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Abstract: Endophytic fungi belonging to the genus Muscodor now transferred to Induratia are known 
producers of bioactive volatile organic compounds (VOCs) with many industrial applications. However, the 
members of this genus have rarely been reported to produce non-volatile metabolites including enzyme. 
Enzymes of the endophytes are degraders of the polysaccharides available in the host plants and the 
knowledge of enzyme production by Induratia spp. may provide insights into their possible biotechnological 
applications. The aim of this study was to evaluate the activity of amylase, cellulase, lipase, pectinase, 
phytase, protease, endo β-1,4 glucanase and exo β-1,4 glucanase enzymes produced by fungi of the 
species Induratia coffeana, Induratia yucatanensis and Induratia sp. isolated from organic coffee plants. All 
Induratia spp. were able to produce the extracellular enzymes cellulase, pectinase, protease, and phytase. 
Eight fungi were able to produce lipase and four produced amylase. The specific activity of endo β-1, 4 
glucanase and exo β-1,4 glucanase enzymes were detected for 9 and 8 endophytic fungi, respectively. This 
work demonstrated for the first time, the array of enzymes produced by Induratia spp. isolated from Coffea 
arabica in organic systems in Brazil. 
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HIGHLIGHTS 
 

 Induratia spp. as enzyme producers. 

 Extracellular hydrolases produced by endophytic fungi. 

 I. coffeana isolated from organic coffee plantation.  

 Phytase activity was present in all species of Induratia. 
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INTRODUCTION 

The term “endophytes” includes microorganisms that grow intracellularly for all or part of their life cycle 
in the tissues of plants, without causing disease to the host [1]. These microorganisms protect their hosts 
against insect pests and pathogenic microorganisms and provide several benefits to the host plant [2,3]. 
The endophytic fungi are associated with economically important plants including genus Coffea sp. [4-9]. 
The crop coffees in Brazil have great importance socioeconomically, being the country the largest producer 
and exporter of coffee in the world [10]. The great diversity of fungi associated with these plants may be 
highly relevant, since endophytic fungi are producers of metabolites. Several studies have demonstrated 
the diversity of endophytes from Coffea arabica, but there are very few studies on the same in the varieties 
of organic crops [4,5]. This crop system has increased due to the growing demand and high consumption 
of healthy foods that contain compounds with antioxidant potential, which have been associated with the 
reduction of chronic diseases [11]. 

In recent years, considerable attention has been given to the screening, isolation, and characterization 
of new bioactive secondary metabolites from endophytic fungi and metabolites with potential for use in 
industry, agriculture, and medicine [12-18]. Like other organisms invading plant tissues, endophytic fungi 
produce extracellular hydrolases as a resistance mechanism against pathogenic invasion and to obtain 
nutrition from their host [19]. Endophytic fungi occupy a relatively unexplored area in microorganism 
isolation, and thus represent a new source for obtaining enzymes with different potentials. Studies have 
shown that endophytic fungi can produce amylases, lipases, proteases, pectinases, and cellulases [19-23]. 

Recently, Samarakoon and coauthors [24] showed that Muscodor species, a biotechnologically 
important genus that produce antibiotic volatile secondary metabolites, have affinities to the xylarialean 
genera Emarcea and Induratia. They used polyphasic taxonomic and transferred all Muscodor species to 
Induratia. A study from our group showed that volatile compounds produced by Induratia spp. including the 
species Induratia coffeana isolated from an organic coffee plantation, have antagonistic activity against 
pathogenic fungi of coffee and other plants of agricultural interest [25]. Therefore, we sought to screen the 
fungi present in these plants to assess their biotechnological potential as producers of extracellular amylase, 
cellulase, lipase, pectinase, phytase, protease, endo β-1,4 glucanase, and exo β-1,4 glucanase. 

