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a b s t r a c t 

Unmanned Aerial Vehicles (UAVs) combined with machine learning have a great potential for crop yield esti- 
mation. In this study, a UAV equipped with an RGB (Red, Green, Blue) camera and computer vision algorithms 
were used to estimate coffee tree height and crown diameter, and for the prediction of coffee yield. Data were 
collected for 144 trees between June 2017 and May 2018, in the Minas Gerais, Brazil. Six parameters (leaf area 
index - LAI, tree height, crown diameter, and the individual RGB band values) were used to develop UAV-based 
yield prediction models. First, a feature ranking was performed to identify the most significant parameter(s) and 
month(s) for data collection and yield prediction. Based on the feature rankings, the LAI and the crown diam- 
eter were determined as the most important parameters. Five algorithms were used to develop yield prediction 
models: (i) linear support vector machines (SVM), (ii) gradient boosting regression (GBR), (iii) random forest 
regression (RFR), (iv) partial least square regression (PLSR), and (v) neuroevolution of augmenting topologies 
(NEAT). The mean absolute percentage error (MAPE) was used to evaluate the yield prediction models. The best 
result was obtained by the NEAT algorithm (MAPE of 31.75%) for a reduced dataset containing only the most 
important features (LAI and the crown diameter) and the most important months (December 2017 and April 
2018). The results suggest that a dataset of the most important month (December) could be used for the yield 
prediction model, reducing the need for extensive data collection (e.g., monthly data collection). 
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Brazil is responsible for one-third of the world’s coffee production,
urpassing other countries such as Colombia and Vietnam in the pro-
uction of this bean. The production for the year 2020 is estimated be-
ween 3,420 and 3,720 tons of coffee. These estimates are based on an
ncrease in the productive area of about 4% (1,885 million ha) com-
ared to the 2019 harvest. The state of Minas Gerais alone has an esti-
ated production of 30 to 32 million bags (approximately 50% of the
ational production). This increase in production compared to the 2019
arvest is related to the negative biennial cycle of coffee [25] . This bi-
nnial rhythm is due to the plant’s resource allocation: in the productive
ear, the coffee tree prioritizes crop production over vegetative; in the
ubsequent year, the plant must compensate for the vegetative shortfall
y producing flowers and fruits. During the negative cycle, growers in-
roduce new management practices, such as pruning, expecting a crop
ecovery in two years (Silva et al. 2016). 
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The increase in the productivity of crops can be achieved with the
elp of new precision agriculture techniques and technologies. Preci-
ion agriculture provides the agricultural manager with accurate infor-
ation so that decisions can be made to optimize resources, especially

n the current scenario of complex territorial expansion, high cost of in-
uts, multiple management practices and treatments, and preservation
f the environment. The application of precision agriculture for coffee
hows high potential, especially with geostatistical techniques, which
an characterize the spatial distribution of the fruit’s detachment force
nd generate maps of selective harvesting of fruits at the appropriate
lace and time [8] . 

The constant evolution of technology in the agricultural environment
nd the availability of remote sensing data has reinforced the popular-
ty of unmanned aerial vehicles (UAVs), which are easy to operate and
fficient in obtaining high spatial and temporal resolution images [37] .
ccording to Deng et al. [30] , UAVs have become more accessible to

armers because of advancements in technologies associated with this
quipment and a reduction in the acquisition costs over the years. In
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offee crops, dos Santos et al. [31] show the potential of UAV to obtain
iophysical characteristics of the plant (height and diameter) quickly
nd non-destructively. The results can support decision-making for ac-
urate coffee management. 

In agricultural monitoring, machine learning (ML) algorithms, such
s neural networks are in constant use, mainly associated with preci-
ion agriculture application techniques [ 52 ]. For example, Costa et al.
2021a) developed machine vision tools utilizing ML for measuring
ecan nut growth, and Abdulridha et al. [1–3] developed disease detec-
ion techniques using UAV hyperspectral imaging and ML. Ampatzidis
nd Partel et al. [6] and Ampatzidis et al. [4] developed artificial in-
elligence (AI) based algorithms to process, analyze, and visualize data
ollected from UAVs for citrus. These algorithms can detect, count, and
eolocate trees, categorizing them based on their health ([ 5 , 26 ]a), plant
utrient concentration ( [26] b), and yield potential (Vijayakumar et al.,
021). 

