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RESUMO GERAL 

O mapeamento e monitoramento de mudanças na vegetação nativa fornece suporte para o 

desenvolvimento de estratégias de gestão, implementação de iniciativas de políticas e 

fornecimento de dados para modelagem de processos ecológicos e ambientais. Porém, biomas 

sazonais são naturalmente heterogêneos em termos de clima, solo, biodiversidade e ameaças 

representadas por atividades humanas e ocupação do solo. Neste cenário, esta tese tem como 

objetivo principal otimizar o mapeamento de mudanças na vegetação nativa baseado no método 

ensemble, que visa a combinar vários modelos básicos para produzir um modelo preditivo ideal. 

Para tanto, esta tese foi organizada em três artigos. No primeiro artigo (1), mapas de mudanças 

de diferentes índices espectrais foram avaliados em biomas sazonais em relação à concordância 

espacial entre mapas e entre uma base de dados de referência. Os resultados indicaram que 

houve uma baixa taxa de concordância espacial entre mapas, a qual não foi influenciada pelos 

biomas. Também foi encontrada uma relação entre índices e biomas, onde determinados índices 

performaram melhor em determinados biomas. Já no segundo artigo (2), foi avaliada a 

efetividade de um método ensemble e regionalizações baseadas em diferentes bases de dados 

no mapeamento de mudanças. O método ensemble combinou mapas de mudança do algoritmo 

LandTrendr e o algoritmo Random Forest. Os resultados mostraram que o método ensemble 

retornou ganhos em acurácia quando comparado com métodos mais simples. Além disso, o 

método de regionalização também mostrou ganhos em acurácia quando comparado ao método 

não regionalizado, sendo variáveis climáticas e sazonais as que mais se destacaram no ganho 

de acurácia. Por fim, o terceiro artigo (3), utilizou análise orientada ao objeto, e avaliou 

variáveis preditoras do LandTrendr e de semivariograma, no mapeamento e caracterização das 

mudanças na cobertura do solo. Três classes de mudanças na cobertura do solo (não mudança, 

perda de vegetação e pós mudança) foram mapeadas utilizando três bases de dados: 

LandTrendr, Semivariograma e Híbrida. A base de dados Híbrida retornou as maiores 

acurácias. Este estudo também indicou que variáveis do semivariograma podem capturar 

padrões de mudança no uso e cobertura do solo. Assim, a crescente necessidade em se mapear 

e monitorar mudanças na vegetação em biomas sazonais sugere que novas abordagens aqui 

propostas, sejam aplicáveis em larga escala e que retornem acurácias satisfatórias. 

 

Palavras-chave: Sensoriamento remoto. BFAST. LandTrendr. Regionalização. 

Semivariograma.  

  



 

 

GENERAL ABSTRACT 

Mapping and monitoring disturbance in vegetation provide support for developing management 

strategies, implementing policy initiatives, and providing inputs for modeling ecological and 

environmental processes. However, seasonal biomes are naturally heterogeneous in terms of 

climate, soil, biodiversity, and threats posed by human activities and land occupation. In this 

thesis, mapping and monitoring disturbances in native vegetation were optimized based on 

ensemble techniques, which uses multiple or committee classifiers combining their predictions. 

For this purpose, this thesis was organized in three articles. In the first one (1) disturbance maps 

of seasonal biomes from different spectral indices were evaluated based on the spatial 

agreement between maps and their accuracies. The results indicated a low rate of spatial 

agreement among index-based disturbance maps, which was minimally influenced by 

vegetation domain. In addition, index-based disturbance maps reflected site-specific sensitivity. 

In the second article (2), the effectiveness of a heterogeneous ensemble classification and data-

driven regionalization for improving vegetation disturbance mapping accuracies over large 

areas was assessed. The ensemble method combined disturbance maps from the LandTrendr 

algorithm and Random Forest. The results indicated gains in accuracy by the ensemble method 

compared to non-ensemble methods of disturbance mapping. In addition, data-driven 

regionalization addressed complexities arising from variability in vegetation types, local 

climate, and topography across our study area, identifying climate and seasonal metrics as 

important variables for reducing uncertainties in vegetation disturbance maps. Finally, the third 

article (3) used object-based image analysis and evaluated predictor variables from both 

LandTrendr and semivariogram for mapping and characterizing land cover changes. Three 

classes of land cover changes: non-change, vegetation loss, and pos-change, were set combined 

with three datasets: LandTrendr, Semivariogram, and Blended. The Blended datasets returned 

the best accuracies. This article also indicated that semivariogram variables faithfully captured 

patterns of vegetation loss and recovery. Thus, the increasing need for mapping and monitoring 

disturbances in seasonal biomes suggests that the methods and algorithms presented in this 

thesis, return satisfactory accuracies and may be suitable for large-area applications.  

 

Keywords: Remote sensing. BFAST. LandTrendr. Regionalization. Semivariogram. 
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FIRST PART 

1 INTRODUCTION 

Anthropogenic disturbances in tropical forest environments (e.g., selective logging and 

wildfires) are considered one of the major drivers of biodiversity loss (BARLOW et al., 2016) 

and the second largest source of anthropogenic greenhouse gas emissions (VAN DER WERF 

et al., 2009). Thus, detecting and monitoring forest disturbance is of vital importance as they 

are also linked to economic activities, governmental investments and funding, or product supply 

for local or international markets (TRUMBORE; BRANDO; HARTMANN, 2015). 

Seasonal biomes in Brazil, for example, the Brazilian savanna, the semi-arid woodland, 

and the Atlantic forest are among the most threatened environments in the world due to high 

rates of conversion, and few conservation efforts focusing on these seasonal areas (ACERBI 

JÚNIOR et al., 2015). The Atlantic forest was subjected to considerable deforestation in the 

past, which reduced its occurrence to approximately 14% of its original area (RIBEIRO et al., 

2009). Savannas and semi-arid woodlands have been subject to more recent disturbance 

scenarios with increasing rates of land conversion. From 1990 to 2010, 266,000 km2 and 90,000 

km2 of vegetation were cleared in savanna and semi-arid woodland areas, respectively 

(BEUCHLE et al., 2015).  

Current research on vegetation disturbance mapping aims to accurate and timely 

detection of disturbances, and remote sensing data are the only feasible way to detect and 

monitor disturbances over large areas. However, this is not a trivial task, as disturbance 

detection is subject to a variety of noise factors including cloud cover, atmospheric scattering, 

and geometric errors (SCHULTZ et al., 2016). In addition, seasonal biomes are naturally 

heterogeneous in terms of climate, soil, biodiversity, and threats posed by human activities and 

land occupation, which may difficult conservation efforts in terms of automatically mapping 

and monitoring (TRANCOSO; SANO; MENESES, 2015).  

The opening of the Landsat archive in 2008 allowed the development of new disturbance 

mapping approaches (WULDER et al., 2019). Free global mid-resolution (30 m) remote 

sensing imagery and a long-term record of observations have enabled more accurate land 

change analysis, the characterization of disturbance drivers, and the monitoring of post-

disturbance conditions (WULDER et al., 2012). Methods and algorithms to detect and monitor 

vegetation disturbances have been developed to exploit the Landsat data archive and to examine 

long-term vegetation trends. For example, the Breaks For Additive Season and Trend (BFAST) 
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recently emerged as a reliable automated algorithm for detecting vegetation disturbances across 

the tropics (DEVRIES et al., 2015; DUTRIEUX et al., 2015; SCHULTZ et al., 2016b, 2018). 

It computes long-term trends and abrupt disturbances in a dense time series of a spectral index 

and then it produces sub-annual information on disturbances and trends (VERBESSELT et al., 

2010a). Another popular Landsat-based algorithm is the Landsat-based detection of Trends in 

Disturbance and Recovery, or LandTrendr (KENNEDY; YANG; COHEN, 2010). LandTrendr 

uses a pixel-based segmentation method to investigate land trajectories by modeling time series 

and computing straight-line segments, returning outputs as the magnitude, duration, and timing 

of a land disturbance. Although first developed to detect disturbances in forest environments 

(KENNEDY et al., 2012), LandTrendr has become popular for other vegetation analyses, such 

as disturbances in cropland patterns (ZHU et al., 2019a), natural disturbances in mangrove areas 

(DE JONG et al., 2021), and post-fire vegetation recovery (BRIGHT et al., 2019). 

Despite these promising results, some questions still remain. Most authors recognize 

that an optimal disturbance mapping technique does not yet exist since a single method might 

be not sensitive to the spatio-temporal heterogeneity of varied and continuous landscapes 

(HUSSAIN et al., 2013). An alternative to choosing a single method or algorithm for mapping 

disturbances is utilizing multiple classifier systems or a multi-algorithm ensemble. The 

ensemble technique for classification systems is based on multiple or committee classifiers 

combining their predictions. The objective is to exclude individual weaknesses and to benefit 

from particular advantages of each individual algorithm, reducing the generalization error 

(OZA; TUMER, 2008). In remote sensing studies, ensemble classification has produced better 

results than individual systems (BRUZZONE; COSSU; VERNAZZA, 2004; COHEN et al., 

2020; RODRIGUEZ-GALIANO et al., 2012; SHIMIZU et al., 2019). 

In this context, the main objective of this thesis was to optimize disturbance mapping in 

seasonal biomes using ensemble techniques. For this purpose, this thesis was organized in three 

articles. In the first one (1), the suitability of several spectral indices for mapping disturbances 

in different tropical vegetation domains using the BFAST Monitor algorithm was assessed and 

compared. The specific objectives of this first article were: to evaluate the spatial agreement 

between disturbance maps produced using seven spectral indices derived from Landsat 

Thematic Mapper/Operational Land Imager and input into BFAST Monitor, and the influence 

of vegetation domain on this agreement; and to evaluate the accuracies of these index-derived 

disturbance maps and their relationship with vegetation domain. 

In the second article (2), the effectiveness of a heterogeneous ensemble classification 

and data-driven regionalization for improving vegetation disturbance mapping accuracies over 
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large areas was evaluated. This paper first evaluated the performance of an ensemble method 

on mapping disturbances in a heterogenous vegetated area, investigating the benefit of using 

multiple classifiers by exploring their particular advantages. Second, a land regionalization 

scheme based on environmental and anthropogenic information was tested, where it was 

hypothesized that the grouping of land units and their respective variability will significantly 

improve the performance of disturbance mapping algorithms over traditional methods because 

these algorithms will be customized to each individual unit and their respective disturbance 

observations, returning gains in accuracy.  

In the third article (3), the accuracy of LandTrendr algorithm and the semivariogram 

features derived from NDVI images to map and characterize land-use and land-cover changes 

was evaluated. In this article, disturbance mapping accuracies from LandTrendr, 

semivariogram, and their combination as predictor variables were evaluated first; then gains 

and losses in accuracies were analyzed based on the relationship between classification 

accuracies and the number of classes plus land-use and land-cover change types. In addition, 

this article also analyzed patterns of change in accordance with the temporal behavior of the 

semivariogram parameters to infer vegetation loss and recovery. 
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2 LITERATURE REVIEW 

2.1 Tropical Seasonal Biomes in Southeast Brazil 

Tropical seasonal biomes play a key role in a global context. A particular characteristic 

that influences the stability of the Earth's climate system consists of the fact that these forests 

store 200–300 Pg C (1015 grams of carbon), about a third as much as stored in the atmosphere 

(PAN et al., 2011). This cycle is very dynamic, represented by tropical trees performing about 

60% of the world’s photosynthesis, capturing around 72 Pg C from the atmosphere every year, 

and releasing back a similar amount through respiration of both trees themselves and other 

living organisms (MITCHARD, 2018). Tropical seasonal biomes have long been recognized as 

one of the largest pools of biodiversity comprising more than half of the known species 

worldwide with a large number of rare and hyper-rare species (TOVO et al., 2017). In the 

tropics, forests have an important influence on the climate system as a major regulator of global 

climate by exchanging more water and carbon with the atmosphere than any other biome 

(LAWRENCE; VANDECAR, 2015). This multiplicity of forest functions and services directly 

rely on 1.5 billion people (LEWIS; EDWARDS; GALBRAITH, 2015). 

In southeast Brazil, tropical seasonal biomes are divided into three major vegetation 

domains or biomes: Atlantic Forest, Savanna, also known as Cerrado, and Seasonal Dry 

Tropical Forest, or Caatinga (Figure 1). The first one occurs along the coast, with a ‘dry 

diagonal’ of seasonally dry forest, woodland, and savanna vegetation formations (MIRANDA 

et al., 2018). 
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Figure 1 – Tropical seasonal biomes in southeast Brazil. 

 

Source: Author (2022). 

 

The Atlantic forest is composed of different types of vegetation, mostly including 

rainforests, semi-deciduous forests, as well as high-altitude grasslands. This vegetation domain 

has outstanding levels of species endemism, making the Atlantic forest a biodiversity hotspot 

(MYERS et al., 2000). 

The Cerrado biome has a unique vertically structured mosaic of plant formations among 

the savannas in the world (FERREIRA et al., 2003). It ranges from forest formations with a 

dense canopy cover to grasslands with sparse and short twisted trees, also being considered a 

biodiversity hotspot (MYERS et al., 2000). Approximately 90% of the rains are concentrated 

from October to April with annual precipitation ranging from 1200 to 1800 mm. 

The dry season is quite distinct with monthly precipitation reaching zero millimeters, 

inducing a wide range of adaptive phenological strategies in vegetation formations in order to 

overcome water scarcity. Semi-arid woodland, also known as the Caatinga biome, is an 

ecosystem occupied by a mixture of deciduous forests and herbaceous understory. It receives 

less than 750 millimeters per year of extremely irregular rainfall, where more than 75% of the 

total annual rainfall can occur within three months. In addition, annual variations in semi-arid 

woodland are large where droughts can last for a couple of years.  
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2.2 Vegetation Disturbances 

According to Lewis, Edwards and, Galbraith (2015), three major trends, caused by 

human activity, dominated tropical biomes over the years: the conversion to non-forest, mostly 

for expansion of farmlands and mining; degradation of remaining forest, i.e. by selective 

logging or fire; and regeneration of the secondary forest. Human-induced deforestation, defined 

as forest clearance and conversion to another land use, is probably the most direct ecosystem 

issue causing the permanent loss of forest cover (PRĂVĂLIE, 2018). Deforestation is driven 

by socioeconomic factors that range from local use to international markets and that occur 

legally and illegally, making their focalization and mitigation complex (LEWIS; EDWARDS; 

GALBRAITH, 2015). 

Vegetation disturbance quantification has received special attention in recent years by 

scientific studies. At the global scale, Keenan et al. (2015), based on the 2015 FAO Global 

Forest Resources Assessment (FAO, 2015), founded a decrease of tropical forests by ~1.9 M 

km² in the past twenty-five years, from 19.6 M km² in 1990 to 17.7 M km² in 2015. Achard et 

al. (2014), using sample blocks of Landsat images and considering forested pixels with >30% 

canopy in a 3 ha of minimum mapping unit, calculated a decrease of 1.3 M km² in twenty years, 

from 16.4 M km² in 1990 to 15.1 M km² in 2010. And Hansen et al. (2013), based on Landsat 

images, found a decrease of tropical forests by ~1.1 M km², considering canopy closure greater 

than 25% for all vegetation taller than 5m in height. 

Tropical deforestation has various environmental implications at global scales 

(PRĂVĂLIE, 2018). With regards to carbon emission, Pan et al. (2011) estimated a total 

emission (gross deforestation emission minus forest regrowth) of 1.3 (±0.7) Pg C per year 

(1990–2007), being the second-largest anthropic source of atmospheric CO2 after fossil fuel 

burning. Climate variation is also directly impacted from local to global scales, where a total 

tropical deforestation scenario could result in global warming equivalent to that caused by the 

burning of fossil fuels since 1850 (LAWRENCE; VANDECAR, 2015). In addition, forest 

removal is the main cause of land degradation by the water erosion process in drylands 

(PRĂVĂLIE, 2016). The impact on biodiversity is another relevant issue since animal and plant 

communities in forests fragmented by agriculture continue to decline after human impacts have 

occurred (EDWARDS et al., 2014). 

Although Brazil exhibited the largest decline in annual forest loss among tropical 

countries (40 K km².year-1 in 2003 to 2004 to 20 K km²/year in 2010 to 2011) accounted by 

Hansen et al. (2013), it also retains the deforestation scenario in South America in Amazon and 
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Seasonal biomes (KEENAN et al., 2015). In the Amazon, the decline in annual forest loss is 

observed in new large forest clearings (> 0.5 km²) drop of 46% over 2001 to 2014, while the 

number of new small clearings (< 0.01 km²) increased by 34% between the same period 

(KALAMANDEEN et al., 2018). Conversely, Savanna and Seasonal Dry Tropical biomes have 

been under increasing anthropic pressure for many years, indicated by ~266 K km² and ~90 K 

km² of gross forest loss in the past twenty years, respectively (BEUCHLE et al., 2015). The 

authors also demonstrated a decrease of the annual rate of loss in Savanna from 0.79% yr-1 to 

0.44% yr-1, while Dry Forests increased from 0.19% yr-1 to 0.44% yr-1. 

2.3 Remote Sensing and Disturbance Detection 

The remote sensing science extracts information of a target on Earth’s surface through 

a set of data provided by a sensor placed at an airplane or satellite (SCHOWENGERDT, 2007). 

Solar energy is the main source of energy in passive remote sensing and sensors are responsible 

to convert radiance received from a target into digital images or remote sensing images 

(SCHOWENGERDT, 2007). Thus, remote sensing is very important and efficient for land 

cover mapping and monitoring purposes because it is generally faster and less costly than the 

information collected at the ground level. It also provides an aerial perspective that allows a 

better understanding of the spatial relationships and invisible data to human sense such as 

spectral information in the infrared region (CONGALTON; GREEN, 2009). Thus, remote 

sensing science has become a universal practice in government agencies, environmental 

organizations, industrial sector, and research institutions (KENNEDY; YANG; COHEN, 

2010). 

Among a collection of applications in remote sensing science, detecting disturbances on 

the Earth’s surface is the process of identifying differences between images at different times. 

Remote sensing-based disturbance detection has developed many different methods over the 

past decades of satellite remote sensing, which have been reviewed by several authors 

(BANSKOTA et al., 2014; COPPIN et al., 2004; HUSSAIN et al., 2013; LU et al., 2004; 

TEWKESBURY et al., 2015; ZHU, 2017). Some of these review studies provided a 

comprehensive division of a disturbance detection project in different levels and aspects, such 

as the disturbance target, sensor characteristics, image frequency, pre-processing, unit of 

analysis, disturbance detection technique, and accuracy assessment (ZHU, 2017). Thus, 

disturbance detection is a highly variable and ever-expanding area of research with multiple 

fields of interest, i.e. deforestation, damage assessment, disasters monitoring, urban expansion, 

planning, and land management (HUSSAIN et al., 2013). 



23 

 

In forest environments, deforestation and degradation are the main disturbance targets, 

and the sensor is directly related to the scale of analysis. At the global scale, forest disturbance 

detection studies started with low spatial resolution sensors as Achard et al. (2002) using 1 km 

resolution Advanced Very High Resolution Radiometer – AVHRR images, and Mayaux et al. 

(2005) using 1 km resolution SPOT-4. Coarse resolution Moderate Resolution Imaging 

Spectroradiometer – MODIS image with 500m pixel size was used to detect forest disturbances 

(HANSEN; STEHMAN; POTAPOV, 2010). In recent years, an overwhelming increase in 

computing provided a foundation for Landsat forest disturbance over the globe by wall to wall 

mapping (GONG et al., 2013; HANSEN et al., 2013) or grouped into blocks (ACHARD et al., 

2014). At regional scales, the use of Landsat imagery increases due to free and open access, 

relatively high spatial resolution, and effectiveness in time series analysis (ZHU, 2017). In 

addition, very high spatial resolution imagery, such as Rapideye imagery (5m pixel size), 

became computational feasible to map forest disturbances (GÄRTNER; FÖRSTER; 

KLEINSCHMIT, 2016; MARX; TETTEH, 2017). 

Unit of analysis and disturbance detection technique are quite related. Although the unit 

of analysis is basically divided into pixel-based disturbance detection and object-based 

disturbance detection, Tewkesbury et al. (2015) subdivided it into the pixel, kernel, image-

object overlay, image-object comparison, multi-temporal image-object, vector polygon, and 

hybrid. The pixel is the most fundamental element of an image and it is still widely used in 

most disturbance detection, mainly in large areas where object-based analysis can be very time 

consuming (ACHARD et al., 2014; GONG et al., 2013; HANSEN et al., 2013; HANSEN; 

LOVELAND, 2012).  

Many disturbance detection methods are demonstrated in the literature, which were 

divided by Zhu (2017) into six major categories: thresholding, differencing, segmentation, 

trajectory classification, statistical boundary, and regression. Although the author reviewed 

these methodologies in Landsat time series and in multiple land cover and land use classes, they 

can be adapted for forest disturbance detection with similar Earth Observation instruments.  