MATERIAL AND METHODS 

Microorganisms 

The nine fungi used in this study were isolated from fresh and healthy tissues of organic coffee 
plantations (Coffea arabica) from Zona da Mata region, Viçosa municipality, Minas Gerais, Brazil and 
identified as I. coffeana (CML4009, CML4010, CML4011, CML4012), Induratia sp. (CML4013, CML4015) 
and Induratia yucatanensis (CML4014, CML4016, CML4017). The fungi were selected for their ability to 
grow in the presence of volatile organic compounds (VOCs) produced by Induratia alba CZ620 as reference 
strain [26]. These fungi belong to the collection of the Prospection and Genetic of filamentous fungi 
laboratory (Biogen) at the Federal University of Lavras, Brazil and were deposited in the Mycological 
Collection of Lavras (CML) at the Department of Phytopathology at the Federal University of Lavras, Brazil. 
The isolates were reactivated on potato dextrose agar medium (PDA) and were incubated at 25 °C for 7 
days.  

Enzyme activity 

The ability of endophytic fungi to produce amylases, cellulases, lipases, pectinases, phytase, and 
proteases were qualitatively assessed on specific indicative solid media. The isolates were cultured on 
(PDA) medium for 7 days and transferred to 5 mm mycelial plugs on the center of the Petri dishes containing 
the solid medium with specific substrates to each enzyme.  

Lipase 

The fungi were grown in a medium containing 1.0% tween 20 as substrate, 1.0% peptone, 0.5% NaCl, 
0.01% CaCl2.2H2O and 1.8% agar. They were cultured at 30 °C for 7 days. 

Amylase 

Amylase activity was assessed by growing the fungi in soluble 0.2% starch, 0.1% glucose, 0.01% yeast 
extract, 0.05% peptone and 1.6% agar. The plates were incubated at 28 °C for 7 days. 
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Protease 

For estimating the protease activity the medium contained, 1.0% gelatin, 1.0% skim milk, 400 mL 
sodium citrate buffer 0.1 M and 1.8% agar. The fungi were incubated at 25 °C for 7 days. 

Phytase 

The fungi were cultured in medium containing 0.5% phytic acid (C6H18O24P6), 0.3% NaNO3, 0.05% 
MgSO4.7H2O, 0.05% KCl, 0.012% FeSO4, 0.06% CaCl2, 0.01% ZnSO4 and 1.5% agar. The fungi were 
cultured for 7 days at 25 °C. 

Pectinase 

The fungi were cultured in solid mineral medium buffered (0.2% KH2PO4, 0.7% K2HPO4, 0.1% 
(NH4)2SO4, 0.1% MgSO4.7H2O, 0.06% yeast extract, 0.3% citrus pectin, 1.3% agar). The fungi were 
inoculated and maintained at 25 °C for 7 days. After this time, mycelial disks were removed and transferred 
to the buffered medium Mac Ilvaine (1.3% agar, 0.25% citrus pectin, the solution 369 mL C6H8O7, 0.1 M, 
the solution 631 mL Na2HPO4, 0.2 M) and, then incubated at 40 °C for 48 hours. 

Cellulase 

The medium for cellulose production consisted of the following: 0.2% NaNO3, 0.1% K2HPO4, and 0.05% 
KCl, 0.02 % peptone, 0.2% Carboxymethylcellulose (CMC) and 1.7% agar. The plates were incubated at 
28 °C for 7 days. After the incubation period, the plate was flooded with iodine (2.0 g KI and 1.0 g iodine in 
300 mL distilled water) for 3 to 5 min. The formation of a clear halo around the colonies was considered a 
positive result, indicating the presence of the given enzyme. The calculation of enzymatic index (EI) was 
performed by the median diameter ratio degradation halo and the average diameter of the colony as 
proposed by Hankin and Anagnostakis [27].  