Mathematical models to predict the behavior and productivity of the
rop by biophysical and climatic variables are excellent tools for the
gricultural markets to predict the risk of financial loans, crop estimates,
nd future markets. Several studies to estimate the productivity in crops
uch as onion [9] , beet [49] , soy [44] , corn [ 39 , 45 ], and forage crops
33] have been developed mainly with the use of aerial images from
AVs. 

For coffee in Brazil, several studies utilized remote sensing and image
rocessing techniques for monitoring diseases ( [10] a; [ 11 , 22 ]), water
tress assessment [23] , detection of planting failures [48] , estimation of
he volume of harvested fruits [18] , plant volume estimation [27] , and
ematode detection [47] . 

For coffee yield prediction, Carvalho et al. [20] developed tech-
iques for estimating crop productivity (yield) utilizing genomic-based
odels to minimize the biennial effect on the production cycle. De
liveira Aparecido et al. [28] created a model for forecasting the pro-
uction of coffee crops, using agrometeorological data, in different re-
ions of Minas Gerais, finding results considered satisfactory for fore-
asts with a period of five months before harvest. Kouadio et al. [41] de-
eloped machine learning models to estimate coffee yield based on soil
ertility maps, achieving a root mean squared error of 496.35 kg/ha.
owever, studies that explore the potential of UAVs to predict the pro-
uctivity of a coffee crop are scarce in the specialized literature. 

This study aims at estimating coffee productivity by using data from
erial images obtained by UAVs. Computer vision algorithms were de-
eloped to estimate tree height and crown diameter from the data col-
ected by UAVs and compared with manual field measurements. To un-
erstand the level of reliability of the UAV-based predictive models, the
odels were compared with the field measurements, and a measure of

greement was estimated using difference plots. Then, the UAV data
ere used to develop models to predict yield. The yield prediction data
long with the actual yield values were used to generate a feature rank-
ng to determine the features that most influence the yield prediction
odel. Once the most important (for yield prediction) feature(s) and
onth(s) were determined, multiple yield prediction models were gen-

rated and compared to find the best model with the lowest error per-
entage. 

aterials and Methods 

xperimental design 

A UAV (DJI Phantom 3 professional, DJI, China) equipped with an
GB camera (IMX147, Sony, Japan) containing a GPS sensor was used

o collect images of the coffee trees. The images were then processed
nd stitched to create an orthomosaic image. The manual field mea-
urements of tree height and crown diameter were taken on 144 sample
rees, and the leaf area index (LAI) was determined using these two val-
es based on a methodology developed by Favarin et al. [32] . The Crown
eight Model (CHM) was determined from the orthomosaic using the
2 
igital Height Model (DHM) and the Digital Terrain Model (DTM) in-
ormation. Data were collected monthly between June 2017 and May
018. 

The UAV measurements were compared to the field data to evaluate
f UAVs were reliable substitutes for manual field labor for collecting
ree data from the field. Classical statistical techniques were used to an-
lyze the dataset for creating a prediction model. A feature selection
rocess was used to rank all parameters (measurements) of the dataset.
his ranking shows the effect of a specific parameter of a given month
n the final yield prediction. The feature rankings provided the most
mportant parameters and the most significant months for the yield pre-
iction model. Multiple regression algorithms were tested to generate a
odel for yield prediction. 

Fig. 1 presents the workflow of this study. The data collection step is
resented in blue, which includes both manual (ground-truth) and UAV-
ased data collection. The second step of dataset analysis (in green)
valuates the UAV measurements compared to manual field measure-
ents. Statistical analyses such as the mean error and the difference
lots generate a comparison between both methodologies. The third
tep (in yellow) is the process to build a prediction model. The fea-
ure selection stage is an analysis made to identify which parameters
nd measurements of the crop are important for yield predictions. With
hose identified parameters, different algorithms are tested in their abil-
ty to generate accurate yield prediction models using the mean average
ercentage error (MAPE) score to compare the results (in red). 

tudy site 

An area located on the Federal University of Lavras (23K 502906.
3m E, 7652838.84m S, 936 m altitude), in the state of Minas Gerais,
razil, was chosen as the study site. The species Coffea arabica L.
ith Travessia cultivar was implanted in the area in February 2009
ith planting spacing equal to 2.60 ×0.60 m ( Fig. 2 ). The crop under-
ent pruning (skeleton) in July 2016. Productivity recovery is expected
ithin an average time of two years after pruning (Silva et al., 2016).
he climate of the region, according to the Köppen classification, is of
he ’Cwa’ type, characterized by a dry season in winter and a rainy sea-
on in summer [12] . A total of 144 plants ( Fig. 2 ) were selected for this
tudy according to the methodology described by Ferraz et al. [34] . 