I. Thresholding: assigns a predefined threshold for identifying disturbances in land cover, 

detected when there are significant deviations from the value as applied by Pickell et al. 

(2014) detecting anthropic forest disturbance combining autonomous disturbance 

detection procedure and a spectral threshold classification.  

II. Differencing: compares images acquired at different times, which was considered very 

effective in large areas, as demonstrated by Potapov et al. (2015) while quantifying 
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forest cover disturbance across Eastern Europe since the 1980s using supervised bagged 

classification in difference images.  

III. Trajectory classification: first extracts information from Landsat time series, and later 

uses this information to further classify every unit of analysis in time. Developed by 

Kennedy, Yang and, Cohen (2010), the LandTrendr method classifies pixel trajectories 

in forests by segmenting them into discrete periods of growth, disturbance, or recovery.  

IV. Statistical boundary: assigns an area as disturbance, when it follows a statistical 

boundary, i.e. Brooks et al. (2014) developed the Exponentially Weighted Moving 

Average Change Detection, an algorithm based on statistical quality control charts for 

detecting forest disturbance.  

V. Regression: assumes a linear or non-linear relationship between the time observations 

and the response variables using regression to estimate the output. They are relatively 

simple to use, but heavily reliant on accurate calibration when using different sensors 

(ZHU, 2017).  

Accuracy assessment of forest disturbance maps indicates the quality in a quantitative 

and meaningful fashion. Olofsson et al. (2014) recommended good practices for assessing 

accuracy in land change regarding sampling design, response design, and analysis. 

2.4 The Challenge of Detecting Disturbances in Seasonal Biomes 

To track disturbances over time, mapping methods rely on the selection of imagery in 

time, which needs the selection of appropriate imagery from the archive from which to derive 

disturbance information. An important challenge in the selection of imagery for such 

disturbance detection methods is the loss of data due to a number of contaminations. Clouds 

and cloud shadow significantly influence remote sensing imagery. The brightening effect of 

clouds and the darkening effect of cloud shadows significantly influence the reflectance of 

spectral bands. Screening of such contaminations is especially crucial for disturbance detection 

methods because undetected cloud and cloud shadow will likely result in the identification of 

disturbance where none occurred (ZHU; WOODCOCK, 2014). 

Another important challenge is the great variety of large-scale vegetation phenologies, 

which renders mapping and characterization difficult, including issues related to highly diverse 

seasonality, forest types, or forest densities and height (WHITE et al., 2010). A key challenge 

in remote sensing disturbance detection is to accurately identify disturbances in vegetation 

while not accounting for those associated with phenological differences, which is an intrinsic 

characteristic of seasonal biomes (TRANCOSO; SANO; MENESES, 2015). When images 
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from different seasons are acquired, disturbances caused by phenology in vegetation are 

inevitable and can be easily confused with forest disturbance (LU et al., 2016). 

2.5 Recent Advances for Vegetation Disturbance Detection 

Over the past several years, there have been significant advances in disturbance mapping 

algorithms that use Landsat data, taking advantage of the high-quality data archive that became 

freely available in 2008. Users of forest disturbance maps now have a palette of new products 

becoming available to choose from and they need to understand which are best suited to their 

needs (ZHU, 2017). 

2.5.1 Methods and Algorithms 

Not too recent but still important, object-based image analysis combines segmentation 

and remote sensing information along with analyst experience with image objects in order to 

model geographic entities (BLASCHKE, 2010; CHEN et al., 2012). Segmentation is the most 

common approach for building objects in images (VIEIRA et al., 2012), which has the objective 

of creating groups of pixels spectrally similar and spatially adjacent from an image with the 

purpose of minimizing the within-object variability compared to the between-object variability 

(DESCLÉE; BOGAERT; DEFOURNY, 2006). According to (CHEN et al., 2012), the 

advantages of object-based based approach on pixel-based disturbance detection methods are 

the segmentation procedure, which characterizes landscape elements by groups of 

homogeneous pixels; reduction salt and pepper effect attributed by small spurious disturbances; 

and the extraction of sophisticated information of the image objects as geometry and texture. 

Among the object-based disturbance detection methodologies described in scientific literature, 

Chen et al. (2012) classified them into four groups. 

I. Image-object change detection: it is similar to pixel-based when two or more segmented 

images are directly compared by the extraction of spectral and/or spatial information. 

II. Class-object change detection: a comparison “from-to” of image-objects defined by 

landscape classes, so additional classification information is required. 

III. Multi-temporal object change detection: objects are generated by two or more images 

with temporal information, where a set of images create one segmentation. 

IV. Hybrid change detection: involves the use of both object and pixel methodologies. 

 

As well as traditional spectral statistics, shape and texture descriptors extracted from 

objects, other textural or structural features derived from geostatistical functions can be 
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obtained (BALAGUER et al., 2010). In recent years, the semivariogram has gained a place 

among object-based disturbance detection procedures. Object-based classifications have been 

made using semivariogram features to mitigate the presence of phenological effects from time 

series to detect disturbances over forest ecosystems (ACERBI JÚNIOR et al., 2015; SILVEIRA 

et al., 2019, 2018a, 2018b). In Hermosilla et al. (2012), semivariogram features were used with 

other spectral, textural, and shape features extracted from high-resolution imagery for object 

classification in a disturbance detection problem in peri-urban areas with heterogeneous 

landscapes. Balaguer et al. (2010) demonstrated better performance of the combination of 

features derived from the semivariogram and spectral information with respect to the texture 

features derived from the gray-level co-occurrence matrix and spectral information. Powers et 

al. (2015) used semivariogram features for object-based classification to map industrial 

disturbances in forest areas. Gil-Yepes et al. (2016) explored a set of temporal features derived 

from geostatistical functions for object-based land-use/land-cover change detection using high-

resolution images. Silveira et al. (2017b) studied the semivariogram features to detect land 

cover changes resulting from a Brazilian dam failure using an object-based approach. 

Focusing now on the algorithms used in this thesis, the Breaks For Additive Season and 

Trend (BFAST) recently emerged as a reliable automated algorithm for detecting vegetation 

disturbances across the tropics (DEVRIES et al., 2015; DUTRIEUX et al., 2015; SCHULTZ et 

al., 2016b, 2018). BFAST was originally developed for detecting vegetation disturbances from 

a 16-day Moderate Resolution Imaging Spectroradiometer time series. It computes long-term 

trends and abrupt disturbances in a dense time series of a spectral index then produces sub-

annual information on disturbances and trends (VERBESSELT et al., 2010a). Later, BFAST 

Monitor emerged as a near-real-time means of identifying disturbances from a stable history 

period (VERBESSELT; ZEILEIS; HEROLD, 2012). Recent research has demonstrated the 

utility of BFAST algorithms and Landsat time series using different spectral indices over a 

variety of vegetation domains. For example, using Landsat time series and the normalized 

difference vegetation index, BFAST tracked small-scale disturbances in an Afromontane forest 

(DEVRIES et al., 2015), and identified annual land cover disturbances and their effect on 

vegetation greenness in a coastal region (LI et al., 2019). The algorithm was also useful for 

detecting burned areas in savanna regions, outperforming coarse-resolution burned area 

products (LIU et al., 2018). Moisture-related spectral indices, such as the normalized difference 

moisture index, were also assessed for detecting and attributing causes of disturbances in the 

Colombian Andes (MURILLO-SANDOVAL et al., 2018), and to identify forest degradation in 

mixed savanna and dry forest areas (SCHULTZ et al., 2018). Positive trends in vegetation were 
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evaluated by quantifying vegetation regrowth using the soil-adjusted total vegetation index of 

abandoned well pads in semi-arid lands (WALLER et al., 2018).  

The Landsat-based detection of Trends in Disturbance and Recovery, or LandTrendr 

(KENNEDY; YANG; COHEN, 2010), uses a pixel-based segmentation method to investigate 

land trajectories by modeling time series and computing straight-line segments. Trajectory-

based segments are further used for identifying forest disturbance events and capturing the 

associated information such as the year of event, duration, and magnitude of disturbance. 

Although first developed to detect disturbances in forest environments (KENNEDY et al., 

2012), LandTrendr has become popular for other vegetation analyses, such as disturbances in 

cropland patterns (ZHU et al., 2019a), natural disturbances in mangrove areas (DE JONG et 

al., 2021), and post-fire vegetation recovery (BRIGHT et al., 2019). In forest disturbance 

studies, Cohen et al. (2018) used LandTrendr to map forest disturbances across the 

conterminous United States. Yang et al. (2018) assessed the capability of the LandTrendr 

algorithm and Landsat imagery in surface mining area to detect the vegetation disturbance and 

characterize the historical dynamics. In Bueno, Silveira, and Acerbi Júnior (2019), the accuracy 

of LandTrendr disturbance maps in different tropical seasonal biomes (savanna and Atlantic 

Forest) was analyzed. De Marzo et al. (2021) detected disturbances related to forest degradation 

across the entire Argentine Dry Chaco using LandTrendr and dense Landsat time series. Souza 

et al. (2020a) evaluated the dynamics of savanna clearings and land degradation using 

LandTrendr and different satellite products. 

Another fast-growing trend in disturbance detection methodologies is the use 

of machine learning, especially deep learning algorithms, in the fields of geosciences (ZHU et 

al., 2017). Deep learning refers to machine learning algorithms that construct hierarchical 

architectures of increasing sophistication, with features that would normally be problematic for 

traditional machine learning to extract (REICHSTEIN et al., 2019). Applications to problems 

in land cover change are presented by Khan et al. (2017) detecting forest cover disturbances 

over a period of 29 years by filling incomplete data using deep neural networks, thus performing 

disturbance analysis at a finer temporal resolution and automatically improving the learning of 

disturbance features. Zhao and Du (2016) used a multiscale convolutional neural network to 

learn spatial-related deep features for hyperspectral remote imagery classification, generating a 

significant increase in classification accuracies. Zhang et al. (2016) used deep-architecture-

based feature learning to detect disturbances in multi-resolution image-pairs although 

demonstrating the effectiveness and superiority of the method. 

https://www.sciencedirect.com/topics/computer-science/convolutional-neural-network
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2.5.2 Accurate Datasets 

There have been positive developments in the Landsat program over the past years 

(WULDER et al., 2019). The most important advance to get accurate datasets was the free and 

open access to the Landsat archive, which has greatly benefited operational applications, 

scientific studies, and discoveries informed by analyses of large numbers of Landsat images 

(ZHU et al., 2019b). For example, global mapping of annual forest disturbance has been 

achieved using all available Landsat observations from 2000 to 2012, reporting a net forest loss 

of 1.5 million km2 (HANSEN et al., 2013). Another important advance was the effort to deliver 

high-quality Landsat data, such as the establishment of an on-demand atmospherically collected 

surface reflectance product capability for all Landsat Thematic Mapper, Enhanced Thematic 

Mapper plus, and Operational Land Imager imagery (ROY et al., 2014). In recognition of the 

need for improved usability and consistency among Landsat sensors, all data were reprocessed 

as Collection 1 with reprocessing finished May 2017 (DWYER et al., 2018). 

In 2014, the Global Forest Watch launched a web service that provides data for 

monitoring global forest disturbance over time. Worldwide maps of tree cover loss support the 

monitoring of more than 50 million hectares of forest (HANSEN et al., 2013). The dataset is 

now widely used by researchers, conservationists, and local communities with more than 2 

million users by 2018 (CURTIS et al., 2018). For example, Jutras-Perreault, Gobakken, and 

Ørka (2021) evaluated Global Forest Watch and LandTrendr maps to infer forest cover 

disturbance in a boreal environment, while Zhang et al. (2020) evaluated the accuracy and 

suitability of the GFW dataset for analyzing China’s forest cover. Other examples of worldwide 

maps are represented by Pekel et al. (2016) mapping global surface water, and Ying et al. (2017) 

mapping bare soils. Recently, another important dataset, MapBiomas, has become available 

that provides annual national-level land cover and land use maps for Brazil. MapBiomas, 

available from 1985 to 2020, classifies annual land cover and land uses using machine learning 

algorithms in multiple classes, such as forest formations, non-forest natural formations, 

farming, non-vegetated areas, and water (SOUZA et al., 2020b). 

2.5.3 Big Data Analysis 

High-performance and cloud computing systems are becoming popular over the last 

years as well as large archives of remote sensing data have become freely available on global 

scales (MA et al., 2015). Nowadays, the establishment of the Google Earth Engine platform 

provided many advances in disturbance detection studies, such as quick access of public 

geospatial data catalog, straightforward management of time series stacks, and agile 
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computation through parallel processing. These advances enable the creation of large-scale 

disturbance maps, and also a user-friendly format to run disturbance detection algorithms 

(GORELICK et al., 2017), such as the implementation of the widely used disturbance detection 

algorithms (HAMUNYELA et al., 2020; KENNEDY et al., 2018), availability of forest 

disturbance maps (HANSEN et al., 2013), and agile mapping in large areas (MIDEKISA et al., 

2017).  
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3 FINAL CONSIDERATIONS 

Methods and algorithms to detect and monitor vegetation disturbances have been 

developed to exploit the Landsat data archive and to examine long-term vegetation trends; 

however, an optimal disturbance mapping technique does not yet exist since a single method 

might be not sensitive to the spatio-temporal heterogeneity of varied and continuous landscapes. 

In addition, more research is required to investigate the capabilities of different spectral indices 

and algorithms combined with new methodologies in mapping disturbances of seasonal biomes. 
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Abstract: Detecting disturbances in native vegetation is a crucial component of many 

environmental management strategies, and remote sensing-based methods are the most efficient 

way to collect multi-temporal disturbance data over large areas. Given that there is a large range 

of datasets for monitoring, analyzing, and detecting disturbances, many methods have been 

well-studied and successfully implemented. However, factors such as the vegetation type, input 

data, and change detection method can significantly alter the outcomes of a disturbance-

detection study. We evaluated the spatial agreement of disturbance maps provided by the 

Breaks For Additive Season and Trend (BFAST) algorithm, evaluating seven spectral indices 

in three distinct vegetation domains in Brazil: Atlantic forest, savanna, and semi-arid woodland, 

by assessing levels of agreement between the outputs. We computed individual map accuracies 

based on a reference dataset, then ranked their performance, while also observing their 

relationships with specific vegetation domains. Our results indicated a low rate of spatial 

agreement among index-based disturbance maps, which itself was minimally influenced by 

vegetation domain. Wetness indices produced greater detection accuracies in comparison to 

greenness-related indices free of saturation. The normalized difference moisture index 

performed best in the Atlantic forest domains, yet performed poorest in semi-arid woodland, 

reflecting its specific sensitivity to vegetation and its water content. The normalized difference 

vegetation index led to high disturbance detection accuracies in the savanna and semi-arid 

woodland domains. This study offered novel insight into vegetation disturbance maps, their 

relationship to different ecosystem types, and corresponding accuracies. Distinct input data can 

produce non-spatially correlated disturbance maps and reflect site-specific sensitivity. Future 

research should explore algorithm limitations presented in this study, as well as the expansion 

to other techniques and vegetation domains across the globe. 

 

Keywords: change detection; BFAST; spectral indices; remote sensing; deforestation 

 

1 INTRODUCTION 

Anthropogenic disturbances in tropical environments (i.e., selective logging and 

wildfires) are considered one of the major drivers of biodiversity loss (BARLOW et al., 2016) 

and the second largest source of anthropogenic greenhouse gas emissions (VAN DER WERF 

et al., 2009). In the 1990–2010 period, global net losses of tropical forests averaged 6 million 

hectares per year (approximately 0.38% annually) (ACHARD et al., 2014). Such disturbance 

rates have received worldwide attention as tropical vegetation domains play such a key role in 
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global systems. Overall, they store 200–300 Pg. C (1015 grams of carbon) (PAN et al., 2011), 

account for about 60% of the world’s terrestrial photosynthesis (MITCHARD, 2018), provide 

habitats for more than half of the known species worldwide (TOVO et al., 2017), and are a 

major regulator of global climate (LAWRENCE; VANDECAR, 2015). 

Mapping disturbances in tropical domains plays a pivotal role in many environmental 

management strategies, and remote sensing data are the only feasible way to detect and monitor 

these disturbances over large areas. However, this is not a trivial task, as disturbance detection 

is subject to a variety of noise factors including natural forest phenology, cloud cover, 

atmospheric scattering, and geometric errors (SCHULTZ et al., 2016a). As a result, we require 

an understanding of the sensitivity and generalizability of disturbance detection methods across 

a variety of different vegetation types (GROGAN et al., 2016).  

The opening of the Landsat archive in 2008 boosted the application of vegetation 

disturbance detection from satellites. Free global mid-resolution (30 m) remote sensing imagery 

has enabled more accurate area estimation analysis, characterization of disturbance types, and 

monitoring post-disturbance conditions (WULDER et al., 2019). In addition, these new 

capabilities have been leveraged through the development of new time-series techniques for 

detecting and tracking disturbances (ZHU, 2017). For example, the Breaks For Additive Season 

and Trend (BFAST) recently emerged as a reliable automated algorithm for detecting 

vegetation disturbances across the tropics (DEVRIES et al., 2015; DUTRIEUX et al., 2015; 

SCHULTZ et al., 2016b, 2018). BFAST was originally developed for detecting vegetation 

disturbances from a 16 day Moderate Resolution Imaging Spectroradiometer (MODIS) time 

series. It computes long-term trends and abrupt disturbances in a dense time series of a spectral 

index, then produces sub-annual information on disturbances and trends (VERBESSELT et al., 

2010a). Later, BFAST Monitor emerged as a near-real time means of identifying disturbances 

from a stable history period (VERBESSELT; ZEILEIS; HEROLD, 2012). 

Recent research has demonstrated the utility of BFAST algorithms and Landsat time 

series using different spectral indices over a variety of vegetation domains. For example, using 

Landsat time series and the normalized difference vegetation index (NDVI), BFAST tracked 

small-scale disturbances in an Afromontane forest (DEVRIES et al., 2015), and identified 

annual land cover disturbances and their effect on vegetation greenness in a coastal region (LI 

et al., 2019). The algorithm was also useful for detecting burned areas in savanna regions, 

outperforming coarse-resolution burned area products (LIU et al., 2018). Moisture-related 

spectral indices, such as the normalized difference moisture index (NDMI), were also assessed 

for detecting and attributing causes of disturbances in the Colombian Andes (MURILLO-
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SANDOVAL et al., 2018), and to identify forest degradation in mixed savanna and dry forest 

areas (SCHULTZ et al., 2018). Positive trends in vegetation were evaluated by quantifying 

vegetation regrowth using the soil-adjusted total vegetation index (SATVI) of abandoned well 

pads in semi-arid lands (WALLER et al., 2018).  

Different spectral indices can return disparate accuracies when mapping disturbances in 

tropical forests using BFAST. In tropical dry forests, moisture-related indices achieved better 

spatial accuracies when compared to greenness-related indices (SMITH et al., 2019). Similar 

results were found in evergreen forests over the globe, although the canopy-related normalized 

difference fraction index (NDFI) outperformed moisture-related indices in this instance 

(SCHULTZ et al., 2016b). Another important element in disturbance detection studies is 

locational or regional variability, which can influence forest disturbance patterns. Disturbance 

detection methods over large areas usually opt for generalized vegetation types. A common 

strategy is to apply a predefined threshold for identifying forested areas and then detecting 

disturbed pixels when there are significant deviations from the threshold (ACHARD et al., 

2014; HANSEN et al., 2013). However, disturbance dynamics can differ across forest types, 

leading to misclassifications in large-scale analysis (CURTIS et al., 2018). Using BFAST, 

Schultz et al. (2016) observed different levels of edge effects in different sites while detecting 

forest disturbances. This led the authors to suggest that local forest disturbance patterns must 

be understood and algorithms must be tuned to account for regional conditions. Furthermore, 

Grogan et al. (2016), while observing their error distribution over forest types, found a site-

specific sensitivity to error imbalances when using a generalized forest model, i.e., they noted 

disturbance underestimation in evergreen forests and overestimation in dry forests. 

Research into Landsat spectral indices is comprehensive and the BFAST algorithms 

have received attention in tropical forests. However, no study has examined the algorithm’s 

performance across distinct vegetation domains while also investigating similarities between 

vegetation disturbance maps derived from different spectral indices. In addition, most recent 

disturbance detection studies frequently relate to forested areas, while non-forested areas, such 

as scrublands in savannas or open grasslands in semi-arid lands, are still not yet fully 

understood. 

In this paper, we compare the suitability of several spectral indices for mapping 

disturbances in different tropical vegetation domains using the BFAST Monitor algorithm. This 

study addressed the following questions: (1) How do vegetation disturbance maps derived from 

Landsat-based spectral indices spatially agree? (2) How accurate are these vegetation 

disturbance maps when compared to a reference dataset? (3) How does the vegetation domain 
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influence these agreements? Thus, our objectives were: (1) To evaluate the spatial agreement 

between disturbance maps produced using seven spectral indices derived from Landsat 

Thematic Mapper/Operational Land Imager (TM/OLI) and input into BFAST Monitor, and the 

influence of vegetation domain on this agreement; and (2) to evaluate the accuracies of these 

index-derived disturbance maps and their relationship with vegetation domain. To accomplish 

these objectives, we used a dense Landsat time series from 2003 to 2017 and calculated seven 

distinct spectral indices to detect disturbed pixels through the BFAST Monitor algorithm. We 

evaluated the disturbance maps’ accuracies and spatial similarity in three distinct vegetation 

domains in southeast Brazil: Atlantic forest, savanna, and semi-arid woodland.  

