burn-in phase, genomic prediction and subsequent 

selection were evaluated using two SNP marker densities or QTL in the future breeding 

program for another 20 years. For the future breeding program, a double haploid breeding 

scheme was used, and genomic prediction guided selection of new parents and also, to advance 

individuals to the next stages in the breeding program.  

The genomic prediction models used in simulations were Testcross model, Hybrid 

Additive model, Hybrid Pool Specific Additive model, Hybrid Additive + Dominance model, 

and Hybrid Pool Specific Additive + Dominance model. The performance of the genomic 

prediction models was measured at the DH stage by tracking genetic gain and heterosis for 

hybrids formed by crossing inbred lines from different heterotic pools along the 20 years of the 

future breeding program.  
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Genome Sequence
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Maize historical effective population size
10 chromosome pairs
2 Morgans per chromosome

100,000 generations
Maize historical effective population size
10 chromosome pairs
2 Morgans per chromosome

Founder Genotypes
160 inbred founders (80 founders for each heterotic pool)
1,000 and 20,000 SNP markers
3,000 QTL (normally distributed QTL effects)

Recent Breeding 20 years of modern breeding
Only phenotypic selection
20 years of modern breeding
Only phenotypic selection
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20 years of breeding
Phenotypic selection
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Testcross

Hybrid Pool Specific Additive
Hybrid Additive + Dominance

Hybrid Pool Specific Additive + Dominance

Figure 1 – Overview of the simulation phases for the hybrid breeding 
program. 
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2.1. Burn-In Phase 
 

All scenarios shared the same burn-in phase to enable comparison. The burn-in phase 

was divided into three stages. In the first stage, the whole genome sequence data of maize was 

simulated. In the second stage, founder genotypes and phenotypes were simulated. And in the 

third stage, 20 years of the recent breeding program using the conventional breeding strategy 

was simulated. 

 

Whole Genome Sequence Data 
 

Firstly, the whole genome sequence data was generated. To mimic the maize genome, 

10 chromosome pairs were simulated and the genome sequence for each maize chromosome 

was simulated using the Markovian Coalescent Simulator (CHEN; MARJORAM; WALL, 

2009) within AlphaSimR (GAYNOR; GORJANC; HICKEY, 2020) package in R (R CORE 

TEAM, 2019). Each chromosome had a genetic length of 2 Morgans and a physical length of 

2 × 10! base pair. Recombination rate was set to 1.25 × 10"! base pair and mutation rate was 

set to 1 × 10"! per base pair. Simulation involved variable historical effective population size 

over time as follows; 100,000 at 6,000 generations ago, 10,000 at 2,000 generations ago, 5,000 

at 1,000 generations ago, 1,000 at 100 generations ago. To mimic the genetic separation of two 

heterotic groups we induced a population split 100 generations ago. The final effective 

population size at the end of the coalescent simulation was set to 100 for each heterotic group. 

 

Founder Genotypes 
 

The founders were created to serve as initial parents in the recent breeding phase. The 

founder genotypes were created by randomly sampling gametes from the simulated genome 

sequences. Segregating sites in the founder sequences were randomly selected to serve as 100 

and 2,000 Single Nucleotide Polymorphism (SNP) markers per chromosome (1,000 and 20,000 

SNP markers in total per genome) for low- and high-density coverage, respectively. 

Additionally, 300 Quantitative Trait Loci (QTL) per chromosome were sampled from the 

segregating sites (3,000 QTL in total per genome). The segregating sites for SNP markers and 

QTL did not overlap. The founders were converted to inbred lines by simulating formation of 

double haploid lines and split into two heterotic pools, with 80 parents in each heterotic pool. 
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Founder Phenotypes 
 

The phenotypes for a trait representing grain yield, in bushels per acre, were simulated. 

The genetic value of the trait was assumed to be controlled by 3,000 QTL. To each QTL we 

assigned an additive effect and a dominance effect resulting from the interactions between 

alleles at a heterozygous locus. In this simulation the epistatic gene action was not considered. 

The QTL additive effects (𝑎#) were sampled from a normal distribution as:  

 

where  is the variance of QTL additive effects which was scaled to achieve a genetic 

variance of 20 among the founder inbred lines. The QTL dominance effects ( ) followed: 

 

where  is a QTL specific dominance deviation and  is the absolute value of the QTL 

additive effect. QTL Dominance deviations (𝛿#) were sampled from a normal distribution as:  

, 

where is  the mean dominance deviation, which was set to 0.92, and  is the variance 

of dominance deviations, which was set to 0.2. These values were chosen to obtain relative 

rates of genetic gain in inbred lines and hybrids that approximately match historical trends 

observed in a maize commercial breeding program (TROYER; WELLIN, 2009). The genetic 

value of each individual was defined as the sum of additive and dominance effects across all 

QTL. 

 The phenotypic values for each individual were generated by adding random error to 

the genetic value. The random error was sampled from a normal distribution with mean zero. 

The error variance varied according to the stage of evaluation in the breeding program. In order 

to account for increasing accuracy in evaluation, due to the increase of plot size and replications 

per entry, the values for these error variances were set so as to achieve target levels of 

heritability as indicated in the following.  

 

2.2. Recent Breeding Program (Burn-in) and Phenotypic Selection (Future Breeding 
Program) 
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Recent breeding program (burn-in) was simulated for 20 years of breeding with a 

conventional program (without genomic prediction). The design of the burn-in program was 

modelled based on existing commercial maize breeding programs (BERNARDO, 2020; Table 

1.2; POWELL et al., 2020). The main features of the recent (burn-in) breeding program were:  

i) a crossing block of inbred lines in each heterotic pool used to develop biparental 

populations each year;  

ii) development of double haploids from each biparental cross;  

iii) a three-year cycle-time from crossing to the selection of new parents; and  

iv) a six-year production interval from crossing to release a new commercial hybrid. 

The selection performed in the burn-in program was based on yield trial phenotypes. 

The levels of heritability at each selection stage were adapted from the number of DH lines and 

locations reported in Bernardo (2020; Table 1.2). The overall design of the burn-in breeding 

program is given in Figure 2 and a detailed description follows. The progression of the breeding 

program was simulated using AlphaSimR package (GAYNOR; GORJANC; HICKEY, 2020) 

and R (R CORE TEAM, 2019). The design of the hybrid breeding program was based on the 

study of Powell et al. (2020). 

 

Year 1 

 

At this stage, 80 biparental populations were created by crossing the inbred lines within 

each heterotic pool. Each of the 80 parental lines was used as male or female only once. From 

each cross 50 F1 double haploid lines were produced in each heterotic pool (Geiger and 

Gordillo, 2009). The 4,000 DH inbred lines were planted in separate plots and no selection was 

performed. Each DH inbred line was crossed to a single inbred tester from the opposite heterotic 

pool. 

 

Year 2  

 

The 4,000 DH testcrosses were evaluated in the testcross 1 (TC1) stage. The testcrosses 

were evaluated in unreplicated trials, two-row plots at six locations. The selection in the TC1 

stage was modelled as the selection on a yield phenotype with heritability of 0.54. The 400 best 

DH lines were selected based on general combining ability (GCA) to advance to the next trial. 
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Each of 400 selected individuals were crossed to three inbred testers from the opposite heterotic 

pool. 

 

Year 3 

 

The 1,200 DH testcrosses were evaluated in the testcross 2 (TC2) stage. The testcrosses 

were evaluated in unreplicated trials, two-row plots at 12 locations. The selection in the TC2 

stage was modelled as the selection on a yield phenotype with heritability of 0.71. The 40 best 

DH lines were selected based on general combining ability (GCA) to advance to the next trial. 

Each of 40 selected individuals were crossed to five “elite” DH inbred lines from the opposite 

heterotic pool. 

 

Year 4 

 

The 200 experimental hybrids were evaluated in the elite yield trial (EYT) stage. The 

experimental hybrids were evaluated in unreplicated trials, two-row plots at 24 locations. The 

selection in the YET stage was modelled as the selection on a yield phenotype with heritability 

of 0.82. The best performing 40 experimental hybrids were advanced to the next trial. 

 

Year 5  

 

The 40 experimental hybrids were evaluated in the hybrid yield trial 1 (HYT1) stage. 

The experimental hybrids were evaluated in unreplicated trials, two-row plots at 48 locations. 

The selection in the HYT1 stage was modelled as the selection on a yield phenotype with 

heritability of 0.98. The best performing eight experimental hybrids were advanced to the next 

trial. 

 

Year 6  

 

The eight experimental hybrids were evaluated in the hybrid yield trial 2 (HYT2) stage. 

The experimental hybrids were evaluated in on-farm strip tests of pre-commercial hybrids at 

600 locations. The selection in the HYT2 stage was modelled as the selection on a yield 
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phenotype with heritability of 0.99. The best performing pre-commercial hybrids in this stage 

were released as commercial hybrids. 

 

 

2.3. Future Breeding 
 

After the 20 years of the recent breeding program (burn-in), based only on phenotypic 

selection, the future breeding phase was simulated. In the future breeding phase, alternative 

breeding programs were simulated with different marker scenarios and genomic prediction 

models. Each breeding program was simulated for an additional 20 years following the common 

burn-in breeding. Therefore, each alternative breeding program could be evaluated with an 

equivalent start point. The alternative breeding programs were modeled to compare the five 

genomic prediction models under different marker scenarios (low- and high-density SNP 

Figure 2  – Overview of hybrid breeding pipeline for the conventional program used in burn-in 
and phenotypic selection. The heterotic pools are represented by the colors blue and 
green, and the squares represents different stages of the breeding program. The 
“maize ears” represent testers from opposite heterotic pool used in the testcross yield 
trials and greenish-blue squares represent the hybrids generated by the crosses 
between the inbred lines from the different heterotic pools. The dashed lines show 
the stage in which inbred candidates are selected as parents for subsequent breeding 
cycles. 
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markers or QTL), plus the phenotypic selection. All the alternative breeding programs were 

simulated based on the double haploid rapid cycle breeding program (Figure 3). 

 

 
 

Double Haploid (DH) Rapid Cycle 
 

The DH rapid cycle breeding program was designed based on a conventional breeding 

program as a template. The minimal changes were made to this template to keep the breeding 

program size similar to the standard breeding program, so they were more comparable. The 

main change in the DH rapid cycle breeding design compared to the conventional breeding 

design was the use of genomic prediction to select new parental lines for subsequent breeding 

cycle (parental recycling) and to advance candidate lines from the TC1 and TC2 stages. The 

DH rapid cycle reduced the minimum cycle time from the biparental cross to the selection of 

Figure 3 –  Overview of hybrid breeding pipeline for the conventional program used in burn-in 
and phenotypic selection. The heterotic pools are represented by the colors blue and 
green, and the squares represents different stages of the breeding program. The 
“maize ears” represent testers from opposite heterotic pool used in the testcross yield 
trials and greenish-blue squares represent the hybrids generated by the crosses 
between the inbred lines from the different heterotic pools. The dashed lines show 
the stage in which inbred candidates are selected as parents for subsequent breeding 
cycles. 
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new parents from 3 years in the conventional breeding program to 1 year. The operating costs 

of the breeding programs were not assessed in this present study. 

