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LOW-COST HEURISTICS FOR MATRIX BANDWIDTH REDUCTION
COMBINED WITH A HILL-CLIMBING STRATEGY

Sanderson L. Gonzaga de Oliveira∗ and Libério M. Silva

Abstract. This paper studies heuristics for the bandwidth reduction of large-scale matrices in serial
computations. Bandwidth optimization is a demanding subject for a large number of scientific and
engineering applications. A heuristic for bandwidth reduction labels the rows and columns of a given
sparse matrix. The algorithm arranges entries with a nonzero coefficient as close to the main diagonal as
possible. This paper modifies an ant colony hyper-heuristic approach to generate expert-level heuristics
for bandwidth reduction combined with a Hill-Climbing strategy when applied to matrices arising from
specific application areas. Specifically, this paper uses low-cost state-of-the-art heuristics for bandwidth
reduction in tandem with a Hill-Climbing procedure. The results yielded on a wide-ranging set of
standard benchmark matrices showed that the proposed strategy outperformed low-cost state-of-the-
art heuristics for bandwidth reduction when applied to matrices with symmetric sparsity patterns.
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1. Introduction

The solution of large-scale sparse linear systems Ax = b, where A = [aij ] is an n × n large-scale sparse
matrix, x is the unknown n-vector solution, and b is a known n-vector, is essential in various application areas
in science and engineering, such as computational fluid dynamics (CFD), electromagnetics, structural, thermal,
and elsewhere. The solution of large-scale sparse linear systems is commonly the simulation step that requires
the highest running times.

A satisfactory ordering of rows and columns is beneficial for the low-cost solution of large and sparse linear
systems by iterative and direct methods. Hence, the reordered coefficient matrix A will have a narrow bandwidth.
Modern hierarchical memory architecture and paging policies favor programs that consider the locality of
reference when using iterative methods for solving linear systems. Using a heuristic for matrix bandwidth
reduction is an important choice to produce a sequence of graph (of the underlying matrix A) vertices with the
spatial locality. Therefore, practitioners employ heuristics for bandwidth reduction to provide low processing
costs for solving large sparse linear systems by iterative methods [19,20]. Bandwidth reduction is also employed

Keywords. Bandwidth reduction, sparse matrix, ant colony optimization, hyper-heuristic, reordering algorithms, renumbering,
ordering, graph labeling, graph algorithm, local search procedure, Hill-Climbing procedure.

Universidade Federal de Lavras, Lavras, Brazil.
∗Corresponding author: sandersongonzaga@gmail.com

c© The authors. Published by EDP Sciences, ROADEF, SMAI 2021

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/10.1051/ro/2021102
https://www.rairo-ro.org
mailto:sandersongonzaga@gmail.com
https://creativecommons.org/licenses/by/4.0


2248 S.L. GONZAGA DE OLIVEIRA AND L.M. SILVA

in other fields, such as in the context of browsing hypertext [3], small world networks [21], visual analysis of data
sets using visual similarity matrices [25], graph entropy rate minimization [4], symbolic model checking [1], mesh
layout optimization [6] and the seriation problem [7]. In the present study, we concentrated on reducing the
execution costs of solving systems of linear equations. Thus, the reordering time (i.e., a preprocessing step of the
matrix A) added to the running time of the linear system solver must be shorter than the running time of the
solver without reordering, at least when using only a single vector b. Thus, the practical reordering algorithms
in this context are fast approximate algorithms.

Heuristics for bandwidth reduction arrange nonzero coefficients of a sparse matrix as close to the main
diagonal as possible. Let A = [aij ] be an n × n matrix corresponding to a graph G = (V,E) composed of
a set of vertices V and a set of edges E. The bandwidth of row i is βi(A) = i − min1≤j≤i[j | aij 6= 0].
The overall bandwidth of a matrix A is β(A) = max1≤i≤n[βi]. Equivalently, the bandwidth of G for a vertex
labeling S =

{
s(v1), s(v2), · · · , s(v|V |)

}
(i.e., a bijective mapping from V to the set {1, 2, · · · , |V |}) is βS(G) =

max{v,u}∈E [|s(v) − s(u)|], where s(v) and s(u) are labels of vertices v and u, respectively. The bandwidth
minimization problem is a well-known NP-hard problem [26]. A typical algorithm for the problem is heuristic
in the sense that it attempts to attain a labeling that deliver a small bandwidth at low cost even for large-scale
matrices.

An efficient solution of linear systems minimizes the total computational cost, including the reordering time,
at least when only a single linear system is to be solved. Consequently, heuristics for bandwidth reduction must
be capable of delivering high-quality solutions at a low cost. Since the mid-1960s, practitioners have proposed
heuristics for bandwidth reduction [5,19]. Previous publications [5,15,17,19,20] have reviewed various heuristics
and have indicated the most promising low-cost heuristics for bandwidth reduction so that they can be used in a
preprocessing step when solving linear systems [17]. In this context, practical heuristics for bandwidth reduction
compute at low cost and yield reasonable bandwidth results [17,19,20].

Our motivation in the present study is to obtain even better results than those delivered by low-cost state-
of-the-art heuristics for bandwidth reduction. Additionally, the resulting method must still compute at a low
cost. Thus, this paper applies a low-cost local search that delivers high-quality solutions to improve the results
returned by up-to-date low-cost heuristics. Specifically, this article proposes an approach to reduce matrix
bandwidth through low-cost heuristics, which are practical for large-scale problems, in tandem with an improved
Hill-Climbing local search procedure. A hyper-heuristic based on ant colony optimization, modified in the present
study, generates the heuristic and defines a parameter of the Hill-Climbing algorithm. Hyper-heuristics operate
on a search space of heuristics instead of searching on the domain of problem solutions. Specifically, this paper
modifies an ant colony hyper-heuristic (ACHH) approach for evolving heuristics for the bandwidth reduction of
matrices [16,17]. We applied the Hill-Climbing algorithm proposed by Lim et al. [23]. The authors [23] specially
designed this procedure for the bandwidth reduction problem.

We included four low-level heuristics for bandwidth reduction with the Hill-Climbing algorithm in the ant
colony hyper-heuristic (ACHH) system. As a result, the modified ACHH system in the present study generates
an expert-level heuristic for bandwidth reduction for each specific application domain studied. Additionally, the
modified ACHH algorithm determines a specialized Hill-Climbing algorithm for the application area. To the
best of our knowledge, no other research explored this approach, and thus this paper is the first (published)
instance of this approach used in the field. Furthermore, this paper evaluates the resulting heuristics together
with the Hill-Climbing algorithm evolved by the modified ACHH system in each application area against the
most promising low-cost heuristics for bandwidth reduction.

The remainder of this paper is structured as follows. In Section 2, the related work is described. In Section 3,
the modified hyper-heuristic method for bandwidth reduction is introduced. In Section 4, we describe the
methodology to conduct the test. In Section 5, we describe the training stage and report the resulting heuristics
from the modified ACHH system. In Section 6, the results are discussed. Finally, we address the conclusions in
Section 7.
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2. Related work

Practitioners have proposed an extensive amount of heuristics for bandwidth reduction since the 1960s.
Previous publications [5,15,17,19,20,29] reviewed the literature. These studies, described below, indicated the
heuristics for bandwidth reduction with the best performance proposed so far. We divide the design of heuristics
for this problem into two main types. The first type, described in Section 2.1, comprises the design of low-cost
heuristics based on graph theory concepts, and the second type, reported in Section 2.2, includes the design of
metaheuristic-based algorithms for bandwidth reduction.

