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Abstract
Guillain-Barré Syndrome (GBS) is a neurological disorder affecting people of any age and sex, mainly 
damaging the peripheral nervous system. GBS is divided into several subtypes, in which only four are the 
most common, demanding different treatments. Identifying the subtype is an expensive and time-consuming 
task. Early GBS detection is crucial to save the patient’s life and not aggravate the disease. This work aims 
to provide a primary screening tool for GBS subtypes fast and efficiently without complementary invasive 
methods, based only on clinical variables prospected in consultation, taken from clinical history, and based 
on risk factors. We conducted experiments with four classifiers with different approaches, five different 
filters for feature selection, six wrappers, and One versus All (OvA) classification. For the experiments, 
we used a data set that includes 129 records of Mexican patients and 26 clinical representative variables. 
Random Forest filter obtained the best results in each classifier for the diagnosis of the four subtypes, in 
the same way, this filter with the SVM classifier achieved the best result (0.6840). OvA with SVM classifier 
reached a balanced accuracy of 0.8884 for the Miller-Fisher (MF) subtype.
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Introduction

Guillain-Barré syndrome (GBS) is an autoimmune system disorder that affects the peripheral 
nerves and their roots. It is the most common cause of flaccid paralysis, causing rapid weakness of 
the facial, respiratory, and swallowing muscles and limbs.1 GBS is commonly triggered by multifo-
cal inflammation of the spinal roots and peripheral nerves. In severe cases, the prolongation of 
neurons responsible for driving the nerve impulse is also damaged.2 The estimated annual inci-
dence of GBS is 0.61–2 cases per 100,000 people and approximately 25% of patients with GBS 
require intensive care. Despite adequate supportive treatment, 3.5% die because of complications 
related to respiratory muscle paralysis, heart attack, or thrombosis.3 This syndrome differs in terms 
of their appearance, duration, the symmetry of clinical manifestations and if they mainly damage 
myelin, axon, or mostly peripheral nerve fibers that are dedicated to the motor, sensory and auto-
nomic functions. Therefore the GBS is divided into subtypes, of which four are the most common: 
acute inflammatory demyelinating polyneuropathy (AIDP), acute motor axonal neuropathy 
(AMAN), and acute motor.4 Due to the variation in severity and treatment between sensory axonal 
neuropathy (AMSAN) and Miller-Fisher Syndrome (MF) subtypes, differentiation between them 
is crucial. Table 1 shows the difference between each GBS subtype.

One way to differentiate groups or subgroups in medicine today is through machine learning by 
creating predictive models. Machine learning is a technique that allows us to build a computational 
model that learns automatically, this model is then used to simulate and study the behavior of the 
variables under study. Thus, publications with clinical prediction models have increased in recent 
years.8 For example,9 identified and reviewed some of the machine learning and data mining appli-
cations in diabetes research as prediction and diagnosis, diabetic complications, genetic back-
ground and environment, and health care and management. They found that 85% of machine 
learning algorithms used a supervised learning approach10 reviewed the importance of machine 
learning in the prediction and diagnosis of cancer, using supervised learning techniques such as 
Artificial Neural Networks (ANNs), Bayesian Networks (BNs), Support Vector Machines (SVM), 
and Decision Trees (DTs)11 compared different machine learning algorithms such as SVM, Decision 
Tree (C4.5), Naive Bayes (NB), and k-Nearest Neighbors (k-NN) for the prediction and diagnosis 
of breast cancer; obtaining the best accuracy with the SVM model12 employed supervised learning 
techniques to diagnose Parkinson’s disease and discriminate against Progressive Supranuclear 
Palsy patients, obtaining an efficiency of approximately 90%13 applied a semi-supervised and self-
advice learning model to diagnose skin cancer using labeled and unlabeled data. Their model was 
tested with 100 dermoscopic images and the classification outperformed the most popular methods 
used in machine learning14 developed a machine learning model for the diagnosis of glaucoma. 
Their dataset included 399 cases for training and validation, and 100 cases for testing. Four differ-
ent algorithms were applied: C5.0, Random Forest (RF), SVM, and k-NN, reaching more than 90% 
of performance in its results. Despite all the work done in developing prediction models in chronic 
diseases, there is little literature regarding work with the GBS. The diagnosis and prediction mod-
els efficiently improve the detection and classification of diseases. In particular, the diagnosis of 
GBS is complicated due to a large number of intervening variables.