AV-based sensing system 

Image collection was performed using a small UAV model DJI Phan-
om 3 professional (DJI, Shenzhen, China). The UAV was equipped with
 digital RGB camera (Red-R, Green-G, Blue-B), Sony brand, model EX-
OR 1 / 2.3 ’’, with a resolution of 4000 ×3000 pixels, a sensor size

.16 ×6.62 mm, 94°FOV, and a sample rate of 0.5 frames per second
quipped with an internal GPS receiver. The UAV control system in-
luded a remote controller and a ground control station connected to
 smartphone device in which an application for flight planning and
ontrol was installed. This application collected information and photo
arameters from the UAV during the mission that was later used by im-
ge processing software for generating the orthomosaic [57] . 

In this study, the Drone Deploy application (DroneDeploy, San Fran-
isco, CA, USA) was used in all the missions. The parameters used for
ight planning were: an altitude of 30 m, a speed of 3 m/s, and a frontal
nd lateral overlap of 80% between images. The overlap and flight speed
ere selected based on the study by Torres-Sánchez et al. [58] , where

he overlap was determined as a factor that interfered with the preci-
ion and quality of the final stitched image, the orthomosaic. The flight
arameters entered in the application were programmed to be constant
hroughout the flight time. The images were georeferenced using the co-
rdinates obtained by the UAV GPS at each waypoint. The return period
or image collection was 30 days. The time of capture of the images was
efined between 11:00 to 14:00 hours. Two people were involved in all
he missions: the pilot responsible for taking off and landing the UAV,
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Fig. 1. Workflow of the study. 

Fig. 2. Study site location with marked sam- 
pled trees. 
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nd the observer, whose function was to alert the pilot about potential
bstacles during the flight period. 

mage processing 

The images collected by the RGB camera were processed using Pho-
oscan Professional software version 1.2.4 (Agisoft LLC, St. Petersburg,
ussia). The geomatic products were obtained according to the method-
logy described by Jiménez-Brenes et al. (2019), which involved: i) gen-
ration of a three-dimensional (3D) point cloud to apply the Structure-
rom-Motion (SfM) technique; ii) generation of the digital terrain model
DTM) and digital surface model (DSM) from the 3D point cloud, using
 maximum angle of 15° and a maximum distance of 0.1 m as param-
ters for a cell size of 40 m; and iii) creation of the orthomosaic of the
rea. ’High’ quality and ’moderate’ depth filtering were used as parame-
ers in the software for calculating image position, orientation, correla-
ion with neighboring images, and overlap. This ensured that the dense
oints cloud had greater accuracy, and outliers were removed [36] . 

For georeferencing of the images, six control points were fixed, with
our at the ends and two in the central portion of the study area. The
round control points (GCP’s) coordinates were obtained by a signal re-
eiver that received signals from a global positioning differential system
DGPS; Trimble Navigation Limited, Sunnyvale, California, USA) with a
orizontal and vertical accuracy of 0.007 m. These GCP’s were manually
dentified in the images before the mosaic was made. 

After the geometric correction of the images, the average spatial res-
lution of the orthomosaic in the evaluation period was 13 mm. The
enerated MDT, DSM, and orthomosaics were exported in Geotiff for-
at to the geoprocessing software Quantum Gis ver. 2.16.3 (QGIS De-

elopment Team, Open Source Geospatial Foundation) in a GeoTiff file,
n the Universal Transversal Mercator (UTM) projection, in the SIRGAS
000 / UTM 23S zone. 

ata collection 

Using the methodology described by Ferraz et al. [34] , 144 plants
ere selected for manual field data collection and ground-truthing. The

rees were georeferenced using the same equipment described for the
CP’s georeferencing. The plant height and crown diameter data were
ollected using a measuring tape. The tree height is the distance between
he ground and the top of the tree, ignoring small branches as these are
onsidered outliers. The diameter of the tree was measured in the mid-
le third of each plant by averaging the diameter in two perpendicular
xes (North-South and East-West), while also ignoring outlier branches.
utlier branches are small branches identified manually by the operator

hat grows outwards from the trend of the crop. The plant yield infor-
ation was collected by manually harvesting each tree, and the volume
as measured in a 20 L volume-measuring container. 

The LAI was estimated based on the methodology described by
avarin et al. [32] , as it is a fast and non-destructible methodology that
an be used with the crown diameter ( D ) and plant height ( H ) ( Eq. 1 ). 