 

Parental Recycling 
 

For the selection of new parents for subsequent breeding cycles, the maximum 

avoidance of inbreeding was used as a crossing scheme. Maximum avoidance of inbreeding 

maintains uniform contributions and inbreeding coefficients across all crosses by ensuring that 

the crosses are made between the least related individuals (KIMURA; CROW, 1963; WRIGHT, 

1921). In this study, the 2 best individuals from each family with the highest genomic prediction 

were selected, using the maximum avoidance scheme, as new parents for the subsequent 

breeding cycles (160 in total). Each individual produced 25 F1 derived double haploid lines 

(4,000 in total). The 4,000 DH inbred lines were planted in separate plots and no selection was 

performed. Each DH inbred line was crossed to a single inbred tester from the opposite heterotic 

pool. 

 

Testcross 1 and 2 
 

The DH rapid cycle used genomic selection to advance candidate DH lines in the 

testcross 1 and testcross 2 stages. In the testcross 1, the 400 DH lines with the highest genomic 

prediction were selected to advance to the next trial. And in the testcross 2, the 40 DH lines 

with the highest genomic prediction were selected to advance to the next trial. 

 

2.4. Genomic Prediction 
 

 Genomic Prediction Models 
 

The genomic predictions were made by fitting models using the ridge regression best 

linear unbiased prediction (RRBLUP) framework with different effects(MEUWISSEN; 

HAYES; GODDARD, 2001; WHITTAKER; THOMPSON; DENHAM, 2000). The genotypes 

and phenotypes of the selection candidates were fitted differently using different genomic 

prediction models as indicated in the following, while the genetic background of the tester was 

accounted for by fitting a tester-by-stage fixed effect. Genomic predictions for each model were 
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calculated using the RRBLUP functions in AlphaSimR package (GAYNOR; GORJANC; 

HICKEY, 2020). 

In year 1 of the alternative breeding programs, the prediction models were fitted using 

the EMMA algorithm (ZHANG et al., 2006). From year 2 onwards, the variance components 

estimated in the year 1 were used to fit the prediction model using the EM algorithm 

(DEMPSTER; LAIRD; RUBIN, 1977). We used this approach because the functions that use 

the EMMA algorithm involve a square matrix with dimensions equal to the number of 

phenotypic records and this approach uses a lot of memory when there are a large number of 

phenotypic records. Whereas the functions that use the EM approach involve a square matrix 

with dimensions equal to the number of fixed effects plus the number of loci (random effects) 

and the RRBLUP problem is solved by setting up and solving Henderson’s mixed model 

equations. Consequently, this approach uses less memory compared to the functions that use 

the EMMA algorithm (GAYNOR; GORJANC; HICKEY, 2020).  

In the following we describe the different genomic prediction models. The models differ 

in the way we fit genotype data and its association with phenotype data. Specifically, we are 

interested in the average effect of an allele substitution, or allele substitution effect for short, (

) at each locus, which is estimated by regressing phenotypes onto allele dosages (see more 

details in FALCONER, 1985; FISHER, 1941; PRICE, 1972).  In a randomly mating population, 

allele substitution effect is a function of additive effect 𝑎, dominance effect 𝑑, and allele 

frequencies  and  at a locus: ((FALCONER, 1985; FALCONER; MACKAY; 

FRANKHAM, 1996; HIVERT; WRAY; VISSCHER, 2021; LYNCH; WALSH, 1998). The 

allele substitution is a “statistical” effect inferred for a population at hand and hence population 

dependent; due to being a function of the genotype composition of a population. Additive and 

dominance effects, sometimes referred to as “biological" effects, are not population dependent, 

assuming no interaction between additive and dominance effects, population’s origin or 

environment. We have fitted the models using QTL or SNP marker genotypes. In the case of 

SNP marker genotypes the resulting estimates are not QTL effects, but only a proxy for QTL 

effects mediated by linkage-disequilibrium between QTL and SNP markers. 

 

Testcross Model 
 

The Testcross model fits allele substitution effects specific to each heterotic pool, which 

are fitted separately: 
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 , (1) 

   where  is a vector  of inbred line’s average testcross performance;  is an 

incidence matrix  for fixed effects (tester-by-stage effects);  is a genotype matrix 

 for inbred lines, this matrix has entries 0 and 2 respectively for inbred’s genotypes AA 

and aa;  is a vector  of fixed effects;  is a vector  of allele substitution effects; 

and  is a vector of residuals. Genomic predictions from the Testcross model were 

calculated using the AlphaSimR function RRBLUP in the year 1 and from the year 2 onwards 

using the function RRBLUP2. 

  

Hybrid Additive Model 
 

The Hybrid additive model fits allele substitution effects for both heterotic pools, which 

are fitted simultaneously: 

 , (2) 

where  is a vector of hybrid’s average performance;  is an incidence matrix 

 for fixed effects (tester-by-stage effects);  is a genotype matrix  for hybrids, 

which contains 0, 1, and 2 respectively for hybrid’s genotypes AA, Aa, and aa;  is a vector 

 of fixed effects;  is a vector  of allele substitution effects; and  is a vector 

of residuals. Genomic predictions from the hybrid additive model were calculated using 

the AlphaSimR function RRBLUP in the year 1 and from the year 2 onwards using the function 

RRBLUP2. 

 

Hybrid Pool Specific Additive Model 
 

The Hybrid Pool Specific Additive model fits allele substitution effects for each 

heterotic pool, which are fitted simultaneously: 

 , (3) 

where  is a vector  of hybrid’s average performance;  is an incidence matrix 

 for fixed effects (tester-by-stage effects);   is a haplotype matrix  for inbred 

lines from heterotic pool 1, this matrix has entries 0 and 1 respectively for inbred’s genotypes 

AA and aa;  is a haplotype matrix  for inbred lines from heterotic pool 2, this matrix 

has entries 0 and 1 respectively for inbred’s genotypes AA and aa;  is a vector  of fixed 



 

 
 

30 

effects;  is a vector  of  allele substitution effects for heterotic pool 1;  is a vector 

 of allele substitution effects for heterotic pool 2; and  is the vector  of residuals. 

Genomic predictions from the Hybrid Pool Specific Additive model were calculated using the 

AlphaSimR function RRBLUP_GCA in the year 1 and from the year 2 onwards using the 

function RRBLUP_GCA2. 

 

Hybrid Additive + Dominance Model 
 

The Hybrid Additive + Dominance model fits additive and dominance effects for both 

heterotic pools, which are fitted simultaneously: 

 , (4) 

where  is a vector  of hybrid’s average performance;  is an incidence matrix 

 for fixed effects (tester-by-stage effects);  is a genotype matrix  for hybrids, 

this matrix has entries 0, 1, and 2 respectively for hybrid’s genotypes AA, Aa and aa;  is a 

heterozygous matrix , this matrix has entries 0, 1, and 0 respectively for hybrid’s 

genotypes AA, Aa, and aa;  is a vector  of fixed effects;  is a vector  of additive 

effects;  is a vector  of dominance effects; and  is a vector  of residuals. 

Considering the mixed model theory, the random effects  and  are assumed to have 

zero means. However, this assumption is not correct when the directional dominance is 

considered (Varona et al., 2018a). An alternative way to include the directional dominance in 

the Equation (4) was shown by Xiang et al. (2016) using:  

 , (5) 

  where  is a vector  of average dominance effects for each individual, which 

indicates the number of heterozygous loci for each individual by summing the rows of  (which 

has entries 0, 1, and 0 respectively for genotypes AA, Aa, and aa) multiplied by the average 

dominance effect . The deviation of dominance effects from the average ( ) is modeled by 

, which is a vector ; and  is a vector  of residuals. Genomic predictions from 

the Hybrid Additive + Dominance model were calculated using the AlphaSimR function 

RRBLUP_D in the year 1 and from the year 2 onwards using the function RRBLUP_D2. 

 

Hybrid Pool Specific Additive Effects + Dominance Model 
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The Hybrid Pool Specific Additive Effects + Dominance model fits additive effects for 

each heterotic pool and dominance effects for both heterotic pools, which are fitted 

simultaneously: 

 , (6) 

where  is a vector  of hybrid’s average performance;  is an incidence matrix 

 for fixed effects (tester-by-stage effects);   is a haplotype matrix  for inbred 

lines from heterotic pool 1, this matrix has entries 0 and 1 respectively for inbred’s genotypes 

AA and aa;  is a haplotype matrix  for inbred lines from heterotic pool 2, this matrix 

has entries 0 and 1 respectively for inbred’s genotypes AA and aa;  is a heterozygous matrix 

, this matrix has entries 0, 1, and 0 respectively for hybrid’s genotypes AA, Aa, and aa; 

 is a vector  of fixed effects for the average heterozygosity for each hybrid and it 

contains the row-sums of ;  is a vector  of fixed effects;  is a vector  of 

additive effects for heterotic pool 1;  is a vector  of additive effects for heterotic pool 

2;  is a vector  of dominance effects; and  is a vector  of residuals. Genomic 

predictions from the Hybrid Pool Specific Additive Effects + Dominance model were 

calculated using the AlphaSimR function RRBLUP_SCA in the year 1 and from the year 2 

onwards using the function RRBLUP_SCA2. 

 

Training Population 
 

The initial training population for genomic prediction considered the last four years of 

testcross 1 and 2 and, from the elite yield trial data from the recent burn-in phase. Separate 

training populations were developed for each of the heterotic pools for the Testcross model and 

the data compromised phenotypic records of the average performance of the inbred lines in the 

yield trials. The hybrid models (Hybrid Additive, Hybrid Pool Specific Additive, Hybrid 

Additive + Dominance and Hybrid Pool Specific Additive + Dominance) used a common 

training population and the data from the single-cross hybrids generated in the yield trials.  

The initial training population for the testcross model considered phenotypic records on 

17,760 inbred lines for each heterotic pool. The initial training population for the hybrid models 

compromised phenotypic records on 43,200 testcross genotypes. The training populations were 
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updated in subsequent years adding up new data from the yield trails. For the testcross model, 

every year 4,400 new phenotypes were added in the training population, separately for each 

heterotic pool. For the hybrid models, every year 10,800 new phenotypes were added in the 

training population, jointly for both heterotic pools. 

 

2.5. General Combining Ability (GCA) 
 

Genomic predictions of general combining ability were obtained in different ways, 

depending on the model. For the Testcross and Hybrid Pool Specific Additive models, GCA 

was predicted directly from allele substitution effects. But on the other hand, for the Hybrid 

Additive model, GCA was not truly predicted, and selection was based on predictions of 

breeding values across both heterotic pools. And for the Hybrid Additive + Dominance and 

Hybrid Pool Specific Additive + Dominance models, GCA was predicted indirectly using 

additive and dominance effects.  