Previously, diagnosis models for GBS have been created using machine learning algorithms and 
using the common variables reported in the literature,15,16 obtained a performance higher than 
0.90% in the classification of GBS subtypes in a predictive model based on simple learning 
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algorithms. They conducted experiments with 15 single classifiers in two scenarios and using a 
dataset with 16 relevant features out of an original 365 feature dataset. In this case, 4 of the 16 
features were clinical, and the remaining features came from medical studies. Also,17 in a predic-
tive model based on the ensemble methods Boosting, Bagging, C5.0, RF, and Random Subspace, 
reached an accuracy of 0.9366.

In this work, we considered only clinical variables for the creation of our models. Our goal was 
to investigate if using only the clinical variables could create a diagnosis model for GBS with sig-
nificant acceptable accuracy. The advantage of having a purely clinical model is that the variables 
used are detected in medical consultation without the need for complementary studies. We aimed 
at simplifying previous diagnosis models.

For experiments, we applied four classifiers with different approaches: C4.5 (tree-based), SVM 
(kernel-based), JRip (rules-based), and k-NN (instances-based). In order to investigate if feature 
selection can increase the model’s accuracy, we also used filters and wrapper methods. Five filters 
were selected: Chi-squared, CFS (Correlation-based Feature Selection), Consistency, OneR, and 
Random Forest. These filters evaluate the goodness of the features based on their intrinsic charac-
teristics in a fast and simple way instead of based on the predictive model; this lead to detect which 
features are relevant for classification. Then, we choose six wrappers: GA (Genetic Algorithm), 
Random search, SFS (Sequential Forward Search), SBS (Sequential Backward Search), SFFS 
(Sequential Floating Forward Search), and SFBS (Sequential Floating Backward Search). The last 
four wrappers are Deterministic forward or backward search. Wrappers use a predictive model that 
scores feature subsets based on the error rate of the model, and produce the best selection of fea-
tures in each iteration. Finally, the One versus All (OvA) binarization technique was used. We 
compared the balanced accuracy of each created model, where 4 models include all the features, 44 
models were obtained using feature selection, and the remaining 16 models were obtained using 
OvA. Typical metrics evaluated the performance of the models in machine learning such as accu-
racy, balanced accuracy, sensitivity, specificity, Kappa statistic, and the receiver operating charac-
teristic curve (ROC). Our main metric was balanced accuracy, since our dataset is imbalanced. We 
used the Wilcoxon non-parametric test18 to find a statistical difference between the two best mod-
els. The two best models including all the features, the two models including only the relevant ones 
and the two best models with Ova technique.

Table 1. Difference between each GBS subtype.5–7

Subtype Condition progression Clinical progression

AIDP Macrophages invade intact myelin sheaths 
and undress the axons.

Sensorimotor GBS, often combined with 
cranial nerve deficits (especially bilateral 
weakness of facial muscles), frequent 
autonomic dysfunction and pain (often)

AMAN Macrophages invade the nodes of Ranvier 
where they insert between the axon and 
the surrounding Schwann-cell axolemma, 
leaving the myelin sheath intact.

Pure motor GBS; cranial nerves rarely 
affected.

AMSAN Similar to AMAN but also involve ventral 
and dorsal roots.

Resembles severe AMAN, but also 
sensory fibers are affected, leading to 
sensory deficits

MF Abnormality in sensory conduction, Cranial 
nerve protein involvement. Elevation of 
specific antiganglioside antibodies.

Ataxia, ophthalmoplegia, and areflexia
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This article is organized as follows: In section 2, we present a description of the dataset, the 
machine learning algorithms, and the performance measures used in the study. Section 3 describes 
the experimental procedure. In section 4, we present and discuss the experimental results. Finally, 
in section 5, we summarize the results, draw conclusions from the study, and suggest future work.