AI = 0 . 0134 + 0 . 7276 ∗ 𝐷 

2 ∗ 𝐻 (Eq. 1) 

The estimation of plant height from the UAV images was performed
ollowing the workflow described by Panagiotidis et al. [51] and Caruso
t al. [19] ( Eq. 2 ), where the difference between DSM and DTM esti-
ated plant height. Each crown diameter ( D ) was estimated in the or-

homosaic itself in the QGIS software at all sample points by manually
electing the crown bounding box and extracting the average diameter.
he height values were extracted with the QGIS Point Sampling Tool
o differentiate the DSM and DTM pixels. 
 = DSM − DTM (Eq. 2) d

4 
ataset analysis 

Classical statistical techniques such as mean, minimum, maximum,
tandard deviation, skewness, and coefficient of variation were calcu-
ated for the yield dataset. Skewness is a measure of the symmetry of
he data around its mean, where zero corresponds to a symmetric dis-
ribution. Negative skewness indicates that the data is skewed left (with
he mean value less than the median). Positive skewness represents a
lustered distribution on higher values and is skewed right (with the
ean value higher than the median). The coefficient of variation is a
easurement of the variance around the mean value. 

eature selection 

Feature selection is a data preprocessing strategy that is effective and
fficient in preparing datasets for multiple machine learning problems.
he objectives of feature selection include building more straightfor-
ard and comprehensible models, improving data-mining performance,
nd preparing clean, understandable data [42] . Feature selection works
y removing irrelevant and redundant data in a dataset. 

Feature selection algorithms work by giving weights and ranking
he best features (measurement) from a dataset that generates an out-
ut (prediction) of the target (yield). With these weights, it is possible
o determine what features to keep for the model and what to ignore.
his study’s dataset includes monthly spectral data collected for coffee,
nd the feature selection algorithm provides the best month(s) and fea-
ures for the yield prediction models. To perform the feature selection,
ither one or multiple algorithms can be used. This study used multi-
le algorithms, described below, that rank each feature and evaluate
he resulting final ranking. The Pearson correlation coefficient [55] is a
tatistical measurement of the linear correlation between two variables.
n this instance, for all the features of the model, the coefficient is cal-
ulated and used to rank their importance in a prediction. Spearman’s
ank correlation coefficient [29] is a nonparametric measurement of sta-
istical dependence between the rankings of two variables. It assesses
he relationship between two variables using a monotonic function. The
pearman correlation between two variables is equal to the Pearson cor-
elation between the rank values of those two variables; while Pearson’s
orrelation assesses linear relationships, Spearman’s correlation assesses
onotonic relationships (whether linear or not). 

The F-test is a scoring function used in the feature selection proce-
ures. This is done in two steps: i) the correlation between each feature
nd the target is computed as Eq. 3 , where Xi is feature i, Y is the target
nd s is the standard deviation; ii) The correlations are converted to an
 score value and ranked. 

𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 = ( 𝑋𝑖 − 𝑚𝑒𝑎𝑛 ( 𝑋𝑖 ) ) ∗ ( 𝑌 − 𝑚𝑒𝑎𝑛 ( 𝑌 ) ) ∕ ( 𝑠 ( 𝑋𝑖 ) ∗ 𝑠 ( 𝑌 ) ) 
(Eq. 3) 

Mutual Information (MI) is a powerful method for detecting rela-
ionships between data sets. It estimates mutual information for a con-
inuous target variable. MI between two random variables is equal
o zero if two random variables are independent, and higher values
eans higher dependency. The function relies on nonparametric meth-

ds based on entropy estimation from k-nearest neighbors distances de-
cribed in Kraskov et al. [40] and Ross [54] . Mutual information meth-
ds can capture any kind of statistical dependency. 

Recursive feature elimination with cross-validation (RFECV) is a re-
ursive function based on eliminating features to rank their importance
o an estimator (regression). It works by eliminating a feature from the
ataset, running a regression algorithm, and evaluating the impact on
he estimation. This effect is used to rank the importance of each feature.
n this instance, the following regression algorithms are used: support
ector machine [21] , gradient boosting regression trees [35] , and ran-
om forest regressor [15] . 
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Table 1 

Parameters used for each regression model and 
NEAT. 