Genomic predictions of GCA from the Testcross, Hybrid Additive, and Hybrid Pool 

Specific Additive models were calculated as individual's genotypes multiplied by estimated 

allele substitution effects (  for the Testcross model,  for the Hybrid model, and  or  

for the Hybrid Pool Specific Additive model). Using these three models, we estimated 

“statistical” effects, hence these genomic predictions of GCA are confounded with a training 

population. For the Hybrid Additive + Dominance and Hybrid Pool Specific Additive + 

Dominance models, we first estimated “biological” additive and dominance effects (  and  for 

the Hybrid Additive + Dominance model or ,   and  for the Hybrid Pool Specific Additive 

+ Dominance model; VITEZICA; VARONA; LEGARRA, 2013), and then indirectly predicted 

GCA as individual's genotypes multiplied by estimated allele substitution effects  (  or ) 

assuming random mating between heterotic pools. We estimated allele substitution effects for 

these two models from allele frequencies in the other heterotic pool and “biological” additive 

and dominance effects as follows for the Hybrid Additive + Dominance model: 

 , (7) 

 ,  
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where 1 denotes one heterotic pool and 2 denotes the other heterotic pool. And as follows for 

the Hybrid Pool Specific Additive + Dominance model: 

 , (8) 

 .  

 

2.6. Comparison of Breeding Programs 
 

To evaluate the performance of the genomic prediction of GCA and their use in 

breeding, we tracked genetic gain and heterosis of all potential hybrids that could be formed at 

the DH stage. The aim here was to evaluate the power of the genomic predictions for early 

selection of inbred lines on their GCA. A breeding program would not be able to form all the 

possible hybrids so early in the breeding pipeline. Even in the context of a simulation study 

generating all possible hybrids so early in the breeding pipeline is computationally demanding  

(4,000 inbreds from each pool gives rise to 4,000 x 4,000 =16 million possible hybrids). We 

bypassed this issue by estimating the genetic gain and heterosis algebraically in addition to the 

simulated individuals of the breeding programme. We estimated the genetic gain  as the mean 

genetic value of all possible hybrids in every year as follows (FALCONER; MACKAY, 1996): 

  (9) 

where  and  are respectively additive and dominance effects;  is the difference of 

allele frequency between the two heterotic pools ( );  and  are allele 

frequency in the heterotic pool 1 and;  and  are allele frequency in the heterotic pool 2. The 

heterosis of all possible hybrids in every year was estimated as follows (LAMKEY; 

EDWARDS, 1999): 

  (10) 

 where  and ;  is the squared difference of allele 

frequency between the two heterotic pools; and   are dominance effects. Allele frequencies 

were calculated for every year. 

The mean values of genetic gain and heterosis were centered at the mean values for 

hybrids in year 0 (last year of the recent breeding program in the burn-in phase), to aid in 
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visualization. The comparison between breeding programs were reported as ratios with 95% 

confidence intervals. These were calculated by performing paired Welch’s test on log 

transformed values of the 100 simulation replicates. The log transformed differences and 95% 

confidence intervals from t-tests were then back-transformed to obtain the ratios (RAMSEY; 

SCHAFER, 2002). 
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3. RESULTS 
 

Overall, the results show that QTL as expected provide higher accuracy than SNP 

markers, and that higher SNP maker density increases accuracy compared to lower density. The 

relative performance of genomic prediction models differs across marker scenarios. The results 

are structured in four main parts: 

i. Effect of marker scenarios on genetic gain; 

ii. Effect of marker scenarios on heterosis; 

iii. Performance of genomic prediction models across markers scenarios; and 

iv. Performance of heterosis across markers scenarios. 

 

3.1. Effect of marker scenarios on genetic gain 
 

 SNP Markers 
 

Higher SNP density scenario increases the genetic gain of the prediction models in a 

simulated maize breeding program. This is shown in Figure 4, which plots the hybrid genetic 

gain as the increase in mean genetic value under different marker scenarios over time for the 

hybrids formed by crossing inbred lines from different heterotic pools at the double haploid 

stage. The first graph shows the mean for each genomic prediction model evaluated in the future 

breeding program in the marker scenario with low density SNPs. The second graph shows the 

mean of genomic prediction models in the marker scenario with high density SNPs. The graphs 

show that increasing the marker density, all genomic prediction models presented an increasing 

in the genetic gain. On average, the high marker density generated 73.41% more genetic gain 

compared to the low-density markers. 

 

QTL genotypes 
 

QTL genotypes provide higher accuracy than SNPs markers in a hybrid breeding 

program simulation. This is shown in Figure 5, which plots the hybrid genetic gain as the 

increase in mean genetic value using the QTL genotypes overtime for the hybrids formed by 

crossing inbred lines from different heterotic pools at the double haploid stage. Compared to 

the low-density marker scenario, the QTL genotypes scenario produced on average 100.46% 



 

 
 

36 

more genetic gain. Similarly, the QTL scenario was also superior to the high-density scenario 

and on average produced 15.57% more genetic gain. 

 

 

 

Figure 4 – Hybrid genetic gain of different genomic prediction models over time of a simulated 
maize breeding program using two different marker densities. Hybrid genetic gain 
as the mean genetic value under two marker densities over time for the hybrids 
formed by crossing inbred lines from different heterotic pools at the double haploid 
stage. The lines in each plot represent the mean genetic value for the 100 simulated 
replicates and the shadings represent the 95% confidence interval. 

Figure 5 – Hybrid genetic gain of different genomic prediction models over time of a 
simulated maize breeding program using true QTL genotypes. Hybrid genetic 
gain as the mean genetic value using true QTL genotypes over time for the 
hybrids formed by crossing inbred lines from different heterotic pools at the 
double haploid stage. The lines in each plot represent the mean genetic value 
for the 100 simulated replicates and the shadings represent the 95% confidence 
interval. 
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3.2. Effect of marker scenarios on heterosis 
 

SNP Markers 
 

Higher marker density increases the heterosis of the genomic prediction models in a 

simulated maize breeding program. This is shown in Figure 6, which plots the heterosis for the 

hybrids formed by crossing inbred lines from different heterotic pools at the double haploid 

stage. The first graph shows the mean heterosis for each genomic prediction model evaluated 

in the future breeding program under low-density coverage. The second graph shows the 

heterosis prediction models under high-density coverage. The figures show that increasing the 

marker density increased the heterosis for all genomic prediction models. On average, 

increasing the marker density produced 72.31% more heterosis for all genomic prediction 

models. Figure 6 also shows that the ranking of genomic prediction models was consistent 

across different maker densities.  The rank of the models from the highest to lowest heterosis 

was: Hybrid Pool Specific Additive + Dominance, Hybrid Additive + Dominance, Hybrid Pool 

Specific Additive, Testcross and Hybrid Additive model. The only change in the raking was 

between Hybrid Pool Specific Additive and Hybrid Additive + Dominance models, but these 

models did not present statistical differences in the low-density scenario. 

 

Figure 6 - Heterosis of different genomic prediction models over time of a simulated maize 
breeding program using two different marker densities. Heterosis means for the 
hybrids formed by crossing inbred lines from different heterotic pools at the double 
haploid stage. The lines in each plot represent the mean genetic value for the 100 
simulated replicates and the shadings represent the 95% confidence interval. 
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QTL genotypes 
 

QTL genotypes provide higher heterosis than SNPs markers scenarios in a hybrid 

breeding program simulation. This is shown in Figure 7, which plots the heterosis using the 

QTL genotypes overtime for the hybrids formed by crossing inbred lines from different 

heterotic pools at the double haploid stage. A considerable difference was observed when the 

QTL scenario was compared to the low-density scenario. The QTL scenario yielded 118.45% 

more heterosis. A superiority of the QTL was also observed compared to the high-density 

scenario and on average yielded 24.75% more heterosis. 

 

3.3. Performance of genomic prediction models across scenarios 
 

SNP markers 
 

The relative performance of the prediction models differs across marker scenarios. 

Figure 4 also shows that the performance of the genomic prediction models depends on the 

maker density. The first graph shows that under low-density, the genomic prediction models 

showed different performance for genetic gain. The second graph shows that under high-density 

the genomic prediction models have a similar performance for genetic gain. 

Figure 7 – Heterosis of different genomic prediction models over time of a simulated maize 
breeding program using true QTL genotypes. Heterosis means for the hybrids 
formed by crossing inbred lines from different heterotic pools at the double haploid 
stage. The lines in each plot represent the mean genetic value for the 100 simulated 
replicates and the shadings represent the 95% confidence interval. 
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Under low-density marker coverage, the genomic selection models showed a different 

performance for hybrid genetic gain. The models that fitted the average or additive effects 

specific for each heterotic pool (Testcross, Hybrid Pool Specific Additive and Hybrid Pool 

Specific Additive + Dominance models) showed higher genetic gain compared to the models 

that have common effects for both pools. These models produced a 12.82% more genetic gain 

than the models that modelled common average and additive effects for both heterotic pools 

(Hybrid Additive and Hybrid Additive + Dominance models).  

In contrast, under high-density marker coverage, the genomic prediction models showed 

similar performance for genetic gain. The models the included dominance effects (Hybrid 

Additive + Dominance and Hybrid Pool Specific Additive + Dominance) and the Hybrid Pool 

Specific Additive showed higher genetic gain compared to the other models, but there was no 

statistical difference between some of models. The rank of the models showed that there is no 

correlation between the genomic prediction models and the marker densities. 

 

QTL genotypes 
 

The relative performance of the prediction models that fit dominance effects is superior 

to the models that fit average or additive effects only. This is shown in Figure 5, which plots 

the hybrid genetic gain as the mean genetic value using the QTL genotypes over time for the 

hybrids formed by crossing inbred lines from different heterotic pools at the double haploid 

stage. Modelling the dominance effects in the genomic prediction models produced on average 

11.98% more genetic gain compared to the models that fitted only average or additive effects. 

 

3.4. Performance of heterosis across scenarios 
 

 SNP Markers 
 

The heterosis of genomic prediction models differs across marker scenarios. The first 

graph shows that models that fitted the average or additive effects for each pool specific for 

each heterotic pool showed higher heterosis compared to the models that modelled common 

effects for both heterotic pools in the low-density. Modelling the average or additive effects for 

each pool separately increased the heterosis in 22.04 and 14.60% for the Hybrid Additive 

compared to the Hybrid Pool Specific Additive model and Hybrid Additive + Dominance 

compared to the Hybrid Pool Specific Additive + Dominance model, respectively. The second 
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graph shows that models that fitted dominance effects presented higher heterosis compared to 

models that fitted only average or additive effects. With high-density markers the models that 

modelled dominance effects (Hybrid Additive + Dominance and Hybrid Pool Specific Additive 

+ Dominance models) showed on average 33.87% higher heterosis compared to the other 

models (Testcross, Hybrid Additive and Hybrid Pool Specific Additive models).  

 

QTL genotypes 
 

Genomic prediction models that fitted dominance effects showed higher heterosis 

compared to the models that fitted average or additive effects only. This is shown in Figure 7, 

which plots the heterosis for hybrids formed by crossing inbred lines from different heterotic 

pools at the double haploid stage using the QTL genotypes. Models that included dominance 

effects produced on average 122.73% more heterosis compared to the other models.  
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4. DISCUSSION 

 

The results study highlights four main topics for discussion: 

i. The impact of marker scenarios in the genomic prediction; 

ii. The relative performance of the genomic prediction models across marker scenarios; 

iii. The impact of marker scenarios and genomic prediction models on heterosis;  

iv.  Implications in hybrid breeding programs; and 

v. Limitations of stochastic simulations of hybrid breeding programs. 

 

4.1. The impact of marker scenarios in the genomic prediction 
 

Different marker scenarios were used to evaluate the impact of different marker 

densities on the genetic gain of prediction models. The marker scenarios used were low and 

high-density SNP markers and the QTL genotypes. As expected, the QTL genotypes 

outperform SNP markers and high-density markers outperform low-density markers. 