2.1. Graph-theory algorithms

A previous publication analyzed the results of 44 heuristics for bandwidth reduction based on graph theory
concepts [15]. In short, the most successful graph-theory algorithms in this field is the Reverse Cuthill–McKee
(RCM) method [14].

Koohestani and Poli [22] employed genetic programming (GP) metaheuristic to develop the KP-band heuris-
tic. This GPHH approach for bandwidth reduction evolved the RCM method [14].

Graph-theory algorithms for bandwidth reduction are fast heuristics mainly applied to accelerate linear system
solvers. A previous publication [20] verified that a reasonable bandwidth reduction is sufficient to accelerate
linear system solvers. The principal characteristic is that the reordering algorithm must be fast. Thus, the
publication indicated a reverse breadth-first search procedure with the starting vertex given by the George-Liu
algorithm [14] (RBFS-GL for short) as one of the best heuristics to be used by practitioners in a preprocessing
step of linear system solvers.

Recently, the authors of the present study showed that the resulting heuristics from an ant colony hyper-
heuristic approach yielded better results than state-of-the-art reordering algorithms did when applied to sym-
metric positive definitive matrices. The objective was to reduce the execution costs of a linear system solver
[16]. This research followed the current propensity for using a hyper-heuristic approach in challenging problems,
which are difficult to be solved through traditional strategies. Thus, previous publications [16, 17] proposed an
ant colony hyper-heuristic (ACHH) approach for the bandwidth reduction aiming at accelerating a linear system
solver. The hyper-heuristic system was provided as input a small set of matrices arising from an application
domain. Then, the system generated a heuristic for the application area. The strategy yielded better results
than previous low-cost state-of-the-art heuristics for bandwidth reduction (RCM, RBFS-GL, KP-band). There-
fore, when considering the execution times as a relevant aspect of the analysis, the resulting heuristics from the
ACHH approach are the current state-of-the-art heuristics for bandwidth reduction. The present study extends
the previous investigation [17]. Specifically, the hyper-heuristic approach proposed in the present study employs
a local search procedure.

2.2. Metaheuristic algorithms

The bandwidth reduction of matrices became a crucial problem because the solution of linear system solvers
has connections with a wide range of other relevant problems in engineering fields. Thus, application program-
mers have employed the best-known metaheuristics to design heuristics for bandwidth reduction since the 1990s
[5]. A previous study analyzed the results of 29 metaheuristic-based algorithms for bandwidth reduction [5].

Torres-Jimenez et al. [29] considered several metaheuristic algorithms for the problem. In this publication,
the Dual Representation Simulated Annealing (DRSA) heuristic [29] outperformed the previous state-of-the-art
metaheuristic algorithm concerning the solution quality when applied to 113 very small matrices with sizes
ranging from 30 to 1104. Thus, currently, the state-of-the-art algorithm for bandwidth reduction is the DRSA
heuristic [29].

The metaheuristic algorithms for the problem are slow, however. One can only apply these heuristics in a
reasonable amount of time to rather small-sized matrices [20], i.e., matrices with sizes of approximately 1000.

A relevant metaheuristic algorithm is the FNCHC heuristic [23]. The algorithm represents a fast implemen-
tation of a centroid-based approach combined with Hill Climbing to solve the bandwidth reduction problem.
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The most promising metaheuristic algorithms [29] yielded better bandwidth results than the FNCHC heuristic
did when applied to very small-sized matrices (with sizes of approximated 1000). Nevertheless, the FNCHC
heuristic yielded consistent bandwidth results at shorter execution times than that metaheuristic algorithm
[29]. Therefore, one can apply the FNCHC heuristic to medium-sized matrices (i.e., matrices with sizes ranging
from 100 000 to 1 000 000). FNCHC and NCHC use a parameter λ to determine a set of candidate vertices to
have labels changed. The FNCHC heuristic used the parameter λ = 0.95, whereas the NCHC algorithm used
this parameter with 1.0 when applied to all matrices [23].

Many papers justified designing a new high-cost heuristic for reducing the bandwidth of matrices because it
is relevant in engineering applications. However, application programmers, who proposed slow algorithms for
the problem, were unfamiliar with the need for the heuristic to have a low computational cost to accelerate
linear system solvers [17]. A previous publication [20] evaluated several heuristics for bandwidth reduction. The
study demonstrated that a metaheuristic algorithm is a noncontender for sparse matrix factorization and related
problems. The reason was the long execution times of metaheuristic algorithms for the problem. Specifically,
the study [20] evaluated several heuristics for bandwidth reduction to reduce the execution times of a solver of
linear systems comprised of symmetric positive definite matrices. In this context, the heuristics for bandwidth
reduction must compute at a low cost. Using a low-cost heuristic that reasonably reduces the bandwidth of
the matrix is more practical than using a heuristic that highly reduces the bandwidth of the matrix but with
long execution times and high memory requirements [20]. Thus, applications in this context require low-cost
procedures. Otherwise, the linear system solvers are faster than the metaheuristic algorithm used to reduce the
bandwidth of the matrix. The previous study [20] showed that a standard metaheuristic algorithm (that expands
the search for better solutions, employs local search, etc.) for bandwidth reduction was not better than a low-cost
method when the objective was to reduce the execution times of a linear system solver. Moreover, a metaheuristic
algorithm may deliver better bandwidth reductions and, therefore, reduces the memory requirements of the linear
system (depending on the data structure used). However, the potentially high memory consumption of such a
metaheuristic algorithm may impede its application to workstations with a small main memory size [20], i.e.,
only quite small-sized matrices can be used [17].

3. A modified ant colony hyper-heuristic approach for the matrix bandwidth
reduction

In this section, we extend an ant colony hyper-heuristic approach for reordering the rows and columns of
matrices [17]. Specifically, in this section, we incorporate a local search procedure into an ant colony hyper-
heuristic method that generates and selects heuristics for the bandwidth reduction of symmetric and nonsym-
metric matrices. Thus, we reproduce the ACHH approach in this section [17]. We refer to the modified ACHH
system proposed in the present study as ACHHHC.

We provided the ACHHHC algorithm with the RCM [14], KP-band [22], and RLK heuristics [16, 17]. The
ACHHHC approach selects the RBFS heuristic as the resulting algorithm when the final formula generated is
a constant real value. The RCM, KP-band, RBFS, and RLK heuristics differ by employing a priority formula
to label vertices adjacent to the current vertex. The ACHHHC approach uses the George-Liu (GL) [14] and
Diagonal Dominance (DD) [31] algorithms for finding pseudoperipheral vertices.

In Sections 3.1 and 3.2, we briefly describe the ant colony optimization metaheuristic and the hyper-heuristic
concept, respectively. In Section 3.3, we describe the structure and the pseudocode of the ACHHHC algorithm.