Regression Model Parameters 

SVM Kernel : ’linear’ 
PLS Number of components : 

6, 
Maximum iterations : 
500 

Gradient boosting Number of estimators : 
500, 
Maximum depth : 4 
Minimum samples split : 
2, 
Learning rate : 0.01, 
Loss : ’ls’ 

Random forest regressor Number of 
estimators = 80, 
Criterion : ‘mae’, 
Minimum samples split : 
2 

NEAT Population size : 50, 
Elitism : 5, 
Maximum stagnation : 
20, 
Maximum Generations : 
500 
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Table 2 

Dataset analysis of the yield dataset. 

Statistic Value 

Mean 3.23 
Min-Max 0.5-8 
Std. deviation 1.67 
Skewness 0.62 
CV 51.70% 
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measurements. 
ield prediction models 

For this study, multiple regression algorithms such as the linear SVM,
artial least squares (PLS) regression, random forest, and gradient boost-
ng regression were evaluated on their ability to generate a yield pre-
iction model in such small datasets. All regression models were imple-
ented using the Scikit-learn machine learning in Python library [53] .
he used parameters are described in Table 1 , with any other parameter
ot presented being the library’s default values. 

The linear support vector machine (SVM) algorithm segregates
lasses using a line or a hyper-plane. It classifies them by maximizing
he distance between the nearest data points (margins) separated by the
ine or the hyperplane. A higher margin usually points to higher con-
dence in classification [16] . The random forest regression method is
n ensemble-based learning method, where multiple weak base models
re combined to generate an optimal ensemble model. Random forest
egression runs efficiently on large datasets, is robust to outliers, and
s less sensitive to overfitting [56] . A gradient boosting regression tree
s also an ensemble-based method where base models are generated se-
uentially, and complex training cases are emphasized more to improve
he prediction accuracy. PLS regression model links a dependent vari-
ble to a set of independent variables and can derive a sound and robust
odel from a large dataset [46] . A genetic algorithm called neuroevolu-

ion of augmenting topologies (NEAT) was implemented on the dataset.
EAT is an approach to artificial intelligence which uses both topol-
gy and weight parameters to evolve the artificial neural network [38] .
EAT was used to adjust the weight and topology of the artificial neu-

al network (ANN), which generates the yield prediction model based
n the UAV data. 

valuation Metrics 

The following evaluation metrics were used in this study: i) mean
bsolute percentage error (MAPE) and ii) measure of agreement. MAPE
as used for comparison and evaluation of the yield prediction models.
he measure of agreement was used for comparison of the UAV-based
ata to the field data to see if the UAV data could be a substitute to field
easurements for the yield prediction models. 
5 
ean absolute percentage error (MAPE) 

The mean absolute percentage error is a commonly used statistical
ool. It is a measure of the accuracy of a forecast system. The MAPE
s given by the average of the ratio of the absolute difference between
he ground truth ( Gt ) and the prediction ( P ) to the ground truth. The
ormula for the MAPE is given below ( Eq. 4 ), where n represents the
umber of individual items. 

𝐴𝑃 𝐸 = 

1 
𝑛 
Σ
|
|
|
|

𝐺𝑡 − 𝑃 

𝐺𝑡 

|
|
|
|

(Eq. 4)

easure of agreement 

The agreement between measurements refers to the degree of agree-
ent between two or more sets of measurements of a dataset by the same

ndividual or two different individuals using similar methodologies. In
his study, the difference plot was used to measure agreement instead of
he Pearson correlation coefficient, which is often inappropriately used
s a measure for agreement [59] . The difference plot, also known as
land and Altman diagram [14] , displays the pattern and agreement of
ne variable measured by two different methodologies [59] . The dia-
ram plots the difference between a measurement pair (in our case, the
ifference between the UAV-based and field measurements) on the ver-
ical axis and the pair’s mean on the horizontal axis. To determine the
epeatability of the proposed approach, the method assumes a normal
istribution of differences, where 95% of them are expected to lie be-
ween 𝑑 ± 1 . 96 𝑠 , where d is the mean of observed differences, and s is
he standard deviation. This can be used as a range of error in appli-
ation, where the top and bottom ranges define the limits to which to
xpect the measurement error to be included. 

ESULTS 

ataset analysis 

The yield dataset was analyzed for mean, minimum-maximum, stan-
ard deviation, skewness, and coefficient of variance (CV). Table 2
resents this analysis. The CV of 51.70% obtained represents a good
ariation for the dataset. 

This variability in productivity may be associated with the coffee
iennial production yield, which exhibits high and low values in al-
ernated years [7] . The range between maximum and minimum values
ound can be explained by the fact that when the experiment was con-
ucted, some plants located at the south end of the area did not show a
ecovery in their vegetative area, unlike the other plants in the northern
egion of the field. 

