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Abstract: Advances in genotyping technologies have transformed the way 
breeding programs manage their genetic resources. The identification of single 
nucleotide polymorphisms (SNPs) can improve understanding of the genetic 
diversity of maize (Zea mays) inbred lines and their classification into heterotic 
groups, which is useful in determining certain crosses to obtain hybrids with 
higher yield performance. The genetic diversity of 293 inbred lines was inves-
tigated with 5252 SNPs with minor allele frequency (MAF)>5%. There was an 
average of 525 SNPs per chromosome. Polymorphism information content (PIC) 
averaged 0.297. The unweighted pair group method with arithmetic mean 
analysis (UPGMA) and principal component analysis (PCA) based on the genetic 
distance matrix revealed four similar clusters and high cophenetic correlation 
coefficients (0.953 and 0.863, respectively). The results showed consistency 
between genetic distance-based grouping and the heterotic groups previously 
established using pedigree and topcross information for the inbred lines studied.
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INTRODUCTION

Maize (Zea mays) is one of the main crops worldwide, widely used both for 
human and animal consumption. Brazil is the third largest maize producer in 
the world, with estimated production of 100 million metric tons in the 2018/19 
crop year (CONAB 2020). To meet growing demand for maize worldwide, maize 
breeding programs have developed high-yielding inbred lines adapted to 
different environments, which are used as parents in hybrid production (Smith 
et al. 2017). The dramatic increase in the number of inbred lines produced by 
these programs has made evaluation of the phenotypic performance of all 
possible hybrid combinations impractical. Thus, classification of inbred lines into 
heterotic groups has had to be performed in a different way, such as through 
molecular markers, which has become routine practice in maize breeding 
programs (Andorf et al. 2019). 

Heterotic groups are defined as sets of related genotypes from the same or 
different populations, based on combining abilities (Reif et al. 2005). Genotypes 
from the same group show similar combining ability and, when crossed with 
genotypes from another group, exhibit heterosis. Therefore, high yielding 
hybrids can be developed through crosses between inbred lines from different 
heterotic groups (Souza Júnior 2011). 
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Furthermore, genetic diversity studies are commonly carried out in maize breeding programs in an effort to classify 
lines into heterotic groups (Wu et al. 2016, Leng et al. 2019, Silva et al. 2020) because parents with high per se performance 
and genetic divergence from each other are important requirements for manifestation of heterosis (Prasad and Singh 
1986). Classification of inbreds into heterotic groups using information on genetic diversity facilitates directed crosses 
between inbreds from contrasting groups and reduces the number of hybrid crosses made in a breeding program, thus 
increasing the efficiency of the program and leading to accelerated genetic gains from selection (Reif et al. 2005). Thus, 
systematized knowledge of maize genetic resources has become necessary to better evaluate their diversity. 

Genetic diversity studies to classify inbred lines into groups can be performed using morphological characteristics 
and analysis of combining ability based on diallel and line × tester information. These designs involve field trials, which 
provide the actual performance information with regards to per se performance and combining ability, and hence heterotic 
responses. However, they are costly and require large fields, hand pollination, and detasseling labor. Consequently, the 
number of hybrids evaluated in such genetic studies is usually restricted (Fernandes et al. 2015, Wu et al. 2016, Kulka 
et al. 2018). Genotypes can also be allocated into groups based on their genealogy. Although this method is simple, 
it requires detailed pedigree information, which is not always available (Lee et al. 2007, Adu et al. 2019b, Leng et al. 
2019). Therefore, the use of molecular markers has become the best method to make inferences regarding genetic 
diversity among genotypes (Muhammad et al. 2017, Scherlosky et al. 2018, Adu et al. 2019a, Silva et al. 2020), without 
the need for making numerous crosses and evaluating hybrids in the field (Andorf et al. 2019). Some molecular markers 
are highly polymorphic and independent of environmental effects and plant physiological stages. These qualities are 
advantageous for selecting more divergent parents that will give rise to populations with high variability and adaptability 
to environments (Govindaraj et al. 2015, Nadeem et al. 2018). 