3.1. The ant colony optimization metaheuristic

Ant colony optimization (ACO) is a metaheuristic in which a colony of articial ants collaborates on identi-
fying satisfactory solutions to challenging discrete optimization problems. The technique uses relatively simple
agents (called artificial ants) that communicate indirectly by stigmergy. An artificial ant in ACO is a stochastic
constructive procedure that incrementally produces an approximate solution by adding opportunely defined
solution components to a partial solution under development [10].
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A model P = (S,Ω, f) of a combinatorial optimization problem consists of a search space S defined over
a finite set of discrete decision variables Xi, i = i, . . . , n, a set Ω of constraints among the variables, and an
objective function f : S→ R+

0 to be minimized (maximizing a given objective function g from a maximization
problem is equivalent to minimizing f = −g). The generic variable Xi takes values in Di = {v1

i , . . . , v
|Di|
i }.

A feasible solution s ∈ S is a complete assignment of values to variables that satisfies all constraints in Ω. A
solution s∗ ∈ S is a global optimun iff f(s∗) ≤ f(s) ∀s ∈ S [11].

Dorigo et al. [11] used the model of a combinatorial optimization problem to represent the pheromone model
of ACO. A pheromone value is associated with each possible solution component. The authors denoted C as a
set of all possible solution components.

An ant traverses the connected graph GC(V,E), where V is a set of vertices, E is a set of edges, and then
provides a solution. Ants traverse vertices along edges, incrementally producing a partial solution. Ants deposit
a certain amount of pheromone on vertices or edges. The amount of pheromone deposited may depend on the
quality of the solution found. Subsequent ants employ the pheromone information as a guide toward promising
regions of the search space [11].

ACO is a successful metaheuristic. There are an enormous amount of heuristic methods designed by this
metaheuristic. Recently, Yang et al. [30] employed ACO to control a scattered field output of light passing
through a turbid medium. Gan et al. [13] used ACO to propagate path optimization of product attribute design
changes. Ma et al. [24] applied ACO for high-dimensional feature selection.

3.2. Hyper-heuristics

A hyper-heuristic is a high-level search approach that automates the process of selecting, combining, gener-
ating, or adapting one or several simpler heuristics or heuristic components. A hyper-heuristic explores a search
space of low-level heuristics or heuristic components to solve computationally challenging problems [12]. A hyper-
heuristic can also be defined to broadly describe the process of using (meta)heuristics to select (meta)heuristics
or heuristic components to solve classes of instances of the problem at hand.

The resulting heuristic produced by a hyper-heuristic should efficiently yield excellent approximate solutions
to the challenging computational search problem in context. Usually, a researcher designs a hyper-heuristic to
build systems that produce satisfactory results to classes of instances of a given problem rather than solving
just one occurrence of the problem (see [12] and references therein).

The number of hyper-heuristics published in recent years is enormous. Recently, Zhu et al. [32] proposed
a genetic programming hyper-heuristic approach for the multi-skill resource-constrained project scheduling
problem. Along the same lines, the authors of the present study proposed a genetic programming hyper-heuristic
strategy for evolving low-cost heuristics for profile reductions [27]. Tian et al. [28] proposed an ACO-based
hyper-heuristic with dynamic decision blocks for intercell scheduling.

3.3. Structure of ACHHHC

The ACHHHC algorithm initializes a graph C = (VC , EC) consisting of components of heuristics for bandwidth
reduction. Figure 1 illustrates how we arranged the components (nodes) of the ACHHHC algorithm. We show
this graph in columns for clarity. The graph holds an initial node i, two nodes in column 1 that contain
pseudoperipheral vertex finders, nodes in column 2, and nodes in column 3 that contain local search procedures.
Using a local search procedure is a relevant difference in the implementation regarding previous publications
[16,17]. Nodes in column 2 refer to reordering algorithms to be used to label the vertices of a graph associated
with a training matrix [17].

The ACHHHC algorithm begins with the priority formulas of the RCM, KP-band, and RLK algorithms in
nodes f in graph C. The algorithm builds new priority formulas randomly. The ACHHHC system may either
evolve or even again recover the priority formulas of the three original heuristics [17].

An ant determines a path to traverse graph C from node i to node hc using the probability function
pawj(k) = τwj∑

c∈Nw τwc
, where τwj is the pheromone trail of the node (component) w to node j and Nw is the



2252 S.L. GONZAGA DE OLIVEIRA AND L.M. SILVA

Figure 1. A graph that illustrates how the ACHHHC algorithm organizes the components
(nodes). Node i is the initial vertex. Nodes gl and dd (in column 1) consist of pseudoperipheral
vertex finders. Nodes f (in column 2) comprise reordering algorithms. Nodes hc (in column 3)
consist of local search procedures. Each edge stores a pheromone value. As an illustration, the
ant next to node hc deposited pheromones on the blue edges of its traced path. The five other
ants are ready to transport training matrices (“food”) from node i to the nest located at nodes
hc.

feasible neighborhood of node w. Moreover, Nw is a set comprised of components in the same column of node j
(including j). The probability function is the ratio between the pheromone amount deposited on the edge that
connects node (component) w to node j and the sum of the pheromone amount deposited on the edges between
nodes w and nodes contained in Nw. An ant a employs the probability function to decide which component of
a heuristic for bandwidth reduction to include in its partial solution. Thus, the function is the probability that
ant includes a node (component) to its trail from node i to node hc in iteration k. An ant deposits pheromones
on this traversed path conforming to the quality solution and the running time taken by the individual program
defined in the nodes of the path when applied to each training matrix [16,17].

The ACHHHC algorithm employs an evaporation rate to avoid a very fast convergence of the algorithm in a
path from node i to node hc in graph C. The pheromone update is given by τij = (1 − P ) · τij + g(%), where
P ∈ (0, 1] is a parameter of the evaporation rate, g() is the quality function of the pheromone deposition on
edges, and % is either the execution time of a reordering algorithm or the bandwidth reduction produced in a
solution. We employed P = 0.3 [2].

The ACHHHC algorithm employs two functions to indicate the quality of an individual heuristic and, hence,
to update the pheromone amount in the edges of graph C. The first function is 1/t, where t is the time (in
milliseconds) that a component takes, and the second uses the bandwidth reduction yielded in a solution. The
ACHHHC algorithm uses 1/t to update the pheromone amount of the edge just traversed by an ant in graph C.
The algorithm uses the quality solution to update the pheromone amount on the entire path walked by an ant.
The objective was to generate low-cost heuristics that yield excellent bandwidth results. Choosing a high value
to multiply the bandwidth found would produce high-cost heuristics. After some experiments, we empirically
defined that the variable bandwidth would have a weight five times greater than the execution time to generate
the resulting heuristic. Thus, the quality solution is five times more important than the running time. Therefore,
the ACHHHC system adds 5 · β + 1/t to the pheromone amount on the entire path traversed by an ant [17].

The running times of the ACHHHC depend on the number and size of the matrices used in the training phase.
We decided that the running times of the ACHHHC algorithm were up to two days for each application domain.
After some experiments, we empirically defined the number of iterations. The ACHHHC algorithm executed
100 000 iterations to generate or select new heuristics for bandwidth reduction for specific application areas.
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The algorithm replaces half of the nodes in columns 2 and 3 with new components every ten iterations. The
algorithm changes the content of the nodes that have incident edges with the smaller pheromone amount. We
describe this characteristic in detail below. The ants choose nodes recently generated as components because
the old nodes already have values of pheromone in their incident edges [17].