 

SNP markers 
 

Hybrid breeding programs using high-density markers produced more genetic gain for 

hybrids formed by crossing inbred lines from different heterotic pools at the double haploid 

stage, as expected. The increase in genetic gain is related to the selection accuracy. The 

expected accuracy is determined by the genetic variance, the number of phenotypic individuals, 

the effective number of chromosome segments, and the number of markers (DAETWYLER; 

VILLANUEVA; WOOLLIAMS, 2008; LEE et al., 2017). These authors explored the main 

factors that impact on the accuracy of genomic prediction. The number of observed phenotypes 

is an important factor that may limit the increase of accuracy, irrespective of the number of 

markers. Furthermore, accuracy may reduce due to the use of markers with an imperfect linkage 

disequilibrium with the QTL and the inclusion of markers with zero effects. 

The results in the present study support this, showing that in breeding programs with 

low-density coverage, the markers may be in imperfect linkage disequilibrium with QTL. 

Mainly because with fewer markers, long-range linkage disequilibrium blocks are formed and 

there is less chance of the markers being in strong linkage disequilibrium with the QTL. Thus, 

the selection accuracy of the best parents is low and consequently, the genetic gain of the 

hybrids is also low. On the other hand, with high-density markers, the genome is saturated, and 
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it is ensured that the markers are in strong linkage disequilibrium with the QTL. Therefore, a 

great proportion of the QTL is captured by the markers. So, higher prediction accuracies ensure 

that the best individuals are selected based on their GEBV, and, consequently, the more genetic 

gain will be produced over time. 

In this study, the ridge regression BLUP (RR-BLUP) models were fitted for the genomic 

prediction. RR-BLUP is a penalized regression model that imposes a penalty term, which is 

estimated as the ratio of the residual variance and the variance of marker effects. These models 

assume that all markers contribute equally to the genomic variance, with each marker effect 

following a normal distribution with a common variance (MEUWISSEN; HAYES; 

GODDARD, 2001). Although computationally efficient, these models may have some 

limitations depending on the genetic architecture of the trait. An alternative would be to use 

models that differentially weight markers. These models use variable selection and/or different 

prior (for example, LASSO (LI; SILLANPÄÄ, 2012; TIBSHIRANI, 1996)) or a mixture prior, 

such as BayesR (ERBE et al., 2012; MOLLANDIN; RAU; CROISEAU, 2021) may perform 

better in high-density scenarios. However, a further investigation would need to confirm this. 

 

QTL genotypes 
 

The hybrid breeding programs that used QTL genotypes showed higher genetic gain 

when compared to the breeding programs that used SNP markers. This was expected because 

the causal genotypes that, represent the QTL itself, were used by the prediction models and 

consequently, the prediction models captured all the QTL variance that drives the trait in the 

simulation. The genomic prediction models that used the QTL genotypes produced 15.57 % 

more genetic gain then the models that used high density markers. 

The results obtained with the QTL genotypes also show that even when high-density 

markers were used, would not be possible to capture all the variance of the QTL that explain 

the trait. The main reason for that is the linkage disequilibrium between the markers and QTL. 

When the markers are used, they are considered the causal loci and to have a good estimation 

of the QTL variance these markers need to have a strong linkage disequilibrium with the QTL. 

Although high densities can be used, it is not possible to ensure that markers are in perfect 

linkage disequilibrium with all QTL. 
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4.2. The relative performance of the genomic prediction models across marker 
scenarios 

 

In the simulations, we tried to mimic the evolutionary history of the two maize heterotic 

pools. The split between the heterotic pools was simulated to be 100 generations ago. So, it 

would be possible for the heterotic pools to have a difference in the linkage disequilibrium 

between markers and QTL and also differences in the allele frequency. The difference in the 

performance of the models can be attributed to the ability of prediction models to capture the 

genetic architecture of the trait and the difference in linkage disequilibrium pattern between the 

pools. 

The low-density coverage was the scenario in which the genomic prediction models 

showed a substantial difference in the performance. When low-density coverage was used the 

markers are expected to be relatively more physically distant from QTL resulting in less 

opportunities for strong LD between markers and QTL. Consequently, the markers are not 

expected to estimate QTL effects as accurately. The hybrid additive model showed the worst 

performance relative to the genetic gain. The model, in this case, estimates the average effects 

based on the hybrid performance and not from the average performance of the inbred lines. 

This leads to a poor estimation of the average effects and hence a poor performance for genetic 

gain. Additionally, the hybrid additive model does not exploit the heterosis appropriately 

because it is driving the heterotic pools together. The hybrid additive and dominance model has 

the second-worst performance compared to others models. The dominance effects are more 

difficult to estimate than the average or additive effects. Specifically, under low-density the 

dominance effects are not accurately estimated and, this leads to poor performance. The 

heterosis performance of the model is similar to the better performance models, so it is clearly 

driving the heterotic pools apart. The other models, Testcross, Hybrid Pool Specific Additive, 

and Hybrid Pool Specific Additive + Dominance, are about equal for genetic gain. These 

models shared a common characteristic they modeled the average or the additive effects specific 

to each heterotic pool. The superiority of these models may be explained by the fact that these 

models may account for pool-specific LD patterns between QTL and markers for each heterotic 

pool. Regarding heterosis, the Hybrid Pool Specific Additive + Dominance model showed the 

best heterosis performance, and the other models being about equal. This shows that this model 

is acting differently than the other models. 

On the other hand, in the high-density scenario, the genomic prediction models have 

similar performance for genetic gain. The performance of the prediction models has a modest 
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difference and was not statistically significant in most of the cases. Under high-density, there 

is a chance of more markers being in close physical proximity to QTL, providing more 

opportunity for markers to be in tight LD with the QTL. In this marker scenario, the single 

additive model (Hybrid Additive + Dominance model) has a slightly better performance than 

the other models. Probably this model has a better match with the genetic architecture of the 

trait simulated. The ranking of the models is likely to be sensitive to the genetic architecture 

(amount of dominance and divergence between heterotic pools) assumed in this study. Thus, 

an empirical validation would be necessary to choose between these models. A substantial 

difference between the models was observed for heterosis. The results show that although 

important for hybrid breeding programs, heterosis alone is not the only way to improve the 

performance of the hybrids. As expected, explicitly modeling dominance resulted in more 

heterosis. Furthermore, having separate additive effects increased heterosis the most. This is 

likely due to the ability of this model to account for pool-specific LD patterns. 

Lastly, in the QTL genotypes scenario, models that included the dominance effects 

yielded more genetic gain compared to the models with only the average or additive effects. In 

this scenario, all pairwise comparisons between the prediction models were statistically 

different, except for the comparison between the Testcross and the Hybrid Additive models. 

The superiority of the Hybrid Additive + Dominance and Hybrid Pool Specific Additive + 

Dominance models was expected once these models match the genetic architecture of the trait, 

that includes additive and dominance effects. In contrast, the models that fitted only the average 

or additive effects are not able to capture only the dominance of the QTL and, hence fail to 

explain all the genetic variance of the trait. Another important thing to highlight is that the 

ranking for the QTL genotypes did not match the rankings for marker high-density scenario. 

There is the false idea that SNP markers, usually under high densities, will outcome the same 

results obtained from QTL. The SNP model depends on linkage disequilibrium as a surrogate 

for the QTL. Usually, not all markers are in tight linkage disequilibrium with all causal loci 

and, hence fail to explain all the genetic variance of the trait. 

 

4.3. The impact of marker scenarios and genomic prediction models on heterosis 
 

We also examined how the prediction models would impact on the heterosis of all 

possible hybrids formed by crossing inbred lines from different heterotic pools. In other words, 

to assess how the selection of the parents based on GCA affects the heterosis using different 

prediction models and how breeders can explore the heterosis in breeding programs. Heterosis 
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is present only when dominance is present and also if there is difference in allele frequency 

between the populations or inbreds (FALCONER; MACKAY, 1996). 

In the low-density scenario, the prediction models resulted in different levels of 

heterosis at end of 20 years of breeding. In this scenario, probably the markers were not in good 

LD with the QTL that drives the trait and, hence the QTL effects were captured less accurately. 

Moreover, the dominance effects are one of the main effects that guide the heterosis are more 

difficult to be estimated, especially under low-density, compared to the average or additive 

effects. Another factor to be considered is the fact of the prediction models that fitted only 

average or additive effects did not estimate appropriately the dominance effects and hence 

assigned incorrectly the QTL with dominance effects. So, the heterosis at the end of breeding 

cycle for these models is lower. The Hybrid Pool Specific Additive + Dominance was the model 

that showed more gain in heterosis and, it was statistically different from the other models. The 

superiority of this model can be explained by the fact that it estimated better the effects of the 

QTL with dominance effects and also captured the difference in allele frequency between the 

heterotic pools.  

The Hybrid Additive + Dominance model showed similar performance to the models 

that fitted only the average or additive effects; although it was expected it would yield more 

heterosis because the dominance effects are included in the prediction model. In this model, the 

additive effects of both heterotic pools were considered together and, the difference in the allele 

frequency was the mean of allele frequency of both pools. So, the dominance effects, that are 

the same for both heterotic pools, decrease because difference of allele frequency between the 

pools (y2) is small and hence the heterosis was the same of the models that did not fit the 

dominance effects. 

In the high-density scenario, the prediction models that fitted dominance effects showed 

more heterosis than the other prediction models. In general, the increase in the heterosis is 

related to the number of markers in linkage disequilibrium with QTL. Moreover, the higher 

increase of the models that fitted the dominance effects is related to the ability of these models 

the captured the QTL with dominance effects, what do not happen with the models that not fit 

the dominance effects.  

In the QTL genotypes scenario, as was showed in the high-density, the prediction 

models that fitted dominance effects showed more heterosis than the other prediction models. 

With the QTL genotypes, we fitted the prediction models using the causal genotypes of the trait 

and show how the model perform. 
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4.4. Implications in hybrid breeding programs 

 

The present study showed that there are some factors that can impact on genomic 

prediction models for general combining ability in early stages of hybrid breeding programs. 

These study highlights how the marker density, the genomic prediction models performance 

and heterosis can implicate in breeding programs. 

We showed how the marker density affects the genetic gain in a hybrid breeding 

program. The increasing the marker density implicated in a direct increase of genetic gain for 

all prediction models. Although, there was an increase in the genetic gain, apparently the 

genetic gain reached a plateau with the high-density marker coverage. There are many factors 

that affect genomic prediction, such as marker density, training population size, relatedness 

between training and selection populations (DE LOS CAMPOS et al., 2013; HICKEY et al., 

2014; LIU et al., 2018; ZHAO; METTE; REIF, 2015).  In the present study the hybrid breeding 

programs in which high density markers were used, produced 72.31% more genetic gain then 

the breeding programs that used low density markers, but no significant increase in genetic gain 

was observed when the number of markers increased from 10,00 to 20,000 (results not showed). 

This is consistent with previous studies that verify the impact of marker density and type and 

size of the training population (HICKEY et al., 2014; LIU et al., 2018). The most important 

fact to be considered with genomic selection is to use a number of markers that ensure a good 

LD between marker and QTL. So, the marker can explain a good proportion of the QTL 

variance.   