2 MATERIAL AND METHODS 

2.1 Study Sites 

The study area comprises three Worldwide Reference System grid (WRS-2) scenes 

dispersed across the Minas Gerais state of southeastern Brazil (Figure 1). These regions 

represent three distinct Brazilian vegetation domains: Atlantic forest (Path/Row: 218/75), 

savanna (Path/Row: 220/72), and semi-arid woodland (Path/Row: 218/70). 

The Atlantic forest is composed of different types of vegetation, mostly including 

rainforests, semi-deciduous forests, as well as high-altitude grasslands. This vegetation domain 

has outstanding levels of species endemism, making the Atlantic forest a biodiversity hotspot 

(MYERS et al., 2000). In the past, it was subjected to substantial disturbance activity and was 

reduced to approximately 14% of its original vegetation (RIBEIRO et al., 2009), becoming one 

of most vulnerable hotspots to global change (BELLARD et al., 2014). The greatest extent of 

the Atlantic forest scene is located in the south of the Minas Gerais state, extending over the 

states of São Paulo and Rio de Janeiro. The region is represented by a mix of plains in the 

northwest, and the Serra da Mantiqueira  mountain complex in the southeast of the scene. This 

region receives around 2000 mm annual rainfall with lower values into the continent and higher 

values found at montane areas. Most of the area does not show a climatological water deficit, 

leading to a low seasonal signal (MIRANDA et al., 2018).  

In Brazil, the savanna vegetation domain is represented by the Cerrado biome, which 

has a unique vertically structured mosaic of plant formations among the savannas in the world 

(FERREIRA et al., 2003). It ranges from forest formations with dense canopy cover to 

grasslands with sparse and short twisted trees, also being considered a biodiversity hotspot 

(MYERS et al., 2000). The savanna scene is located in western MG crossing to Goiás state, 
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where approximately 90% of the rains are concentrated from October to April with annual 

precipitation ranging from 1200 to 1800 mm. The dry season is quite distinct with monthly 

precipitation reaching zero millimeters, inducing a wide range of adaptive phenological 

strategies in vegetation formations in order to overcome water scarcity. The Brazilian savanna 

has been under increasing anthropic pressure due to policy-driven land conversion processes, 

as indicated by ~266,000 km2 of gross forest loss in the past twenty years (BEUCHLE et al., 

2015). 

Semi-arid woodland, also known as the Caatinga biome, is an ecosystem occupied by a 

mixture of deciduous forests and herbaceous understory. The scene occupies a northeastern 

portion of MG being mostly concentrated in Bahia state, with an extensive area of the Espinhaço 

mountain range. It receives less than 750 millimeters per year of extremely irregular rainfall, 

where more than 75% of the total annual rainfall can occur within three months. In addition, 

annual variations in semi-arid woodland are large where droughts can last for a couple of years. 

As the Brazilian savanna, these dry forests have been either converted from their native 

vegetation or modified in a major way, represented by ~90,000 km2 of forest loss with an 

increase from 0.19% yr−1 to 0.44% yr−1 in the past decades (BEUCHLE et al., 2015). 
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Figure 1 – The study scenes location and monthly precipitation information for Atlantic forest 

(AF), savanna (SAV), and semi-arid woodland (SAW) vegetation domains. Both 

Landsat views in wet and dry season are represented by a false color composition 

(Red = NIR, Green = shortwave infrared (SWIR), Blue = Red). 

 

Source: Author (2022). 

 

2.2 Pre-Processing 

As our study evaluates disturbances based on a time series modeling algorithm, a non-

native vegetation mask is important to limit the procedure to pixels that are established as 
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vegetation at the beginning of the study period. This avoided unnecessary computation time 

and further uncertainties. For this reason, we used the land use/land cover map of the Brazil’s 

Rural Environmental Registry (CAR, Cadastro Ambiental Rural in Portuguese) as a vegetation 

mask. The land use/land cover map used 5 m Rapideye and 30 m Landsat TM imagery to 

produce a valuable high-resolution large-scale product. This is used as input for land-use, 

environmental, economic, and territorial policies. CAR’s vegetation class comprises forested 

areas as well as non-forest native vegetation, i.e., lowland and montane grasslands, shrub lands, 

scrublands, and wetlands. We additionally masked temporary water bodies that were not 

accounted for by CAR’s layer using the Global Surface Water information (PEKEL et al., 

2016), which contains Landsat-based annual maps of the location and temporal distribution of 

surface water from 1984 to 2018. Temporary surface water is commonly located in the savanna 

and semi-arid woodland domains represented by veredas and wet grasslands, respectively 

(JUNK et al., 2014). They are composed of temporary ponds or streams where water content 

may range from water-logged soil to water bodies several meters deep. This natural decrease 

and increase in water levels based on a dry period of varying duration can be a source of noise 

in vegetation disturbance analysis. 

2.3 Landsat-Derived Spectral Indices 

We acquired Landsat TM/OLI-derived spectral index products provided by the U.S. 

Geological Survey’s Earth Resources Observation and Science Center (USGS EROS) (USGS, 

2020) from 2003 to 2017 across the three WRS-2 tiles covering the study region. Thematic 

Mapper (TM) and Operational Land Imager (OLI) products were converted to surface 

reflectance using the Landsat Ecosystem Disturbance Adaptive Process (LEDAPS) (MASEK 

et al., 2006) and Land Surface Reflectance Code (LaSRC) (VERMOTE et al., 2016), 

respectively. We selected all images available with less than 50% of cloud cover using the 

Function of Mask (Fmask) algorithm (ZHU; WOODCOCK, 2012) to generate cloud-free 

observations. 

A set of seven commonly used indices were downloaded from the USGS EROS website, 

which saved us from performing data preprocessing steps such as geometric and radiometric 

calibration, and band math calculations. These indices can be grouped into two broad categories 

based on their calculations using similar spectral wavelengths, and their resultant response to 

land surface vegetation. The first group employs a combination of red (Red, TM/OLI (0.630–

0.690 µm)) and near-infrared (NIR, TM (0.760–0.900 µm), OLI (0.845–0.885 µm)), and 

respond to actively photosynthesizing biomass. We label these ‘greenness indices.’ They 
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include and are built around the NDVI, the most frequently used index in remote sensing 

science, that was selected due to its use to quantify vegetation greenness (TUCKER, 1979). It 

is calculated as a normalized ratio between Red and NIR reflectance values (Equation 1). 

Higher NDVI values suggest higher amounts of photosynthetic active biomass. As the most 

popular index, NDVI time series have been used in many forest disturbance detection and 

monitoring efforts (GAO et al., 2019; WU et al., 2020). 

 

𝑁𝐷𝑉𝐼 =   
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷
 (1) 

 

We include three more greenness indices in this group, all of which are variations of the 

NDVI and which are designed to reduce saturation issues identified with this index—the 

enhanced vegetation index (EVI), the soil-adjusted vegetation index (SAVI), and the modified 

soil-adjusted vegetation index (MSAVI). The EVI, developed by Huete et al. (1999), was 

selected due its usefulness in regions with dense vegetation as it does not saturate as quickly as 

other vegetation indices. It incorporates the blue band (Blue, TM/OLI (0.450–0.520 µm)), 

which is atmosphere-sensitive and used to correct aerosol influences in the red band, canopy 

background adjustment L = 1.0, adjustable coefficients of atmospheric resistance C1 = 6 and 

C2 = 7.5, and the sensor’s gain factor G = 2.5 (Equation 2). As an improvement to NDVI 

regarding saturation issues in highly dense vegetation, EVI also has frequent use in tropical 

forest disturbance detection (GRINGS; ROITBERG; BARRAZA, 2020). 

 

𝐸𝑉𝐼 =  𝐺 × (
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝐶1 × 𝑅𝐸𝐷 − 𝐶2 × 𝐵𝐿𝑈𝐸 + 𝐿
) (2) 

 

In contrast to EVI, SAVI corrects NDVI by reducing the influence of soil brightness in 

areas with sparse vegetation (HUETE, 1988). It has a soil brightness correction factor L = 0.5 

(Equation 3), which can be sensitive to deforestation with incomplete forest canopy cover or 

located at the edge of forest remnants, which is related to forest degradation studies (SCHULTZ 

et al., 2018). 

 

𝑆𝐴𝑉𝐼 =  (1 + 𝐿) × (
𝑁𝐼𝑅 − 𝑅𝐸𝐷

𝑁𝐼𝑅 + 𝑅𝐸𝐷 + 𝐿
) (3) 
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Our final greenness index, the MSAVI, modifies SAVI by replacing the constant soil 

adjustment factor L with a self-adjusting function (Equation 4) (QI et al., 1994). In this version 

of MSAVI, the L factor is self-adjusted to the best vegetation density factor, reducing the soil 

background effects. The MSAVI is shown to increase the dynamic range of the vegetation 

signal while further minimizing the soil background influences, resulting in greater vegetation 

sensitivity as defined by a vegetation signal-to-soil noise ratio, showing usefulness for forest 

degradation studies (MATRICARDI et al., 2010). 

 

𝑀𝑆𝐴𝑉𝐼 =  
2 × 𝑁𝐼𝑅 + 1 − √(2 × 𝑁𝐼𝑅 + 1)2 − 8 × (𝑁𝐼𝑅 − 𝑅𝐸𝐷)

2
 (4) 

 

In addition to these four greenness indices, we include in our analysis three ‘wetness 

indices.’ These employ a combination of NIR and shortwave infrared (SWIR) reflectance in 

their formulae. The latter has shown lower reflectance in vegetation areas compared to other 

spectral regions due to absorption caused by water and the biochemical content of vegetation. 

However, they are frequently used in forest fire mapping (COLLINS et al., 2018) and forest 

recovery (BRIGHT et al., 2019), and due to water-related responses, these indices have also 

been used in forest disturbances related to anthropic practices (BUENO et al., 2019; SMITH et 

al., 2019). The wetness indices included in our analyses are: The normalized burn ratio (NBR), 

a second version of the NBR (NBR2), and the NDMI. The first two were originally designed 

for estimating post-wildfire burned area, and burn severity, while the latter is commonly used 

to track vegetation water content, water stress, and plant biomass changes more closely 

(WILSON; SADER, 2002). 

The NBR is calculated as a normalized ratio between NIR and the second Landsat SWIR 

band (SWIR2, TM (2.080–2.350 µm), OLI (2.100–2.300 µm)) reflectance (Equation 5) (KEY; 

BENSON, 2006). 

 

𝑁𝐵𝑅 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2
 (5) 

 

The second version of normalized burn ratio (NBR2) modifies NBR by replacing the 

NIR band with the first Landsat SWIR band (SWIR1, TM (1.550–1.750 µm), OLI (1.560–1.660 

µm)) (Equation 6) in order to highlight water sensitivity in vegetation (DEVRIES et al., 2016). 
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By using both shortwave infrared channels, this index is very sensitive to leaf moisture and is 

suitable for deforestation mapping (BUENO et al., 2019). 

 

𝑁𝐵𝑅2 =  
𝑆𝑊𝐼𝑅1 − 𝑆𝑊𝐼𝑅2

𝑆𝑊𝐼𝑅1 + 𝑆𝑊𝐼𝑅2
 (6) 

 

Finally, the NDMI adjusts the normalized difference formula by replacing the SWIR2 

band used in Equation (5) with SWIR1 (Equation 7). The NDMI has shown good accuracies in 

forest degradation (SCHULTZ et al., 2018), as well disturbances associated with forest type 

and harvest intensity (JIN; SADER, 2005). 

 

𝑁𝐷𝑀𝐼 =  
𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1

𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1
 (7) 

 

2.4 Vegetation Disturbance Maps 

In this study, we defined ‘disturbance’ as negative changes to the native vegetation 

induced by human activity that completely alters the land cover. The main process for this is 

the conversion of native vegetation to pastures or bare soil by logging practices. To detect these 

disturbances in native vegetation, we used the R package ‘bfastSpatial’ (VERBESSELT; 

ZEILEIS; HEROLD, 2012). BFAST Spatial applies BFAST Monitor over each stack of 

Landsat indices, where each pixel is represented by a time series. The method of detection is 

based on fitting a seasonal model on a period defined as having a stable land cover history and 

then checking the stability of this model during the disturbance analysis period.  

We assigned the stable history period to the years 2003 to 2007 and tuned BFAST 

Monitor to fit a first-order harmonic model in order to describe the native vegetation trajectories 

under seasonal changes. A first-order harmonic model helps to model the irregular distribution 

of Landsat observations that can result in model over-fitting (DEVRIES et al., 2015). 

Subsequentially, the monitoring period was assigned to the years 2008 to 2017 where the 

algorithm detects whether a new observation deviates from the stable history model. By 

computing a moving sum of the residuals based on an ordinary least squares model, a breakpoint 

is flagged when the moving sum deviates from zero beyond a 95% significance threshold.  

We extracted the magnitude-of-change from model breakpoints, where negative 

magnitude values are associated with vegetation loss (i.e., deforestation, wildfires, forest 
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degradation) and positive values are with vegetation cover gain (i.e., forest regeneration). 

However, model breakpoints may be associated with near-zero disturbance magnitudes that are 

not related to anthropic events; thus, a secondary classification arises as an important step to 

better distinguish anthropogenic disturbances from stable areas affected by seasonal variations 

(DEVRIES et al., 2015). For this reason, we defined a threshold of disturbance to obtain a 

binary map (disturbed, undisturbed).  

We then applied a threshold-based method to determine the binary changes by setting a 

fixed percentile of 10% (5% on each tail) of the data distribution. Particularly, a pixel was 

assigned as disturbed (value = 1) when its magnitude-of-change value was less than 5% of 

negative values or greater than 5% of positive values. Otherwise, it was assigned as undisturbed 

(value = 0). Positive change magnitude values (vegetation cover gain) were also classified as 

disturbance because a vegetation pixel with low reflectance values, i.e., scrublands, may be 

abruptly converted to high-reflectance land use, i.e., agriculture lands, which can result in a 

positive value of change along the time series. The selection of a suitable threshold value to 

identify change has been reported as a difficult task and is arbitrary as it is directly related to 

the exclusion and inclusion of change areas (HUSSAIN et al., 2013). However, this procedure 

guarantees the inclusion of an equal number of pixels of the index gain and loss, making it 

suitable to compare how change maps are similar through a unique change algorithm.  

It is worth recalling that our purpose here was not to produce the most accurate 

disturbance maps, but rather to compare effects of spectral indices and vegetation domain on 

different disturbance maps produced with consistent (and reasonable) workflows. 

2.5 Spatial Agreement and Accuracy Analysis 

Our procedure consisted of a spatial analysis of disturbed pixels adapted from Cohen et 

al. (2017) and performed on individual study scenes. We then compared disturbance maps with 

one another (spatial agreement analysis) to a reference dataset (see 2.5.3 Accuracy analysis) as 

illustrated in Figure 2. The first component—spatial agreement—was divided into two parts: 

(a) Overall agreement among the seven disturbance maps, and (b) paired agreement between 

maps. 
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Figure 2 – Schematic illustrating the data agreement analysis. Vegetation domains are 

represented by Atlantic forest (AF), savanna (SAV), and semi-arid woodland 

(SAW). 

 

Source: Author (2022). 

 

2.5.1 Overall Spatial Agreement 

The overall-agreement analysis consisted of summing the seven binary disturbance 

maps, producing an overall agreement map by vegetation domain. For each pixel, the number 

of maps labels that pixel as disturbance, producing an overall agreement map with eight 

numerical classes. These classes varied from one (meaning that only one particular spectral 

index detected a disturbance in a particular pixel) to seven (meaning a total agreement among 

disturbance maps for a disturbed pixel). The total agreement for undisturbed pixels was 

assigned as undisturbed vegetation. The number of pixels per class was extracted and plotted 

across the vegetation domains. In addition, we isolated classes ‘one’ and ‘two’ from the overall 
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agreement map (hereafter labeled as ‘class1‘ and ‘class2’), then analyzed these by ranking what 

indices most contributed for these low agreement counts. Class1 and class2 describe the lowest 

amounts of spatial agreement observed among the spectral indices in that they reflect locations 

where disturbance is detected by only one or two spectral indices, respectively.  

We analyzed these classes to better understand which indices contributed most to 

disturbance detection disagreements. Furthermore, we compared the influence of vegetation 

domain in map agreement. A one-way analysis of variance (ANOVA) was used to test whether 

agreement classes were significantly different across vegetation domains. If the difference was 

significant, the test indicated that vegetation domains affect the spatial agreement among 

vegetation disturbance maps. 

2.5.2 Paired Agreement 

To evaluate the spatial agreement of an individual disturbance map with those produced 

using the other six spectral indices and BFAST Monitor, we assessed paired agreement between 

individual maps. This paired agreement evaluation consisted of analyzing the similarity 

between two maps by vegetation domain. Similar to the overall agreement, here, we summed 

pairs of binary disturbance maps, which returned pixel classes of 0 (agreement to undisturbed 

class), 1 (disagreement), or 2 (agreement to disturbance class).  

We calculated the proportion of agreement of a map i with a map j by summing the 

agreement of disturbed pixels Nij and dividing by the number of disturbed pixels in both maps 

Ni and Nj, minus Nij (Equation 8). Proportions varied from 0 (total disagreement) to 1 (total 

agreement). Afterward, we plotted the paired agreement across the vegetation domains in order 

to produce a comprehensive visual interpretation. 

 

𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡𝑖,𝑗  =   
∑ 𝑁𝑖𝑗

∑ 𝑁𝑖 + ∑ 𝑁𝑗 − ∑ 𝑁𝑖𝑗
 (8) 

 

2.5.3 Accuracy Analysis 

For the accuracy analysis, we compared each disturbance map with a reference data set 

to quantify its accuracy. Reference data were compiled by creating fixed-area plots and then 

delineating disturbance polygons within the plot by visual interpretation using Landsat images. 

High-resolution imagery from Google Earth were also used, where available, as auxiliary 

information to infer land cover changes in ambiguous areas, i.e., non-native vegetation areas 
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included in the vegetation map mask. Square plots of 120 km2 were placed across each 

vegetation domain study area using a systematic point grid of 45 km by 45 km over the scenes. 

This sampling design represented 5% of each study area and was sufficiently large to contain a 

suitable number of deforestation observations (OLOFSSON et al., 2014).  

In order to balance the number of observations per class, we randomly selected 25 pixels 

per class (disturbed and undisturbed) in each area plot. A total of 1950 pixels (25 × 2 classes x 

13 area plots x 3 scenes) were used to analyze the change maps. We calculated accuracy 

measures for each map by summing the correctly detected observations and dividing by a) the 

total number of observations (overall accuracy), b) the proportion of the total number of 

observations labeled as disturbance in the reference but not labeled by a given map (omission 

rate), and c) the proportion of the total number of observations labeled as disturbance by a map 

set but not labeled by the reference (commission rate). 

We used ANOVAs to test whether there were significant differences in accuracy 

statistics across vegetation domains. We performed three separate tests, one for each accuracy 

statistic: Overall accuracy, producer’s accuracy, and user’s accuracy. Each test had three groups 

(vegetation domains) of seven samples (indices). The null hypothesis was that the relevant test 

statistics all came from the same population. 

We also performed McNemar’s tests to determine if there were statistically significant 

differences between the various pairwise map accuracies. McNemar’s test is a non-parametric 

test based on chi-square (χ2) statistics with 1 degree of freedom, which can be computed from 

two confusion matrices, and is suitable for assessing distinct mapping performances (SHIMIZU 

et al., 2019). McNemar’s test was applied using the R package ‘stats’ at a 95% confidence level 

and included a continuity correction to account for having a discrete statistic in a continuous 

distribution. 

3 RESULTS 

3.1 Spatial Agreement Analysis 

Overall disturbance map agreement insets are displayed in Figure 3a. These show the 

visual agreement between the different index-based maps with regard to the disturbed 

vegetation class. Considering each vegetation domain, the percentage of disturbed pixels in the 

overall disturbance map, wherein disturbed pixels are those where disturbance was detected by 

one or more spectral indices, was 13.7% in the Atlantic forest, 13.9% in the savanna, and 16.8% 

in the semi-arid woodland (Figure 3b).  
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In general, the agreement analyses returned a similar trend in disturbance agreement 

classes across the three vegetation domains, indicating that the latter did not influence patterns 

of spectral-index performance (Figure 3c). These results are reinforced by the ANOVA that 

revealed no statistically significant differences across vegetation domains with F(2, 18) = 0.239 

(p = 0.789). Mean (standard deviation) F-statistics for Atlantic forest, savanna, and semi-arid 

woodland were 1.95 (1.36), 1.98 (1.28), and 2.39 (1.37), respectively. 