Single nucleotide polymorphisms (SNPs) are the most abundant source of variation in genomes, showing dense 
coverage across genomes compared to other types of molecular markers. This increases the likelihood of some SNPs 
being associated with genes of interest, which can contribute to improved accuracy of evaluation of genetic diversity 
in breeding programs. New-generation sequencing technologies have offered high-throughput and reduced costs, with 
automated platforms appropriate to breeding programs requirements, leading to wide use of SNPs in studies (Rasheed 
et al. 2017, Guo et al. 2019).

Molecular information allows estimation of genetic similarity among individuals in terms of identity by descent (IBD) 
or identity by state (IBS) alleles (Messmer et al. 1993). The IBD between a pair of individuals is the probability that an 
allele in a given locus of a genotype and an allele from the same locus of another genotype are copies from a common 
ancestor (Cox et al. 1985). In contrast, IBS is the genotypic similarity of alleles alike in “state”, that is, indistinguishable 
by their effects and ancestry. The estimates of genetic similarity based on molecular markers reveal the proportion of 
IBS alleles, regardless of whether their identity is caused by IBD or IBS alleles (Messmer et al. 1993).

The objective of this study was to examine the accuracy of the methods for clustering of maize inbred lines using 
genetic dissimilarity information obtained from SNP data compared to the heterotic groups previously established 
with pedigree and combining ability information. The results of this study may be useful to maize breeders interested 
in using molecular markers for classifying inbred lines into heterotic groups for planning crosses to accelerate genetic 
gains from selection.

MATERIAL AND METHODS
This study comprised 293 maize inbred lines developed by the breeding program of LongPing High-Tech (LPHT), 

Brazil. The lines are important to the company’s breeding program and belong to four heterotic groups of tropical 
and temperate genetic backgrounds (Table 1), previously defined based on pedigree and topcross information (LPHT 
proprietary information not disclosed). Most of the inbred lines are doubled haploid, and a few were developed by 
selfing and are at least S10.

This study was conducted in the biotechnology laboratory of LPHT in Cravinhos, SP, Brazil. The DNA of each maize 
line was extracted from leaf samples according to the Fast ID Genomic DNA Extraction Kit protocol (Fast ID NA, Inc., 
Fairfield, IA, USA). DNA quantity and quality were checked by fluorimetry using the Quant-iT PicoGreen dsDNA Assay Kit 
(Invitrogen, Carlsbad, CA, USA) before genotyping. The SNP genotyping was performed using the MaizeSNP50 BeadChip 
according to the Infinium HD Assay Ultra Protocol Guide (Illumina, Inc., San Diego, CA, USA). 



SNP genotyping for fast and consistent clustering of maize inbred lines into heterotic groups

3Crop Breeding and Applied Biotechnology - 21(1): e367121110, 2021

A total of 6231 SNPs were available for this study. SNP markers with minor allele frequency (MAF) less than 5% and 
with more than 5% missing data did not pass quality control and were not used in the analysis. Therefore, the diversity 
analyses were carried out with a total of 5252 polymorphic SNPs.

Genetic information on SNP markers was estimated by MAF and polymorphism information content (PIC) parameters 
using PowerMarker version 3.25 (Liu and Muse 2005). The physical distribution of SNPs across the maize chromosomes 
was determined using the web-based software PhenoGram (Center for System Genomics, Pennsylvania State University; 
http://visualization.ritchielab.psu.edu/).

Genetic distances were estimated by the complement of identity by state (1 – IBS) with TASSEL 5.0 software (Bradbury 
et al. 2007). Based on the distance matrix, the maize lines were clustered by UPGMA analysis and principal component 
analysis (PCA) using R 3.5.1 (R Core Team 2018) with the ggplot2 version 3.1.0 (Wickham 2016) and ape version 5.3 
(Paradis and Schliep 2018) packages, respectively. PCA plots were generated with DataWarrior 5.0.0 (Sander et al. 
2015). The cophenetic correlation coefficient was calculated, and Mantel’s test was performed to check cluster analysis 
fitness to the genetic distance matrix using the stats version 3.5.1 (R Core Team 2018) and ade4 version 1.7-13 (Dray 
and Dufour 2007) packages.