The final aim of hybrid breeding programs is to produce a hybrid that had a superior 

performance compared to the hybrids available in the market. To achieve this is necessary to 

develop and select good inbred lines and, identify the best combinations that produce the 

hybrids with superior performance (SHULL, 1909). In this study, we showed that the 

performance of the prediction models that estimated GCA depended on the marker density. The 

prediction models showed a different performance under low-density coverage, but under high-

density coverage, the performance was similar between the models. The models that showed a 

better performance in both low- and high-density coverage were the models that fitted the 

average and additive effects specific to each heterotic pool and/or fitted the dominance effects. 

Therefore, these models would provide a better fit compared to the simpler models. 
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Another factor important in hybrid breeding programs is heterosis, because it ensures 

the development of hybrid cultivars. The concept of heterosis was coined by SHULL (1908) 

and is attributed to the superior performance of the hybrid compared to their parental inbred 

lines. The high performance of a hybrid is a result from a large amount of heterosis between 

two parents that have modest per se performance or a modest amount of heterosis between two 

parents that have higher per se performance (BERNARDO, 2020). In this study, we assessed 

the effects of the prediction models on the heterosis of the hybrids to understand what was 

associated with the improved performance of the hybrids. The results showed that hybrid 

genetic gain was increasing over the breeding cycles. One of the reasons was the increase in 

the performance per se of the inbred lines. Apart from this, the improvement in the performance 

of the hybrids was due to heterosis, mainly for the prediction models that fitted the dominance 

effects. These models that fit the dominance effects have an advantage because they can capture 

the dominance effects of the QTL. 

 

4.5. Limitations of stochastic simulations of hybrid breeding programs 

 

Breeding programs are very complex, and many factors can affect them in different 

ways. The simulations performed in the present study did not model all the complexity existent 

in a real hybrid breeding program. The limitations and impact of these assumptions used on the 

simulated hybrid breeding programs are discussed in the following.  

The genetic architecture of the trait used in the simulation was chosen to match long-

term rates of genetic gain observed for inbred mid-parent and hybrid yield observed in real data 

(TROYER; WELLIN, 2009). The trait simulated in this study was controlled by 3,000 QTL, 

with a dominance degree of 0.92 and dominance variance of 0.2 and, the split of heterotic pools 

that occurred 100 generations ago. The results showed in this study are limited to the genetic 

architecture of the trait, in this case, yield, used in the simulations. The results may give an idea 

of how genomic prediction models perform in different marker scenarios. It is important to 

highlight that a trait with different genetic architecture may show different results. Although, 

no major changes are expected in the performance of the genomic prediction models. 

The genomic selection accuracy directly affects the genetic gain in simulated breeding 

programs. In the present study the genomic selection accuracies observed were higher than 

those observed in real breeding programs conditions. As indicated by GAYNOR et al. (2017) 

this happens because in the simulations the molecular markers do not have genotyping errors, 
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the genetic control of the trait does not involve epistasis and, the simulation used a closed 

breeding program. As a consequence, the simulations favored high genomic selection accuracy 

and hence the genetic gain. These effects should affect all hybrid crop breeding programs using 

genomic selection equally, suggesting that the difference observed between the prediction 

models is exclusively due to the difference in the prediction models.  
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5. CONCLUSIONS 
 

We evaluated the performance of genomic prediction models to estimate GCA at the 

early stages of hybrid breeding programs. The genomic prediction models delivered higher 

genetic gain and higher heterosis under high-density coverage. The prediction models showed 

a difference in the performance under low-density coverage. Although, under high-density, the 

performance between the models was similar. Accordingly, three main conclusions can be 

drawn from these results:  

i) increasing the marker density increases the genetic gain; 

ii) the relative performance of the prediction models depends on the marker density 

and; 

iii) there is a significant difference in the genetic gain when markers and true QTL 

genotypes are used.  

Our results suggest that more complex models, such as models that fit effects specific to 

heterotic pools and dominance effects, can be more beneficial to estimate GCA in hybrid 

breeding programs.  
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ARTIGO 2 – MULTIVARIATE GWAS FOR THE RESISTANCE TO DIPLODIA AND 
FUSARIUM EAR ROT IN MAIZE 
 

 

  



 

 
 

ABSTRACT 

 

Maize is one of the most important cultivated crops and, suffers attack by several diseases.  Ear 
rots, caused by the fungi Stenocarpella maydis and Fusarium verticillioides, are the most 
limiting factor in maize production, reducing yield and grain quality. Additionally, some fungi 
produce secondary metabolites, as known as mycotoxins, that are harmful to humans and 
animals. Traditionally, multiple traits are collected on the same individuals. Therefore, 
multivariate methods have been suggested to exploit the increasing quantity and complexity of 
the traits. The objectives of this study were to identify loci controlling the resistance to ear rot 
caused by Stenocarpella maydis and caused by Fusarium verticillioides and to identify markers 
linked to causal loci that contribute to the resistance to both Diplodia and Fusarium ear rot. We 
evaluated the univariate and multivariate approaches using a maize diverse panel for three 
different traits, percentage of rotten kernels, ear rot incidence score, and yield. Our analyses 
revealed two markers associated with the traits in the univariate analyses. In the multivariate 
analyses, two markers were associated with the traits, with one marker in common to the 
univariate analysis. The markers associated with the traits in both analyses were located inside 
or close to candidate genes. The candidate genes were related to biological functions that may 
be associated to the ear rot resistance. The resistance to ear rots is complex and most of the 
genetic and biochemical pathways of its resistance to the ear rots are still unknown. The results 
obtained by the multivariate were encouraging once multiple traits are available, but further 
studies are necessary. 
 
Keywords: Ear rots; Association mapping; Zea mays L. 
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1. INTRODUCTION 
 

Maize is one of the most cultivated crops in the world and suffers the  attack of 

numerous pathogens, which can infect all parts of the plant. Among the diseases that infect 

maize plants, the ear rots are the most limiting factor in maize production, mainly because of 

the yield losses and reduction of grain quality, and some of these fungi produce mycotoxins 

(LANUBILE et al., 2017). 

Fusarium ear rot (FER) is caused by several Fusarium species, but the most common 

causal agent is Fusarium verticillioides (previously known as Fusarium moniliforme) 

(MESTERHAZY; LEMMENS; REID, 2012; MUNKVOLD; WHITE, 2016). The causal agent 

overwinters on corn residues or other plants that serve as hosts. The infection occurs mainly 

when the fungal spores germinate on the silks and grow in the silk channel, consequently 

infecting the kernels. Moreover, the infection occurs through wounds caused by hail or insects 

and systemic infection of the ear through infected stalks that generate infected 

seeds(MUNKVOLD; MCGEE; CARLTON, 1997). The optimal environmental conditions for 

the disease development are dry and warm weather, which can cause severe infections (REID 

et al., 1999). The most common FER symptoms are the development of a white-pinkish mold 

on the ear and the starburst pattern, which is a light-colored streak radiating from the top of 

kernels (LANUBILE et al., 2017; MUNKVOLD; WHITE, 2016). In addition to the reduction 

of yield and grain quality, Fusarium verticillioides produces mycotoxins, known as fumonisins, 

which can be carcinogenic and are associated with several diseases in animals (LOGRIECO et 

al., 2002). Many countries have established regulations for fumonisins concentrations for 

livestock and human consumption (LANUBILE et al., 2017). 

Diplodia ear rot (DER) is caused by Stenocarpella maydis (previously known as 

Diplodia maydis) (MUNKVOLD; WHITE, 2016). Maize is the only known host and the disease 

severity depends on the infected and unburied corn debris (MUNKVOLD; WHITE, 2016; 

PINTO et al., 2003). The optimal environmental conditions for disease development are wet 

weather and moderate temperatures. The DER symptoms are mainly tan spots on husks or 

decolored husks. On the ear, there is the development of a white mycelial infection from the 

base of the ear that progresses to the top (MUNKVOLD; WHITE, 2016; ROSSOUW et al., 

2009). As FER, the main impact on the crop is due to the reduction of grain quality and yield. 

The mycotoxin produced by S. maydis is known as diplodiatoxin, which presents a risk to 

domestic animals such as cattle, sheep, and poultry. This mycotoxin is the cause of diplodiosis 
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and has been related to neurological disorders in cattle in South Africa and Argentina 

(KELLERMAN et al., 1991; ODRIOZOLA et al., 2005; WICKLOW et al., 2011). 

Studies have been carried out to understand the genetic control of resistance to ear rots 

and mycotoxins. Many of them showed that it is highly polygenic and complex trait (KING; 

SCOTT, 1981; NANKAM; PATAKY, 1996; PÉREZ BRITO et al., 2001; ROSSOUW; VAN 

RENSBURG; VAN DEVENTER, 2002a, 2002b; VAN RENSBURG; FERREIRA, 1997). 

Studies for FER and fumonisin content found many minor QTL and markers associated with 

or fumonisins (CHEN et al., 2012, 2016; DE JONG et al., 2018; DING et al., 2008; 

MASCHIETTO et al., 2017; PÉREZ BRITO et al., 2001; ROBERTSON‐HOYT et al., 2006; 

SAMAYOA et al., 2019; ZILA et al., 2013, 2014). Most of the QTL and markers explained a 

small portion of the phenotypic variance, suggesting that many genes with small effects 

underline the inheritance of FER. Moreover, the disease is mainly affected by environmental 

conditions. Despite the importance of DER, only a few studies of QTL mapping were 

performed, and some QTL were identified for resistance to ear rot (GUTIÉRREZ, 2008; 

ROMERO LUNA, 2012; ROSSOUW et al., 2009). No Genome-Wide Association Study 

(GWAS) to understand the resistance to DER has been reported so far. 

Traditionally GWAS are performed using single traits or multiple traits independently. 

Although, in practice, multiple traits are collected on the same individuals, most of the analyses 

are performed on single traits. To exploit the increasing quantity and complexity of the traits, 

multivariate methods have been suggested and developed to analyze multiple traits. 

Multivariate procedures have some advantages when compared to univariate methods. Some 

studies have shown that multivariate analysis increased the statistical power and precision of 

the parameter estimation of the analysis, considering the correlation between traits (JIANG; 

ZENG, 1995; KORTE et al., 2012; LIU et al., 2009; ZHOU; STEPHENS, 2014). Another 

advantage is that multivariate analysis performs a single test for association for a set of traits. 

Therefore, there is a reduction in the number of performed tests and eases the multiple testing 

burden (GALESLOOT et al., 2014). Lastly, multivariate analysis can be used to detect the 

presence of pleiotropy when a causal region is associated with multiple traits (FERNANDES 

et al., 2021; RICE; FERNANDES; LIPKA, 2020).  

Considering the importance of ear rots for maize, the objectives of this study were: i) to 

identify loci controlling the resistance to ear rot caused by Stenocarpella maydis; ii) to identify 

loci controlling the resistance to ear rot caused by Fusarium verticillioides; and iii) to identify 
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markers linked causal loci that contribute to the resistance to both Diplodia and Fusarium ear 

rot. 
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2. MATERIALS AND METHODS 
 

2.1. Plant material and field experiments 
 

A maize diverse panel of 228 inbred lines that represent the diversity of maize 

germplasm around the world, were evaluated in the crop season 2012/2013 under inoculation 

with two ear rot fungi, Fusarium verticillioides and Stenocarpella maydis, in two locations. The 

maize inbred lines represent a sample of the diverse panel previously described by 

CANTELMO; VON PINHO; BALESTRE (2017). 