Enzyme activity assays for endo Β-1, 4 glucanase and exo Β-1, 4 glucanase 

The medium for cellulase production consisted of the following reagents: 0.2% NaNO3, 0.1% K2HPO4, 
0.05% KCl, 0.02 g of peptone, and 0.2% of different inducers (Carboxymethylcellulose (CMC) and Avicel 
were used as inducers to produce endoglucanase and exoglucanase, respectively). Cultivation was 
conducted in 250 mL Erlenmeyer flasks containing 50 mL of production medium with the respective 
inducers. The Erlenmeyer flasks were incubated in a rotary shaker at 28 oC and 150 rpm, for 12 days. After 
the incubation period, the content of each flask was centrifuged, and the enzymatic activities were 
determined. The enzymes in this study were analyzed according to Miller [28] with modifications. 
Endoglucanase assays were performed in reaction tubes containing 125 µL of 2% CMC solution in 50 mM 
sodium citrate buffer (pH 4.8) with 125 µL of the enzymatic supernatant. The tubes were incubated at 50 oC 
for 10 min, and then 250 µL of DNS (3.5-dinitrosalicilic acid) was added to stop the reaction. The 
exoglucanase assays were performed according to Lever [29] with modifications. The assays were 
conducted in reaction tubes containing 450 μL of 1% (w/v) Avicel, respectively, in 0.05 mM sodium acetate 
buffer, pH 5.0, with 50 μL of crude enzyme solution. The tubes were incubated at 50 oC for 30 min. To 
measure the glucose released, 1% ρ-hydroxybenzoic acid hydrazide (PAHBAH) was added. The readings 
were performed in spectrophotometer at 540 nm. One unit (U/mL) of enzyme activity was defined as the 
amount of enzyme that produces 1 μmol of glucose per minute under the assay conditions. 

Protein determination 

Protein concentrations were determined by the Bradford method [30], using bovine serum albumin 
(BSA) as standard.  

Statistical analysis 

The experiments were performed in triplicate and results were submitted to analysis of variance using 
the R Statistics program, and the means were compared using the Scott and Knott test at p < 0.05 level of 
significance [31].  
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RESULTS 

The nine Induratia spp. were subjected to extracellular enzyme production in solid media. According to 
the methodology employed, some isolates revealed a significant zone of degradation of substrate while 
others showed less, indicating different levels of extracellular enzyme production. The hydrolysis halo 
diameter that permits the rapid and simple screening of large populations of fungi for the presence or 
absence of specific enzymes is useful in the selection of strains with high polysaccharide levels [32]. Eight 
fungi produced lipase, four produced amylase, and all species tested produced protease, phytase, 
pectinase, and cellulase (Table 1). Fungi of the genus Induratia such as I. coffeana, a species isolated from 
leaves and stems from coffee plants in Brazil, are described for the first time as producers some enzymes. 

Table 1.Production of enzymes by endophytic fungi of the genus Iinduratia expressed as an enzymatic index in solid 
culture media. 

Endophytic fungi Cellulase 
Pectinas
e 

Phytase Lipase Amylase Protease 

I. coffeana (CML4009) 2.7 ± 0.5b 1.8 ± 0.3b 4.4 ± 0.5a - 2,1 ± 0.1a 1.3 ± 0.0a 
I. coffeana (CML4010) 2.3 ± 0.1c 2.0 ± 0.1a 4.5 ± 0.0a 1.0 ± 0.0c - 1.2 ± 0.0a 
I. coffeana  (CML4011) 2.1 ± 0.0c 2.1 ± 0.2a 3.3 ± 0.9a 2.3 ± 0.4b - 1.3 ± 0.3a 
I. coffeana (CML4012) 1.5 ± 0.2c 2.1 ± 0.1a 2.6 ± 0.8a 1.0 ± 0.0c 2.2 ± 0.4a 1.3 ± 0.0a 
Induratia sp. (CML4013) 1.7 ± 0.0c 2.3 ± 0.1a 3.2 ± 0.7a 1.9 ± 0.1c 1.9± 0.0a 1.6 ± 0.1a 
Induratia sp. (CML4015) 4.0 ± 1.0a 2.0 ± 0.1a 2.9 ± 1.2a 1.0 ± 0.0c - 1.3 ± 0.1a 
I. yucatanensis (CML4014) 1.4 ± 0.3c 1.9 ± 0.2b 3.5 ± 0.4a 2.7 ± 0.0a 2.0 ± 0.2a 1.5 ± 0.2a 
I. yucatanensis (CML4016) 1.8 ± 0.2c 1.7 ± 0.2b 3.7 ± 1.2a 1.0 ± 0.0c - 1.2 ± 0.0a 
I. yucatanensis (CML4017) 1.7 ± 0.1c 1.9 ± 0.2b 3.2 ± 1.2a 1.0 ± 0.0c - 1.2 ± 0.1a 

Data are expressed as mean of the repetitions ± standard deviation. Means with different letters are 
significantly different at p < 0.005. 