Algorithm 1 shows the ACHHHC system. The ACHHHC algorithm is provided as input the training set; the
number of nodes in columns 1, 2, and 3 (see Fig. 1); the number of iterations; and a set of ants. The ACHHHC

algorithm creates graph C in line 1. The loop in lines 3 through 24 iterates the inner repetition loop in lines 4
through 19 for each ant. An ant defines its route in graph C using the probability function described above. At
line 5, Algorithm 1 determines which nodes in columns 1, 2, and 3 the ant will use to traverse graph C.

Algorithm 1: An ant colony hyper-heuristic in tandem with a local search procedure for bandwidth
reduction.
Input: a set of matrices, the number of nodes in columns 1, 2, and 3 in the graph of components, the number of iterations

NrIter, a set of ants.
Output: an evolved heuristic for bandwidth reduction.

1 build a graph of components that contains the candidate nodes (components) of a resulting heuristic;
2 k ← 0;
3 while (k < NrIter) do
4 foreach (ant a ∈ ants) do
5 use the probability function to determine a path (nodes in columns 1, 2, and 3) for ant a to traverse graph C from

node i to node hc;
6 foreach (matrix i ∈ matrices) do
7 compute the original bandwidth of matrix i;
8 find a pseudoperipheral vertex u using the node in column 1 determined at line 5;
9 build the level structure rooted at vertex u;

10 update the pheromone quantity of the edge that connects node i to the node in column 1 defined at line 5
considering the time took by the pseudoperipheral vertex finder used in column 1;

11 compute the priority of every vertex employing the node f in column 2 determined at line 5;
12 label the vertices of matrix i according to the reordering heuristic contained in node f just traversed;
13 update the pheromone amount of the edge that connects the nodes in columns 1 and 2 considering the time to

label matrix i;
14 execute the local search procedure stored in node hc defined at line 5;
15 update the pheromone amount in the edge that connects node f to node hc considering the time took by the

Hill-Climbing algorithm;
16 compute the bandwidth of the current solution;
17 update the pheromone amount of edges of the path just traversed considering the bandwidth of the current

solution;
18 end foreach

19 end foreach
20 k ← k + 1;
21 if (mod(k, 10) = 0) then
22 generate new formulas for half of the nodes in column 2 that have incident edges with less pheromone than the other

nodes in column 2 and a new value for λ for the node in column 3 that has incident edges with the smallest
pheromone amount;

23 end if
24 end while
25 return the pseudoperipheral vertex finder in column 1 with incident edges (considering node i and nodes in column 2) with

the highest pheromone amount, the formula in node f in column 2 with incident edges (considering columns 1 and 3) with
the highest pheromone amount, and value λ stored in node hc (in column 3) with incident edges with the highest pheromone
amount .

The foreach loop in lines 6 through 18 processes the set of training matrices for each ant. The algorithm
computes the original bandwidth of each matrix in line 7. After defined the pseudoperipheral vertex finder at
line 8, Algorithm 1 creates the level structure rooted at u in line 9. Afterward, Algorithm 1 (at line 10) updates
the pheromone quantity in the edge that connects the initial node i to a node in column 1 that contains a
pseudoperipheral vertex finder considering 1/t, where t (in ms) is the running time of the pseudoperipheral
vertex finder. Algorithm 1 updates (at line 11) the priority and labels (at line 12) each vertex of graph G
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employing the formula contained in the node of column 2 (selected at line 5). The algorithm (at line 13) then
updates the pheromone quantity in the edge that connects a node in column 1 that contains a pseudoperipheral
vertex finder to the current node in column 2 using the time took to compute the reordering algorithm [17].

Then, Algorithm 1 (at line 14) executes the local search procedure. Specifically, the algorithm employs a Hill-
Climbing procedure [23]. Given a vertex labeling S, a pair of vertices are λ-critical if |s(v)− s(u)| ≥ λ · βS(G),
where {v, u} ∈ E, 0 < λ ≤ 1, and s(v) and s(u) are labels of vertices v and u, respectively. Hence, the strategy
defines a set Λ = {v ∈ V : |s(v) − s(u)| ≥ λ · βS(G)} for {v, u} ∈ E. For each vertex v ∈ V , the procedure
defines mid(v) = smax(v)+smin(v)

2 , where smax(v) = max{v,u}∈E [s(v), s(u)] and smin(v) = min{v,u}∈E [s(v), s(u)]
are respectively the maximum and minimum labels of adjacent vertices to the vertex v, including v. The attribute
mid(v) is an approximated label to v that minimizes the difference between its label and the labels of its adjacent
vertices [23]. The set C(v) = {u : |mid(v)−s(u)| < |mid(v)−s(v)|} contains the candidate vertices to have labels
changed with vertex v. For each critical vertex v ∈ Λ, the procedure swaps s(v) and s(u) for each vertex u in
C(v) in increasing order of |mid(v) − s(v)|. The process continues while the swap reduces βS(G). Thus, the
ACHHHC system seeks for a satisfactory λ value. After executed the local search procedure, Algorithm 1 (at
line 15) updates the pheromone amount in the edge that connects node f to node hc considering the time took
by the local search procedure.

The ACHHHC algorithm computes the bandwidth of the solution at line 16. Algorithm 1 (at line 17) updates
the pheromone amount of the entire path (defined at line 5) traversed by the ant, considering the bandwidth
reduction of the solution; that is, the difference in bandwidth between the current solution and the original
bandwidth of the training matrix (calculated at line 7). As previously mentioned, this update is multiplied by
five [17]. Algorithm 1 increments variable k at line 20.

Priority formulas in the low-level heuristics in tandem with Hill Climbing need some iterations to be handled
by artificial ants, depending on whether ants traverse them. The ACHHHC system would have a high compu-
tational cost if it allowed low-level heuristics that do not produce satisfactory results to be evaluated by the
system in a large number of iterations. After some experiments, we empirically decided to replace low-level
heuristics and the parameter λ in Hill-Climbing every ten iterations. The reason was to adjust the number
of iterations to evaluate the performance of the low-level heuristics concerning their output solution and the
computational time of the ACHHHC system. This choice of replacing heuristics in tandem with Hill Climbing
every ten iterations allows the system to compute more low-level heuristics in tandem with Hill Climbing in the
time required for the system to perform the number of iterations previously defined. Thus, every ten iterations
(see line 21), the algorithm replaces the content of the three (half) nodes that have incident edges with less
pheromone than the other three nodes in column 2 (at line 22). The algorithm also replaces the content of the
node hc that has incident edges with less pheromone than the other node hc.

The algorithm returns at line 25 the pseudoperipheral vertex finder with incident edges with the highest
pheromone amount. The same algorithm also returns the formula in node f (in column 2) with incident edges
with the highest pheromone amount. Additionally, the algorithm returns the value λ contained in node hc in
column 3 with incident edges with the highest pheromone amount.

4. Description of the tests

We implemented the algorithms using the C++ programming language. The g++ version 5.4.0 compiler
was used, with the optimization flag −O3. We applied the RCM, RBFS-GL, and KP-band combined with Hill
Climbing using λ = 0.5.

The workstation used in the executions of the simulations with matrices taken from the SuiteSparse matrix
collection [8] featured an Intel R© CoreTM i7-4770 with 8 GB of main memory DDR3 1.333 GHz (Intel; Santa
Clara, CA, United States). This machine used the Ubuntu 16.04.4 LTS 64-bit operating system with Linux
kernel-version 4.2.0-36-generic.