The field experiments were conducted in two locations in the Minas Gerais State, Brazil. 

One experiment was conducted in Lavras (910 m above sea level, 21˚ 14’S 45˚ 00” W), which 

has a humid subtropical climate (Cfa), and the other experiment was conducted in Uberlândia 

(863 m above sea level, 18˚ 55’S 48˚ 16’W), which has a tropical savanna climate (Aw), 

according to Köppen-Geiger classification, respectively. 

The inbred lines were evaluated in two separate experiments in each location. In one 

experiment, the inbred lines were inoculated with an inoculum of F. verticilliodes and, in the 

second experiment, the inbred lines were inoculated with an inoculum of S. maydis. Each 

experiment was evaluated in a complete random block design with three replicates. The 

experimental plots consisted of a row with a length of 3 meters and a width of 0.7 meters 

between rows.  

The isolates of F. verticillioides and S. maydis were obtained from rotten ears collected 

in the experimental fields in Lavras and Uberlândia and replicated at the Seed Pathology 

Laboratory at the Federal University of Lavras (UFLA). The isolates of S. maydis were grown 

in a complete medium and stored in glass tubes for 30 days. The isolates of F. verticillioides 

were grown in a complete medium over a period of seven days before inoculation. The conidial 

suspension for both fungi was adjusted to 1.0 × 10$conidia.mL-1, by counting spores in a 

Neubauer chamber. The inoculation was performed 15 days after 100% of the plants had 

developed styles-stigmata. Using the methodology proposed by  CLEMENTS et al. (2003), 1 

mL of the conidial suspension was inoculated into each ear. 

The incidence of ear rot was evaluated using two different methods (dos Santos et al., 

2016):  

i) percentage of rotten kernels (PRK); and 

ii) ear rot incidence score (SCO).  
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The percentage of rotten kernels was measured according to the procedure proposed in 

decree no. 11 of 12/96 (BRASIL, 1996). For this evaluation, a sample of 230 grams of kernels 

per plot was collected and determined the percentage of kernels showing discoloration in more 

than 25% of the total kernel surface. For the ear rot incidence score, a diagrammatic scale 

proposed by REID et al. (2002) was used. The evaluation was based on 7-class rating scale 

where 1 = 0%, 2 = 1–3%, 3 = 4–10%, 4 = 11–25%, 5 = 26–50%, 6 = 51–75%, and 7 = >75% 

of the kernels exhibiting visible symptoms of infection such as rot and mycelial growth. In 

addition, the yield (YLD) of each inbred line. was evaluated based on the husked ear weight in 

kg.plot-1, which was converted to kg.ha-1.  

 

2.2. Genotypic data 
 

The maize inbred lines were genotyped with the high-throughput DArTseq technology. 

This technology is based on the PstI-based complexity reduction method (WENZL et al., 2004). 

All the procedures to obtain the genomic representations were described by KILIAN et al. 

(2012). Markers were scored “1” for presence and “0” for absence and “-” for failure to score. 

A total of 23,153 polymorphic silicoDArT markers were generated. 

The genotypic data quality control was tested for call rate (%), minor allele frequency 

(MAF) with the dartR package GRUBER et al. (2018) in the R software (R CORE TEAM, 

2020). Markers with a call rate below 90% and MAF lower than 0.05 were filtered out from the 

genotypic dataset. Additionally, all the monomorphic markers were removed. After the quality 

control, 12,936 silicoDArT were selected for the study. 

 

2.3. Statistical analysis 
 

2.3.1. Adjusted means and heritabilities 
 

The ear rot measurement traits, percentage and score, and yield were transformed using 

a Box-Cox transformation (boxcox function in MASS package (VENABLES; RIPLEY, 2002)). 

The lambda (“optimal value”) was calculated for each trait and the one that resulted in the best 

approximation of a normal distribution was used in the transformation. 

Adjusted means were estimated for each inbred line by fitting the linear mixed model: 

  (1) 
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where 𝑦#%&'( is the observed trait value; 𝜇 is the intercept; 𝑔# is the fixed effect of 

genotype i; 𝑑% is the fixed effect of disease j; 𝑙& is the fixed effect of location k; 𝑔𝑑#% is the fixed 

effects of interaction between genotype i and disease j; 𝑔𝑙#& is the fixed effect of the interaction 

between genotype i and location k; 𝑑𝑙%& is the fixed effects between disease j and location k; 

𝑔𝑑𝑙#%& is the fixed effect of the interaction between genotype i, disease j and location k; 

𝑏(𝑟𝑙)&'( is the random effect of block m nested with replication l and location k; 𝑒#%&'( is the 

error. Unstructured covariance structure was used, allowing to estimate the adjusted means for 

each inbred line separately for each ear rot disease. 

To estimate the heritability of the inbred lines for each ear rot disease, a similar model 

was used but all the effects were considered as random. The heritability was calculated using 

the following model: 

 

 

(2) 

where 𝜎)* refers to the genetic variance, where 𝜎)'*  refers to the interaction between 

genotype and location variance, 𝜎+* refers to the residual error variance and 𝑟 and 𝑙 refer to the 

number of replications and environments, respectively. 

 

2.3.2. Relationship matrix and Population structure 
 

The genomic relationship matrix was estimated using the additive relationship matrix 

(A) from markers using the function A.mat function in rrBLUP package (ENDELMAN, 2011). 

The relationship matrix was estimated as proposed by (VANRADEN, 2008): 

 
 

(3) 

 where 𝑊 is the centered matrix on 2𝑝 (average of the favorable alleles for a given 

locus); 𝑝 is the frequency of the favorable allele; 𝑞 is the frequency of the unfavorable allele; 

and  is the sum of the locus variances. 

 To detect and correct for population structure in GWAS (PRICE et al., 2006), a principal 

component analysis (PCA) was performed using the function snpgdsPCA in SNPRelate 

package (ZHENG et al., 2012). To account for the number of subgroups in the population, 

initially, a visual inspection was done plotting the first component versus the second 

component. Another procedure based on BIC model selection was used to determine how many 
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principal components (PCs) were necessary to control for population structure using the 

software GAPIT (LIPKA et al., 2012). 

 

2.3.3. Genetic Correlation 
 

 The genetic, phenotypic, genotype by location interaction and residual correlations were 

estimated by fitting a multivariate version of the model used to estimate heritability. The 

genotype, genotype by location interaction, residual and block nested within replication effects 

were fit as random effects with separate variance for each disease ear rot and with covariance 

between effects on each disease. The other effects, location, disease, and location by disease 

interaction, were fitted as fixed effects. All mixed model analyses were performed with 

ASReml-R version 4 (BUTLER et al., 2017). 

The genetic correlations were estimated using two different methods. For traits 

measured on the same disease experiment (DER or FER), genetic correlations were calculated 

using the following model:  

 
 

(4) 

 where 𝜎)(-)*  and 𝜎)(/)*  are the genetic variance for traits 𝑥 and 𝑦, respectively; and  𝜎)(-/) 

is the covariance between traits 𝑥 and 𝑦. 

 For traits measured on different disease experiments, genetic correlations were 

calculated according to the model proposed by BURDON (1977):  

 
 

(5) 

 where 𝑟0 is the phenotypic correlation between traits across disease experiments; and 

ℎ-* and ℎ/*  are the heritabilities of each trait within each disease experiment.  

 

2.4. Univariate and Multivariate GWAS 
 

Univariate and multivariate GWAS analyses were conducted using the software 

GEMMA (ZHOU; STEPHENS, 2012, 2014). The univariate GWAS model for each ear rot 

measurement trait (PERC and SCO) and yield individually, using the following linear mixed 

model: 

  (6) 
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where 𝑦 is a 𝑛 × 1 vector of traits for n individuals; W is a 𝑛 × 𝑐 matrix of fixed effects 

including a column vector of 1s; 𝛼 is a 𝑐 × 1 vector of corresponding coefficients including the 

intercept; 𝑥 is a 𝑛 × 1 vector of marker genotypes; 𝛽 is the effect size of the marker; 𝑍 is an 

𝑛 × 𝑚 loading matrix; 𝑢 is an 𝑚 × 1 vector of random effects; 𝑢~𝑀𝑉𝑁((0, 𝜆𝜏"1𝐾), where 

𝜏"1 is the variance of residual errors; 𝜆 is the ratio between the two variance components; K is 

a m×𝑚 kinship matrix; 𝜀 is an 𝑛 × 1 vector of errors; 𝜖~𝑀𝑉𝑁2(0, 𝜏"1𝐼2), where 𝐼2 is an 𝑛 × 𝑛 

identity matrix and 𝑀𝑉𝑁 denotes multivariate normal distribution. 

The multivariate GWAS was fitted using the following linear mixed model: 

  (7) 

where 𝑌L  is a 𝑑 × 𝑛 matrix of d phenotypes for n individuals; 𝑊M  is a 𝑐 × 𝑛 matrix of 

fixed effects including a column of 1s; 𝐴 is 𝑑 × 𝑐 matrix of the corresponding coefficients; 𝑥O3 

is a 𝑛 × 1 vector of genotype for a particular marker; 𝛽 is a 𝑑 × 1 vector of its effect sizes for 

the 𝑑 phenotypes; 𝐺L is a 𝑑 × 𝑛 matrix of random effects; 𝐺L~𝑀𝑁4×2Q0, 𝑉), 𝐾R where 𝑉) is a 

𝑑 × 𝑑 symmetric matrix of genetic variance component; 𝐾 is a known 𝑛 × 𝑛 relatedness matrix; 

𝐸L  is a 𝑑 × 𝑛 matrix of residual errors; 𝐸L~𝑀𝑁4×2(0, 𝑉+ , 𝐼2×2) where 𝑉+ is a 𝑑 × 𝑑 symmetric 

matrix of environmental variance component; 𝐼2×2 is a 𝑛 × 𝑛 identity matrix; and  

𝑀𝑁4×2(0, 𝑉1, 𝑉*) denotes the 𝑑 × 𝑛 matrix normal distribution with mean 0, row covariance 

matrix 𝑉1 (𝑑 × 𝑑), and column covariance matrix 𝑉* (n× 𝑛). 
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3. RESULTS 
 

3.1. Heritabilities 
 

The variance components are presented in Table 1 to provide an overview of the genetic 

variance, genotype by location interaction variance, residual variance, and the broad-sense 

heritability for each trait in Diplodia and Fusarium ear rot experiments. For DER experiments, 

the disease measurements traits, percentage and score, did not present significant genotypic 

variation among the inbred lines. However, there was a significant genotypic variation among 

inbred lines (p > 0.01) for yield. For genotype by location interaction, all traits presented a 

significant variation. For FER experiments, significant genotypic variation among inbred lines 

(p > 0.01) and for genotype by location interaction (p > 0.01) were observed in the analysis for 

all traits. 