 

Figure 3 – Overall agreement results. (a) Map insets for Atlantic forest (AF), savanna (SAV), 

and semi-arid woodland (SAW); (b) percentage of disturbed pixels by vegetation 

domain; (c) percentage of disturbed pixels by agreement class. 

 

Source: Author (2022). 
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For savanna and semi-arid woodland, the highest percentages of disturbed pixels were 

represented by class1 (33.1% and 31.1%, respectively) and class2 (16.6% and 17.2%, 

respectively). For Atlantic forest, the highest percentage of disturbed pixels was represented by 

class1 and class3, with 33.8% and 18.4%, respectively (Figure 3c). Table 1 provides the 

proportion that each spectral index disturbance map contributes to the classes class1 and class2 

of the overall agreement map. NBR2 contributed the most to class1 agreement (Atlantic forest 

= 39.7%, savanna = 43.1%, and semi-arid woodland = 39.5%) followed by NDVI and NDMI. 

Class2 was very balanced across the spectral indices in the Atlantic forest domain; however, in 

the savanna and semi-arid woodland domains, moisture indices, represented by NBR, NBR2, 

NDMI, and NDVI, were responsible for a high proportion of this class. 

 

Table 1 – Summary of proportions each spectral index disturbance map contributes to the 

classes class1 and class2. Vegetation domains are represented by the following 

acronyms: Atlantic forest—AF, savanna—SAV, and semi-arid woodland—SAW. 

 Class1 (%) Class2 (%) 

 AF SAV SAW AF SAV SAW 

EVI 11.4 5.1 6.0 12.0 5.9 6.4 

MSAVI 8.6 9.7 6.0 15.9 8.1 9.8 

NBR 4.0 5.3 5.1 17.8 26.1 22.6 

NBR2 39.7 43.1 39.5 15.2 19.6 21.8 

NDMI 9.8 16.2 19.4 13.8 19.7 15.0 

NDVI 22.8 18.8 20.7 11.7 13.6 15.7 

SAVI 3.6 1.7 3.2 13.7 7.0 8.8 

Total 100.0 100.0 100.0 100.0 100.0 100.0 

Source: Author (2022). 

 

Exploring the spatial relationships between individual spectral indices, there was an 

observable pattern in agreement across vegetation domains (Figure 4). Proportions of paired 

agreement greater than 0.70 (see Equation (8)) were expressed by EVI, MSAVI, SAVI, and 

their paired combinations, presenting the highest values of spatial agreement for all vegetation 

types. In addition, NBR and NDMI also presented high values of similarity among the 

vegetation domains (Atlantic forest = 0.71, savanna = 0.65, and semi-arid woodland = 0.59).  

On the other hand, low proportions of agreement were produced by NBR2 and its 

combinations with EVI, MSAVI, and SAVI (<0.30) for the three vegetation domains as well. 
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Low values of spatial agreement between the NBR2 index and other indices corroborate our 

earlier results in Table 1 with regard to the large contribution of this index to class1, at about 

40%. Although NBR2 presented very low similarity with most of the indices, exceptions were 

noticed with NBR (Atlantic forest = 0.48, savanna = 0.45, and semi-arid woodland = 0.46) and 

NDVI (Atlantic forest = 0.37, savanna = 0.40, and semi-arid woodland = 0.41). 

 

Figure 4 – Paired spatial agreement in detected disturbance between the seven spectral index 

disturbance maps. Proportions of agreement varied from 0 (total disagreement) to 1 

(total agreement) between indices. 

 

Source: Author (2022). 
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3.2 Accuracy Analysis and Index Performance 

Map accuracies are presented in Table 2. Overall accuracies varied across vegetation 

domains and varied slightly among indices. Among the study areas, NBR and NDMI indices in 

the Atlantic forest domain presented the highest overall accuracies of 82.1%, while the lowest 

result was registered by MSAVI map (78.2%). NDMI presented the poorest results for semi-

arid woodland at 54.6% overall accuracy. NDVI produced the highest overall accuracy for both 

semi-arid woodland (66.0%) and savanna (59.6%). Although savanna accuracies fell between 

the other two domains, it demonstrated a lower overall accuracy average when compared to 

semi-arid woodland, 56.6% versus 59.8%, respectively. 

 

Table 2 – Overall accuracy results (in percentage) from all vegetation disturbance maps—

Atlantic forest (AF), savanna (SAV), and semi-arid woodland (SAW). Average and 

standard deviation by vegetation domain are also presented. 

 EVI MSAVI NBR NBR2 NDMI NDVI SAVI Avg. Std. 

AF 78.9 78.2 82.1 81.2 82.1 81.1 78.7 80.3 1.6 

SAV 54.9 54.7 58.0 58.0 55.6 59.6 55.4 56.6 1.8 

SAW 57.8 57.5 61.1 62.9 54.6 66.0 58.5 59.8 3.5 

Source: Author (2022). 

 

Commission error, inversely related to the user’s accuracy, was variable among the 

vegetation types (Figure 5). Atlantic forest commission error rates followed overall accuracy 

trends across spectral indices, presenting low commission error rates by NDMI and NBR 

(7.3%), and the highest error rate by MSAVI (13.8%). In the semi-arid woodland vegetation 

domain, NDMI presented again higher error rates compared to its performance in the Atlantic 

forest, with the highest commission error for the former vegetation domain at 32.6%. Semi-arid 

woodland and savanna showed NDVI to produce the lowest commission errors at 10.9% and 

13.4%, respectively.  

Omission error, inversely related to the producer’s accuracy, presented considerable 

variability throughout the vegetation domains. A spectral index performance hierarchy similar 

to what was observed in overall accuracies and commission errors was observed in the Atlantic 

forest, with NDMI and NBR producing the lowest omission error rates (34.2%), and MSAVI 

producing a 37.9% error rate. Results for the savanna vegetation domain followed a similar 

pattern.  
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Finally, semi-arid woodland possessed the highest omission rate among all disturbance 

maps, represented by 82.2% in the NDMI disturbance map. As in the commission analysis, 

NDVI produced the lowest errors of omission in semi-arid woodland and savanna, at 62.2% 

and 67.4%, respectively. Our ANOVA revealed statistically significant differences for the three 

measures of accuracy across vegetation domains with F(2, 18) = 165.3, p = <  0.0001 for overall 

accuracy; F(2, 18) = 19.02, p = < 0.0001 for commission error; and F(2, 18) = 140.2, p = < 0.0001 

for omission error. Mean and standard deviations for vegetation domains are presented in Table 

2. 

Figure 5 – Omission and commission rates of the disturbances maps. 

 

Source: Author (2022). 

 

The McNemar’s test showed no statistically significant differences between spectral 

indices’ disturbance map accuracies in either the Atlantic forest or savanna. However, in the 

semi-arid woodland, there were significant differences between disturbance accuracies. The 

NDMI disturbance map, which provided the poorest accuracies in this vegetation domain, was 

statistically different from NBR, NBR2, and NDVI, the top three performing indices. The 

NDMI also produced the greatest paired difference in accuracies among all map comparisons 

(χ2 = 16.62, p-value < 0.0001) when tested against NDVI disturbance map accuracy. NDVI 

also presented significant differences with other spectral index maps, including EVI, SAVI, and 

MSAVI (Table 3). 
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Table 3 – Comparison of spectral indices disturbance accuracies using McNemar’s test in semi-

arid woodland vegetation domain. The upper number indicates the chi-squared value, 

the number in parentheses indicates the p-value, and bold values indicate statistical 

significance. 

 EVI MSAVI NBR NBR2 NDMI NDVI SAVI 

EVI 
0.00 

(1.0000) 
      

MSAVI 
0.01 

(0.9337) 

0.00 

(1.0000) 
     

NBR 
1.29 

(0.2555) 

1.56 

(0.2120) 

0.00 

(1.0000) 
    

NBR2 
3.25 

(0.0714) 

3.66 

(0.0557) 

0.41 

(0.5235) 

0.00 

(1.0000) 
   

NDMI 
1.29 

(0.2555) 

1.05 

(0.3048) 

5.30 

(0.0213) 

8.81 

(0.0030) 

0.00  

(1.0000) 
  

NDVI 
8.48 

(0.0036) 

9.14 

(0.0025) 

3.05 

(0.0806) 

1.17 

(0.2794) 

16.62     

(<0.0001) 

0.00 

(1.0000) 
 

SAVI 
0.04 

(0.8461) 

0.09 

(0.7603) 

0.84 

(0.3601) 

2.50 

(0.1139) 

1.85  

(0.1741) 

7.24 

(0.0071) 

0.00 

(1.0000) 

Source: Author (2022). 

 

4 DISCUSSION 

4.1 Vegetation Disturbance Mapping Using BFAST 

An initial objective of this study was to identify how maps derived from Landsat based 

on spectral indices agree in terms of the vegetation change they detect, and how much the 

vegetation domain impacts their agreement. Vegetation disturbance maps, provided by one 

change detection algorithm (BFAST Monitor) and seven different spectral indices (EVI, 

MSAVI, NBR, NBR2, NDMI, NDVI, and SAVI), indicated a low rate of spatial agreement 

when compared among themselves. This result is consistent with Cohen et al. (2017), who 

evaluated forest disturbance derived from seven independent Landsat-based algorithms that 

presented widely varying disturbance rates. However, our observed rates of agreement were 

higher than those previously reported by Cohen et al. (2017), which can be expected as we 

exclude the variability by different classification systems associated with land cover, and 

explored mostly the spectral variation.  
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In examining our spatial agreement results in more detail, we observed interesting 

similarities between spectral indices of similar types (i.e., greenness vs. wetness indices) and 

their disturbance detection maps across the different environments in our three vegetation 

domains. For instance, the three greenness indices adjusted for signal saturation (i.e., the EVI, 

SAVI, and MSAVI) increase the dynamic range of the vegetation signal, which induces a higher 

sensitivity to topographic illuminations effect and leads to significant changes in the observed 

spectral characteristics of areas with strong topographic relief. This is observed in the unusual 

trend in the Atlantic forest domain illustrated by a high frequency of agreement pixels in class3 

(three spectral indices disturbance detection through the BFAST Monitor in the overall 

agreement map). In this case, BFAST change detection, based on these three greenness indices 

adjusted for saturation, detected high rates of disturbance in the Serra da Mantiqueira region 

(highlighted by the Atlantic forest inset in Figure 3), which represents roughly one quarter of 

the forested area in the Atlantic forest vegetation domain.  

We also observed the two wetness indices that employ NIR in their formulae, i.e., NBR 

and NDMI showed spatial agreements that reflected the difference in their use of SWIR1 versus 

SWIR2, respectively. That is, SWIR 2 shows a lower reflectance than SWIR 1 in native 

vegetation spectral signatures due to higher levels of absorption by leaf water content, which is 

a contributing factor in the savanna and semi-arid woodland domains. In addition, the 

agreement of NDMI with other indices (Figure 4e) was influenced by vegetation domains, 

indicating lower proportions in semi-arid woodland and higher proportions in Atlantic forest 

domains, with savanna regions lying in between. This suggests an association between NDMI 

and levels of moisture-related forest seasonality, leading to changes in NDMI performance over 

dry-deciduous versus evergreen forest. 

In contrast to the greenness and wetness spectral indices discussed above, the NBR2 and 

NDVI showed the lowest rates of spatial agreement with other indices in this study. The first 

of these—a wetness index—utilizes only shortwave infrared channels in its formula. In part, 

the low disturbance map agreement produced by this index is clearly demonstrated by class1 in 

the overall agreement map (Table 1). In this disturbance agreement class, which indicated pixels 

labeled by only one vegetation disturbance map, NBR2 accounted for 40% of all pixels in the 

class. In comparison to the other wetness indices, NBR2 presented a higher agreement with 

NBR (both indices share the SWIR 2 channel in their formulae) than NDMI (indices sharing 

SWIR 1 channel) in all three vegetation domains (Figure 4d), providing some support for the 

conceptual premise that both NBR and NBR2 were developed for burn purposes.  
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The other low-agreement result produced by the NDVI vegetation disturbance map 

showed an unusual pattern of agreement among the vegetation domains (Figure 4f). This 

greenness index can be insensitive to high-density vegetation or soil brightness conditions. This 

may explain the inverse pattern of performance across vegetation domains to what we observed 

in wetness index disturbance map agreements—a pattern not observed for the other greenness 

indices that account for signal saturation. That is, we see from NDVI a low spatial agreement 

with other indices in the Atlantic forest, followed by better agreement in semi-arid woodland 

and savanna. In the Atlantic forest, this pattern is related to the lower sensitivity of the NDVI 

to dense vegetation than that of the other greenness indices, leading to a low rate of 

misclassification due to topographic illumination effects. In the savanna and semi-arid 

woodland domains, where high-density vegetation is not a typical feature, higher rates of 

agreement were observed between the NDVI disturbance maps and those from other indices in 

the semi-arid woodlands due to the presence of mountainous areas comprised mostly of the 

Serra do Espinhaço mountain range, versus rates of agreement in the savanna domain. 

4.2 Vegetation Sensitivity to Spectral Indices 

Our second research question was concerned with how accurate forest disturbance maps 

are based on real change events. In general, previous studies have mapped vegetation 

disturbance using BFAST and Landsat time series, reaching satisfactory accuracies. For 

example, in evergreen forested areas, DeVries et al. (2015) estimated an overall accuracy of 

78% with commission and omission rates of 17% in southern Ethiopia. In our study, we found 

similar results in the Atlantic forest domain, with average overall accuracies at 80.3%, and 

commission and omission rates of 10.2% and 35.9%, respectively. On the other hand, 

vegetation domains in this study that are more affected by seasonal variations—savanna and 

semi-arid woodland—presented poor overall accuracy results ranging from 54.7 to 66.0%. 

Others studies using BFAST in dry regions reached satisfactory accuracies, such as Schultz et 

al. (2018) who assessed vegetation degradation in Africa savannas, and found a drop in 

detection performance as vegetation cover decreased. Likewise, Watts and Laffan (2014) using 

MODIS EVI assessed vegetation greening changes related to known floods in Australia’s semi-

arid regions, finding a BFAST sensitivity to vegetation cover type and seasonal patterns. 

However, our study faced broad seasonal vegetation domains encompassing mixed forest 

landscapes and grassland ranges, without a more detailed vegetation classification. 

Similar to spatial agreement results, spectral indices can be grouped by their individual 

accuracy performances. In general, wetness indices and NDVI presented higher accuracies in 
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all vegetation types. These results reflect those of Schultz et al. (2016) and DeVries et al. (2016) 

who also found particular moisture indices highly correlated with disturbances in tropical 

forests. SWIR-based indices were also highly related to vegetation change detection in seasonal 

savannas (BUENO et al., 2019) and herbaceous biomass in semi-arid areas (JACQUES et al., 

2014). However, the high accuracies presented by NDVI is somewhat surprising given the fact 

that studies showed low accuracies related to this index in tropical forests (BUENO et al., 2019; 

SCHULTZ et al., 2016b). This is a particularly useful result indicating why NDVI is still the 

most frequently used index in remote sensing, and has been presented in forest disturbances 

detection and monitoring (GAO et al., 2019; WU et al., 2020). 

Another particular occurrence observed in our accuracy analysis was related to the 

NDMI, which presented a distinct accuracy pattern among vegetation domains. In the Atlantic 

forest domain, this index had the highest accuracies, as highlighted in Figure 5. In savanna, it 

was the fourth-best performing among the indices, producing the lowest accuracy among the 

wetness indices but still higher than that of the greenness indices. However, this index had the 

lowest accuracies in dry forests, which were statistically different from those of other indices 

when analyzed by McNemar’s test. These results confirm the relationship between NDMI and 

vegetation domains observed in our map agreement results, reinforcing a specific sensitivity to 

vegetation water content, which is more abundant when more vegetation is present. 

Greenness-related indices used in this study that adjusted for signal saturation (EVI, 

MSAVI, and SAVI) were less successful in our accuracy analysis. They were not able to 

properly isolate the change signal when run through the BFAST Monitor algorithm, generating 

disturbance misclassifications. Most of their inaccuracies were due to the topographic 

illumination artifacts, which were also reported by (TAN et al., 2013) who found a decrease in 

the accuracy of disturbance detection practices using Landsat imagery.  

Vegetation densities were also a source of error for these greenness indices as high 

densities can increase the dynamic range of the vegetation signal, which renders it more 

sensitive to topographic illuminations effects, whereas low vegetation densities can be confused 

with the corrected soil signals, affecting the disturbance detection accuracy. These results are 

in keeping with previous observational studies, in which EVI and SAVI also proved to be 

unsuitable for deforestation detection by Schultz et al. (2016a), or in the case of SAVI, 

unsatisfactory for assessing forest fire disturbances and recovery (HISLOP et al., 2018). 
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4.3 Consideration and Future Research 

Further research on this topic needs to be undertaken before we can clearly understand 

the relationship between spectral indices using BFAST and their vegetation disturbance 

detection performances in distinct vegetation types. Some considerations are apparent from this 

study, such as concerns regarding (1) image preprocessing, (2) algorithm implications, (3) 

generalization error, and (4) computation timing over large areas.  

Image preprocessing is a crucial procedure in disturbance detection studies. The data 

quality of Landsat products processed at the surface reflectance level by LEDAPS and LaSRC 

supports time series analysis and data stacking with satisfactory precision (RMSE < 12 m) 

(ZHU, 2017). In addition, the detection of clouds and cloud shadows is an inevitably required 

step in time series disturbance detection analysis, particularly in the BFAST Monitor concept 

that runs on image stacks, not composites. However, Landsat cloud- and cloud shadow-masked 

products still contribute to misclassifications and may impact disturbance detection analysis as 

we selected images available with less than 50% of cloud cover detected by the Fmask (ZHU; 

WOODCOCK, 2012). These misclassifications can be observed in cloudy regions, such the 

Serra da Mantiqueira. In addition to preprocessing, another source of uncertainty is related to 

non-native vegetation mask errors, which also influence the analysis. As is the case for the 

cloud mask, land cover/land use and surface water maps were not perfect and also include 

misclassifications. Besides commission- and omission-related class errors, mask boundaries 

and spectrally mixed pixels were sources of commission rates in this study. 

Some sources of error regarding deforestation detection using BFAST on Landsat time 

series were previously reported by Schultz et al. (2016). The authors demonstrated radiometric 

correction strategies for monitoring change in the tropics in relation to differences resulting 

from data availability, signal-to-noise ratio, atmospheric contamination, and deforestation type. 

Grogan et al. (2016) reported the use of filtered MODIS time series in order to improve forest 

change detection, despite BFAST being able to handle unfiltered data. Although we did not 

analyze the accuracy outputs as they related to image observation frequency, it is was also 

described as a methodological challenge by Schultz et al. (2016), who demonstrated improved 

performance in particular spectral indices as a result of increased observation frequencies.  

Additional uncertainty arises from the fact that BFAST Monitor was employed across 

our vegetation domains without substantive calibration for extant conditions within those 

particular study areas, such as the order of the harmonic model used to fit the stable land cover 

history, and the h parameter used to determine the potential number of breaks that can be 
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detected by the algorithm. This perhaps points to a need for a more thorough examination of 

the algorithm performance for each new forest system encountered (COHEN et al., 2017).  

In our study, single index performances were related to vegetation domains, where a 

particular spectral variable produced high accuracies in one domain and lower accuracies in 

another. For example, NDMI was the most successful index in the Atlantic forest with regard 

to accuracy while producing the poorest results in the semi-arid woodland. This highlights the 

fact that large-area monitoring programs covering different ecosystems and land cover types 

therefore require region-specific spectral variables and individual model calibrations 

(SCHULTZ et al., 2018), as the highly variable and complex spectral response of different types 

of forest disturbances across diverse ecosystems clearly increase the odds of generalization 

errors. These results also support the data fusion approach in change detection applications. 

This particular method proposes the combination of data inputs (in this case, spectral indices) 

and their distinctive features in order to increase the global performance. Data fusion methods 

have already been used by some forest change detection studies, i.e., Healey et al. (2018) 

mapped forest change detection using an ensemble method of eight Landsat-based algorithms 

and spatial predictors, reaching higher accuracies with all datasets combined. By fusing 

multiple index-based disturbance maps derived from LandTrendr (COHEN et al., 2018) and 

BFAST (SCHULTZ et al., 2016b) algorithms, through a random forest scheme, error rates were 

reduced in comparison to single index outputs. Combining multiple algorithms and spectral 

indices, Hislop et al. (2019) integrated two algorithms—LandTrendr and a statistical boundary 

approach—and three spectral indices—NBR, NDVI, and TCW—in order to detect abrupt 

disturbances in forest environments, which resulted in satisfactory disturbance detection 

accuracies. Thus, a further study with more focus on data fusion models of different types of 

forest disturbances across diverse vegetation domains is, therefore, suggested, as feature-level 

data fusion may produce better results for deforestation disturbance detection than the 

application of individual spectral indices.  