I. yucatanensis (CML4014) was the highest producer of lipase activity with EI of 2.7 differing statistically 
from the other isolates (Table 1). The lipase activity suggests that Induratia spp. possesses the ability to 
use fat as energy source and to live in association with oilseeds. Fungal lipases stand out as the major 
sources of the enzyme because of their catalytic activity, low cost of production numerous, industrial 
applications and relative ease in genetic manipulation [33]. Studies have been carried out evaluating lipase 
activity. Nwuche  and  Ogbonna (2011) [34] evaluated twelve lipase producing strains belonging to genera 
Aspergillus, Penicillium, Trichoderma and Mucor isolated from palm oil mill effluent composts. Aspergillus 
sp. was the most frequently isolated fungus, but the highest lipase producing strains belong to the 
Trichoderma genus. Another study was carried out evaluating the immobilization of lipases produced by the 
endophytic fungus Cercospora kikuchii on chitosan microparticles [35]. Immobilization strategy was the 
most important factor to attain active and stable immobilized lipases technology for a wide range of industrial 
applications, mainly due the simplicity of the process involved in support production. The growing demand 
for lipases has stimulated prospecting for novel lipases from novel sources for new areas of application. 
Future studies on fungi of the Induratia genus might lead to the discovery of novel lipases with potential in 
variety of applications.  

All Induratia spp. secreted proteases showing EI ranges from 1.2 to 1.6 that did not differ statistically 
from each other (Table 1). Proteases are one of the largest and most diverse families of enzymes known to 
catalyze the addition of water across amide (and ester) bonds to cleave the carbonyl carbon of the scissile 
bond by a reaction involving nucleophilic attack. Proteolytic enzymes are very important in digestion as they 
breakdown peptide bonds in protein-rich foods to liberate amino acids needed by the body. Microbial 
proteases are leaders of the industrial enzyme market worldwide and account for numerous applications in 
a variety of industries [36]. There is growing interest in proteases with a wider spectrum of biological 
properties and industrial applications. In this context Induratia spp. can be industrially exploited to 
synthesize this enzyme. Strain improvement studies can also be carried out to enhance enzyme production. 

Amylolytic activity was observed in I. coffeana (CML4009, CML4012), I. yucatanensis (CML4014) and 
Induratia sp. (CML4013) showing EI ranges between 1.9 to 2.2 that did not differ statistically from each 
other. Amylases are starch-degrading enzymes that catalyze the hydrolysis of internal glycosidic bonds in 
polysaccharides with the retention of anomeric configuration in the products. Fungal amylases have been 
widely used for industrial production due to their cost effectiveness, consistency, ease of production, 
process modification, and optimization [37]. Most of the amylases have been produced from soil fungi [38] 
and very few reports are available on the industrial application of amylases from endophytic fungi. Thus, 
our work describes for the first time, amylase production by Induratia spp. The amylolytic potential of these 
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endophytes may help them degrade starch, which is available when the plant senesces. There is enormous 
interest in amylases from new sources with better biological properties, because of the increasing demand 
for these enzymes used in numerous applications in various industries. 

Phytase activity was present in all species of Induratia with EI ranges between 2.6 to 4.5 (Table 1). In 
numerical terms, I. coffeana (CML4010) was the highest producer of phytase. Our group described the 
optimization of some culture parameters to achieve high enzymatic production by this endophytic fungus 
with an increase of 11 fold in the specific activity [39]. Microorganisms are the main sources of phytases, 
but commercial phytases are produced by a limited number of microorganisms, which justify the importance 
of searching for new fungal strains that are phytase producers. This enzyme is used as a feed additive due 
to the lack of adequate levels of phytase enzyme in the gastrointestinal tracts of the monogastric animals 
like poultry, pigs, and fishes. Phosphate supplementation is required for the optimal growth of animals, but 
they are unable to efficiently utilize phytate phosphorus from major ingredients of animal feed (cereal grains 
and oilseeds) [40]. Phytase catalyzes the dephosphorylation of phytate to inositol and orthophosphate [41]. 
Due to immense industrial and environmental implication of phytases, there is ongoing interest in isolation 
of new fungal strains producing phytase and the optimization of this enzyme. 