RESULTS AND DISCUSSION

The SNPs were distributed across the maize genome. On average, there were 525 SNPs in each chromosome, ranging 
from 327 in chromosome 10 to 926 in chromosome 1 (Figure 1A). This distribution of SNPs throughout the genome 
was similar to other studies in maize using this type of marker (Li et al. 2018, Guo et al. 2019, Leng et al. 2019, Silva et 
al. 2020). Unlike primary molecular marker systems, high-density marker genotyping allows simultaneous analysis of 
markers widely distributed throughout the genome. SNP markers provide higher genomic coverage than other available 
markers, such as RFLP, AFLP, and SSR, among others (Xu et al. 2017, Scherlosky et al. 2018).

The magnitude of informativeness of the marker depends on its degree of polymorphism, which is reflected in the 
genetic diversity among the genotypes under study (Chesnokov and Artemyeva 2015). In this study, PIC ranged from 
0.092 to 0.375, with a mean of 0.297, whereas MAF ranged from 0.051 to 0.5, with a mean of 0.284 (Figure 1B), indicating 
that the 5252 SNPs used across the genomes of 293 inbred lines were highly informative. Liu et al. (2015) and Li et al. 
(2018) found similar PIC range values when studying genetic properties of Chinese maize germplasm using SNP marker 
data. Wu et al. (2016) found similar values of PIC in analysis of tropical and temperate maize inbred lines from CIMMYT. 
PIC values ranging from 0.25 to 0.5 indicate that multiallelic markers are moderately informative (Botstein et al. 1980). 
Considering the biallelic nature of SNPs, in which the maximum value of PIC is 0.375, we can consider PIC values in the 
higher quartile, such as those found in our study, highly informative. Based on these criteria, 65.6% of the markers in this 
study were highly informative (Figure 1B). Regarding MAF, which is used to quantify the degree of genetic differentiation 
in the population (Li et al. 2018), the average value in this study was higher than that found by Li et al. (2018) and Liu 
et al. (2015). Higher MAF are usually preferred in order to increase the average allelic differentiation (Xu et al. 2017).

Based on the 5252 polymorphic SNPs, a genetic distance matrix was built among all pairs of inbred line, ranging 
from 0 to 0.491, from most closely related to most distant, respectively, with an average of 0.375. Figure 1C shows the 
genetic distance frequencies among all pair of lines. The distance range was greater than the ranges estimated by Ertiro 

Table 1. Comparison of the number of inbred lines in previous heterotic group classification to the number of lines found in the 
clusters formed in the dendrogram and PCA

Original heterotic group Dendrogram PCA
Heter-
otic
group

Genetic 
back-

ground

Num-
ber 

of lines

Dendro-
gram 

cluster

Num-
ber 

of lines
Lines from 

other groups
PCA 
clus-
ter

Num-
ber 

of lines
Lines from 

other groups

G3 Temperate 4 Yellow 11 4 from G3; 6 from G1; 1 from G4 Yel-
low 17 4 from G3; 11 from G1; 2 from G4

G1 Tropical 56 Green 52 50 from G1; 1 from G2; 1 from G4 Green 47 50 from G1; 1 from G2; 1 from G4
G4 Tropical 154 Violet 151 151 from G4 Violet 150 151 from G4
G2 Tropical 79 Red 79 78 from G2; 1 from G4 Red 79 78 from G2; 1 from G4
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et al. (2017) and Silva et al. (2020), in which distances of tropical maize lines based on IBS genetic similarity ranged from 
0.011 to 0.346 (average of 0.313) and 0.003 to 0.253 (average of 0.193), respectively. It is important to highlight that 
the lower average distances found by Ertiro et al. (2017) may be related to the substantially larger number of SNPs used 
in their study (220.878) and number of genotypes similar to our study. Silva et al. (2020) analyzed more lines (1.041) 