 

Table 1 – Variance components and heritability for percentage of rotten kernels (PRK), 

incidence score (SCO) and yield (YLD) evaluated for Diplodia ear rot (DER) and 

Fusarium ear rot (FER). 

 trait Vg Vgxl Ve h2 

Diplodia 

Ear Rot 

PRK 0.0000 0.1789** 0.00472 0.0000 

SCO 0.0524 1.6838** 0.6636 0.0517 

YLD 0.2045** 0.4893** 0.4216 0.3871 

Fusarium 

Ear Rot 

PRK 0.0524** 0.1478** 0.0634 0.3417 

SCO 1.2917** 1.7447** 0.5356 0.5697 

YLD 0.7041** 0.2356** 0.4653 0.7720 

** Significant at 0.01 probability level (p > 0.01). 

 

The broad-sense heritabilities were estimated separately for each ear rot experiment. 

The heritabilities for the traits evaluated in DER experiments were low to moderate, ranging 

from zero to 0.3871. On the other hand, the traits evaluated in the FER experiments showed 

moderate to high heritabilities, ranging from 0.3417 to 0.7720. 
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3.2. Population Structure 
 

The PCA clustering method showed that most of the variance was explained by the first 

three principal components. This is shown in Figure 1 which plots the principal components 

(PCs) in a pair plot of the first three PCs. The graph shows the first three PCs explained 22.05% 

of the variation.  

 

The plot shows a distinction between the inbred lines populations and the genetic 

characterization is similar to germplasm characterization reported by DOS SANTOS et al 

(2016). The plot has a triangle shape, which shows a distinction of the three main heterotic 

groups used in breeding programs. On the left-hand side of the plots, it is possible to observe 

the tropical subgroups, which includes Amarillo Dent and Suwan groups. The temperate groups 

are clearly grouped apart from the tropical groups. In the upper side of the plot, the temperate 

groups observed are the Stiff Stalk Synthetic (SSS) and UNR. On the right-hand side of the 

plot, there are the other temperate groups Lancaster, Iodent, Non-Stiff Stalk Synthetic (NSSS). 

In the center of the plot, it is possible to observe the F_DK_Arg and M_NK, M_UNR groups. 

Figure 1 – Genetic relationships between the 228 lines of the diverse panel visualized using a principal 
component analysis of the relatedness matrix.  In the first two graphs the horizontal axes are the 
first component and second and third components, respectively. In the third graph the horizontal axis 
is the second and the third components. Each point in the graphs represent an inbred line and the 
colors represent the different subpopulations. 



 

 
 

66 

These two groups are in between the two temperate groups so, it is possible to suggest that 

inbred lines were derived from temperate germplasms. 

In addition to the visual inspection of the population structure, the Bayesian information 

criteria were used to define the number of PCs to account for the population structure. The 

results of the analysis showed that no fixed effect covariates were necessary to account for the 

population structure in the GWAS analyses. This shows that the subgroups of the population 

do not have a clear influence on the variability of the traits. 

 

 

The quantile-quantile plots show that the models had a good fit of GWAS p-values to 

the null hypothesis for score evaluated for DER and FER in the univariate analyses and the 

Figure 2 – Quantile-quantile plots of observed versus expected -log10(p-values) for 
association analysis for A) Score evaluated in DER - univariate; B) Score 
evaluated in FER - univariate and; C) for the traits evaluated in FER – 
multivariate. 
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traits evaluated for FER in the multivariate analysis. This is shown in Figure 2, which plots the 

expected versus observed -log10(p-values) for association analysis. In Figure 2A, most of the 

observed p-values for the trait score evaluated in DER experiments were distributed below the 

line of the expected p-values. Although this may indicate an absence of marker significant 

associated with the trait, there were few markers that were above the expected p-value line.  

Additionally, the plot shows that the GWAS model is adequate for population structure control. 

 

3.3. Univariate GWAS 
 

Univariate GWAS was performed on each trait separately for DER and FER, 

independently to distinguish markers associated specifically with trait and disease. We used the 

version of AGPv5 of the B73 genome reference with a 100 Kbp window for each marker that 

was significantly associated with the traits to identify gene models. In the univariate GWAS, 

two markers were significantly associated with ear rot resistance (Table 2). One marker was 

significantly associated with score evaluated for DER and the second marker was significantly 

associated with score evaluated for FER.  

For the trait score evaluated for DER, one marker was significantly associated with the 

trait in the univariate analysis. This is shown in Figure 3, which plots the -log10(p-values) of the 

markers for each chromosome at 5% false discovery rate threshold (FDR; red dashed line) and 

at 5% Bonferroni threshold (gray dashed line). The marker was identified on chromosome 7 

(marker 4581294; position 134,906,163 – 134,919,295 bp).   

For the trait score evaluated for FER, one marker was significantly associated with the 

trait in the univariate analysis. This is shown in Figure 4, which plots the -log10(p-values) of the 

markers for each chromosome at 5% false discovery rate threshold (FDR; red dashed line) and 

at 5% Bonferroni threshold (gray dashed line). The marker was identified on chromosome 3 

(marker 4768360; position 218,972,244 – 218,978,776 bp). 

For the trait score evaluated for FER, one marker was significantly associated with the 

trait in the univariate analysis. This is shown in Figure 4, which plots the -log10(p-values) of the 

markers for each chromosome at 5% false discovery rate threshold (FDR; red dashed line) and 

at 5% Bonferroni threshold (gray dashed line). The marker was identified on chromosome 3 

(marker 4768360; position 218,972,244 – 218,978,776 bp). 
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Table 2 – Significant markers associated with Diplodia ear rot and Fusarium ear rot in the 

univariate GWAS analyses. Chromosome, marker identification, marker position 

(AGPv5), minor allele frequency (MAF), estimated marker effect, -log10(p-value), 

closest gene and gene annotation. 

Analysis chr 
Marker 

ID 
Position MAF Effect 

-log10(p-

value) 

Closest candidate 

gene 
Annotation 

Diplodia – 

Score 
7 4581294 

134,912,61 - 

134,912,680 
0.802 0.3888 5.4616 Zm00001eb315780 

S-adenosyl-L-

methionine-

dependent 

methyltransfera

se superfamily 

protein 

gpm 647 

         

Fusarium 

– Score 
3 4768360 

218,972,244 - 

218,978,776 
0.661 0.5951 6.2647 Zm00001eb158100 

CTP synthase; 

umi8 
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Figure 4 – Manhattan plots showing significant association in the univariate GWAS analysis 
for Fusarium ear rot (FER) for the trait score (SCO). The horizontal axes indicate 
chromosomes and the physical position of markers, and the vertical axes indicate 
the -log10(p-value) scores. The grey dashed line shows the significance threshold 
of Bonferroni correction, nominal significance of 5% (-log10(0.05/12,936) = p-
value > 5.41283. The red dashed line shows the significance threshold of FDR 
correction with a nominal significance of 5%. 

Figure 3 – Manhattan plots showing significant association in the univariate GWAS analysis 
for Diplodia ear rot (DER) for the trait score (SCO). The horizontal axes indicate 
chromosomes and the physical position of markers, and the vertical axes indicate 
the -log10(p-value) scores. The grey dashed line shows the significance threshold 
of Bonferroni correction, nominal significance of 5% (-log10(0.05/12,936) = p-
value > 5.41283. The red dashed line shows the significance threshold of FDR 
correction with a nominal significance of 5%. 
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3.4. Multivariate GWAS 
 

The multivariate GWAS was performed using three datasets. The analysis was 

performed using the data of traits evaluated for DER, using the data of traits evaluated for FER 

and, using the data of both DER and FER. The idea to perform the multivariate analysis 

separately for each ear rot was to assess if the traits could improve the analysis for each disease 

independently. We used the version of AGPv5 of the B73 genome reference with a 100 Kbp 

window for each marker that was significantly associated with the traits to identify gene models. 

 

Table 3 – Significant markers associated with Diplodia ear rot and Fusarium ear rot in the 

multivariate GWAS analyses. Chromosome, marker identification, marker position 

(AGPv5), minor allele frequency (MAF), estimated marker effect, -log10(p-value), 

closest gene and gene annotation. 

 

In the multivariate analyses, two markers were significantly associated with FER 

analysis (Table 3). This is shown in Figure 5, which plots the -log10(p-values) of the markers 

for each chromosome at 5% FDR threshold (red dashed line) and at 5% Bonferroni threshold 

(gray dashed line). For the FER dataset, the peaks association were identified both on 

chromosome 3 (marker 4768360; position 265,503,622 bp and marker 4767263; position 

211,321,271 – 211,344,685 bp). The marker 4768360, the most significant marker of these, was 

also significant in the univariate GWAS for score in FER experiment. 

 

 

 

 

 

Analysis chr 
Marker 

ID 
Position MAF 

-log10(p-

value) 

Closest Candidate 

gene 
Annotation 

Fusarium 3 4768360 

218,972,244 

- 

218,978,776 

0.659 7.3566 Zm00001eb158100 
CTP synthase; 

umi8 

Fusarium 3 4767263 

211,321,271 

- 

211,344,685 

0.332 5.4619 Zm00001eb155870 

uncharacterized 

protein 

LOC100274395 
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3.5. Correlations 
 

The genetic correlations were positively high between disease measurement traits 

(percentage and score) and negatively high for yield and disease measurement traits for DER 

and FER. For DER, score and yield were negatively high correlated with each other, this was 

expected once a high score of DER reduces the yield. For the other traits, it was not possible to 

calculate the genetic correlations because the genetic variance for percentage was zero for DER. 

For FER, percentage and score were positively high correlated with each other. For yield, both 

percentage and score were negatively high correlated. 

Phenotypic correlations were weak to moderate between all traits for both DER and 

FER. Percentage and score were positively moderately correlated in DER and FER. For DER, 

the disease measurement traits showed a low correlation, close to zero, when correlated to yield. 

In contrast, the correlations between yield and disease measurement traits were negatively 

moderate in FER.  

Residual correlations were low between traits for both DER and FER. The residual 

correlations were like the genotype by location interaction correlations. The correlation 

Figure 5 – Manhattan plots showing significant association in the multivariate GWAS 
analysis with the traits evaluated for Fusarium ear rot (FER). The horizontal axes 
indicate chromosomes and the physical position of markers, and the vertical axes 
indicate the -log10(p-value) scores. The grey dashed line shows the significance 
threshold of Bonferroni correction, nominal significance of 5% (-
log10(0.05/12,936) = p-value > 5.41283. The red dashed line shows the 
significance threshold of FDR correction with a nominal significance of 5%. 
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between the disease measurement traits was positive but presented a negative magnitude when 

correlated to yield.  

 

 

 

The genetic correlation for the same traits evaluated for DER and FER was positively 

high for score and yield. This is shown in Figure 7, which plots the genetic correlations for 

percentage, score, and yield between DER and FER. For yield, the genetic correlation between 

diseases was 0.8093 and for score, the correlation was 0.7347. For percentage, it was not 

possible to calculate the correlation because the heritability for this trait was zero for DER. 

 

 

 

 

 

 

 

 

Figure 6 – Correlations between traits evaluated in the same disease experiment (DER or FER).  
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Figure 7 – Correlations for same traits evaluated in the different disease experiments.  
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4. DISCUSSION 
 

To assess the ability of Genome-Wide Association Studies to identify the loci 

controlling the resistance to Diplodia and Fusarium ear rots, we analyzed the performance of 

univariate and multivariate GWAS. The results in the present study are highlighted in three 

main topics for discussion: 

i) Univariate and Multivariate GWAS; 

ii) Factors that affect the analysis; and 

iii) Benefits and drawbacks of multivariate GWAS. 