Sections 5 and 6 use 27 and 30 matrices taken from the SuiteSparse matrix collection [8], respectively. The col-
lection is an extensive and actively expanding set of sparse matrices arising from real applications. Furthermore,
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the collection is extensively employed by the numerical linear algebra community for the design and performance
evaluation of sparse matrix algorithms, allowing for robust and repeatable experimentation since performance
results with artificially-generated matrices can be inaccurate. Moreover, the collection covers a broad spectrum
of domains, including 2D or 3D geometric domains (structural engineering, CFD, electromagnetics, thermody-
namics, etc.) [8].

Section 6 uses matrices from application areas with a sufficient number of matrices to train the ACHHHC

algorithm (see Sect. 5). We selected the four, three, six, eight, and five largest symmetric real matrices arising
from 2D/3D, CFD, electromagnetics, structural, and thermal problems with sizes greater than 380 000, 120 000,
100 000, 700 000, and 80 000, respectively, to compare the results with state-of-the-art heuristics for bandwidth
reduction. We also used the four largest real directed weighted graphs (with sizes smaller than three million
vertices) in the SuiteSparse matrix collection.

In this field, a common method for evaluating the heuristic results is to compare its bandwidth results by
counting the number of times that the heuristic yielded the narrower bandwidth on the matrices used. We
also use this metric. Additionally, to analyze the quality of the bandwidth results yielded by the algorithms
evaluated, for each algorithm H applied to each set of matrices, we calculate ρβ =

∑N
i=1

βH(i)−βmin(i)
βmin(i) , where

βH(i) is the bandwidth yielded by algorithm H when applied to matrix i, βmin(i) is the narrowest bandwidth
delivered in matrix i (using the algorithms evaluated and the original bandwidth), and N is the number of
matrices [19]. We also use ρt to evaluate the running times of the heuristics.

In addition to metric ρβ , for each algorithm H applied to each dataset, we calculate υβ =
∑N
i=1

βH(i)−βmin(i)
βmax(i)

for each matrix i, where βmax(i) is the widest bandwidth yielded by the algorithms evaluated when applied to
matrix i [18]. Metrics ρβ and ρt employ function min because bandwidth reduction is a minimization problem.
The metrics can use function max for maximization problems. Furthermore, the metric υβ can also change the
functions accordingly for maximization problems. In addition to these metrics, we also use Friedman (Friedman
two-way analysis of variances by ranks), Iman-Davenport, Quade, and Friedman aligned ranks tests to analyze
the results1.

We also used the contrast estimation based on medians (CEBM) to interpret the results. CEBM contains
contrast information of the medians of differences between performances of algorithms considering all pairwise
comparisons. On the other hand, metric ρβ contains detailed information from all instances and uses the best
result from each instance among all algorithms evaluated. We used the structure of A+AT in the experiments
with nonsymmetric matrices.

5. Training sets and the resulting heuristics

A previous publication [16] used matrices contained in the SuiteSparse matrix collection [8] with sizes greater
than 1 000 000 to apply the resulting heuristics such that we could use a sufficient number of matrices from the
same application area in the training stage of the ACHHHC algorithm and with sizes greater than 2500. Thus, this
present paper used (non)symmetric matrices from (two) four application areas in this matrix collection. Table 1
shows the matrices used in the learning process for the ACHHHC system. We executed the ACHHHC system
with the training sets listed in Table 1 and recorded the best-of-run individual heuristic for each application
domain. As a result, the ACHHHC system selected the best-evolved heuristic for each training set. In all cases,
the ACHHHC algorithm selected the George-Liu algorithm to provide pseudoperipheral vertices to the reordering
procedure.

The ACHHHC system took two days to generate a heuristic for the bandwidth reduction of matrices aris-
ing from structural problems. The ACHHHC system took one day in each case to produce heuristics for the
bandwidth of matrices arising from the other application domains studied.

1Nonparametric statistical tests rely on a random sample. The reason is that a random sample is probably to be representative
of the sampled population. We selected the highest matrices arising from specific application areas contained in the SuiteSparse
matrix collection. Although forming a non-random sample, the sample represents the application domain matrix set. Then, the
results of applying the nonparametric statistical tests are acceptable.



2256 S.L. GONZAGA DE OLIVEIRA AND L.M. SILVA

Table 1. Matrices used in the learning process for the ACHHHC system.

Sparsity pattern Kind Matrix n |E|

Symmetric Computational fluid dynamics Press Poisson 14 822 715 804
ramage02 16 830 2 866 352
copter1 17 222 211 064
3dtube 45 330 3 213 618
stokes128 49 666 558 594
copter2 55 476 759 952

Electromagnetics pli 22 695 1 350 309
mhd4800b 4800 27 520
mhd3200b 3200 18 316
qc2534 2534 463 360

Thermal ted B 10 605 144 579
lshp3466 3466 23 896
lshp3025 3025 20 833

Structural pkustk05 37 164 2 205 144
pwt 36 519 326 107
bcsstk31 35 588 1 181 416
Ship 001 34 920 3 896 496
pkustk09 33 960 1 583 640
bcsstk35 30 237 1 450 163
bcsstm35 30 237 20 619
thread 29 736 4 444 880

Nonsymmetric 2D/3D kim1 38 415 933 195
2D 27628 bjtcai 27 628 206 670
shermanACb 18 510 145 149

Directed weighted graph cage11 39 082 559 722
EAT RS 23 219 325 592
foldoc 13 356 120 238

The ACHHHC algorithm developed new heuristics for bandwidth reduction since the priority formulas gen-
erated by the system were different from the priority formulas present in the literature. The simplified versions
of the priority formulas evolved in the resulting heuristics for bandwidth reduction are as follows.

The ACHHHC system selected, as the best individual program, a method consisting of a priority formula
evolved from the RCM method for symmetric matrices originating from structural problems. In this case,
the heuristic sorts the vertices adjacent to the current vertex in increasing order of degree using the formula
0.2084 · (Adj(w))6 + 0.86361 · (Adj(w))4 + 1.576708 · n − 0.246786 · (Adj(w))3. Afterward, the Hill-Climbing
procedure computes the matrix employing λ = 0.115115.

For symmetric matrices arising from 2D/3D problems, the ACHHHC system selected, as the best individual
program, a method comprised of priority formulas evolved from the RLK heuristic. In this situation, the heuristic
sorts the vertices adjacent to the current vertex in increasing order of degree using the formula 0.5417 ·(d(w))2−
0.94314 ·d(w)+0.0134 ·n, where d(w) is the degree of vertex w considering only adjacencies to unlabeled vertices
and n is the dimension of the matrix. The Hill-Climbing procedure then computes the matrix using λ = 0.2455.

The ACHHHC algorithm selected as the best individual program a method comprised of a priority formula
evolved from the KP-band heuristic such that the heuristic sorts the vertices adjacent to the current vertex in
increasing order of degree using the formula:

– (ς(w))4 − 0.23401 · (ς(w))2 + 2.304308 · n− ς(w) and the Hill-Climbing procedure then computes the matrix
employing λ = 0.275483 when applied to symmetric matrices arising from CFD problems,
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– (ς(w))4 − 0.6487 · (ς(w))2 − 1.31478 · (ς(w))4 · n and the Hill-Climbing procedure then computes the matrix
using λ = 0.353461 for symmetric matrices arising from electromagnetics problems,

– 0.26454 · (ς(w))4 + 0.84624 · (ς(w))2− ς + 0.3497 and the Hill-Climbing procedure then computes the matrix
employing λ = 0.62537 for symmetric matrices arising from thermal problems,

– ς and the Hill-Climbing procedure then computes the matrix using λ = 0.4899 for directed weighted graphs,

where ς(w) is the sum of degrees of vertices connected to vertex w.