AV-based plant measurement evaluation 

The pairs of observations between values measured with the UAV-
ased (height and diameter of the tree; collected monthly) and field
easurements were compared with the twelve months data. The rela-

ive error of the data concerning each other was measured using mini-
um and maximum error, standard deviation, and MAPE. Table 3 shows

he evaluation of the UAV-based measurements compared to the field



B.D.S. Barbosa, G.A.e.S. Ferraz, L. Costa et al. Smart Agricultural Technology 1 (2021) 100010 

Table 3 

Dataset analysis of the UAV-based data vs. field data. 

Parameter Min error Max error Standard Deviation MAPE 

Tree height 0.7% 63.42 % 4.42 % 5.88 % 

Crown diameter 0.1% 72.61 % 7.43 % 6.83 % 

Fig. 3. Comparison of the monthly average 
UAV-based and field measurements for tree di- 
ameter and tree height for the 144 selected 
plants. 

Fig. 4. Difference plot for tree diameter measurements. 
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Fig. 5. Difference plot for tree height. 
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The maximum error for tree height was 63.42% and for tree diameter
as 72.61%. Significant errors such as these may happen either during

he stitching process of the maps due to a lack of key points while cre-
ting an orthomosaic, or due to errors in the 3D point cloud generation.
owever, the MAPE was under 6% and 7% for the tree height and di-
meter measurements, respectively. This means that the maximum error
or both height and diameter could be safely considered mere outliers
nd not the norm. 

Fig. 3 presents the comparison by month of the average values of
eight and diameter between the UAV-based and field measurements.
or tree diameter, the maximum variation in measurement was seen
n September (4.86%), October (4.27%), and April (6.42%), while ev-
ry other month had less than 4% variation in the average values, with
ugust showing the least variation in measurement (0.18%). Such low
rrors in diameter can be explained by minor errors in manual measure-
ents, both in the field and virtual environments. Most variations were

een in July-October for the tree height measurement, with the maxi-
um in October (9.05%). The small variation can explain such a low
ifference on field and UAV-based techniques for measuring the tree
rown, such as small branches affecting either measurement. All other
onths had less than a 5% variation in the measurements. The compar-

son of the plots for the tree height and diameter showed more variation
n the measurement of tree height (average variation of 4.21%) than in
he measurement of tree diameter (average variation of 3.20%). 

Using the difference plots presented in Figs. 4 and 5 , the agreement
etween the UAV-based and field plant height and diameter values was
etermined. The difference of the values obtained through UAVs and
6 
anual field data was plotted on the Y-axis, while the mean of the data
as plotted on the X-axis. The upper dashed line represents the upper

imit of agreement given by 𝑑 + 1 . 96 𝑠 and the lower dashed line repre-
ents the lower limit of agreement given by 𝑑 − 1 . 96 𝑠 , where 𝑑 is the
ean of observed differences and 𝑠 is the standard deviation. The solid

lack line through the center represents 𝑑. 
Fig. 4 presents the diagram for the tree diameter measurements. This

howed an error of operation of + 0.3 to -0.21 m. Since the manual in-
eld measurements could be considered perfect measurements, this is
ssentially the error expected from the UAV on this measurement. Fig. 5
resents the difference plot for the tree height measurements. It shows
n upper limit of error of + 0.34 and a bottom limit of -0.17 m.Field mea-
urements can have similar errors for height and diameter. For manual
n-field plant height measurement, there is an associated error with the
easuring tape inclination to the soil surface and the vertical axis of

he plant. For the plant diameter measurements, this factor may also be
ssociated with the plant’s topology (branches and leaves) that did not
llow ideal parallelism during measurement for some sample points. 

Considering the ranges of operation derived from the difference plots
 Figs. 4 and 5 ), it was assumed that the UAV-based measurements were
eliable enough to measure tree height and diameter. An expected er-
or for tree height between -0.17 m to + 0.34 m for crops with heights
round 1.97 m is an acceptable error for large scale measurements. Sim-
larly for crown diameter, with average values of 1.28 m presenting er-
ors ranging from -0.21 m to + 0.30 m, we can assume that these are
cceptable error ranges. Assuming that these measurements were reli-



B.D.S. Barbosa, G.A.e.S. Ferraz, L. Costa et al. Smart Agricultural Technology 1 (2021) 100010 

Table 4 

Top 10 features to estimate yield in coffee. 