Materials and methods

Dataset

The dataset used in this work was collected at the Instituto Nacional de Neurología y Neurocirugía 
(National Institute of Neurology and Neurosurgery) in México from 1993 to 2002. There are 129 
patient records, each 1 classified with a kind of GBS subtypes: 20 AIDP, 37 AMAN, 59 AMSAN, 
and 13 Miller-Fisher. The original dataset has 365 features of which the first 38 are considered 
clinical; the other 327 correspond to laboratory tests, treatment, and patient tracking. Serological 
and neuroconduction studies confirmed the subtypes in each patient in this dataset.19 From the 38 
clinical features, 13 were discarded because they represent metadata, such as case number, file 
number, hospital admission date, discharge date, and duration in days of different situations, leav-
ing the 25 relevant clinical features shown in Table 2.

Machine learning algorithms

JRip. A ruled-based learner that implements the Repeated Incremental Pruning to Produce Error 
Reduction (RIPPER) algorithm. JRip identifies the classes by building a set of rules.20 A rule has 
the form:

if attribute1 <relational operator>

value1 <logical operator>

attribute2 <relational operator>

value2 . . . then

decision-value

C4.5. Builds a decision tree from training data using recursive partitions. In each iteration, C4.5 
selects the attribute with the highest gain ratio as the attribute from which the tree is branched,21 
resulting in a more simplified tree. C4.5 is a decision tree algorithm.

k-NN. Classifies by categories the untagged instances based on the majority class in the k-nearest 
neighbour in the training set. The classifier’s performance depends significantly on the distance 
metric used.22

SVM. Given a set of training instances (input space), where the instances belong to class A or class 
B, SVM uses a mapping function (kernel) to transform the input space into a dimension space 
upper (feature space).23 That is, if the input space is 2D, then it is assigned in a 3D space. In the 
feature space, SVM finds a hyperplane that gives the most significant separation between classes, 
called a maximum margin hyperplane. The maximum margin hyperplane has the most significant 
distance from the hyperplane to the closest training instances. Instances located on the boundaries 



Alarcón-Narváez et al. 5

of the hyperplane are called support vectors. However, the more considerable margin is not always 
the best solution since it can jeopardize the model’s generalization to new instances. SVM intro-
duces a parameter C that creates a soft margin that allows some errors in the classification, but at 
the same time penalizes them. An adjustment procedure is necessary to find the best value of C.

Table 2. Dataset features used in this work.

Variable Feature name Feature type

v4 Age 
v7 Days from the onset of muscle strength diminishing or cranial 

nerve compromise to the previous event


v9 Days from the onset of symptoms to seek medical advice 
v10 Days from the onset of respiratory distress 
v36 How many days required the breathing machine 
v5 Sex Male = 1, Female = 2
v21 Weakness Yes = 1, No = 2
v23 Paresthesia (feeling of tingling, burning skin) 
v34 Dyspnea (respiratory distress) 
v35 Required assisted ventilation 
v2 Diagnosis meets criteria Range from 1 to 5
v6 Previous event pathology Range from 0 to 5
v22 Symmetry Range from 0 to 2
v24 Upper limb muscle strength (strength in arms) Range from 1 to 6
v25 Lower limb muscle strength (strength in legs) 
v26 Location of symptom onset Range from 1 to 7
v27 Reflexes Range
v29 Affectation of extraocular muscles Range from 0 to 2
v30 Ptosis (drooping eyelid - cranial nerve III-) Range from 0 to 3
v31 Cerebellar affectation 
v32 Ataxic gait (cerebellar ataxic gait) Range from 1 to 3
v33 Cranial nerve involved Range from 0 to 9
v37 Complications Range from 0 to 8
v38 Involvement of sphincter (urinary and rectal) Range from 0 to 2
vS Season (spring, summer, fall, and winter) Range from 1 to 4