 

4.1. Univariate and multivariate GWAS  
 

The results obtained in this study show that both univariate and multivariate GWAS can 

identify potential loci controlling the resistance for ear rot in maize. These approaches may help 

to understand the mechanisms underlying resistance to Diplodia and Fusarium ear rot. 

Additionally, multivariate approaches could contribute to the understanding of pleiotropy. 

In the present study, in the univariate analyses, two markers were significantly 

associated with ear rot resistance. The first marker significantly associated was found in DER 

analysis for the trait score. The marker was located in the position 134,912,616 - 134,912,680 

bp (marker 4581294) in chromosome 7. This maker was located inside the gene model 

Zm00001eb315780 (position 134,906,163 - 134,919,295 bin 7.03), which is responsible for 

methyltransferase activity. This gene belongs to the S-adenosyl-L-methionine-dependent 

methyltransferase superfamily protein, and it is related to many biochemical reactions in plants. 

Methylated secondary metabolites can be synthesized and accumulated in response to 

development, stress, or other metabolic signals (MOFFATT; WERETILNYK, 2001).  

The second marker significantly associated with ear rot resistance in univariate analysis 

was found in FER analysis for the trait score. The marker was located in the position 

218,981,973 - 218,982,021 bp (marker 4768360) in chromosome 3. This marker was located 

3Kbp from the gene model Zm00001eb158100 (umi8; position 218,972,244 - 218,978,776; bin 

3.08), which encodes proteins with putative functions as CTP synthase. This gene is responsible 

for the synthesis of cytidine triphosphate (CTP) that is essential for gene transcription and 

nucleic acid synthesis during cell division (DAUMANN et al., 2018). Usually, cell division 

rates are high during germination and embryo development but also increases during biotic or 

abiotic stresses, there is a high demand for CTP. BASSE (2005) conducted a study to 
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understand the defense-related and developmental transcriptional response during Ustilago 

maydis infection in maize. A strong up-regulation of Umi8 and other Umi genes was found 

during U. maydis infection. 

In the multivariate analysis, two markers were significantly associated with ear rots. 

Both markers were found in the analysis with the traits evaluated in FER experiments. One 

marker was the same associated with the trait score for FER in the univariate analysis (marker 

4768360). The second marker was located in the position 211,320,3745 - 211,320,439 bp 

(marker 4767263) in chromosome 3. This marker was located 832 bp from the gene model 

Zm00001eb155870 (uncharacterized LOC100274395; position 211,321,271 - 211,344,685), 

but there is no predicted function for the gene for maize.  

The resistance to ear rots is complex and most of genetic and biochemical pathways of 

the resistance to the ear rots still unknown. The results obtained by the univariate and 

multivariate GWAS are promising. The significant markers were located inside or close to the 

gene models that may be important for metabolic processes and may be related to resistance to 

ear rots. The candidate genes found in this study may be used in further studies to understand 

better and validate the mechanisms of resistance to ear rots in maize. 

 

4.2. Factors that affect the analysis 
 

 Multivariate GWAS demonstrated to be an effective approach to understand the genetic 

architecture of a trait when multiple traits are available. This is the first study using a 

multivariate GWAS approach for ear rot diseases in maize, and we would like to highlight some 

factors that may affect the GWAS analyses for ear rot resistance.  

Although the genetic correlations between traits, either for DER and FER, presented 

high correlations, the phenotypic correlations were only moderate between traits. This may be 

an indication that the genotype by environment interactions may have influenced the analysis. 

The main cause of the strong genotype by environment or genotype by disease interaction is 

the different climates between the locations. The climate in Lavras is characterized as humid 

subtropical and Uberlândia has a tropical savanna climate. The incidence of DER usually is 

restricted to humid and moderate to low temperature climates, which is observed in Lavras. On 

the other hand, the incidence of FER is restricted to dry and hot temperature climates, which is 

observed in Uberlandia. Evaluating the same diverse panel, DOS SANTOS et al. (2016) e 

PEREIRA et al. (2015) observed strong interaction genotype by environment interaction for all 

traits evaluated.  
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The architecture for disease resistance and yield are complex and highly polygenic and, 

hence become challenging to identify causal loci with small effects in GWAS. The few markers 

significantly associated with the traits analyzed for DER and FER might be an indication of the 

complexity of the resistance. The genetic architecture of DER or FER is highly polygenic, and 

the variants explain small effects that usually are not detected in GWAS (COAN et al., 2018; 

DE JONG et al., 2018; HOLLAND et al., 2020; KUKI et al., 2020; ZILA et al., 2013, 2014). 

Additionally, rare allele variants with small effects may also control the resistance to ear rots.  

Usually, in GWAS analyses, markers with minor allele frequency below the 0.05 threshold are 

removed. If these rare alleles are components of the genetic architecture, they will be missed. 

Consequently, the power of analysis to detect these variants will be reduced. 

The constitution of the diverse panel used in a GWAS is important to identify casual 

regions related to ear rot resistance. Using a wider diverse panel or germplasm, historical 

recombination and natural genetic diversity are exploited and result in a higher mapping 

resolution. It is well known that tropical inbred lines are the resistance source to ear rots. In a 

study to select inbred lines resistant to DER, DOS SANTOS et al. (2016) found that almost 

80% of the resistant lines were clustered in the tropical subgroup and the Iodent and Stiff Stalk 

Synthetic from the temperate group were the most susceptible lines. Most of the lines utilized 

in this study were clustered into temperate groups and only Suwan and Amarillo Dent were 

clustered in the tropical group. This fact may be the reason why not many markers were 

significantly associated with traits evaluated.  

The size of the population may be another factor that can influence the identification of 

causal loci. Usually, only the main QTL are detected when small populations are used in QTL 

mapping. With small sample sizes, there is a limitation of the detection power, which is not 

sufficient to identify small and medium QTL effects (STANGE et al., 2013).  WANG; XU, 

(2019) demonstrated that 500 individuals are adequate to detect a QTL that explains 5% of the 

phenotypic variance. Although, more individuals are necessary to detect rare variants, 

dominance, and epistatic effects. In this study, the markers significantly associated with the 

traits presented small effects, despite the fact of the small population size. This demonstrates 

that studies with small sample sizes tend to identify loci with large effects, being necessary a 

bigger sample to detect loci with small to medium effects. 

  

4.3. Benefits and drawbacks of multivariate GWAS 
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In plant breeding programs routinely, several traits are collected on the same plant, and 

these traits may share common genetic or environmental factors. For this reason, the 

multivariate GWAS is the recommended approach to consider all the traits simultaneously. The 

main advantages of the multivariate approach compared to the univariate approach are the 

increase of the power of the analysis, the reduction of the number of tests, and the possibility 

of detecting the presence of pleiotropy (FERNANDES et al., 2021; GALESLOOT et al., 2014; 

JIANG; ZENG, 1995; LIU et al., 2009; RICE; FERNANDES; LIPKA, 2020; ZHOU; 

STEPHENS, 2012, 2014; ZHU et al., 2016). 

Multivariate GWAS increased the power of the analysis when compared to the 

univariate GWAS. The results showed that the marker 4768360 which presented a -log10(p-

value) of 6.2647 in the univariate analysis, increased the -log10 (p-value) to 7.3566 in the 

multivariate analysis. The extra information from cross-trait covariance provides more power 

to the multivariate approach (GALESLOOT et al., 2014).  The power of the multivariate 

analysis is affected by the degree and the direction of the residual correlations (JIANG; ZENG, 

1995; LIU et al., 2009). In this study, we observed that score was the trait that presented a 

higher degree of correlation with percentage and yield. Particularly for FER, the genetic 

correlation was perfect between score and percentage and high negatively between score and 

yield. The other correlations presented similar tendencies, although the degrees were more 

moderate. The increase in the power of the multivariate approach can also be observed in Figure 

5. Some markers that presented low -log10(p-values) in the univariate analysis, even not being 

significantly associated with the trait, increased in the multivariate analyses.  

Multivariate and univariate GWAS need to be used to complement each other, 

especially to detect causal loci with pleiotropic effects. The results showed that the multivariate 

approach was not only capable to detect the same marker associated with the trait found in the 

univariate analysis (marker 4768360), but also a new marker significantly associated with trait 

(marker 4767263) that did not appear in the univariate analyses. Moreover, studies showed that 

multivariate GWAS can facilitate the identification of loci that are pleiotropic loci or in linkage 

disequilibrium. The use of both multivariate and univariate GWAS may complement each other 

and hence boost the information available of multiple traits and help to elucidate the genetic 

architecture of the traits (FERNANDES et al., 2021; RICE; FERNANDES; LIPKA, 2020). 

The multivariate GWAS performs a single test for the association for multiple traits. 

When a trait is tested separately, adjustments are necessary for type I error using single-trait-

based tests, usually Bonferroni correction or Benjamini-Hochberg procedure. The correction 
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procedures, especially the Bonferroni that tends to be more conservative and, may lead to a loss 

of power. In a univariate GWAS, the statistical significance of a possible causal locus may 

reduce if adjusted to the number of loci. On the other hand, in a multivariate GWAS is likely 

that the potential causal locus remains significant (LIU et al., 2009). The number of tests is 

reduced because multiple traits are tested at once and hence alleviates the burden of multiple 

testing compared to analyzing all traits separately (GALESLOOT et al., 2014). In a simulation 

study, (ZHU; ZHANG, 2009) testing different causal relationships observed that the estimated 

type I for the multiple traits analyses were close to the nominal significance level than those of 

the univariate analyses. 

Multivariate GWAS has many advantages when compared to the univariate approach 

but there are also some limitations. The multivariate approach has some computational barriers, 

the analysis becomes extremely computationally expensive when the number of traits increases. 

This is because the number of iterations required to converge increases as the number of traits 

also increase (ZHOU; STEPHENS, 2014). In this study, we included in the multivariate 

analyses only three traits, but it was possible to realize that the multivariate approach is more 

computationally demanding than the univariate approach. Analyzing 10 or more traits would 

not be feasible since the computational time required to run the analyses is overly demanding 

(RICE; FERNANDES; LIPKA, 2020). 

 A further drawback of the multivariate approach is the difficulty to interpret the effect 

of the causal locus. Additionally, the causal locus identified in the multivariate GWAS does not 

necessarily mean that all the traits evaluated in the analysis are related to this locus(RICE; 

FERNANDES; LIPKA, 2020). In this case, the use of univariate GWAS as posteriori analysis 

to complement the multivariate and provide more information about the genetic architecture of 

the trait and if the causal locus has pleiotropic effects (FERNANDES et al., 2021). 
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5. CONCLUSIONS 
 

 This is the first report of multivariate GWAS to understand the resistance to ear rot 

caused by Diplodia ear rot and Fusarium ear rot. The few markers associated with the traits 

evaluated reinforce the complexity of the genetic architecture of ear rots. The multivariate is a 

promising tool to use when multiple traits are available. Although, both approaches should be 

used as a complement to each other. So, it is possible to maximize the amount of information 

obtained from multiple traits.  
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