The isolates I. coffeana (CML4010, CML4011, CML4010) and Induratia sp. (CML4015, CML4013) 
showed pectinase activity with the highest EI and did not differ statistically among them (Table 1). 
Microorganisms, isolated from different materials, have been screened for their ability to produce 
pectinases, especially fungi. Pectic enzymes are induced in the presence of pectic substances and are used 
extensively for various industrial applications and new applications are emerging [42]. Pectin lyase and 
polygalacturonase enzymes were synthesized by the fungi of the genus Moniliella and Penicillium isolated 
from decaying vegetable and soil utilizing as substrate a mixture of orange bagasse, sugar cane bagasse 
and wheat bran by solid-state fermentation [43]. Pectinases are important in the phytopathologic processes 
also, plant-microbe symbiosis, and in the decomposition of dead plant material by both pathogenic and 
endophytic fungi. If Induratia spp. can degrade pectic substances, this implies that this genus is likely to be 
a latent pathogen, since a degradation of host tissue generally begins with the production of pectinolytic 
enzymes, which are the major enzymes involved in plant attacks [44]. Hypothesize that the fungal 
endophyte-plant host interaction is characterized by equilibrium between fungal virulence and plant defense 
and if this balance is disturbed by either a decrease in plant defense or an increase in fungal virulence, 
disease develops. However, the main consideration in this work opens a new perspective for the study of 
Induratia species for the production and industrial application of these enzymes, since the production cost 
is high due to either low activity or the instability of the enzyme at high temperatures for longer duration.  

Regarding cellulase activity, Induratia sp. (CML4015) showed larger EI of 4.0 compared to other 
isolates of the same plants (Table 1). Cellulases are the third most industrially significant enzymes on the 
global market after amylases and proteases [45]. Enzymatic hydrolysis of cellulosic biomass offers an 
attractive alternative for the generation of sugars, which can serve as the raw materials in various 
economically relevant processes, such as cotton processing, paper recycling, juice extraction, enzymatic 
detergents, and animal food additives. The genera Aspergillus, Trichoderma, Humicola, Penicillium, 
Fusarium, and Phanerochaete are widely used in industrial enzyme production [23]. However, the high 
production cost and the low yield of cellulase are still the major constraints in the economics of the process, 
and the discovery of novel fungal species secreting cellulases is still an emerging area of research to 
develop economically competitive bioprocess strategies applicable on a large scale [46]. An interesting 
observation in our study is that Induratia sp. (CML4015) produced cellulases and pectinases suggesting 
that it is bioactive (obtaining nutrients from its hosts) and bio-resistant against pathogenic microbial infection. 

Tests on solid media permit the rapid screening for the presence or absence of extracellular enzymes. 
Although we screened for six important enzymes in this study, we focused on endo-β 1,4 glucanase and 
exo β-1,4 glucanase activity. Cellulolytic enzymes have biotechnological applications in the food, 
pharmaceutical, environmental, and agricultural industries [47]. Enzymatic hydrolysis of cellulose includes 
the synergistic activity of a cellulolytic complex, usually from fungi, consisting of endoglucanases, 
exoglucanases, and β-D-glucosidase [48].  

Analysis of the values obtained in the production of endo β-1,4 glucanase revealed that all fungi were 
able to produce this enzyme (Table 2). I. coffeana (CML4011) and I. yucatanensis (CML4014) were the 
best producers compared to the other fungi, with specific activity of 11.9 U/mg and 10.0 U/mg, respectively. 
Regarding the production of exo β-1,4 glucanase, I. coffeana (CML4012) and I. yucatanensis (CML4017) 
were the best producers with values of 6.70 U/mg and 6.55 U/mg, respectively (Table 2). No specific activity 
was detected for fungi I. coffeana (CML4009), despite showing positive production in total cellulase. This 
can be explained by the variety of enzymes that comprise the cellulolytic complex that act together to 
degrade cellulose. Besides, the method of selection of enzyme-producing fungi using the degradation halo 
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and subsequent calculation of enzymatic index merely allows rapid observation of positive and negative 
results, but does not provide details regarding the intensity of production [49]. 

Table 2.Total activity (U/mL) and specific enzymatic activity of endoglucanase and exoglucanase (U/mg) of endophytic 
fungi. 