v2 is 1 = Asbury, 2 = Ropper, 3 = both, 4 = not comply, 5 = no clinical neurography of the facial nerve (NF).
v6 is the previous event presented: 0 = not present, 1 = upper respiratory tract infection, 2 = gastrointestinal, 3 = viral 
infection, 4 = other infection, 5 = history of GBS.
v22 is if the weakness is equal right and left, subjective: 0 to 2.
v26 is PM = pelvic members, TM = thoracic members.
v27 is reflex peripheral nerve response, Hyporeflexia + = decreased, Reeflexia 0+ = without reflexes, ++ = normal, 
Hyperreflexia +++ = increased reflexes.
v29 is the muscles that move the eye and represent cranial nerves (CN) III, IV, VI.
v35 is the need for an artificial breathing machine when the patient cannot breathe, usually due to respiratory arrest.
v37 is a lower respiratory tract infection: 1 = LRTI, 2 = scars, 3 = depression, 4 = other, 5 = no, 6 = anxiety, 7 = LRTI and 
anxiety, 8 = LRTI and scars.
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Feature selection

The feature selection method allows feature reduction, removing them to increase, or improve the 
performance. There are three kinds of feature selection: Filter, Wrappers, and Embedded. In this 
work, we will use the first two.24

Filters. Five filters were taken from the Fselector package: CFS (using correlation and entropy 
measures), Consistency (using consistency measure), Chi-squared (based on a chi-squared test), 
OneR (based on simple association rules involving only one attribute in condition part), and Ran-
dom Forest (using the Random Forest algorithm).25 The first two filters find a feature subset for 
discrete and continuous data, the remaining ones find weights of discrete attributes.

Wrappers. Six wrappers were taken from the mlr package: GA (genetic algorithm optimization 
method), Random search (where feature vectors are randomly created, up to a maximum number 
of features), SFS, SBS, SFFS, and SFBS (extending [forward] or shrinking [backward] a feature 
set).26

One-versus-all

OvA is a powerful technique and is conceptually simple. OvA turns multiclass classification into 
binary classification, comparing one class with all the remaining ones.27

Performance measures

Performance measures are a set of statistical techniques, created to describe the performance of 
models. Different sets of performance measures are applied to the single-label predictors and 
multi-label predictors.28

Balanced accuracy. Avoids inflated performance estimates in unbalanced datasets. It is the arithme-
tic mean of sensitivity and specificity or the average precision obtained in any of the classes.29 It is 
considered more precise than the accuracy when the dataset is unbalanced.

 
Balanced accuracy =

( ) ( )

2

TP

TP FN

TN

FP TN+
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Validation

The validation set approach we used for experiments was a train-test, a straightforward method. 
We divided two-thirds of the data for the training fitted to the model and one-third for testing and 
predicting.30

Experimental design

From the dataset described in section Dataset, 64 diagnosis models were created employing the 
four selected classifiers: 4 diagnosis models using all the features, 44 models using subsets of fea-
tures obtained after applying filters and wrappers, and 16 models were created using OvA.
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For each diagnosis model, we made 30 executions with different seeds to approximate a normal 
distribution, taking the balanced accuracy as the main metric in each case. For the models with 
classifiers k-NN and SVM, a pre-execution tuning was performed.

Regarding filters, CFS and Consistency provide a list of the most relevant features when exe-
cuted, creating a subset of the original dataset. With these two subsets we performed the 30 execu-
tions with different seeds. Chi-squared, OneR, and Random forest give a feature ranking as a 
result, i.e., a ranking of the listed features from most to least relevant. We picked the two best 
attributes, the three best features from these rankings, and so on until we picked them all. We cre-
ated subsets with each selection to find which subset of features gives the best performance. This 
evaluation was performed with 30 independent runs using each classifier.

Results for Chi-squared are shown in Figure 1(a), for OneR in Figure 1(b), and Random forest 
in Figure 1(c). Table 3 shows the feature selection of CFS and consistency filters and the ranking 
of the Chi-squared, OneR, and Random forest filters.

(a)

(b)

(c)

Figure 1. Balanced accuracy across 30 runs: (a) Chi-squared filter, (b) OneR filter, and (c) random forest.
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Table 3. Feature selection by filter.