Components Final rank Pearson Spearman F-test Mutual info SVM 

Gradient 

boosting Random rorest 

LAI (12/2017) 1 1 1 1 7 1 1 1 
LAI (04/2018) 2 2 2 2 3 10 1 1 
Diameter 
(12/2017) 

3 3 3 3 8 11 1 1 

Diameter 
(04/2018) 

4 8 6 8 10 13 1 1 

Height 
(07/2017) 

5 16 18 16 4 1 1 1 

LAI (01/2018) 6 4 5 4 1 31 1 1 
LAI (05/2018) 7 5 4 5 6 20 1 1 
LAI (10/2017) 8 7 8 7 13 25 3 2 
LAI (03/2018) 9 6 7 6 5 19 6 1 
LAI (11/2017) 10 9 14 9 22 22 1 1 

a  

w

F

 

m  

o  

S  

S  

t  

m  

p  

r  

m  

f  

p  

t  

m  

o  

t  

e  

A  

t  

t  

a  

l  

s
 

t  

b  

a  

t

Y

 

p  

f  

T  

o  

u
 

e  

a  

M  

e  

t  

n  

f  

p  

a  

a  

m  

t

D

 

c  

a  

h  

b  

b  

n  

t
 

i  

c  

t  

p  

t  

m
 

r  

f  

p  

t  

t  

a  

t  

A  

a  

p  

b  

b  

a  

d  

f  

a
 

3  

p  

r  

s  
ble, we can substitute a slow and laborious manual task in the field
ith a fast and precise tool. 

eature selection and ranking 

The feature rankings for the yield prediction models were deter-
ined for the LAI, tree diameter, tree height, and the individual bands

f the RGB data. This was done for all the months under consideration.
even different algorithms - Pearson, Spearman, F-test, Mutual Info,
VM, Gradient Boosting, and Random Forest - were used to determine
he rankings, and then the cumulative effect was calculated to deter-
ine the final rankings. The final rankings show the effect of a specific
arameter of a given month on the final yield prediction. The higher the
anking of a component, the higher is its effect on the yield prediction
odel. Table 4 shows the top 10 components ranked based on their per-

ormance when tested using the seven algorithms. The most significant
arameters in terms of the effect on yield prediction were the LAI and
he tree diameter. The LAI of two months - December and April - had the
ost effect on the yield prediction model. The tree height showed up

nly once in the top 10 rankings, with the effect of July more prominent
han the other months, but LAI was the most dominant feature consid-
ring 70% of the top 10 was made up of LAI. During December and
pril, the tree’s diameter was also a part of the top 10 features, making

he months of December and April highly important months in terms of
he yield prediction contribution. The rankings of the RGB bands were
lso calculated in these rankings. It was observed that because of their
ow rankings (they occupied the lower half of the rankings table), their
ignificance in the yield prediction model was very little. 

With the ranking values, weights were generated as the inverse of
he sum of the rankings for each feature. Fig. 6 presents these weights
y month. The rankings of RGB were summed together. December 2017
nd April 2018 were determined to be the most prominent months for
his dataset. 

ield prediction models 

After the feature selection step, the chosen regressors were used to
redict the yield. We evaluated the use of the whole dataset and the
eatures from the most critical months based on the feature ranking.
he models were evaluated in a 5-fold cross-validation setting, and the
verall MAPE was calculated. Table 5 presents the MAPE for the models
sing different feature selections. 

The GBR, RFR, and PLSR models had similar results using differ-
nt numbers of features that could be explained by these algorithms’
bility to work with high-dimensionality data and small datasets. The
APE values for the Linear SVM and NEAT-based yield prediction mod-

ls showed that reducing the number of features improves the predic-
ion. The NEAT algorithm, being a convergent genetic algorithm, did
7 
ot converge in the entire dataset. It only started converging correctly
rom the top 3 months’ data. The graph of Feature Contribution can ex-
lain the small differences in the MAPE between the top 3, top 2 months,
nd topmost month by month ( Fig. 6 ), where the topmost month carried
lmost double the importance of the second most crucial month. This
eans that using data from 3 months or 1 month has small differences

hat can be neglected for this dataset. 

iscussion 

The feature selection process is an important step for optimizing data
ollection procedures, especially when involving laborious tasks such
s field measurements. These feature rankings improve this process by
ighlighting important dates and variables/features, while also being
eneficial to complex regression algorithms. A regression algorithm can
ecome unstable and lose precision with a dataset containing a large
umber of features, as some least important information can confuse
he model’s training stage. 