In addition, ancillary data as land cover/land use classifications should be explored in 

order to mitigate sources of error. Mainly in heterogeneous landscapes, detailed land classes, 

i.e., classifying woodland from scrublands in savanna regions, are an important approach for 

avoiding generalization errors and improving BFAST detection accuracies. Another source of 

uncertainty in this work is related to disturbance types and their magnitudes, as we only 

assigned disturbances in vegetation as human-induced activities that abruptly remove the native 

vegetation. Alternative input data are also important as previous studies have reported that 

canopies can cover sensitive spectral indices such as the NDFI, which demonstrated good 
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performance in tropical forests disturbance detection, and it is calculated using spectral mixture 

analysis (SCHULTZ et al., 2016b). However, the decision to conduct our study using easily 

requested spectral index products available on the USGS website avoided data preprocessing 

steps. 

Finally, further challenges in applying BFAST Monitor for Landsat time series analyses 

relate to processing time when assessing large-scale vegetation disturbance scenarios. Although 

high-performance and cloud-computing systems are becoming popular, we used parallel 

processing capabilities on a desktop computer and experienced considerable computational 

times while processing our data. Advances in high-performance or cloud computing for 

vegetation disturbance mapping using BFAST Monitor should be explored. For instance, the 

establishment of cloud platforms such as Google Earth Engine (GEE) provide many advantages 

for change detection studies, such as direct access to image time series, the straightforward 

management of time series stacks, and agile computation through parallel processing 

(GORELICK et al., 2017). These advances might enable the development of large-scale 

vegetation disturbance maps, and also a user-friendly format to run the BFAST Monitor 

algorithm. 

5 CONCLUSION 

This work contributes to existing knowledge of the performance of vegetation indices 

from Landsat time series in vegetation disturbance detection by comparing the suitability of 

spectral indices and their agreement in tropical vegetation domains using BFAST Monitor. We 

demonstrated that (1) vegetation disturbance maps provided by one change detection algorithm 

and seven different spectral indices can produce a low rate of spatial agreement when compared, 

and (2) vegetation domains do not influence this spatial agreement.  

With regard to disturbance detection accuracies, wetness indices (NBR, NBR2, and 

NDMI) outperformed other spectral indices, including greenness-related indices (EVI, MSAVI, 

and SAVI). NDMI presented the highest accuracy in the Atlantic forest domain while NDVI 

performed better across savanna and semi-arid woodland domains. 

Despite its exploratory nature, this study offered some insight into vegetation 

disturbance maps and the influence of spectral index choice on the spatial distribution of results, 

and on detection accuracies. This research has raised many questions in need of further 

investigation, such as the use of region-specific approaches in order to mitigate the 

generalization error. Future research should also explore the BFAST Monitor algorithm’s 

computational limitations presented in this study, as well as its expansion to other techniques 
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and regions across the globe, perhaps with the help of cloud-based processing and analysis 

platforms. 
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Abstract: Mapping and monitoring disturbances in vegetation over large areas demand reliable 

approaches and accurate end-user maps. Methods and algorithms have been developed to meet 

satisfactory disturbance map accuracies, and the combination of multiple approaches has shown 

promise as a reliable alternative to any single method. However, extracting meaningful 

disturbance information from these combined methods is still challenging. Data variance from 

environmental conditions and disturbance drivers leads to spatial-temporal heterogeneity in 

land surfaces over large areas, which results in mapping errors. We evaluate the effectiveness 

of ensemble classification and data-driven regionalization for mapping vegetation disturbances 

at a broad scale. Our ensemble approach combines multispectral LandTrendr outputs reflecting 

preliminary disturbance information in a Random Forest model to map disturbances in the state 

of Minas Gerais, Brazil, using the Google Earth Engine cloud computing platform. We then 

applied an unsupervised clustering technique to perform data-driven regionalization of our 

study area using several sources of environmental and anthropogenic information, and analyzed 

gains and losses in map accuracies. Our results indicated gains in accuracy by the ensemble 

method compared to non-ensemble methods of disturbance mapping. Data-driven 

regionalization addressed complexities arising from variability in vegetation types, local 

climate, and topography across our study area, identifying climate and seasonal metrics as 

important variables for reducing uncertainties in vegetation disturbance maps. The integration 

of these techniques has revealed great potential for the increase of map accuracy and has 

provided important insights into the development of disturbance mapping methods in 

heterogeneous environments. 

 

Keywords: Remote sensing; Landsat time series; LandTrendr; Random Forest. 

1 INTRODUCTION 

In the era of free, open-source satellite data streams, large-scale disturbance maps 

provide support for developing management strategies, implementing policy initiatives, and 

providing inputs for modeling ecological and environmental processes (HERMOSILLA et al., 

2018).  

The opening of the Landsat archive in 2008 allowed the development of new 

disturbance-mapping approaches. Free global mid-resolution (30 m) remote sensing imagery 

and a long-term record of observations have enabled more accurate land change analysis, the 

characterization of disturbance drivers, and the monitoring of post-disturbance conditions 

(WULDER et al., 2012). Methods and algorithms to detect and monitor vegetation disturbances 
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have been developed to exploit the Landsat data archive and to examine long-term vegetation 

trends. An example that uses Landsat time series is the Landsat-based detection of Trends in 

Disturbance and Recovery, or LandTrendr (KENNEDY; YANG; COHEN, 2010). LandTrendr 

uses a pixel-based segmentation method to investigate land trajectories by modeling time series 

and computing straight-line segments, returning outputs as the magnitude, duration, and timing 

of a land disturbance. Although first developed to detect disturbance in forest environments 

(KENNEDY et al., 2012), LandTrendr has become popular for other vegetation analyses, such 

as changes in cropland patterns (ZHU et al., 2019a), natural disturbances in mangrove areas 

(DE JONG et al., 2021), and post-fire vegetation recovery (BRIGHT et al., 2019). 

There is an increasing need for methods and algorithms that exploit open-access Landsat 

time series data to provide greater disturbance map accuracies in complex, heterogeneous 

environments. However, most authors recognize that an optimal disturbance mapping technique 

does not yet exist since a single method might be not sensitive to the spatio-temporal 

heterogeneity of varied and continuous landscapes (HUSSAIN et al., 2013). An alternative to 

choosing a single method or algorithm for mapping disturbances is utilizing multiple classifier 

systems or a multi-algorithm ensemble. The ensemble technique for classification systems is 

based on multiple or committee classifiers combining their predictions. The objective is to 

exclude individual weakness and to benefit from particular advantages of each individual 

algorithm, reducing the generalization error (OZA; TUMER, 2008). In remote sensing studies, 

ensemble classification has produced better results than individual systems (Bruzzone et al., 

2004; Rodriguez-Galiano et al., 2012; Shimizu et al., 2019; Cohen et al., 2020).  

Previous research has established two varieties of ensemble architectures (also 

described as fusion rules by Healey et al., 2018). The first uses outputs from multiple runs of a 

single classifier and combines them into a final classification, and is called a homogeneous 

ensemble method. Random Forests (RF; Breiman, 2001) is a popular example of the 

homogeneous ensemble approach because it uses different instantiations of the same classifier, 

and combines the results to produce a final classification (BELGIU; DRĂGUŢ, 2016). 

Homogeneous ensemble classifiers have been widely used in many forest-related applications 

such as land cover classification (Gessner et al., 2013; Zhang and Yang, 2020; Schulz et al., 

2021), disturbance mapping (Collins et al., 2018; Silveira et al., 2018; Bueno et al., 2019), and 

tree parameter modeling (Chrysafis et al., 2017; Bour et al., 2021; Jevšenak and Skudnik, 2021). 

The second – the heterogeneous ensemble approach, uses outputs from different classifiers and 

a secondary model to reclassify these outputs according to their performance in relation to a set 

of reference data. These heterogeneous ensembles have received more attention recently in the 
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disturbance mapping of vegetation, varying in the number of algorithms, vegetation indices, 

and spatial predictors used in the approach. Healey et al. (2018) presented a method using 

‘stacked generalization’ with a variety of change detection algorithms and spatial predictors to 

map forest changes. Using two disturbance detection algorithms and three spectral indices, 

Hislop et al. (2019) accounted for abrupt disturbances in forested areas. Bullock et al. (2019) 

used three algorithms for detecting breaks in Landsat time series, while Hu et al. (2021) detected 

human-induced disturbances at fine scales using a heterogeneous ensemble algorithm that 

combines numerous time series decomposition models. 

Despite their success, heterogeneous ensemble approaches have shown some practical 

restraints for broader implementations. These restraints include access to code for multiple 

algorithms, image acquisition and pre-processing costs for those requiring massive system 

demands, and computational power. To overcome these problems, the multispectral 

heterogeneous ensemble strategy combines single band/index outputs of a single algorithm into 

a secondary classification, reducing pre-processing costs. Some authors have demonstrated that 

an efficient multispectral heterogeneous ensemble using a single algorithm may provide 

comparable or even improved performance. For instance, Cohen et al. (2018) combined single 

band/index outputs of LandTrendr to map forest disturbances across the conterminous United 

States, while Schultz et al. (2016a) took a similar approach to fuse BFAST outputs to map 

deforestation in tropical areas. Both studies found that combining output maps based on 

different band/index increased overall mapping accuracy and consequently reduced the 

overestimation of disturbances. 

In addition, the challenge of computational power has been met through cloud 

computing services such as those available on the Google Earth Engine (GEE) platform. By 

allowing a planetary-scale analysis of big data, GEE not only facilitates computation through 

parallel processing, but also enables straightforward access and management to the entire 

Landsat archive, alongside many other datasets (GORELICK et al., 2017). Besides a broad 

range of algorithms available in code editor-GEE, some methods for forest disturbance 

detection have been implemented recently (Kennedy et al., 2018; Hamunyela et al., 2020). 

These methods are supported by an extensive number of interactive applications, allowing the 

development of a user-friendly graphical user interface backed by Earth Engine's resources. 

Recent studies have shown the ability to handle big earth observation data in forest change 

mapping studies in national (White et al., 2017; Sebald et al., 2021), continental (MIDEKISA 

et al., 2017; SENF; SEIDL, 2021), and global scales (HANSEN et al., 2013). 
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In spite of recent advances in tools and technologies, extracting reliable and meaningful 

data from disturbance detection methods remains challenging. Landsat time series contain 

noise, even after processing, from residual clouds and cloud shadows (ZHU; WOODCOCK, 

2012), variation in frequency of the satellite observations (SCHULTZ et al., 2016b), and 

radiometric uncertainties (SCHULTZ et al., 2016a). In addition, significant variability in 

environmental conditions and disturbance drivers over large areas leads to spatial-temporal 

heterogeneity in land surfaces and related disturbances, which results in mapping errors 

(SCHULTZ et al., 2016a).  

The process of land regionalization into ecosystem units, also known as ecoregions, may 

overcome limitations on vegetation disturbance mapping imposed by spatio-temporal 

heterogeneity. According to Bailey (2014), land regionalization is defined as the geographical 

grouping of units of the Earth’s surface that have common ecosystem characteristics, and can 

be considered a form of spatial stratification. This concept appears to be an effective way of 

grouping the spatial variability of the land surface since it involves a simplification of the 

heterogeneity in landscapes, into spatial units suitable for communication in management and 

research. For instance, Powers et al. (2012) revealed that the regionalization of the indicators 

of the physical environment explains much of the variance in many species richness. In land 

cover-based regionalization applications, vegetation patterns in a region can be identified as 

favorable or problematic for a specific management goal. Likewise, other areas can be also 

identified for the same purpose based on their similar spatial conditions (LONG; NELSON; 

WULDER, 2010).  

Recently, the characterization and regionalization of vegetation has gained considerable 

attention in the scientific literature since agile computation (e.g., cloud-based platforms) and 

more accurate datasets have become available (SIMENSEN; HALVORSEN; ERIKSTAD, 

2018). With regards to the regionalization of vegetation dynamics in large areas, spatial regions 

can be reflected by the influence of anthropogenic factors, such as fragmentation and 

deforestation (KUPFER; GAO; GUO, 2012). In a study by Bourbonnais et al. (2017), 

vegetation disturbances were modeled over time, and characterized as temporal trajectories of 

specific natural and anthropogenic disturbance types. There is still uncertainty, however, 

whether regionalization can improve the accuracy of thematic maps since no previous study has 

employed such procedure to map disturbances in large areas.  

The objective of our study was to evaluate the effectiveness of a heterogeneous 

ensemble classification and data-driven regionalization for improving vegetation disturbance 

mapping accuracies over large areas. This paper first evaluates the performance of an ensemble 
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method on mapping disturbances in a heterogenous vegetated area, investigating the benefit of 

using multiple classifiers by exploring their particular advantages. In this case, we investigated 

whether a multispectral heterogeneous ensemble was significantly different against individual 

bands and indices. Second, we tested a land regionalization scheme based on environmental 

and anthropogenic information. We hypothesized that the grouping of land units and their 

respective variability will significantly improve the performance of disturbance mapping 

algorithms over traditional methods because these algorithms will be customized to each 

individual unit and their respectively disturbance observations, returning gains in accuracy.  

This study addresses the following research questions: (1) How does a vegetation 

disturbance mapping method based on an ensemble premise perform over a large and 

heterogeneous area? (2) How does a data-driven regionalization scheme, based on 

environmental and anthropogenic information, affect disturbance map accuracies? (3) Can the 

integration of regionalization with ensemble techniques optimize the disturbance mapping over 

large areas? 

To answer these research questions, we combined multispectral LandTrendr outputs in 

a RF model to map disturbances in the state of Minas Gerais (MG), southeastern Brazil. We 

applied an unsupervised clustering technique to perform data-driven regionalization using 

several datasets containing environmental and anthropogenic information. We analyze gains 

and losses in map accuracies produced by these approaches.  

2 METHODS 

Figure 1 illustrates the major methodological steps of this study. First, to perform 

regionalization, we created eight datasets of the entire study area that included environmental 

and anthropogenic information. These datasets were used to conduct data-driven 

regionalization that generated regions of greater homogeneity in the study area (Section 2.3 and 

Figure 1a). Second, after regionalization, we performed a two-stage mapping procedure 

(Section 2.4) using the LandTrendr and Random Forest algorithms (Figure 1b). We applied this 

mapping to the various regionalizations, and evaluated the performance of the ensemble method 

over the regionalized study area. Finally, we computed classification accuracies for all data 

regions, analyzing gains and losses in metrics of accuracy (Section 2.5 and Figure 1c).  
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Figure 1 – Flowchart of the proposed ensemble mapping approach. 

 

Source: Author (2022). 

 

2.1 Study Area 

The study area is the state of Minas Gerais, which is the fourth largest state in Brazil 

(Figure 2). The current anthropic scenario, combined with high levels of spatial heterogeneity 

over vegetation domains of Atlantic forest, savanna, and semi-arid woodland, makes this state 

an important area for disturbance detection studies. Its 586,528 km² are comparable in area to 

countries such as France and Spain. It is also the second most populous state of the country with 

the third largest gross domestic product (IBGE, 2010). This large area has a high heterogeneity 

of land covers, climatic conditions and topography. The region has three warm temperate 

classes of climate (Köppen-type Cwa, Cwb and Cfa) concentrated in the south and west of the 

state with dry winters and warm summers, as well as two predominant tropical classes (Köppen-

type Aw and Am) (Peel et al., 2007). Aw predominates at the central and north regions, while 

Am occurs at the eastern region having a severe dry winter followed by a rainy summer. 
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The study area is represented by a mix of plains and mountain ranges (Figure 2a), with 

elevation largely varying from 300 to 1,200 meters above sea level. Some exceptions are visible 

in eastern regions exhibiting altitudes of around 100 meters, and in high mountain ranges 

reaching 2,891 meters in the Pico da Bandeira – the second highest location in Brazil. Annual 

rainfall (Figure 2b) and mean temperature (Figure 2c) have a gradient from southwest to 

northeast of the state. Southern regions receive around 2000 mm annual precipitation with 

higher values found at the mountain range Serra da Mantiqueira. Northern regions have distinct 

rainy periods where nearly all of their annual precipitation is accumulated in summer and ranges 

from 1,200 to 1,800 mm. Semi-arid regions receive the lowest amount of rainfall in the state, 

reaching zero mm of monthly precipitation in winter.  

The high spatial variability found in Minas Gerais can be categorized into the three main 

vegetation domains: Atlantic forest, savanna, and semi-arid woodland (OLIVEIRA-FILHO et 

al., 2006). The Atlantic forest encompasses a large variety of tropical vegetation formations, 

mostly including rainforests, semi-deciduous forests, and high-altitude rangelands. This 

vegetation domain is a global biodiversity hotspot due its outstanding levels of species 

endemism (MYERS et al., 2000), thus playing an important ecological role at continental 

scales. The Brazilian savanna (also known as Cerrado) is also considered a biodiversity hotspot. 

These savannas present a particular combination of plant formations, compared to other 

savannas around the world. They range from woodland formations with high canopy density to 

grasslands and shrublands composed of sparse and short twisted trees (FURLEY, 1999). The 

third vegetation domain – semi-arid woodland – occurs in a small area in northern Minas Gerais 

(Figure 2), with vegetation characterized by a mixture of deciduous woodland formations and 

herbaceous understory. 

A long history of deforestation has considerably changed the landscape across Minas 

Gerais. The Atlantic forest was subjected to considerable deforestation in the past, which 

reduced its occurrence to approximately 14% of its original area (RIBEIRO et al., 2009). 

Savannas and semi-arid woodlands have been subjected to more recent disturbance scenario 

with increasing rates of land conversion. From 1990 to 2010, 266,000 km2 and 90,000 km2 of 

vegetation was cleared in savanna and semi-arid woodland areas, respectively (Beuchle et al., 

2015).  

 

 

 

 



84 

 

Figure 2 – The state of Minas Gerais and its spatial heterogeneity with regards to a) topography, 

b) annual precipitation (AP), and c) mean annual temperature (AMT). d) Reference 

dataset inset detailing an area plot and its disturbance polygons. The predominant 

vegetation domains are indicated in the upper portion of the figure. 

 

Source: Author (2022). 

 

2.2 Reference Data 

Reference data were obtained from disturbance and non-disturbance areas from 2008 to 

2017. In this study, we defined disturbance as the complete removal of native vegetation at the 

Landsat pixel scale and its conversion into bare soil, crops, planted forests, or natural 

regeneration. Disturbance by fire was not considered in the data analysis. Non-disturbance areas 

were defined as stable vegetation covers although disturbed by seasonal differences. We 

delineated disturbance and non-disturbance polygons using fixed sample plots (Figure 2d). Our 

procedure included sample design creation, native vegetation masking, and disturbance 

polygon delineation. 

We first used a systematic sampling grid to create fixed area plots. A total of 278 square 

plots of 100 km² (10 x 10 km) were placed across the entire state of Minas Gerais. Our sampling 

design represented 5% of the state and was sufficiently large to contain a suitable number of 
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disturbance observations (OLOFSSON et al., 2014), and dispersed enough to capture the study 

area’s spatial heterogeneity. 

Our second step was to mask the area plots with a native/non-native vegetation layer, 

limiting further disturbance mapping efforts to native vegetation areas only. We used the land 

use/land cover map of the Cadastro Ambiental Rural (CAR), Brazil’s Rural Environmental 

Registry. CAR’s land use/land cover classification is from 2008 and was generated using 

Landsat and RapidEye imagery (30-m and 5-m spatial resolution, respectively). Another 

important feature of the CAR’s product is the native vegetation class, which encompasses 

forested areas as well as non-forested areas (e.g., grasslands). In addition to masking non-native 

vegetation, we also extracted masked water bodies from our area plots using the Global Surface 

Water product (PEKEL et al., 2016). 

We created disturbance polygons through visual interpretation using Landsat images on 

the GEE platform. For each masked plot, we selected one Landsat image per year during the 

local dry season (June to September). By fixing this period of observation in the dry season, we 

increase the chances of obtaining cloud-free data and reduce the effects of vegetation phenology 

on disturbance detection (SILVEIRA et al., 2018b; SOUZA et al., 2020a). As auxiliary image 

information, we used high-resolution imagery from Google Earth, when available. Finally, area 

plots were systematically split into 50% for training and 50% for validation where alternate 

rows of plots were offset of each other. In this sampling design, we prevented training and 

validation observation occurring in the same area, which can overestimate mapping models. 

We randomly sampled 1400 pixels (700 of disturbance and 700 of non-disturbance) inside 

training area plots, and 600 pixels (300 per class) in validation area plots. Training pixels were 

used to fit further models, and validation pixels assessed the generalization error of fitted 

models. 

2.3 Data-Driven Regionalization 

We grouped the study area into regions using a data-driven method. A total of 54 

numerical interval-scale variables representing climate information, terrain attributes, 

landscape metrics, seasonal variations, and human-related layers were acquired as multiple 

input combinations for the regionalization. These variables were accessed and processed in 

GEE and grouped into eight datasets, which included:  

I. Unregionalized – This is an empty and hypothetical dataset, resulting in no further 

regionalization. Its purpose was for comparison with other datasets and their 

performances. 
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II. Climate – A broad-scale factor directly related to global vegetation dynamics, and an 

important discriminating input for ecological regionalization (METZGER et al., 2013). 