CFS Consistency Chi-squared OneR Random forest

v2 v6 v21 v25 v25
v21 v25 v2 v31 v30
v22 v26 v30 v24 v29
v24 v27 v25 v30 v2
v25 v29 v29 v21 v31
v29 v35 v33 v26 v24
v30 vS v24 v33 v27
v31 – v31 v29 v21
v33 – v22 v6 v33
– – v5 v37 v5
– – v34 v38 v32
– – v23 v23 v10
– – v37 v22 v6
– – v26 vS v34
– – v35 v4 v35
– – v6 v7 vS
– – v27 v9 v23
– – v38 v10 v22
– – v32 v27 v9
– – vS v32 v38
– – v4 v34 v37
– – v7 v35 v26
– – v9 v36 v7
– – v10 v2 v36
– – v36 v5 v4

Table 4. Feature selection by wrapper.

SFS SBS SFFS SFBS GA Random

v25 v4 v21 v5 v2 v2
v30 v5 v25 v6 v5 v6
v37 v25 v30 v25 v6 v7
– v30 v37 v30 v7 v21
– – – – v21 v25
– – – – v25 v27
– – – – v29 v29
– – – – v30 v30
– – – – v31 v31
– – – – v33 v33
– – – – v34 v35
– – – – v35 v36
– – – – v36 v38
– – – – v38 vS
– – – – vS –
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On the other hand, wrappers create a new subset with some features collected with the particular 
search type, whether Random search, GA, forward, or backward search. These new subsets were 
tested in each of the selected classifiers. Table 4 shows the chosen feature subset by wrapper.

In the case of OvA, we turned the multiclass problem into a binary problem, comparing one 
GBS subtype against the remaining three. The new datasets AIDP versus ALL, AMAN versus 
ALL, AMSAN versus ALL, and MF versus ALL were tested in each of the selected classifiers.

A Wilcoxon statistical test was conducted to compare the two best models using all features for 
detecting all the subtypes, and the two best models using a feature selection method. We used a 
significance value of 0.05. Similarly, we applied the Wilcoxon test on the two best models for the 
detection of a subtype with One versus All technique. We used a non-parametric test because the 
initial conditions that guaranteed the credibility of parametric tests could not be met, making the 
statistical analysis less reliable with this type of test.

Experiments using the R platform were performed in RStudio 1.1.463; we use the psych, 
Rweka, Fselector, caret, pROC, rJava, partykit, kknn, randomForest, and e1071 packages.

SVM and k-NN were optimized through the tune function, assigning the values of 0.001, 0.01, 
0.1, 1, 10, 50, 80, and 100 for the C parameter in SVM, and the values 5–35 for k, distance 1 for 
Manhattan, and distance 2 for Euclidean in k-NN.

Results and discussion

Clinical variables are a group of variables used for the diagnosis of GBS. In the literature, all 
machine learning models include clinical variables plus complementary studies. The Instituto 
Mexicano del Seguro Social (Mexican Institute of Health) classifies GBS symptoms and signs in 
three types: typical, additional, and alarm.2 The IMSS states that the Asbury and Cornblath criteria 
are useful for diagnosing conventional forms of Guillain Barré syndrome. The lumbar puncture 
and electrophysiological studies (the most sensitive and specific diagnostic tests according to31 
were used to diagnose GBS in the Western Balkans1. The WHO3 defines GBS cases using the 
Brighton criteria, which are based on clinical and complementary tests such as neurophysiological 
studies and lumbar puncture. These diagnostic criteria were validated in another study with a popu-
lation of 494 adult patients with GBS.32

In the experiments performed in this work, only clinical variables were used. Table 5 shows the 
comparison of the best results obtained by each classifier with no filter, the corresponding filters, 
the average of the 30 executions, the standard deviation, the best, and the worst result. The highest 
average result obtained by each classifier is highlighted in bold. In Table 5 we can see that in most 
cases, using filters improves the balanced accuracy, except for Consistency in the JRip and k-NN 
classifiers.