This study shows that even though tree height and diameter is fed
nto the algorithms, the LAI was more important feature in predicting
offee yield. This is a clear showcase of how adding a new feature to
he dataset from the data itself can improve a regression. The results
resented demonstrate that the LAI, although an equation that includes
ree height and diameter, presents a better feature for the prediction
odel than both the other measurements. 

The results described in Table 4 showed that the LAI feature was
anked first in the performance of the yield prediction model. Results
ound in the study by Chu et al. [24] reinforce the potential of using bio-
hysical parameters of cotton derived from RGB images coupled to UAV
o predict yield. The ranking of variables ( Table 4 and Fig. 6 ) showed
he more promising dates for estimating coffee productivity by UAV im-
gery being December and April. These results show that it is possible
o reduce the monitoring time of the crop during the production year.
ccording to Camargo & Camargo [17] , the phenological cycle of Coffee
rabica can explain these results. This study showed that in the second
henological year (evaluation period of this study), the month of Decem-
er marks the end of the third phase of this cycle: the flowering and the
eginning of the fruit granulation phase. For the month of April, the fifth
nd last phase of the cycle, the fruit matures, ending in June (harvest
ate). The results obtained by Aparecido and Rolim [7] enhance those
ound in this study ( Table 4 ), where the months of December (flowering)
nd April (fruit granulation) are decisive times in coffee productivity. 

The accuracy of the prediction models presented, with MAPE of
1.75%, showcases the possible application of this methodology. The
rocess of feature selection to identify the best predictors achieved good
esults for yield prediction tasks, as it can be further enhanced. A further
tudy using more collected data or using other sensors such as multi-
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Fig. 6. Feature weights for the yield prediction 
model based on ranking for all months of data 
collected. 

Table 5 

The models MAPE for yield prediction are based on different feature selections. 

MAPE 

Algorithm 

∗ All months Top 4 months Top 3 months Top 2 months Top 1 month 

GBR 36.79% 37.83% 36.99% 35.71% 37.39% 

Linear SVM 47.68% 37.76% 35.79% 35.05% 32.99% 

RFR 36.13% 37.83% 35.05% 34.07% 37.13% 

PLSR 34.80% 35.84% 36.63% 35.92% 33.48% 

NEAT 100.00% 56.86% 31.91% 32.18% 31.75% 

∗ GBR: Gradient Boosting Regression, Linear SVM: Linear Support Vector Machine, RFR: Random Forest Regres- 
sion, PLSR: Partial Least Square Regression 
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pectral cameras can use the presented methodology to achieve higher
rediction accuracies. 

onclusion 

A methodology was proposed for estimating coffee productivity
yield) by applying machine learning techniques on the data (RGB im-
ges) obtained from UAVs. The RGB data were used to estimate tree
eight and crown diameter. Then, the crown diameter and the tree
eight were used to estimate the LAI. Seven different regression algo-
ithms were used to select the best feature(s) out of LAI, tree height,
rown diameter, and the RGB values to determine the feature that had
he maximum influence on the yield prediction for all the months under
onsideration. Using the feature selection, it was determined that the
AI and the crown diameter were the most dominant features. The LAI,
n particular, was the most dominant feature, contributing to 70% of the
op 10 feature rankings. The other important aspect of the feature rank-
ng was the importance of two months, December 2017 and April 2018,
o the yield prediction. Five regression algorithms were used to gener-
te the yield prediction models, and MAPE was used as the evaluation
arameter for these algorithms. The models were used to predict yield
sing the whole dataset and the most critical months, which were deter-
ined from the feature rankings. For most of the regression algorithms
sed, reducing the number of features to include primarily the most im-
ortant features instead of the whole dataset improved the MAPE and
ence, the yield prediction. Regression algorithms decide the weight of
ach feature for estimating yield at the training step. The feature se-
ection and thus removing low descriptive features from the data helps
he model converge to the solution with fewer data and achieve higher
recision. Although the NEAT model achieved the best results, all algo-
ithms used achieved under 40% MAPE when using the same number
f features. But it was also observed that some models retained similar
rrors for all features, showing that the feature selection improvement
8 
aries per algorithm. It also suggested that since the difference in MAPE
or the top month vs. the top three months was very little, a dataset of pa-
ameters collected during just one month could be used satisfactorily for
ield prediction. This is a significant result for future studies because it
educes the need for extensive year-round data collection and allows re-
earchers to focus on the dominant parameters of certain most important
onths. Although the results obtained in this study show promise, there

re still opportunities for improvement. Future studies could use spec-
ral data collected from multispectral and hyperspectral sensors, and
dd vegetation indices in the feature selection process. 
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