We obtained climate variables from WorldClim-1 database at 30-second resolution or 

~ 1 km2 (HIJMANS et al., 2005). Nineteen variables, including mean annual 

temperature and mean annual precipitation, represent interpolated weather data from 

1950 to 2000. Climate variables were subsequently resampled to the 30 m Landsat pixel 

cells. For detailed information about WorldClim bioclimatic layers, consult Hijmans et 

al. (2005) or Table 2S in the Supplementary material. 

III. Terrain – From the Shuttle Radar Topography Mission (SRTM) elevation model, we 

acquired version 4.0 that is hosted on GEE (JARVIS et al., 2008) and derived four 

terrain products: elevation, slope, aspect and hillshade. The elevation of a pixel is its 

height above sea level and the slope identifies the maximum change in z-value from 

each elevation pixel to the next. Aspect is the slope direction, which identifies the 

downslope direction of the maximum rate of change in value from each pixel to its 

neighbors. Hillshade is the shaded relief from the elevation layer by considering the 

illumination source angle and shadows. 

IV. Seasonal – This dataset represented the seasonal response expressed by vegetation 

phenology. It is useful to define the distinct domains of more seasonal (savannas and 

semi-arid woodlands) and less seasonal (Atlantic Forest) vegetation types, which also 

have very different canopy characteristics for vegetation disturbance detection. We 

captured the inter-annual and seasonal response of vegetation using thirteen Landsat-

based bands and indices (Table 1). We created two seasonal pixel-based image 

composites per year: one representing the wet season and another the dry season. The 

vegetation indices selected in Table 1 are adequate to represent canopy structure (e.g., 

NDVI), the strong seasonality of the savannas and semi-arid woodland vegetation of the 

study area (e.g., NDVI and NDMI), and the occurrence of fire in these vegetation 

domains (e.g., NBR). Composite images included the first cloud-free pixel available in 

an appropriate period to represent the season. The wet season encompasses the months 

of January through May, and the dry season from June through September. Annual 

seasonal response values were calculated as a ratio between the seasonal difference and 

the dry season (Equation 1), and were then reduced to the average of the study period. 
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𝑆𝑒𝑎𝑠𝑜𝑛𝑎𝑙𝑅𝑒𝑠𝑝𝑜𝑛𝑠𝑒𝑖 =

1

𝑛
∑ (

𝑊𝑒𝑡𝑆𝑒𝑎𝑠𝑜𝑛𝑖,𝑗 − 𝐷𝑟𝑦𝑆𝑒𝑎𝑠𝑜𝑛𝑖,𝑗

𝐷𝑟𝑦𝑆𝑒𝑎𝑠𝑜𝑛𝑖,𝑗
)

𝑛

𝑗=1

 (1) 

Where i indicates an individual band/index, and j indicates the numeric position of a 

year in a total of n years in the study period.  

 

Table 1 – Bands and indices used in the dataset acquisition. 

Band/ 

Index 
Equation Reference 

Blue N/A (USGS, 2020) 

Green N/A (USGS, 2020) 

Red N/A (USGS, 2020) 

NIR N/A (USGS, 2020) 

SWIR1 N/A (USGS, 2020) 

SWIR2 N/A (USGS, 2020) 

NBR (NIR - SWIR2)/( NIR + SWIR2) 
(KEY; BENSON, 

2006) 

NDVI (NIR - Red)/( NIR + Red) (TUCKER, 1979) 

NDMI (NIR - SWIR1)/( NIR + SWIR1) 
(WILSON; SADER, 

2002) 

TCB 0.2043 × B1 + 0.4158 × B2 + 0.5524 × B3 + 0.5741 × B4 + 0.3124 × B5 + 0.2303 × B7 (CRIST, 1985) 

TCG 
-0.1603 × Blue + -0.2819 × Green + -0.4934 × Red + 0.7940 × NIR + -0.0002 × SWIR1 + 

0.1446 × SWIR2 
(CRIST, 1985) 

TCW 0.0315 × B1 + 0.2021 × B2 + 0.3102 × B3 + 0.1594 × B4 + -0.6806 × B5 + -0.6109 × B7 (CRIST, 1985) 

TCA Arctan(TCG/TCB) (POWELL et al., 2010) 

Source: Author (2022). 

 

V. Landscape – We created three variables to represent some of the spatial properties of 

the forested landscape, which were the forest canopy density, area of forest, and forest 

patch density. We set as forest canopy density, the percent of tree cover from Global 

Forest Change (HANSEN et al., 2013), which is defined as canopy closure of vegetation 

taller than 5 m in height. This layer represents forest information from 2000 and we 

used CAR’s mask to clip pixels that are established as vegetation at the beginning of the 

study period. Area of forest represented the forest canopy density layer accounted per 

area units. We set a regular hexagonal grid over the study area where each hexagon cell 

corresponded an area unit of 10,000 ha. This unit’s shape and size were previously 

assessed by Ferreira et al. (2010) in order to detect forest disturbances. The forest patch 

density represented the number of forest patches per area unit, serving as a general index 

of forest fragmentation of the entire landscape mosaic. We counted isolated forest 

patches in each hexagon cell before generating the density of patches. Although this 

metric may be important to a number of ecological processes, we did not explore the 

area or distribution of patches. 
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VI. Variability – The standard deviation of band/index values for each pixel for a given date 

over the study period quantified the interannual variability. It reflected vegetation 

changes on a per year basis in the Landsat time series. To account for variability, we 

used annual cloud-free composite images of the dry season to calculate per-pixel 

standard deviation. We also calculated the variability from the thirteen band/index of 

Table 1. 

VII. Human-related – Two variables were used to characterize human-related activities. The 

first variable was computed using the nighttime lights layer (NTL) from the Defense 

Meteorological Satellite Program – Operational Lines System, which is an indicator of 

infrastructure activity. We generated a 30-meter pixel size cumulative cost layer by 

calculating the distance from each non-zero NTL pixel. In this layer, every non-zero 

pixel gets a value (cost) according to the distance of the respectively target, where the 

higher the value, the farther the distance. The second human-related variable was 

created using the Brazilian roads network, extracted from OpenStreetMap data. We also 

calculated the cumulative cost layer for this variable by extracting distance from the 

main roads in the study area.  

VIII. Blended – Finally, a dataset containing all previous variables. The Blended dataset has 

a total of 54 variables: 19 climate, 4 terrain, 13 seasonal, 3 landscape, 13 variability, and 

2 human-related.  

The initial pool of variables was screened to limit the potential effects of 

multicollinearity by calculating correlations between pairs of variables using the Pearson’s 

correlation coefficient. We removed those with R values greater than 0.80. Following the 

removal of correlated variables, we performed our regionalization of the study area using each 

of these sets of variables, and k-means clustering. The k-means clustering algorithm identified 

clusters of pixels with similar data values, based on a particular set of input variables. We asset 

the number of clusters to three in our analysis, which divided our study area into three regions. 

This was based on preliminary tests, to ensure that regions created by the process were suitable 

for mapping disturbances. We performed our preliminary tests with various numbers of clusters, 

and found that the greater the number of clusters, the greater the odds that any particular region 

does not contain disturbances. We found three clusters that performed best in our study area. 

The clustering analysis itself was performed individually for each of the datasets listed above, 

but the Unregionalized, and only for pixels masked as native vegetation in the beginning of the 

period.  
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We performed a post-processing step on the clustering outputs to improve spatial 

cohesiveness across the final regions. We used a tessellation process into a regular hexagonal 

grid to filter small regions of pixels into larger hexagonal-based units. After summing the 

number of pixels allocated to the three regions inside each hexagon, we assigned these hexagons 

to their respective region of majority. This tessellation step reduced the “salt and pepper” 

speckle effects caused by small or spurious groups of pixels found in the resulting maps, which 

is a prominent feature of pixel-based classifications (HUSSAIN et al., 2013). This step therefore 

built blocks of regions rather than agglomerating pixels, creating a more unified pattern for each 

dataset (NOWOSAD; STEPINSKI, 2018). 

Finally, we compared the regionalized maps by pairs to analyze their similarities. In this 

case, we considered a hexagon as the unit of analysis, combined hexagon cells of a pair of maps 

and computed the proportion of identical cells. This proportion returned similarity values close 

to 0 that represented a pair of maps fully distinct with each other while values close to 1 were 

considered fully similar.  

2.4 Ensemble Mapping 

Disturbance mapping was accomplished with a two-stage mapping step. An initial 

application of LandTrendr produced multiple disturbance maps from a variety of Landsat bands 

and indices. A secondary mapping then applied RF to the LandTrendr outputs. This is an 

example of a heterogeneous ensemble classification in which classifiers were pooled before a 

final classification decision, or a secondary classification. We tested a strategy similar to that 

used by Cohen et al. (2018), and assessed both algorithms in GEE. 

The LandTrendr output used in this study comprised magnitude of disturbance, which 

reflects a significant spectral change in the yearly trajectory of a pixel. The magnitude of 

disturbance is an integer number that varies from ‘no data’ (a non-significant change not 

detected by the algorithm, and thereafter assigned to a zero value) to large values of magnitude. 

We chose to use this non-binary value to infer about disturbance profiles since we are analyzing 

high levels of spatial heterogeneity over vegetation domains. Algorithm parameters (e.g. max 

number of segments, recovery threshold, and best model proportion) were left at their default 

values (KENNEDY et al., 2018). Rather than optimizing parameters for the study area, our goal 

was to produce initial maps for a secondary classification and to simplify the workflow. In 

addition, recent studies have shown the insensitivity of LandTrendr parameters (RODMAN et 

al., 2021; YI et al., 2021). Since LandTrendr runs on a single band or spectral index, we 

generated thirteen distinct disturbance maps using the bands and indices listed in Table 1. While 
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we did not optimize LandTrendr parameter settings, neither with reference to the study area nor 

to the individual input bands or indices used, the expression of vegetation disturbances is itself 

band-dependent and is expected to cause different disturbance maps (COHEN et al., 2017). We 

integrated the results from all LandTrendr runs as a multispectral ensemble into a secondary 

classification in RF, wherein LandTrendr outputs became RF input variables. We chose RF in 

this study because it has become one of the most popular homogeneous ensemble classification 

technique (different instantiations of the same classifier) in remote sensing studies (BELGIU; 

DRĂGUŢ, 2016). We used training observations collected in the reference data to fit the RF 

model, and validation to assess the generalization error of the fitted model. We set the number 

of decision trees (Ntree) in the RF model to 500 and the number of predictors sampled at each 

tree node (Mtry) to 4. 

Secondary classification allowed us to test whether an integration of LandTrendr outputs 

based on various Landsat bands and vegetation indices improves final disturbances mapping 

accuracies. To assess the performance of this ensemble strategy, we compared the method with 

a non-ensemble procedure or a single algorithm output. In this case, the non-ensemble method 

consisted of each LandTrendr disturbance map previously created, which were validated 

individually by confusion matrices. We assessed all thirteen disturbance maps of Table 1 

against the ensemble method. All methods were applied in the Unregionalized dataset, 

preventing the regionalization effect.  

2.5 Accuracy Analysis of Regionalized Maps 

For each region created through clustering, a different RF model was computed in the 

secondary map step. Almost all model specs remained the same between regions, but the 

locations of sampled pixels varied among regions due to their dimensions and boundaries. To 

evaluate the performance of regionalized maps against the Unregionalized dataset (e.g., where 

no regionalization was performed), we analyzed gains and losses in accuracy between these 

maps. Since we generated three regions per dataset, we merged the respective accuracies by 

computing their weighted average by area, then returning a single accuracy per dataset.  

We created individual confusion matrices using the validation dataset and computed 

overall accuracy, producer’s accuracy of the disturbance class (observations characterized as 

disturbance in the reference dataset, but not assigned as such by the model), and user’s accuracy 

of the disturbance class (observations detected as disturbance by the model, but not identified 

as such in the reference dataset). 
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2.6 Statistical Test 

To test for statistical significance, the accuracy analysis for both ensemble performance 

and regionalized maps was repeated 100 times, such that each accuracy output was estimated 

based on a random pixel selection. In the first test, paired t-tests were performed on the 

individual methods against the ensemble, while in the second, tests were performed on the 

regionalized maps against the Unregionalized. We assessed whether the differences in accuracy 

averages were significant at the 5% level. The null hypothesis in the paired tests stated that the 

mean difference in the population equals zero. In addition, this massive repetition of accuracy 

analysis allowed us to obtain a more representative performance evaluation of the mapping 

methods. 

3 RESULTS 

3.1 Performance of the Ensemble Method 

Accuracy results of the ensemble and non-ensemble disturbance mapping approaches 

are displayed in Figure 3. The ensemble method significantly outperformed the individual 

methods of disturbance mapping (LandTrendr bands and indices) in overall accuracy measures 

at the 5% level of significance. For instance, compared to the best average in individual 

accuracy obtained for B2 (81.0±1.7%), the ensemble method was superior (88.3±1.3%). This 

improvement was also expressed in producer’s accuracy of the disturbance class (92.1±1.7% 

with the ensemble method versus 75.6±2.5% with just B2). Considering the 300 disturbance 

observations sampled in the reference dataset, only 24 in average were omitted (7.9% of 

omission error of the disturbance class) by the ensemble model. On the other hand, the rate of 

omission in LandTrendr ranged from 15±4 (TCB) to 168±7 (NDMI) observations. High 

producer’s accuracy, as expressed by TCB, were related to a high area mapped as disturbance, 

which also caused a low user’s accuracy of the disturbance class (see TCB in Figure 3c), and a 

high user’s accuracy of the non-disturbance class (see Table 2S of the Supplementary material 

for details). 

Our method returned a user’s accuracy of the disturbance class in 85.6±1.6%, with an 

average of 46 non-disturbance observations included in the disturbance class. However, a few 

LandTrendr maps presented very high user’s accuracy values as well (e.g., NDVI with 

90.3±2.0%). These results were related to a small number of observations mapped as 

disturbance, which also caused a low producer’s accuracy of the disturbance class, and a high 

producer’s accuracy of the non-disturbance class. 
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Figure 3 – Comparison of accuracy measures between ensemble and non-ensemble methods. 

 

Source: Author (2022). 

 

3.2 Regionalization 

The Pearson's correlation results for the 54 numerical interval-scale variables are 

presented in the correlation matrix of Figure 1S (Supplementary material). There was a high 

correlation among variables within individual datasets, but we did not find considerable 

correlation between datasets. A total of 19 variables were removed from the Blended dataset by 

this multicollinearity screening: 10 variables from Climate and 8 from Variability. 

Data-driven regionalization created seven regionalized maps of the study area (Figure 

4), and the k-means algorithm seemed to return a suitable spatial clustering for analysis in this 

study. The tessellation process into the hexagonal grid did reduce salt and pepper effects in 

most of the final regionalized maps. However, the Terrain map still presented a large number 

of isolated hexagon units, which maintained a salt and pepper effect and resulted in smaller 

blocks of regions than is seen in the other regionalizations. 

Similarity between maps suggests that values close to 0 represent a pair of maps fully 

distinct to each other while values close to 1 indicate fully similar maps (Table 2). Analyzing 
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the similarity among final maps, we found similarities between Blended and Climate. These 

results were expected because these datasets shared a considerable number of variables. The 

lowest similarities were observed for the Terrain map, due to the presence of residual salt and 

pepper effects in this map. 

 

Table 2 – Similarity among final regionalized maps ranging from 0 to 1. (Cli = Climate, Ter = 

Terrain, Szn = Seasonal, Lnd = Landscape, Var = Variability, Hr = Human related, 

Bld = Blended). 
 

Cli Ter Szn Lnd Var Hr 

Ter 0.29 
 

    

Szn 0.43 0.17 
 

   

Lnd 0.24 0.16 0.32 
 

  

Var 0.41 0.11 0.23 0.25 
 

 

Hr 0.31 0.15 0.11 0.25 0.13 
 

Bld 0.61 0.35 0.46 0.49 0.32 0.33 

Source: Author (2022). 
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Figure 4 – Regionalized maps of the study area. 

 

Source: Author (2022). 

 

3.3 Accuracy Analysis of Regionalized Maps 

RF modelled disturbances in eight regionalized datasets and we accounted for gains and 

losses in accuracy between these and the Unregionalized disturbance map (Figure 5). Climate, 

Seasonal, Blended, and Landscape datasets achieved the greatest overall accuracy measures in 

comparison to the Unregionalized dataset, as expressed by the green wedges in Figure 5a. 

However, no significant differences were found between overall accuracies of Landscape and 

Unbounded datasets. The Climate dataset had the highest overall accuracy among the datasets 



95 

 

(89.7±0.7% versus 88.3±1.3% for Unregionalized), while the Landscape dataset showed the 

lowest gain over the Unregionalized dataset (0.1%). 

Figure 5b showed that producer’s accuracies of the disturbance class were significantly 

reduced compared to the Unregionalized layer (92.1±1.7%). Nevertheless, regionalizations that 

produced superior overall accuracy results are worth of some attention since they still returned 

producer’s accuracies greater than 90%. Contrary to producer’s accuracies, most 

regionalizations surpassed the Unregionalized condition in their user’s accuracies by a 

significant amount, with the exception of the Human-related layer that returned a loss of 0.3% 

in user’s accuracy (red wedge in Figure 5c). 

 

Figure 5 – Percentage of gains and losses in the data-driven regionalizations in comparison to 

the Unregionalized map, in (a) overall accuracy, (b) producer’s accuracy, and (c) 

user’s accuracy. Green wedges indicate a gain in accuracy, and red wedges indicate 

loss. 

 

Source: Author (2022). 

 

The top three regionalizations for improving vegetation disturbance maps were Climate, 

Seasonal and Blended, in terms of both overall and user’s accuracies. In general, the Terrain, 

Human-related, and Variability regionalizations presented unsatisfactory accuracies in 

comparison to the others. The Human-related dataset had the poorest performance in terms of 

all accuracy measures. A complete accuracy analysis of regionalized maps is displayed in Table 

3S of the Supplementary Material. 

4 DISCUSSION 

In this research, we evaluated the effectiveness of an ensemble classification and data-

driven regionalization for vegetation disturbance mapping over a large area (state of Minas 

Gerais), covering portions of three distinct vegetation domains in Brazil (Atlantic forest, 
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savanna, and semi-arid woodland). The ensemble techniques used in this study produced very 

satisfactory results and the adopted data-driven regionalization increased map accuracies. In 

addition, our results exemplify the importance of cloud-based geospatial services like the GEE 

platform for optimizing analyses of large areas. 

4.1 Ensemble Mapping in Large Areas 

Our results showed that ensemble methods using the LandTrendr disturbance algorithm 

and the RF classifier produced more accurate vegetation disturbance maps than regular methods 

that use a single algorithm. By using a similar LandTrendr multispectral ensemble disturbance 

mapping to what is described here, Cohen et al. (2018) also found gains in accuracy when using 

multiple indices or bands, relative to secondary classification based on individual indices or 

bands, revealing the importance of a multispectral approach to forest disturbance detection. In 

that study, balanced error rates were substantively reduced while individual bands or indices 

produced error rates ranging from 47% to 76%, depending on the spectral band or vegetation 

index being used. Multispectral secondary classification produced a 30% error rate. Others have 

also demonstrated the value of secondary classification for forest disturbance mapping. For 

instance, in a study by Healey et al. (2018) using multiple classifiers and RF, error rates for 

ensemble approaches were reduced by 32% compared to single-algorithm approaches. 

Elsewhere, Hislop et al. (2019) used RF models to fuse forest change maps, raster information 

and pixel-based time series metrics, outperforming single algorithm/index derived maps. 

Schultz et al. (2016a) performed a secondary classification using a variety of vegetation indices 

and the BFAST Monitor algorithm. They also observed a reduction in error rates compared to 

those obtained from single index algorithm outputs. However, Shultz et al. (2016a) who 

performed disturbance mapping over tropical evergreen forests in Brazil, did not observe an 

improvement in overall classification accuracies. This contrasts with our results, which showed 

an improved overall accuracy (88.3±1.3%) in spite of the mix of very different vegetation types 

across three distinct vegetation domains in our study area. This heterogeneity can impact 

disturbance map accuracies (BUENO et al., 2020). Another important finding from our study 

was the low omission error of 7.9±1.7% for the disturbance class. This result is somewhat 

significant given the fact that the omission error is often correlated to disturbances with low 

magnitude as they might be associated with noise in Landsat time series. Thus, the low omission 

error may be taken to indicate that our ensemble method adequately mapped low magnitude 

disturbances. In our study, individual LandTrendr disturbance maps presented overall 

accuracies ranging from 58.4±1.3 to 81.0±1.7%, while their combination returned 88.3±1.3% 



97 

 

of accuracy. These results also support the evidence that an ensemble method, combining the 

prediction of a multispectral classifier, excludes individual weakness and incorporates the 

particular advantages of each output.  