For the two best models with all the variables for detecting all subtypes (denoted by † in Table 
5), the best results were obtained using the k-NN classifier with a balanced accuracy of 0.6563 and, 
in second place, using the JRip classifier with a balanced accuracy of 0.6265. In this case, there was 
a significant difference according to the Wilcoxon test. For the two best models using a feature 
selection method (denoted by ‡ in Table 5), first we have the k-NN and SVM applying Random 
forest as a filter, reaching a Balanced accuracy of 0.6740 and 0.6840, respectively. In this case, 
there was not a significant difference according to the Wilcoxon test. For the best two models using 
the OvA technique (denoted by † in Table 7), we reached with the MF subtype and the classifiers 
k-NN and SVM a Balanced accuracy of 0.8728 for k-NN and a balanced accuracy of 0.8884 for 
SVM. In these models, we found no significance with the Wilcoxon test.
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Table 5. Comparison of the best results by classifier and filter.

Classifier Parameters Balanced accuracy

 All Variables Chi squared CFS Consistency OneR Random 
forest

JRip Average 0.6265† 0.6549 0.6463 0.6098 0.6448 0.6606
SD 0.0459 0.0453 0.0523 0.0436 0.0414 0.0401
Best 0.7009 0.7336 0.7371 0.7142 0.7120 0.7371
Worst 0.5426 0.5179 0.5179 0.4557 0.5179 0.5791

C4.5 Average 0.6169 0.6430 0.6321 0.6270 0.6315 0.6438
SD 0.0599 0.0317 0.0436 0.0266 0.0578 0.0422
Best 0.6999 0.6934 0.7105 0.6851 0.7173 0.7294
Worst 0.4828 0.5578 0.5134 0.5544 0.5000 0.5714

k-NN Average 0.6563†* 0.6668 0.6658 0.6396 0.6590 0.6740‡

SD 0.0447 0.0435 0.0540 0.0304 0.0519 0.0371
Best 0.7337 0.7530 0.7891 0.6859 0.7559 0.7478
Worst 0.5681 0.5586 0.5121 0.5649 0.5714 0.6084

SVM Average 0.6254 0.6825 0.6778 0.6298 0.6603 0.6840‡

SD 0.0497 0.0486 0.0539 0.0543 0.0458 0.0548
Best 0.7427 0.7650 0.7960 0.7171 0.7294 0.7798
Worst 0.5249 0.5915 0.5443 0.4721 0.5544 0.5718

†= Two best results using all variables compared with a Wilcoxon test.
‡= Two best results using a feature selection method with a Wilcoxon test.
*= Significant difference according to the Wilcoxon test.
The highest average result of each classifier is highlighted in bold.

Table 6. Comparison of the best results by classifier and wrappers.

Classifier Parameters Balanced accuracy

 SFS SFFS SFBS SBS Random GA

JRip Average 0.6221 0.6141 0.6389 0.6198 0.6250 0.6301
SD 0.0292 0.0319 0.0296 0.0253 0.0445 0.0390
Best 0.6948 0.6662 0.7227 0.7014 0.7108 0.6851
Worst 0.5621 0.4900 0.5621 0.5621 0.5084 0.5084

C4.5 Average 0.6292 0.6268 0.6324 0.6232 0.6083 0.6165
SD 0.0279 0.0269 0.0303 0.0389 0.0478 0.0513
Best 0.7034 0.7034 0.7187 0.7145 0.7101 0.6948
Worst 0.5802 0.5596 0.5795 0.5468 0.4854 0.4978

k-NN Average 0.6443 0.6245 0.6523 0.6525 0.6159 0.6363
SD 0.0303 0.0447 0.0439 0.0380 0.0377 0.0371
Best 0.7231 0.7224 0.7332 0.7038 0.6949 0.7105
Worst 0.5863 0.5510 0.5777 0.5572 0.5151 0.5743

SVM Average 0.6486 0.6432 0.6483 0.6501 0.6531 0.6584
SD 0.0392 0.0441 0.0479 0.0490 0.0435 0.0382
Best 0.7324 0.7324 0.7426 0.7352 0.7387 0.7407
Worst 0.5729 0.5286 0.5377 0.5509 0.5724 0.5521

The highest average result of each classifier is highlighted in bold.
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Table 6 shows the balanced accuracy obtained using wrappers. Again, the SVM classifier 
achieved the best performance, this time wit GA wrapper. However, results show that using wrap-
pers for feature selection does not improve in comparison with filter selection.