6. Results and analysis

In this section, we show the bandwidth results yielded by the new heuristics for bandwidth reduction in
tandem with the specialized Hill Climbing procedure for specific application domains, as described in Section 5.
The ACHHHC system proposed in Section 3 generated the approaches. We compare the results yielded by the
strategies with low-cost state-of-the-art heuristics for the bandwidth reduction of symmetric and nonsymmetric
matrices arising from six application areas. Specifically, we evaluate the results with the RCM, RBFS-GL, and
KP-band heuristics and the resulting heuristics from the ACHH algorithm [17] (i.e., without employing the
local search procedure). Additionally, we compare the results yielded by the new approaches with the RCM,
RBFS-GL, and KP-band together with the Hill Climbing procedure. We refer to the RCM method combined
with Hill Climbing as RCMHC. Along the same lines, we refer to the KP-band and RBFS-GL heuristics as
KPHC and RBFSHC, respectively.

Table 2 shows the bandwidth results yielded by the resulting heuristics from ACHHHC. Additionally, the table
shows the bandwidth results delivered by the RCMHC, RBFSHC, and KPHC. The same table also reproduces
the bandwidth solutions provided by the RCM, RBFS-GL, and KP-band heuristics and the resulting heuristics
from the ACHH algorithm [17] (i.e., without using Hill Climbing). Table 2 highlights in boldface the best results.

A previous publication [17] showed that the resulting heuristic from the ACHH system dominated the RCM,
RBFS-GL, and KP-band heuristics (without using the local search procedure). Additionally, Table 2 shows
that different approaches dominated the RCM, RBFS-GL, and KP-band heuristics without employing the local
search procedure in each application area. Then, we concentrate the analysis to evaluate the results yielded by
five approaches. We compare the resulting method generated by the ACHHHC system with four approaches: the
resulting heuristics from the ACHH algorithm [17] (i.e., without employing the local search procedure), and the
RCM, RBFS-GL, and KP-band together with the Hill Climbing procedure. In Sections 6.1 and 6.2, we report
the heuristic results when applied to symmetric and nonsymmetric matrices, respectively.

6.1. Symmetric matrices

We analyze the results yielded by five heuristics applied to symmetric matrices arising from four application
domains in this section. In Sections 6.1.1 through 6.1.4, we report the heuristic results when applied to matrices
arising from CFD, thermal, electromagnetics, and structural problems, respectively.

6.1.1. Matrices arising from CFD problems

Metrics ρβ and υβ in Table 2 show that the approach generated (from the priority formula employed in the KP-
band heuristic) by the ACHHHC algorithm described in Section 3 yielded, in general, better bandwidth results
than did the other approaches evaluated when applied to symmetric matrices arising from CFD problems. We
ran the Friedman test to compare the results yielded by five methods: the resulting method from the ACHHHC

system, RCMHC, RBFSHC, KPHC, and the resulting heuristic evolved by the ACHH algorithm [17] when
applied to three matrices arising from CFD problems. The null hypothesis for the test was that the methods all
provided identical results or that the samples differed in some means. The alternative hypothesis was that at
least one method did yield different results. The total ranks for each of the five algorithms were 3 (ACHHHC), 7.5
(ACHH), 8.5 (RBFSHC), 11.5 (KPHC), and 14.5 (RCMHC). Therefore, χ2

F = 10. The nonparametric statistical
test rejected the null hypothesis because χ2

F ≥ 9.6, which is the critical value when using α = 0.025 and the
k = 5 table, as that was how many methods we had.
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Table 3. Multiple comparisons with the resulting method from the ACHHHC system through
Conover post-hoc test and FWER adjusted using Holm–Bonferroni (HB) method when using
matrices arising from CFD problems.

Hyp. Method T -stat. p-value HB
H1 RCMHC 6.6 0.0002 X
H2 KPHC 4.9 0.0012 X
H3 RBFSHC 3.2 0.0131 X
H4 ACHH 2.6 0.0317 X

We also ran the Iman-Davenport test. The nonparametric statistical test returns FF = 10. Thus, FF ≥
F (4, 2×8) = 7, which is the critical value at 1% significance level. In this case, p-value = 0.003344. Consequently,
the Iman-Davenport test also rejected the null hypothesis of the equivalence of rankings at a high level of
significance.

The Friedman and Iman-Davenport tests produced significant results. Subsequently, we conducted the
Conover post-hoc test to pinpoint whether the pairwise groups have significant differences. The null hypothesis
was that the algorithms yielded the same results. The alternative hypothesis was that the algorithms yielded
different results. Afterward, we adjusted FWER applying the Holm–Bonferroni method (Holm’s sequential Bon-
ferroni procedure) at α = 0.05. Table 3 shows that the method rejected the null hypothesis for H1 (RCMHC),
H2 (KPHC), H3 (RBFSHC), and H4 (ACHH). Thus, the table shows that the results are significant for the
four cases.

Section 5 proposed a new approach to reduce the bandwidth of symmetric matrices arising from CFD prob-
lems. The new heuristic is a variant of the KP-band heuristic executed in conjunction with the Hill-Climbing
procedure with parameter λ specific to matrices arising from CFD problems. The ACHHHC system proposed
in the present study generated the new method. Thus, Table 3 shows that the new heuristic produced by the
ACHHHC approach dominated the resulting heuristic from the ACHH system [17] without using Hill Climbing.
The same table shows that the new heuristic also dominated RCMHC, KPHC, and RBFSHC.

6.1.2. Matrices arising from thermal problems

Metrics ρβ and υβ in Table 2 show that the method evolved (also from the priority formula employed in the
KP-band heuristic) by the ACHHHC system delivered better bandwidth results than the other approaches eval-
uated when applied to all symmetric matrices originating from thermal problems. We also ran the Friedman test
to compare the results yielded by five methods: the resulting heuristic from the ACHHHC approach, RCMHC,
RBFSHC, KPHC, and the resulting heuristic evolved by the ACHH algorithm [17] when applied to five matrices
arising from thermal problems. The null hypothesis for the test was that the methods all provided identical
results or that the samples differed in some means. The alternative hypothesis was that at least one method did
yield different results. The total ranks for each of the five algorithms were 7.5 (ACHHHC), 13 (RCMHC), 13.5
(ACHH), 19 (RBFSHC), and 22 (KPHC). Therefore, χ2

F = 11. The nonparametric statistical test rejected the
null hypothesis. The reason was that χ2

F ≥ 9.0, which is the critical value when using α = 0.05 and the k = 5
table.

We also ran the Iman-Davenport test. The nonparametric statistical test returns FF = 4.163, so p-value is
0.01688. Quade test returned T3 = 4.167 and, therefore, T3 ≥ FF ≥ F (4, 4× 4) = 3, which is the critical value
at 5% significance level. Therefore, the Iman-Davenport and Quade tests also rejected the null hypothesis.