Our findings reveal the potential of ensemble methods for mapping large tropical areas, 

independent of the vegetation types and climate or landscape attributes. Our study area has 

significant variability in all these factors, and yet was mapped successfully with a multispectral, 

multi-algorithm secondary classification approach. One unique feature of our method was the 

use of both decreases and increases in spectral bands or indices as reflected in the LandTrendr 

magnitude of change outputs. In general, a vegetation disturbance causes band or index values 

to decrease, and for this reason, disturbance mapping parameters are standardized to display 

these as negative changes. However, positive spectral changes were essential to mapping 

vegetation disturbance in the non-forested portions of our study area, since disturbances in these 

environments commonly cause a conversion from low band or index values (e.g., native 

grassland) to higher values (e.g., agriculture or planted forests). Another important feature of 

our method was the use of the magnitude of change of disturbed pixels as RF input variables. 

Disturbance observations had a broad range of band/index magnitudes that can often include 

false or low magnitude detections, especially in non-forested areas (e.g., grasslands to bare soil). 

Nevertheless, by exploring the full range of disturbance magnitudes of thirteen band/index, RF 

better inferred about disturbance and non-disturbance observations in the training dataset. 

4.2 Regionalized Maps: What do They Represent? 

The regionalization process produced seven distinct vegetation disturbance maps. Some 

sets of regionalization variables showed within-dataset multicollinearity such as that we 

observed for the Climate and Variability datasets. However, the lack of strong correlations 

between the different regionalization datasets supports their suitability for this study. Another 

important component in our regionalization procedure was the tessellation of the output regions 

into a regular hexagonal grid, which produced blocks of regions. A similar procedure was 

attempted by Nowosad and Stepinski (2018) to access ecophysiographic regions over a land 

surface. The authors also considered the agglomeration of sites instead of pixels.   

Regionalized disturbance maps that outperformed the Unregionalized map also 

presented patterns of homogeneity in their regionalizations. For instance, the Climate 

regionalization generated homogeneous blocks of regions: a distinctive region in northern state 

defined by high temperatures and low precipitations (Figure 4b, region one), a south region 

opposing the north with mid to low temperature and higher precipitation (Figure 4b, region 
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three), and a middle term with diverse climate variations. This regionalization produced the 

highest overall accuracy among our disturbance maps. The second highest overall accuracy was 

presented by Blended regionalization (Figure 4h), which compared to Climate, also showed the 

highest similarity between regionalizations. These results seem to be consistent since one 

quarter of Blended variables were derived from Climate dataset. Other regionalization that 

outperformed the Unregionalized map (Figure 4a) was the Seasonal (Figure 4d), which 

reflected the boundaries of vegetation domains in the state, showing the relationship between 

seasonality and spatial distribution of vegetation types (ADAMI et al., 2018). The last 

regionalization with gains in overall accuracy was the Human-related (Figure 4g), which 

presented patches of low human intensity across the state of Minas Gerais. Low intensity of 

these patches is expected in the southern region due to the high population density. 

Our regionalized vegetation disturbance maps that produced low accuracies also showed 

observable and meaningful patterns in their regions. The Landscape regionalization clustered 

pixels according to canopy and patch density. It grouped large extensions of homogeneous 

savannas (Figure 4e, region one) because of their low canopy and patch density. Another 

distinctive region was created upon the Serra da Mantiqueira and Serra do Espinhaço mountain 

complexes (Figure 4e, region two). These mountains have a high canopy density while having 

a low number of patches. This reflects the presence of protected areas, which prevents forest 

fragmentation by anthropic activities. Finally, the Variability regionalization (Figure 4f) is 

based on standard deviations of pixel spectral trajectories over the period of study. An intriguing 

region created by this clustering is displayed in the eastern portion of our study area, close to 

the coastal zones of Brazil. This small area may be affected by cloud and resulting shadows, an 

intrinsic characteristic of this region. Since we only masked clouds and cloud shadows without 

filtering the time signature, pixel values in this region can differ through time even though not 

representing an anthropic disturbance.  

Several factors could explain the gains in accuracy by the regionalization process. With 

regards to Climate regionalization (the most accurate map), region one encompassed the 

majority of the disturbed area accounted in the reference data. These results are in line with 

those of previous studies by Beuchle et al. (2015), which showed a recent disturbance scenario 

with increasing rates of land conversion in savanna and semi-arid woodland areas. On the other 

hand, region three was the largest region created while presented the lowest disturbed area of 

the reference data. There were a few reference plots that have not shown disturbance 

observations during the study period since this region encompasses a considerable number of 

protected areas. These observations may support the hypothesis about the relationship between 
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accuracy measures and disturbance frequency. Considering environmental variables, region one 

was mostly defined by a savanna vegetation domain, high temperatures and low precipitations, 

while region three grouped areas with high annual precipitation as high altitudes as well. Such 

conditions lead to a gradient of seasonality between those regions, which might be associated 

with noise in disturbance mapping procedures. Therefore, such factors grouped related 

disturbances in the study area, confirming our hypothesis that the grouping of land units 

improved the performance of disturbance mapping. 

4.3 Google Earth Engine on Large-Scale Disturbance Mapping 

Effective and efficient large-scale analysis using Landsat time series requires the use of 

high-performance computing systems and analysis-ready data. Both are made available through 

the GEE platform. Several studies have shown the utility of GEE to map disturbances in native 

vegetation such as forests (WANG et al., 2019), rangelands (XIE et al., 2019), savannas (Souza 

et al., 2020), and mangroves (THOMAS et al., 2017). In this study, we further exemplify the 

importance of GEE for big geospatial data analysis. The method applied in this study efficiently 

analyzed 35 Landsat scenes over a 10-year period in a short amount of processing time. The 

total amount of image data comprised 3,904 images, or approximately 2.2 terabytes of data, 

which demands a high cost of processing and time that would be unfeasible for a single desktop 

computer. In addition, our method not only mapped disturbances over a large area, but also 

performed multiple rounds of mapping, totalling 100 trials of 225 maps by one remote sensing 

analyst in a couple of hours (after code implementation). It should also be noted that ancillary 

variables were already available, whether from external sources or originally developed on the 

GEE platform, including climate, topographic and Global Forest Change products. These are 

easily accessible within the GEE environment. We also generated large amounts of data 

ourselves, e.g. Seasonal and Variability datasets corresponding approximately to 25 gigabytes 

each. Finally, a crucial GEE product for this study was the LandTrendr code implemented by 

Kennedy et al. (2018), which enabled a quick approach for mapping vegetation disturbances 

from Landsat images. 

4.4 Method Limitations 

There are limitations of our method that should be considered in further research, and 

that are largely related to the image pre-processing, algorithm calibration, and reference data. 

With regard to image preprocessing, Landsat pixels are filtered using two sources of 

information: the presence of native vegetation and the absence of clouds and cloud shadows. 
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Our vegetation mask was extracted from CAR land cover maps dated from 2008, which 

provided a valuable high-resolution, large-scale product for this study. However, it limited the 

start date of analysis. In future, we propose creating a reliable, custom vegetation mask within 

GEE, which would enable us to expand the period of analysis. With regard to the second 

masking step, cloud and cloud shadow contamination was reduced by the application of 

LandTrendr on image composites of the dry season, since the temporal segmentation it performs 

removes some shorter-term fluctuations that likely reflect this sort of contamination. However, 

cloud is still a source of noise in regions often experiencing overcast conditions such as the 

eastern regions of Minas Gerais, which are close to the coastal zones of Brazil. This source of 

noise was clearly influential in region one produced by the Variability regionalization, which 

created a particular cluster related to the frequent presence of clouds in that region. 

Algorithm calibration is important for successful mapping. However, in this study, 

LandTrendr parameters were left at their default values regardless of the band or index used. 

The defaults were derived after thorough testing with NBR index in a forested area in western 

United States (KENNEDY et al., 2012). This parameter configuration would likely affect 

mapping accuracies when using other bands and indices, especially in non-forested areas. In 

spite of these anticipated effects, some studies have found LandTrendr to be robust to changes 

in parameter settings, identifying only slight differences when used in mapping mangrove 

dynamics (DE JONG et al., 2021). Nevertheless, we suggest a detailed parameter evaluation 

for disturbance mapping over such a large and heterogeneous area should be undertaken in 

future investigations.  

Another source of uncertainty is the limited consideration of vegetation disturbances as 

only the complete removal of native vegetation at the Landsat pixel scale. Therefore, 

commission errors in the disturbance class may be related to other drivers of disturbance not 

accounted in the reference dataset. For instance, disturbance by fire is a very important 

landscape process in our study area, but it is sometimes difficult to detect, depending on the 

vegetation type where the event occurs and on fire frequency and severity.  

5 CONCLUSION 

The increasing attention on mapping and monitoring changes in vegetation over large 

scales has demanded reliable approaches for producing accurate disturbance maps. The present 

study investigated the effectiveness of ensemble classification and data-driven regionalization 

for the accurate mapping of vegetation disturbance at a broad scale, over a heterogeneous 

landscape. In a large study area based in the state of Minas Gerais, we examined the hypothesis 
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that data-driven regionalized maps derived from an ensemble procedure would return higher 

disturbance map accuracies than non-regionalized and non-ensemble maps. Results showed that 

our ensemble method, combining the LandTrendr algorithm and the RF classifier, outperformed 

non-ensemble or individual approaches for mapping vegetation disturbances. Data-driven 

regionalization divided the study area into regions based on seven sets of input variables, which 

addressed the complexity and variability of vegetation types, local climate, and topography 

found in the area. These regionalizations created spatial arrangements with particular ecological 

and anthropic characteristics, reducing the uncertainty in mapping the vegetation loss. 

Regionalized maps based on climate and seasonal information returned gains in accuracy and 

are important environmental variables when mapping disturbance with high levels of spatial 

heterogeneity. The integration of ensemble classification and clustering techniques has revealed 

great potential for the increase of end-user map accuracy and has provided important insights 

into the development of disturbance mapping methods in heterogeneous environments. 

In order for countries to implement more effective deforestation policies, there is a need 

to improve the accuracy of thematic maps produced through the process of disturbance 

mapping, especially in areas with ongoing anthropic activities and related disturbances. The 

accuracies achieved with this approach represent promising opportunities toward the 

sufficiently accurate mapping and monitoring of vegetation disturbances. Further work could 

assess a more detailed LandTrendr evaluation with respect to parameter calibration, especially 

in areas having a large range of vegetation types and disturbances. In addition, a broader GEE 

implementation should be carried out to establish a fully automated approach to map 

disturbances accurately over the long term and large areas. 
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7 SUPPLEMENTARY MATERIAL 

Figure 1S – Correlation matrix of the 54 variables and their respectively datasets. See Table 1S 

for legend details. 

 

Source: Author (2022). 
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Table 1S – The 54 variables and their respectively codes used in dataset acquisition. 

Code Variable Code Variable 

 Climate  Seasonal  

v1 Annual Mean Temperature v29 TCB 

v2 Mean Diurnal Range (Mean of monthly (max temp - min temp)) v30 TCW 

v3 Isothermality (v2/v7 * 100) v31 B1 

v4 Temperature Seasonality (std * 100) v32 B2 

v5 Max Temperature of Warmest Month v33 B3 

v6 Min Temperature of Coldest Month v34 B4 

v7 Temperature Annual Range (v5 - v6) v35 B5 

v8 Mean Temperature of Wettest Quarter v36 B7 

v9 Mean Temperature of Driest Quarter  Landscape 

v10 Mean Temperature of Warmest Quarter v37 Area of forest 

v11 Mean Temperature of Coldest Quarter v38 Patch density 

v12 Annual Precipitation v39 Canopy density 

v13 Precipitation of Wettest Month  Variability 

v14 Precipitation of Driest Month v40 NBR 

v15 Precipitation Seasonality (Coefficient of Variation) v41 NDVI 

v16 Precipitation of Wettest Quarter v42 NDSI 

v17 Precipitation of Driest Quarter v43 NDMI 

v18 Precipitation of Warmest Quarter v44 TCG 

v19 Precipitation of Coldest Quarter v45 TCB 

 Terrain v46 TCW 

v20 Elevation v47 B1 

v21 Slope v48 B2 

v22 Aspect v49 B3 

v23 Hillshade v50 B4 

 Seasonal (seasonal response) v51 B5 

v24 NBR v52 B7 

v25 NDVI  Human related 

v26 NDSI v53 NTL 

v27 NDMI v54 Roads 

v28 TCG   

Source: Author (2022).
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Table 2S – Complete accuracy averages individuals and ensemble method. TP = true positive; FP = false positive; FN = false negative; TN = true 

negative; OA = overall accuracy; OE* = overall error; PA = producer’s accuracy; OE = omission error; UA = user’s accuracy; and CE 

= commission error. 

Method 

(Rank) 

Observation averages 
OA 

(%) 

OE* 

(%) 

Disturbance (%) Non-disturbance (%) 

TP FN FP TN PA OE UA CE PA OE UA CE 

Ensemble (1º) 254±6 46±6 24±5 276±5 88.3±1.3 11.7±1.3 92.1±1.7 7.9±1.7 85.6±1.6 14.4±1.6 84.5±2.0 15.5±2.0 91.5±1.6 8.5±1.6 

NBR (5º) 266±6 34±6 122±8 178±8 74.0±1.6 26.0±1.6 59.4±2.5 40.6±2.5 83.9±2.4 16.1±2.4 88.6±1.9 11.4±1.9 68.6±1.4 31.4±1.4 

NDVI (6º) 283±4 17±4 143±7 157±7 73.3±1.4 26.7±1.4 52.3±2.5 47.7±2.5 90.3±2.0 9.7±2.0 94.3±1.2 5.7±1.2 66.4±1.2 33.6±1.2 

NDMI (8º) 284±3 16±3 168±7 132±7 69.3±1.3 30.7±1.3 43.9±2.4 56.1±2.4 89.2±2.2 10.8±2.2 94.7±1.1 5.3±1.1 62.8±1.0 37.2±1.0 

TCB (11º) 112±7 188±7 15±4 285±4 66.1±1.4 33.9±1.4 94.9±1.3 5.1±1.3 60.2±1.0 39.8±1.0 37.4±2.3 62.6±2.3 88.0±2.8 12.0±2.8 

TCG (13º) 142±7 158±7 86±8 215±8 59.3±1.7 40.7±1.7 71.5±2.7 28.5±2.7 57.5±1.4 42.5±1.4 47.2±2.5 52.8±2.5 62.4±2.4 37.6±2.4 

TCW (9º) 133±10 167±10 27±5 273±5 67.7±1.8 32.3±1.8 91.1±1.8 8.9±1.8 62.1±1.4 37.9±1.4 44.3±3.3 55.7±3.3 83.3±3.0 16.7±3.0 

TCA (14º) 98±6 202±6 48±5 253±5 58.4±1.3 41.6±1.3 84.2±1.7 15.8±1.7 55.6±0.9 44.4±0.9 32.7±2.1 67.3±2.1 67.4±2.7 32.6±2.7 

B1 (4º) 270±5 30±5 106±8 194±8 77.4±1.6 22.6±1.6 64.8±2.7 35.2±2.7 86.7±2.2 13.3±2.2 90.0±1.8 10.0±1.8 71.9±1.5 28.1±1.5 

B2 (2º) 259±6 41±6 73±7 227±7 81.0±1.7 19.0±1.7 75.6±2.5 24.4±2.5 84.8±2.2 15.2±2.2 86.4±2.1 13.6±2.1 78.0±1.8 22.0±1.8 

B3 (3º) 211±9 89±9 40±6 260±6 78.4±1.6 21.6±1.6 86.6±1.9 13.4±1.9 74.5±1.8 25.5±1.8 70.2±2.9 29.8±2.9 84.0±1.9 16.0±1.9 

B4 (12º) 98±7 202±7 29±5 271±5 61.5±1.6 38.5±1.6 90.2±1.7 9.8±1.7 57.3±1.1 42.7±1.1 32.7±2.5 67.3±2.5 77.0±3.4 23.0±3.4 

B5 (10º) 130±10 170±10 25±5 275±5 67.5±1.9 32.5±1.9 91.7±1.6 8.3±1.6 61.9±1.5 38.1±1.5 43.4±3.5 56.6±3.5 84.0±2.9 16.0±2.9 

B7 (7º) 153±9 147±9 24±5 276±5 71.4±1.8 28.6±1.8 91.9±1.7 8.1±1.7 65.2±1.6 34.8±1.6 51.0±3.1 49.0±3.1 86.3±2.7 13.7±2.7 

Source: Author (2022). 
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Table 3S – Complete accuracy averages of regionalized maps and their respectively standard deviations. TP = true positive; FP = false positive; 

FN = false negative; TN = true negative; OA = overall accuracy; OE* = overall error; PA = producer’s accuracy; OE = omission error; 

UA = user’s accuracy; and CE = commission error. 

 Observation averages 
OA 

(%) 

OE* 

(%) 

Disturbance (%) Non-disturbance (%) 

Method (rank) TP FN FP TN PA OE UA CE PA OE UA CE 

Unbounded (5º) 254±6 46±6 24±5 276±5 88.3±1.3 11.7±1.3 92.1±1.7 7.9±1.7 85.6±1.6 14.4±1.6 84.5±2.0 15.5±2.0 91.5±1.6 8.5±1.6 

Climate (1º) 266±4 34±4 27±3 273±3 89.7±0.7 10.3±0.7 90.8±1.1 9.2±1.1 89.0±1.0 11.0±1.0 88.6±1.2 11.4±1.2 90.6±1.0 9.4±1.0 

Terrain (6º) 260±4 40±4 31±4 269±4 88.1±0.8 11.9±0.8 89.6±1.4 10.4±1.4 87.3±1.0 12.7±1.0 86.7±1.2 13.3±1.2 89.3±1.2 10.7±1.2 

Seasonal (3º) 261±4 39±4 26±3 274±3 89.2±0.7 10.8±0.7 91.5±0.9 8.5±0.9 87.6±1.1 12.4±1.1 87.0±1.4 13.0±1.4 91.1±0.8 8.9±0.5 

Landscape (4º) 259±5 41±5 29±4 271±4 88.4±0.8 11.6±0.8 90.4±1.2 9.6±1.2 87.0±1.3 13.0±1.3 86.4±1.5 13.6±1.5 90.0±1.1 10.0±1.1 

Variability (7º) 257±5 43±5 29±4 271±4 88.0±0.8 12.0±0.8 90.2±1.2 9.8±1.2 86.4±1.2 13.6±1.2 85.7±1.5 14.3±1.5 89.8±1.1 10.2±1.1 

Human r. (8º) 253±5 47±5 27±4 273±4 87.7±1.1 12.3±1.1 91.1±1.3 8.9±1.3 85.3±1.4 14.7±1.4 84.3±1.7 15.7±1.7 90.5±1.3 9.5±1.3 

Blended (2º) 265±4 35±4 29±4 271±4 89.3±0.7 10.7±0.7 90.2±1.3 9.8±1.3 88.7±1.0 11.3±1.0 88.4±1.2 11.6±1.2 88.6±1.1 11.4±1.1 

Source: Author (2022). 
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Abstract: Mapping the land-use and land-cover changes in seasonal biomes is of vital 

importance for both environmental monitoring and economic activities. Remote sensing 

techniques and algorithms, such as the LandTrendr have become increasingly indispensable for 

mapping and monitoring changes in vegetation; however, they are still sensitive to time series 

noise and changes caused by phenology in vegetation that are erroneous detected as change. 

Spatial predictors have the advantage of reducing seasonal variations; thus, this study evaluated 

the accuracy of predictor variables derived from the LandTrendr algorithm and semivariogram 

parameters for mapping and characterizing land cover changes in seasonal areas of Brazilian 

savannas and semi-arid woodland biomes. We defined three land cover change classes: non-

change, vegetation loss, and post-change, then created three datasets: LandTrendr, 

Semivariogram, and a combination set Blended. Object-based image analysis defined image-

objects, which were classified and have their accuracies assessed based on datasets and 

classification designs. A qualitative method through visual interpretation of semivariogram 

variables was used to infer patterns of land cover change. Results showed that LandTrendr 

significantly outperformed Semivariogram predictor variables for mapping land cover changes, 

reaching 12.0% of gain in overall accuracy. Therefore, using a blend set of these datasets, we 

found a significant increase ranging from 2.8 to 4.0% in map accuracies. Our study also 

indicated that the semivariogram variables faithfully captured patterns of vegetation loss and 

recovery. The knowledge of these relationships provided important insights into the role of 

predictor variables for mapping and monitoring vegetation change in seasonal biomes.  

 

Keywords: remote sensing, NDVI, vegetation phenology, semivariogram, object-based image 

analysis. 