Endophytic fungi 

Endo β-1,4 glucanase Exo β-1,4 glucanase 

Total activity 
(U/mL) 

Specific 
activity 
(U/mg) 

Total activity 
(U/mL) 

Specific 
activity (U/mg) 

I. coffeana (CML4009) 0.63 ± 0.40b 1.99 ± 1.33c - - 
I. coffeana (CML4010) 1.19 ± 0.45a 5.58 ± 0.38b 0.15 ± 0.10b 1.65 ± 0.39b 
I. coffeana  (CML4011) 1.43 ± 0.16a 11.9 ± 1.27a 0.15 ± 0.21b 0.90 ± 1.27b 
I. coffeana (CML4012) 0.53 ± 0b 4.33 ± 0.17b 1.15 ± 0.38a 6.70 ± 2.37a 
Induratia sp. (CML4013) 0.33 ± 0.09b 2.71 ± 0.83c 0.15 ± 0.19b 0.70 ± 0.98b 
Induratia sp. (CML4015) 0.80 ± 0.37b 6.55 ± 2.96b 0.25 ± 0.33b 1.45 ± 1.79b 
I. yucatanensis (CML4014) 1.19 ± 0.29a 10.0 ± 2.96a 0.40 ± 0.20b 2.30 ± 1.12b 
I. yucatanensis (CML4016) 0.77 ± 0.33b 5.99 ± 2.38b 0.35 ± 0.33b 2.45 ± 2.34b 
I. yucatanensis (CML4017) 0.90 ± 0.61b 7.07 ± 5.07b 1.2 ± 0.19a 6.55 ± 1.35a 

Data are expressed as mean of the repetitions ± standard deviation. Means with different letters are significantly 
different at p < 0.005. 

Fungi belonging to Induratia genus are promising agents for biological control. Species display a sterile 
mycelium and emits a mixture of volatile organic compounds that inhibit or kill a broad range of pathogenic 
microorganisms and insects. Studies report the use of these compounds in the control of post-harvest 
diseases and soil microfumigation [26,50-58]. In a previous study, our group reported that the volatile 
compounds produced by Induratia spp. isolated from C. arabica showed antimicrobial action against 
Aspergillus ochraceus, Fusarium verticillioides, F. oxysporum, F. solani, F. verticillioides, Rhizoctonia solani, 
Phoma sp., Botrytis cinerea, Cercospora coffeicola, and Pestalotia longisetula [25]. I. coffeana was 
described by Hongsanan and coauthors [59]. To our knowledge, this study is one of the few reporting the 
enzyme activity of endophytic species of Induratia genus isolated from organic coffee plants. The ability to 
penetrate and colonize a selected plant cell using extracellular enzymes is a common trait of endophytic 
fungi. This ability may provide important mechanisms to protect them against invading pathogens, obtain 
nutrition from the host plant, or to become latent pathogens in their natural environment [60]. However, the 
members of this genus are poorly explored for the production of other primary and secondary metabolites. 
Therefore is interesting to evaluate the production of enzymes by Induratia spp. since these microorganisms 
can represent a new source for obtaining enzymes with different potentialities. In addition, the knowledge 
of enzyme production by endophytic fungi may provide insights into their possible biotechnological 
applications and provide an idea about their life cycles within the plant tissues. 

CONCLUSION 

Endophytes constitute a novel and important source of active substances that can be employed in 
different biotechnological industries. Considering the results of this study, it was concluded that the 
evaluated endophytic species of Induratia isolated from organic coffee plants have potential in the 
production of extracellular enzymes to biodegrade different polysaccharides. Studies of endophytic fungi, 
especially of new species, are interesting, since the endophytic fungi present potential for exploration. Due 
to the limited number of studies demonstrating the enzymatic activity of endophytic fungi, mainly of the 
Induratia genus, this work opens a new perspective for the study of these species for the production and 
industrial application of these enzymes. Screening for new producers of novel and industrially useful 
enzymes is of great interest for biotechnology research. Investigators in Brazil should further explore the 
potential to generate new enzymes from microbial sources, as this country has a continental area that 
includes hundreds of plant species with diverse endophytes. 
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