In this case, we also ran the Friedman aligned ranks test using the data sets delivered by metric ρβ . Thus,
all matrices are on the same scale. The total ranks for each of the five algorithms were 31.5 (ACHHHC), 49.5
(ACHH), 54 (RCMHC), 90 (RBFSHC), and 100 (KPHC). Therefore, T = 10.7, so p-value is 0.03015 and
T ≥ 9.488, which is the critical value when using α = 0.05 and four degrees of freedom. Consequently, the test
also rejected the null hypothesis. The nonparametric statistical test produced significant results. Afterward, we
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Table 4. Multiple comparisons with the resulting heuristic from the ACHHHC system through
a post-hoc test [9] and FWER adjusted using Li procedure at α = 0.05 when using matrices
arising from thermal problems.

Hyp. Method z p-value Li

H1 KPHC 6.1 0.00001 X
H2 RBFSHC 5.2 0.00001 X
H4 RCMHC 2.0 0.04550 X
H3 ACHH 1.6 0.10960 7

applied a post hoc procedure [9] to compare the resulting heuristic from ACHHHC with the set of algorithms
evaluated in the study. The null hypothesis was that the heuristics yielded the same results. The alternative
hypothesis was that the heuristics yielded different results. Then, we adjusted FWER applying the Li procedure.
Table 4 shows that the method rejected the null hypothesis for H1 (KPHC), H2 (RBFSHC), and H3 (RCMHC).
Thus, the table shows that the results are significant for three cases. Furthermore, the same table shows that
the heuristic for bandwidth reduction generated by the ACHHHC system dominated KPHC, RBFSHC, and
RCMHC.

The statistical test did not reject the null hypothesis when determining whether the (ACHHHC, ACHH)
pairwise group has significant differences. Nevertheless, we can observe the results of the approaches in detail.
The heuristic for bandwidth reduction developed by the ACHHHC system yielded three better bandwidth results
than the heuristic generated by the ACHH algorithm [17] without using Hill Climbing. The resulting heuristic
from the ACHHHC and the resulting heuristic from the ACHH algorithm [17] delivered the same bandwidth
results when applied to the matrices thermomech TC and thermomech dM. Thus, metrics ρβ and υβ indicate
that the heuristic for bandwidth reduction generated by the ACHHHC approach proposed in the present study
yielded better overall results than did the resulting heuristic from the ACHH algorithm introduced in our
previous publication [17].

We also used the partial results from metric ρβ to calculate CEBM, which found averages MACHHHC = −0.025,
MKPHC = −0.011, MRCMHC = 0.001, MRBFSHC = 0.007, and MACHH = 0.020. Thus, CEBM confirms our
previous analysis and also indicates that ACHHHC is the best performance approach.

6.1.3. Matrices arising from electromagnetics problems

The total ranks calculated by the Friedman aligned ranks tests for each of the five algorithms analyzed
in this section were 80.5 (RBFSHC), 81.5 (RCMHC), 87 (KPHC), 101 (ACHHHC), and 115 (ACHH). The
nonparametric statistical test showed slight differences between total ranks. Friedman, Iman-Davenport, Quade,
and Friedman aligned ranks tests did not reject the null hypothesis in this case. Nevertheless, we can analyze
the results of the approaches in detail.

The heuristic generated by the ACHHHC algorithm returned the highest number of best results (in three
out of six test problems). Metric υβ = 0.02 calculated with the results provided by the heuristic for bandwidth
reduction created by the ACHHHC system indicates that the method yielded overall bandwidth results almost
as small as the best results, recalling that the highest bandwidth results returned by the algorithms attenuate
this metric. However, the approach, applied to the matrices dielFilterV2real and dielFilterV3real, delivered
higher bandwidth results than the other approaches. These unsatisfactory results affected metric ρβ = 0.48.
Thus, metrics ρβ and υβ in Table 2 show that the heuristic for bandwidth reduction (from the priority formula
employed in the KP-band heuristic) produced by the ACHHHC algorithm did not provide the best bandwidth
results when applied to symmetric matrices deriving from electromagnetics problems.

Metric υβ = 0.01 in Table 2 suggests that KPHC yielded the most consistent bandwidth results. However,
the heuristic returned unsatisfactory results when applied to the matrices dielFilterV2real, dielFilterV3real,
2cubes sphere, and gsm 106857. The highest bandwidth results yielded by the algorithms attenuated the metric.
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On the other hand, metric ρβ is not bounded. Hence, the four unsatisfactory results influenced metric ρβ = 0.25
calculated with the results delivered by KPHC.

Table 2 shows that RBFSHC, applied to the matrix offshore, delivered an unsatisfactory bandwidth result. In
this case, the small original bandwidth did not attenuate metric υβ = 0.1. Metric ρβ = 0.18 in the same table,
on the other hand, shows that RBFSHC returned overall better bandwidth results than did the other methods
evaluated. As previously mentioned, RBFSHC, applied to the matrix offshore, yielded an unsatisfactory result.
Despite that, the strategy returned two out of six best bandwidth results. In particular, RBFSHC yielded
five better bandwidth results than KPHC. Thus, we considered that the former delivered, in general, better
bandwidth results than the latter at lower running times (see metric ρt in Tab. 2). Furthermore, RBFSHC
yielded four out of six better results than the resulting heuristic generated from the ACHH system [17] without
using Hill Climbing at lower running times (see metric ρt in Tab. 2).

We also calculated CEBM for this case. The averages were MRBFSHC = −0.008, MRCMHC = −0.003,
MKPHC = 0.000, MACHHHC = 0.004, and MACHH = 0.008. CEBM confirms our previous analysis and also
indicates that RBFSHC is the best performance approach. Thus, the local search procedure benefited the
heuristic for bandwidth reduction.

6.1.4. Matrices arising from structural problems

The heuristic (from the priority formula employed in the RCM method) generated by the ACHHHC algorithm
returned the best results in two out of eight test cases when applied to symmetric matrices from structural
problems. However, metrics ρβ and υβ in Table 2 show that the approach did not provide the best bandwidth
results.

Metrics ρβ and υβ in Table 2 show that RCMHC provided overall better bandwidth results than did the other
approaches evaluated when applied to matrices arising from symmetric structural problems. RCMHC yielded
five out of eight better results than the resulting heuristic generated from the ACHH algorithm [17] without
using Hill Climbing. Again, the local search procedure helped the heuristic for bandwidth reduction to find
small bandwidth results.

Friedman, Iman-Davenport, Quade, and Friedman aligned ranks tests did not reject the null hypothesis
also for this case. Thus, we calculated CEBM. The averages were MRBFSHC = −0.042, MKPHC = −0.035,
MRCMHC = −0.028, MACHH = 0.007, and MACHHHC = 0.097. In this case, CEBM indicates that RBFSHC and
KPHC yielded better results than RCMHC. However, RBFSHC and KPHC yielded an unsatisfactory solution
when applied to the matrix Geo 1438, whereas RCMHC delivered a satisfactory solution when applied to the
matrix. Metrics ρβ and υβ detect this type of result, but CEBM does not consider it. On the other hand, CEBM
emphasizes that the Hill Climbing procedure benefited the heuristics for bandwidth reduction.