Figure 1. Physical distribution of the 5252 SNPs across the maize genome (A). Distribution of polymorphism information content 
(PIC) and minor allele frequency (MAF) for 5252 SNPs in a population of 293 maize inbred lines (B). Frequency of genetic distance 
values among pairs of inbred lines (C). 
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in their report. Among the 42.778 estimated distances, the smallest were obtained between seven pairs of lines: L61 × 
L89, L57 × 119, L98 × L130, L124 × L128, L154 × L193, L154 × L231, and L173 × 216. These materials are highly related 
considering their pedigree (LPHT internal information). In contrast, the greatest distance was obtained between lines 
L136 × L159, previously classified as temperate and tropical, respectively. All the other pairs of lines with the smallest 
genetic distances agreed to the tropical groups. The average of the distance estimates in our study were higher than the 
averages in the studies cited (Ertiro et al. 2017, Silva et al. 2020), indicating that there is still genetic variability among 
the lines, even though we evaluated elite maize genotypes originating from breeding programs, which in theory could 
have led to narrowing of variability (Scherlosky et al. 2018).

Figure 2. Dendrogram based on molecular data displaying four clusters and their respective number of inbred lines (in parentheses): 
yellow (11), green (52), violet (151), and red (79). Compared to previously established heterotic groups based on pedigree and top-
cross information, 10 of the individuals had a classification different from what was expected. 
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The UPGMA cluster analysis based on the genetic distance matrix formed 4 distinct clusters, as shown in Figure 2. The 
dendrogram clusters were separated so that the number of lines arranged together was closest to the number of lines 
of the previously known heterotic groups. The significant cophenetic correlation coefficient (r = 0.953; P < .0001; 10.000 
permutations) indicated that the cluster analysis well fit the genetic distance matrix on which it was based, according 
to Mohammadi and Prasanna (2003). Beckett et al. (2017) also affirm that an accurate dendrogram is important to help 
breeders classify their germplasm. Fernandes et al. (2015) and Nikolić et al. (2015) found positive cophenetic values 
when making inferences regarding genetic diversity using microsatellites (r = 0.59 and r = 0.80, respectively). In our 
study using SNP data, the cophenetic coefficient was higher (r = 0.953).

The population of this study was previously organized into four heterotic groups (G1, G2, G3, and G4) based on their 
genealogy and breeding history information (data not shown). The dendrogram revealed four distinct clusters (yellow, 
green, violet, and red), with most of the inbred lines grouped as expected. However, not all the clusters coincided with 
the known heterotic groups (Table 1). Although the genealogy of the inbred lines was not disclosed, the lines were 
obtained from breeding populations resulting from crossing tropical and temperate germplasm (LPHT confidential 
information), and they must therefore have a substantial amount of temperate germplasm in their genetic composition. 
For example, the yellow cluster had a total of 11 inbred lines, 4 of which consisted of G3 individuals, while 7 other lines 
were from other groups (6 from G1 and 1 from G4). Since the G3 group contains all temperate maize lines, the seven 

Figure 3. Principal component analysis (PCA) based on genetic distance using the first three PCs. Colored dots refer to heterotic groups 
previously classified by pedigree and topcross information (G1, G2, G3, G4). The shaded areas highlighted (yellow, green, violet, red) 
refer to the clusters formed from molecular data. Each cluster contains most of the inbred lines of its respective heterotic group, 
except for 17 individuals that had classifications different from what was expected. The yellow cluster contains 17 inbred lines; the 
green, 47; the violet, 150; and the red, 79.
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inbred lines assigned to the yellow cluster are likely to have a considerable temperate genetic background. The green 
cluster consisted of 52 lines, which are mostly from the G1 group, but 2 are from other groups (1 from G2 and 1 from 
G4). The violet cluster comprised 151 genotypes, including most of the lines from the G4 group, and did not show any 
lines from other groups allocated to it. Finally, the red cluster had 79 inbred lines, mostly from the G2 group, along with 
one genotype from the G4 group. 