One versus All (OvA) classification was applied on the four classifiers to all variables, i.e., with 
no feature selection method. OvA means that one subtype is compared versus the remaining ones. 
AIDP versus All, AMAN versus ALL, AMSAN versus ALL, and MF versus ALL. The best result 
was obtained with SVM classifier and OvA Classification comparing Miller Fisher subtype versus 
All, reaching a balanced accuracy of 0.8884%. This is mainly due to that Miller-Fisher syndrome 
(MF) is considered the most common variant of Guillain-Barré syndrome and is characterized by 
the clinical triad: ophthalmoplegia, ataxia, and areflexia.33 These clinical variables are represented 
in our work as the features v27, v30, and v32. Then, we can say that using only clinical variables, 
it is possible to identify the Miller Fisher GBS subtype from the others. Table 7 shows the average 
results across 30 runs.

Conclusion

In this work, we investigated whether it is possible to create a purely clinical diagnosis model that 
could quickly and efficiently classify GBS subtypes, through simple classifiers, feature selection 
by filters and wrappers, and OvA classification. To our knowledge, this work is the first attempt to 
improve the efficiency of the predictive models of GBS in medical practice.

In this study, we compare the models’ performance with the balanced accuracy parameter. The 
best performance obtained for the diagnosis of all subtypes was with the SVM classifier and the 
Random forest filter, achieving a balanced accuracy of 0.6840. But, a performance of 0.8884 with 

Table 7. Comparison of the best results by classifier and OvA.

Classifier Parameters Balanced accuracy

 AIDP 
versus ALL

AMAN 
versus ALL

AMSAN 
versus ALL

MF  
versus ALL

JRip Average 0.5472 0.5394 0.5014 0.8213
SD 0.0711 0.0542 0.0076 0.1241
Best 0.7500 0.7167 0.5417 0.9868
Worst 0.4028 0.4417 0.5000 0.5000

C4.5 Average 0.4995 0.5403 0.5392 0.7259
SD 0.0093 0.0570 0.0544 0.1336
Best 0.5278 0.6583 0.6499 0.9868
Worst 0.4583 0.4000 0.4405 0.4868

k-NN Average 0.5282 0.6003 0.6190 0.8728†

SD 0.0530 0.0530 0.0625 0.1099
Best 0.6528 0.7083 0.7551 1.0000
Worst 0.4444 0.4917 0.4760 0.4868

SVM Average 0.5032 0.5014 0.5600 0.8884†

SD 0.0602 0.0076 0.0564 0.0938
Best 0.6250 0.5417 0.6899 1.0000
Worst 0.3750 0.5000 0.4497 0.6118

†= Two best results using OvA technique compared with a Wilcoxon test.
The highest average result of each classifier is highlighted in bold.
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the SVM classifier was reached with the OvA selection on the MF subtype. Currently, our model 
can be useful for a statistical study of patient records to suggest conclusions and support 
decision-making.

The results achieved in this study show a significant acceptable accuracy for the diagnosis of 
one GBS subtypes. Yet, we have not found a way to build a purely clinical model that distinguishes 
the four subtypes of GBS. Our limitations to achieve such model is that there is no public data 
about this disease to make comparisons. Also, there are clinical variables often used for diagnosis, 
e.g., tachycardia, orthostatic hypotension, vasomotor signs, etc. that are not present in our dataset. 
However, these can only be identified when the condition has progressed.

Serological and neuroconduction studies identified the subtypes suffered by the patients 
included in the dataset. These studies are not included in this study because our objective was to 
develop a predictive model that use only variables obtained in clinical practice, in order to help as 
a primary diagnostic means.

In future works, we consider other techniques to improve the diagnosis through a screening tool 
in an emergency unit, and for improving the performance of models with solely clinical features. 
In order to improve our model, we can consider different single classifiers and metaheuristics, 
ensemble methods, data balancing techniques, and the One versus One (OvO) technique.
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