6.2. Nonsymmetric matrices

We analyze the results yielded by five heuristics applied to nonsymmetric matrices arising from two application
domains in this section. Friedman, Iman-Davenport, Quade, and Friedman aligned ranks tests did not reject
the null hypotheses when applied to the two cases. Nevertheless, we examine the results of the approaches in
detail. In Sections 6.2.1 and 6.2.2, we report the heuristic results when applied to matrices arising from 2D/3D
problems and direct weighted graphs, respectively.

6.2.1. Matrices arising from 2D/3D problems

The total ranks calculated by the Friedman aligned ranks tests for each of the five algorithms analyzed in this
section were 28 (ACHHHC and ACHH), 46 (RBFSHC), 50.5 (RCMHC), and 57.5 (KPHC). The test revealed
slight differences between total ranks.

Metrics ρβ = 0.03 and υβ = 0.0009 in Table 2 show that the heuristic (from the priority formula employed
in the RLK heuristic) evolved by the ACHHHC algorithm yielded small bandwidth results. Additionally, the
approach returned the highest number of best results (in two out of four test problems).
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Table 2 also shows that the heuristic created by the ACHH system in the previous publication [17] (without
using of the Hill-Climbing procedure) returned no best bandwidth result. Despite that, metrics ρβ = 0.02 and
υβ = 0.0006 in the same table show that the heuristic yielded, in general, the most consistent results when
applied to symmetric matrices arising from 2D/3D problems. Additionally, the heuristic yielded, in general,
better bandwidth results than the heuristic generated by the ACHHHC system at lower running times (see
metric ρt in Tab. 2). Thus, we consider that the resulting heuristic from the ACHH algorithm proposed in the
previous study [17] remains the most promising approach to reduce the bandwidth of matrices arising from
2D/3D problems.

We also calculated CEBM for this case. The averages were MACHH = −0.032, MACHHHC = −0.031,
MRBFSHC = −0.004, MRCMHC = 0.007, MKPHC = 0.059. CEBM confirms our previous analysis and also
indicates that the heuristic generated by the ACHH system [17] (without using the Hill-Climbing procedure)
returned slightly better performance than the resulting method generated by ACHHHC.

6.2.2. Directed weighted graphs

In the Friedman test, the total ranks for each of the five algorithms were 10 (ACHHHC), 12 (ACHH), 12
(RBFSHC), 12.5 (KPHC), and 13.5 (RCMHC). The test showed tiny differences between total ranks. Then, we
calculated CEBM. The averages were MACHHHC = −0.007, MRCMHC = −0.005, MACHH = −0.004, MRBFSHC =
0.001, and MKPHC = 0.015. CEBM indicates that the heuristic generated by the ACHHHC system is the best
performance approach.

Metrics ρβ = 0.04 and υβ = 0.012 in Table 2 also show that the heuristic (from the priority formula employed
in the KP-band heuristic) evolved by the ACHHHC algorithm yielded small bandwidth results. Additionally, the
approach returned one out of four best results. However, the same metrics show that RCMHC and the resulting
heuristic from the ACHH system proposed in the previous study [17] produced slightly better bandwidth results
than the heuristic generated by the ACHHHC algorithm. The differences are very tiny, however. On the other
hand, ACHHHC yielded three out of four better results than RCMHC. Furthermore, ACHHHC and the resulting
heuristic from the ACHH system proposed in the previous study delivered the same number of best results.

Metric ρβ in Table 2 shows that RCMHC produced overall better bandwidth results than did the other
approaches evaluated when applied to directed weighted graphs. On the other hand, metric υβ in the same
table shows that the heuristic created by the ACHH algorithm in the previous publication [17] (without using
the Hill-Climbing procedure) yielded, in general, better bandwidth results than did the other approaches eval-
uated. As previously mentioned, the latter returned three out of four better bandwidth results than the former.
Additionally, the heuristic evolved by the ACHH algorithm in the previous publication [17] took slightly shorter
times than the heuristics generated by the ACHHHC system and RCMHC (see metric ρt in Tab. 2).

We conclude that employing Hill Climbing, applied to directed weighted graphs, did not sufficiently benefit
the heuristics. Thus, we consider that the heuristic generated by the ACHH algorithm in the previous publication
[17] (without using the Hill-Climbing procedure) also remains the most promising approach when considering
directed weighted graphs.

7. Conclusions

This paper concentrated on the bandwidth reduction problem for large-scale sparse matrices in serial compu-
tations. Specifically, this paper extended a hyper-heuristic based on the ant colony optimization metaheuristic.
The hyper-heuristic generates or selects heuristics for the bandwidth reduction of symmetric and nonsymmetric
matrices. Specifically, we included a local search procedure in the approach. The investigation integrated low-
cost state-of-the-art heuristics for bandwidth reduction with a specific Hill-Climbing algorithm. The experiments
compared the resulting heuristics for bandwidth reduction generated by the ACHHHC algorithm with low-cost
state-of-the-art heuristics for this problem.
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As in our previous approaches [16, 17], we provided the ACHHHC algorithm with components of the central
structure of the RCM, KP-band, RBFS-GL, and RLK heuristics. The ACHHHC system develops a specific-
purpose heuristic for the application problem.

We trained the ACHHHC algorithm for classes of matrices arising from (non)symmetric matrices originating
from (two) four application areas in the learning process. As a result of the learning process, the ACHHHC system
generated an expert-level method combined with the Hill-Climbing procedure with a specially defined parameter
λ for each application area. Thus, the ACHHHC algorithm in the present study created new expert-level set
reordering algorithms in specific application domains. Although the training stage required approximately one
day on a workstation, the resulting reordering algorithm is fast, even using the Hill-Climbing procedure. The
resulting approach computes almost 90 million nonzero coefficients (in a matrix with a size larger than one
million) in approximately 10 s on a workstation in single-core computations (see Tab. 2).

The experiments conducted in this paper showed that the specific Hill-Climbing procedure benefited the
low-cost state-of-the-art heuristics for bandwidth reduction when applied to matrices with symmetric sparsity
patterns. The RBFS-GL (RCM) heuristic combined with Hill Climbing delivered the best bandwidth results
when applied to matrices arising from electromagnetics (structural) problems. Furthermore, the heuristics gen-
erated by the ACHHHC algorithm yielded overall better bandwidth results when applied to matrices arising from
two application areas (CFD and thermal problems). The resulting heuristics combined with the Hill-Climbing
procedure evolved by the ACHHHC algorithm are cheap and fast to implement, requiring less expertise in both
the problem domain and state-of-the-art heuristic methods. Similarly, the RBFS-GL and RCM heuristics in
tandem with the Hill-Climbing procedure are also fast and easy to implement. In particular, RBFS-GL with
Hill-Climbing computed almost 90 million nonzero coefficients (in a matrix with a size larger than one million)
in approximately four seconds on a workstation.

The results showed that the local search procedure, applied to nonsymmetric 2D/3D problems and direct
weighted graphs, did not help the heuristics for bandwidth reduction. We plan to design a local search procedure
that improves the bandwidth results yielded by the approach when applied to nonsymmetric matrices.

Executions in parallel can shift the balance between the time required to compute the labeling and the time
taken by the linear system solver. We also intend to investigate the effects of orderings in parallel implementations
of linear system solvers using OpenMP, Galois, and message passing interface systems. A systematic review of
parallel heuristics for bandwidth and profile reductions is another future step of this investigation. We also plan
to evaluate the new heuristics for bandwidth reduction implemented within the Intel R© Math Kernel Library
running on Intel R© Scalable processors.
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