In summary, out of the 293 maize inbred lines analyzed in the present study, 10 (3.4%) received a classification different 
from the previous heterotic group classification. This shows the importance of associating molecular and conventional 
breeding for a more accurate genetic diversity analysis (Wu et al. 2016). The inconsistencies found in classification of 
genotypes using marker data may be due to errors in pedigree information, genetic drift during the process of inbred 
line development (Nikolić et al. 2015), or labelling errors during storage of the lines.

The PCA plot was built with the first three principal components (PCs) and displayed four clusters (Figure 3). The 
cophenetic correlation value (r = 0.863; P < .0001; 10,000 permutations) between the PCA distance matrix and the 
genetic distance matrix suggests that this clustering method was also reliable, since the lines were clustered in a manner 
that was consistent with their known pedigree and breeding history information. The first three PCs explained 30.5%, 
14.6%, and 7.7%, respectively, of the total variations among the inbred lines. Out of the 293 inbred lines, 17 (5.8%) 
were classified differently from the previous heterotic group categorization based on pedigree and topcross information. 
According to this grouping method, we also found more inbred lines (12) that are likely to have a temperate genetic 
background (Table 1).

The UPGMA dendrogram and PCA grouping of inbred lines was consistent with the known heterotic groups and 
pedigrees, with very few exceptions. Only 10 inbred lines were not grouped as expected in the dendrogram, and only 
17 in the PCA plot. The UPGMA is a hierarchical clustering method that groups lines interactively, starting from the 
most similar lines (Sokal and Michener 1958). PCA is based on orthogonal (independent) linear combinations (principal 
components) that extract most of the variation in the genetic distances among lines (Ringnér 2008). Therefore, it is 
expected that some differences will appear in the results of the methods. However, the fact that different methods can 
achieve equivalent general conclusions increases the robustness of our inferences. In fact, all 10 lines that were not 
grouped as expected in the dendrogram are included in the 17 lines not grouped as expected in the PCA plot.

The main goal of this study was to show that grouping maize lines using high-density molecular marker data is a 
precise methodology, without the need for performing vast combining ability experiments in the field to achieve this 
classification. The results of the present study support the findings of other genetic diversity studies using SNPs as an 
important tool for classifying inbred lines into genetically related groups and directing hybrid crosses between individuals 
of different groups to obtain higher yield performance (Richard et al. 2016, Dari et al. 2018, Silva et al. 2020). In addition, 
SNPs are useful for quickly determining the genetic relationship of new inbred lines by genotyping and including them 
in a new cluster analysis (Beckett et al. 2017), which can benefit breeding programs. However, it should be noted that 
the information provided by genetic distances does not ensure good hybrids, since the parents of hybrids need to show 
genetic complementarity (Hablak 2019).

Classifying maize lines using SNPs showed high accuracy in accordance with the classification previously performed 
with pedigree and breeding information. Although most of the genotypes in this study were classified into the four 
heterotic groups previously established by the company’s breeding program, subgroups within each of the groups could 
be visualized, indicating the abundant genetic variability existing in maize germplasm. In addition, the genotyping data 
generated in this study can be used in further models of hybrid prediction, allowing more effective identification of 
hybrids, thus improving breeding efficiency. 

CONCLUSION

The results of this study indicated that clustering methods based on genetic diversity estimates using SNP markers 
offer reliable classification of maize inbred lines into heterotic groups, confirmed by the consistency found between 
these methods and the methods using pedigree and breeding information. The use of these highly dense markers as 
a complement to the breeding program provided more detailed information on the heterotic groups identified and 
allowed enhanced exploitation of genetic variability within the inbred lines. 
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