1 INTRODUCTION 

Land-use and land-cover changes in vegetation ecosystems, whether natural or human-

induced, affect the spatial and temporal availability of natural resources (PITTOCK et al., 

2015). The identification of land-use and land-cover changes areas is of vital importance as 

they are linked to economic activities, such as employment, governmental investments and 

funding, the construction of irrigation infrastructure, or product supply for local or international 

markets (TRUMBORE; BRANDO; HARTMANN, 2015).  

The Brazilian savanna (also known as Cerrado) and semi-arid woodland (also known as 

Caatinga), which both together cover approximately 35% of the Brazilian territory, are among 

the most threatened ecoregions in the world due to high rates of conversion and few protected 
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areas (HOEKSTRA et al., 2004). Nevertheless, the current understanding of land-use and land-

cover changes in Cerrado and Caatinga biomes is still limited, due to few researches and 

conservation efforts focusing on these seasonal areas (ACERBI JÚNIOR et al., 2015; 

BEUCHLE et al., 2015; RIBEIRO et al., 2011). 

Due to spatial, spectral, and temporal characteristics, the advantageous application of 

satellite images has become increasingly indispensable for mapping and monitoring land-use 

and land-cover changes in vegetation, such as selective logging and wildfires (WULDER et al., 

2020). A key challenge in remote sensing change detection is accurately map land-use and land-

cover changes while not accounting those associated with phenological differences, which is 

an intrinsic characteristic of Cerrado and Caatinga biomes (TRANCOSO; SANO; MENESES, 

2015). When images from different seasons are acquired, changes caused by phenology in 

vegetation are inevitable and can easily be confused with forest change (LU et al., 2016). 

With the Landsat archive opened for free access, techniques and algorithms using time 

series imagery and de-seasoning models have been developed (ZHU, 2017) on the assumption 

that seasonal variations among images can be modeled and extracted from the dataset 

(VERBESSELT et al., 2010b). For example, the Landsat-based detection of Trends in 

Disturbance and Recovery, or LandTrendr, uses a pixel-based segmentation method to 

investigate land trajectories by modeling time series and computing straight-line segments 

(KENNEDY; YANG; COHEN, 2010). Trajectory-based segments are further used for 

identifying forest disturbance events and capturing the associated information such as the year 

of event, duration, and magnitude of change. LandTrendr has become a well-recognized and 

widely used algorithm for detecting and monitoring land cover dynamics since its 

implementation on the Google Earth Engine platform (KENNEDY et al., 2018), which 

provided straightforward access and management of the Landsat archive and computation 

through parallel processing (GORELICK et al., 2017). 

However, noise modeling and detection are usually sensitive to time series properties 

such as the regular interval between images and gaps caused by clouds and cloud shadows 

(BUENO et al., 2019). In addition, non-forested areas as Cerrado grasslands, are still affected 

by seasonal noise and may return poor accuracies in disturbance mapping studies 

(SCHWIEDER et al., 2016). In this context, researchers have proposed methods to detect land 

cover changes by exploiting the spatial information and variability of spectral indices using 

geostatistical functions (BALAGUER-BESER et al., 2013). In the remote sensing context, the 

semivariogram is a geostatistical function that describes textural and spatial features of remote 

sensing images. The semivariogram also relates the semivariance of a regionalized variable 
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with spatial intervals, providing a straightforward description of its spatial variability 

(CURRAN, 1988). Recent studies have been designed to determine whether semivariogram can 

reduce the noise caused by vegetation phenology in change detection (POWERS et al., 2015; 

SILVEIRA et al., 2018a) and classification applications (SILVEIRA et al., 2017a; YUE et al., 

2013). 

Furthermore, the integration of spatial information with time-series features to mapping 

and monitoring vegetation changes has also been reported. For instance, in a study by Wu et al. 

(2015), better results were found in land cover classification by combining semivariogram 

features and spectral information with respect to the texture features derived from the gray level 

co-occurrence matrix and spectral information. Gil-Yepes et al. (2016) explored the 

geostatistical functions of codispersion and cross-semivariogram to derive temporal features 

and detect land cover changes in agricultural areas. Others have also explored the geostatistical 

information of remote sensing images to detect changes in forested landscapes affected by 

vegetation phenology. Hamunyela et al. (2016) demonstrated the inclusion of pixel-based 

neighborhood information in a seasonal model, while Silveira et al. (2019) integrated NDVI-

derived semivariogram and spectral features to reduce seasonal variations in Landsat data. Their 

results indicated a reduction of seasonal noise from vegetation phenology when integrating 

spatial and spectral features. 

Despite these promising results, questions still remain. No previous study has inferred 

the spatial information of post-disturbance recovery or has integrated it with change detection 

algorithms. Thus, this study evaluated the accuracy of LandTrendr algorithm and the 

semivariogram features derived from NDVI images to map and characterize land-use and land-

cover changes in Brazilian seasonal biomes. Specifically, we aimed at (1) to evaluate the 

accuracy of LandTrendr, semivariogram, and their combination as predictor variables to 

classify changes in seasonal areas; (2) to evaluate gains and losses in map accuracies by 

analyzing the relationship between classification accuracies and the number of classes plus 

land-use and land-cover change types; and (3) to analyze patterns of change in accordance to 

the temporal behavior of the semivariogram parameters to infer about vegetation loss and 

recovery. With regards to the first two objectives, we investigated whether a combination of 

both LandTrendr and semivariogram was significantly different against individual datasets. We 

hypothesized that the grouping of predictor variables from different methods will significantly 

improve the performance of change mapping because the blended set may exclude individual 

weakness and benefit from particular advantages of each predictor variable, reducing the 

generalization error. 
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The study presented here used object-based image analysis to extract information from 

LandTrendr algorithm and semivariogram predictor variables. We classified land-use and land-

cover changes and analyzed the accuracies derived from the sets of variables and their 

combination. We also analyzed accuracies with regards to change classes, hereafter presented 

as the classification design. Finally, a qualitative method based on visual interpretation of 

important spatial variables was adopted to infer patterns of land cover change. 

2 MATERIAL AND METHODS 

Figure 1 illustrates the major steps of this study. The preprocessing of data included the 

segmentation of Landsat images and the assignment of image-objects to reference land-use and 

land-cover changes classes. We then created three sets of predictor variables by extracting 

spatial and disturbance information inside the image-objects, which were LandTrendr, 

Semivariogram, and the combination of both previous sets (hereafter labeled as Blended). We 

mapped land cover changes and evaluated the performance of datasets and classification 

designs. Finally, a qualitative method based on visual interpretation of important spatial 

variables was adopted to infer about patterns of land cover change. 
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Figure 1 – Method flowchart and the steps detailed to provide mapping accuracy and patterns 

of change. Land cover classes: NC – Non-change; VL – Vegetation loss; and PC – 

Post-change. 

 

Source: Author (2022). 

 

2.1 Study Area and Sample Design 

The study area is inserted in the north of Minas Gerais state, Brazil, between the 

coordinates 14º 00' to 16º 30' south latitude and 43º 00' to 46º 00' west longitude and comprises 

the Rio Pandeiros Water Resources Planning and Management Unit (Figure 2a). Two main 

biomes are presented in the area: savanna or Cerrado, and the semi-arid woodland, also known 

as Caatinga. A variety of vegetation types are presented in both biomes such as open grasslands 

(Cerrado grassland), open grassland with sparse shrubs (Cerrado sensu stricto), deciduous 
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forest, and palm swamps (veredas) (OLIVEIRA-FILHO et al., 2006). These vegetation types 

encompass many endemic and rare species; however, they are also situated within a biodiversity 

hotspot representing the most endangered ecosystems in the world (MYERS et al., 2000). 

The climate is classified as Aw, characterized by dry winters and rainy summers (PEEL; 

FINLAYSON; MCMAHON, 2007). Annual precipitation is accumulated on summer ranging 

from 1,200 to 1,800 mm, while dry season can reach zero mm of monthly precipitation, 

displaying a high variation in precipitation during the year (Figure 2b). Such variation is also 

presented in temperature, varying from 15º C to 35º C according to seasons (Figure 2c). 

Eventually, the seasonal effect also impacts the photosynthetic activity of vegetation. Values of 

the normalized vegetation difference index (NDVI), which is related to vegetation greenness, 

are strongly affected by climate seasonality and differ across the area (Figure 2d). 

In order to perform the analyses presented in this study, we created 16 plots of 100 km² 

(10 x 10 km) distributed in the study area. These plots display multiple vegetation types and 

change events as human-induced and natural phenological changes. Area plots were sufficiently 

large to contain a suitable number of change events observations and suitable dispersed to attend 

the spatial heterogeneity in the area (OLOFSSON et al., 2014). 
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Figure 2 – (a) Location of the study area; (b) The seasonal effect on precipitation, expressed by 

the difference between the wettest and the driest quarter; (c) temperature difference 

between the warmest and the coldest month;  (d) inter-annual vegetation seasonal 

response of NDVI; (e) image segmentation and image-objects. 

 

Source: Author (2022). 

 

2.2 Data Acquisition 

To accomplish this research, we selected one cloud free Landsat OLI image per year 

from 2013 to 2017, and downloaded from the U.S. Geological Survey’s Earth Resources 

Observation and Science (USGS EROS) (See Table 1S of the Supplementary material for 

details). All scenes were pre-processed to surface reflectance levels using the Land Surface 

Reflectance Code (LaSRC) atmospheric and topographic correction algorithm (VERMOTE et 

al., 2016). From each corrected Landsat image, we calculated the NDVI inside each area plot. 

Besides being the most frequently used index in remote sensing science, previous studies 

indicated NDVI as an adequate index in change detection applications when used across cerrado 

and caatinga biomes (BUENO et al., 2020). We masked NDVI images with the Cadastro 

Ambiental Rural land use/land cover classification in order to obtain only native vegetation 

areas. The map of Cadastro Ambiental Rural encompasses forested areas as well as non-
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forested areas, such as native grasslands, which makes a suitable dataset for the analysis in this 

study. 

As reference data, we created change polygons by visual interpretation using Landsat 

images. We selected one image per year (usually on the dry season – June to September – to 

avoid cloud contamination), and accounted for vegetation changes in consecutive images. We 

accounted as changes in vegetation, only the conversion of native vegetation cover at the 

Landsat pixel scale to a non-native class, e.g., bare soil, agriculture, or pastures. To infer about 

inconclusive change areas, we used high-resolution imagery from Google Earth (where 

available) as auxiliary information. Finally, change polygons were double-checked by different 

analyst experts in order to remove uncertainty regions. The reference data collection step was 

performed in Envi software (Exelis Visual Information Solutions, Boulder, Colorado). 

2.3 Image Segmentation 

Image segmentation is a crucial step in OBIA and divides an image into groups of pixels 

spatially continuous and spectrally homogeneous, also known as image objects (Figure 2e). The 

segmentation of a remote sensing image minimizes the within-object variability compared to 

the between-object variability (DESCLÉE; BOGAERT; DEFOURNY, 2006). We used the 

multiresolution segmentation algorithm (BAATZ; SCHAPE, 2000) implemented in the 

eCognition software (DEFINIES AG, 2009). We selected all 30-m OLI bands from two 

consecutive years during the 2013-2017 period. Therefore, we ran the segmentation four times 

(2013-2014, 2014-2015, 2015-2016, 2016-2017) then merged all objects into a single dataset. 

The image segmentation using multiple year intervals is particularly useful since it increases 

the number of image-objects, and therefore the change observations. Another advantage of 

considering all images during object formation is that it minimizes sliver errors and potentially 

honoring key multi-temporal boundaries. 

Three important segmentation parameters: scale, compactness, and shape, control the 

size and shape of the image objects. We set 200 for scale, 0.5 for compactness, and 0.1 for 

shape. The most critical step is the selection of the scale parameter, which controls the size of 

the image objects. This parameter is crucial when analyzing spatial features of image objects, 

since their size or number of pixels is directly related to the semivariogram criterion lag distance 

(SILVEIRA et al., 2018a). We adopted a trial and error approach to find an appropriate value 

for the scale parameter (DURO; FRANKLIN; DUBÉ, 2012). We ensured a minimum number 

of samples (25 pixels) inside the objects and an adequate size to allow further geostatistical 

analysis. 
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We assigned image-objects to change events and defined three classes of land-use and 

land-cover change: 

• Non-change: image objects comprising the same land cover in both years, although 

seasonal changes due to phenological effects might be common; 

• Vegetation loss: the complete removal of native vegetation at the Landsat pixel scale 

and its conversion into bare soil; 

• Post-change: the spectral change after the loss of vegetation, which is mainly 

characterized by the land conversion into areas with higher NDVI values (e.g., crops, 

planted forests, and natural regeneration. 

Representative image-objects of change classes were identified from visual inspection 

using Landsat images and high-resolution imagery from Google Earth, when available. We 

assigned a total of 4,250 image-objects representing the non-change class, 99 representing 

vegetation loss, and 56 representing post-change. 

2.4 Feature Extraction 

From image-objects, we extracted disturbance information and spatial features based on 

the NDVI values inside the objects. We then created three sets of predictor variables generated 

from 1) LandTrendr algorithm, 2) Semivariogram parameters, and 3) Blended. The initial pool 

of variables was screened to limit the potential effects of multicollinearity by calculating 

correlations between pairs of variables using the Pearson’s correlation coefficient (R). We 

removed those with R values greater than 0.80. 

2.4.1 LandTrendr 

Instead of using LandTrendr change maps, we chose to use an ensemble mapping 

approach, integrating LandTrendr change map with further classification. The ensemble 

technique for classification systems is based on multiple or committee algorithms combining 

their predictions, then excluding individual weakness. 

To extract LandTrendr information from NDVI time series, we followed three steps: 

algorithm tunning, magnitude of change extraction, and calculation of final predictor variables. 

We first tuned three LandTrendr parameters p related to the trajectory segmentation fitting: the 

maximum number of segments p = {4, 6, 12}, the recovery threshold p = {0.25, 0.50, 0.75}, 

and the best model proportion p = {0.50, 1.00, 1.25}. Each parameter value was varied 

according to their respectively attempts and the change map was evaluated for 1000 reference 

points equally sampled over the study area. The most accurate change map was selected for 



124 

 

further analysis. Applying the best parameter configuration (lowest overall error), we extracted 

the magnitude of change in each year. The magnitude of change reflected a significant spectral 

change in the yearly trajectory of a pixel, and varied from negative values (magnitude of 

vegetation loss) to positive values (magnitude of  vegetation gain). Pixels with zero values 

represented a non-significant change not detected by the algorithm. We included the magnitude 

of gain once it can also indicate a loss in vegetation. The magnitude of change with regards to 

gain in vegetation is an important role in mapping non-forested changes since they are usually 

converted from low NDVI values, as native grasslands, to higher values such as agriculture and 

planted forests. Finally, we computed six predictor variables from the magnitude of change 

inside each image-object: minimum, maximum, range, mean, standard deviation, and sum 

(Table 1). LandTrendr-related analysis were undertaken in Google Earth Engine platform. 

 

Table 1 – LandTrendr predictor variables calculated from the magnitude of change of image-

objects. 

Variable Description 

MIN Minimum value of change magnitude computed by LandTrendr inside an image-object. 

MAX Maximum value of change magnitude computed by LandTrendr inside an image-object. 

RANGE Difference between the lowest and highest values of change inside an image-object. 

MEAN Mean value of change magnitude inside an image-object. 

STD Standard deviation of change magnitudes an image-object. 

SUM The total of change magnitudes values inside an image-object. 

Source: Author (2022). 

 

2.4.2 Semivariogram 

We calculated the semivariance γ(h) from experimental semivariograms, defined from 

the spatial variance of measures performed in samples from a determined distance h being the 

sum of the squares’ difference between the sampled values Z(x) separated by a distance h, 

divided by two times the number of possible pairs on each distance N(h) (Equation 1). For each 

image-object, the final experimental semivariogram was obtained by computing the mean of 

the semivariograms calculated in six directions. The graphical representation of the 

experimental semivariogram illustrates the spatial variance and distance h illustrates, which 

permits obtaining the estimative of the variance for the different combinations of pairs of 

observations. For further details, please refer to Curran (1988). 
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𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑍(𝑥) − 𝑍(𝑥 + ℎ)]2

𝑁(ℎ)

𝑖=1

 (1) 

The semivariance is characterized by three parameters: sill (γmax_1 or σ2), range (hmax_1 

or φ), and nugget effect (τ2). The sill is the semivariance value when the model reaches the 

plateau, commonly displayed on the y-axis, and represents the amount of variation explained 

by the spatial design of the data. The range is the distance h at which the semivariogram reaches 

the sill, commonly displayed on the x-axis, and illustrates the distance until the data is spatially 

correlated. The nugget effect is the non-spatial component of the variance composed of random 

sensor noise or sampling errors.  

Based on the semivariogram standard parameters – sill, range, and nugget – we 

computed a set of eleven indices (Table 2). Semivariogram indices were firstly calculated by 

Balaguer et al. (2010) and describe the shape of the semivariogram and, therefore, the properties 

that characterize the spatial patterns of the image-objects. To ensure that semivariogram 

parameters would provide a reliable description of the semivariogram shape and data 

variability, we attempted to set a satisfactory lag distance. We set the number of lags as 30 

Landsat pixels scale, resulting in a lag distance of 900 m. This lag distance was previously 

defined as a good value for related analysis (SILVEIRA et al., 2018b). We used FETEX 2.0 to 

compute and extract semivariogram parameters of image-objects (RUIZ et al., 2011). Finally, 

we computed predictor variables based on the parameters of the difference between two 

consecutive years. 

 

Table 2 – Semivariogram variables calculated from the NDVI values inside the objects, where 

the semivariogram features {(h1, γ1), (h2, γ2) … (hmax_1, γmax_1)} are the points of the 

experimental semivariogram until the first local maximum. Variance is the value of 

the total variance of the pixels belonging to the image-object. Delta symbol 

represents the parameter difference between two consecutive years. 

Variable Description Formula 

∆RVF 
Ratio between the values of the total variance and the 

semivariance at first lag 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒

𝛾1

 

∆RSF Ratio between semivariance values at second and first lag 
𝛾2

𝛾1

 

∆FDO First derivative near the origin 
𝛾2 − 𝛾1

ℎ
 

∆SDT Second derivative at third lag 
𝛾4 − 2𝛾3 + 𝛾12

ℎ2
 

∆FML 
First maximum lag value 

 
 

∆MFM Mean of the semivariogram values up to the first maximum 
1

𝑚𝑎𝑥_1
∑ 𝛾𝑖

max_1

𝑖=1

 



126 

 

∆VFM 
Variance of the semivariogram values up to the first 

maximum 

1

𝑚𝑎𝑥_1
∑ (𝛾𝑖 − 𝛾max_1

𝑚𝑒𝑎𝑛 )
2

max_1

𝑖=1

 

∆DMF 
Difference between the mean of the semivariogram values 

up to the first maximum and the semivariance at first lag 
𝑀𝐹𝑀 − 𝛾𝑖 

∆RMM 
Ratio between the semivariance at first local maximum and 

the mean semivariogram values up to this maximum 

𝛾max_1

𝛾max_1
𝑚𝑒𝑎𝑛 

∆SDF 
Second-order difference between first lag and first 

maximum 

𝛾max_1 − 2𝛾max_1
2

+ 𝛾1 

∆AFM Semivariance curvature 
ℎ

2
(𝛾1 + 2 ( ∑ 𝛾1

max_1−1

𝑖=2

) + 𝛾max _1) − (𝛾1(ℎmax _1 − ℎ1)) 

Source: Author (2022). 

 

2.4.3 Blended 

Blended dataset encompassed all predictor variables previously described: six from 

LandTrendr and thirteen from semivariogram. We combined the spatial information of the 

semivariogram with the change output of LandTrendr, assessing gains and losses in accuracy. 

2.5 Change Mapping 

We used The Random Forest algorithm (RF; Breiman, 2001) to classify the land-use 

and land-cover changes. RF consists of many decision trees voting the best model’s prediction 

and has become one of the most popular classifiers presenting easy learning and very 

satisfactory outputs (BELGIU; DRĂGUŢ, 2016). RF involves several parameters controlling 

the structure of the algorithm. In this study, we tunned three of those parameters: the number 

of trees to grow, or Ntree; the number of predictors sampled at each tree node, or Mtry; and the 

minimum size of terminal nodes, or node size. The control of node size parameter defines the 

minimum number of observations in a terminal node, where a lower number defines trees with 

a larger depth, which means that more splits are performed until the terminal nodes. We used 

the following parameter values in the RF tunning: Ntree = {250, 500, 750, 1000}; Mtry = {p/4, 

p/3, p/2, p} with p the total number of variables; and node size = {2, 4, 6, 8}.  

For each RF classification, we balanced the observations according to the class with 

fewer image-objects. We split the data into 70% for training to fit the RF model, while 30% 

was used for the validation set, assessing the generalization error of the RF model. We repeated 

100 RF trials per classification design to capture a possible variation in accuracies resulting 

from random sampling of training samples (especially in ND class, the most numerous class). 

In addition, multiple trials allowed us to obtain a more representative classification performance 



127 

 

of the datasets and classification designs. Accuracy analysis consisted in the creation of 

confusion matrices for each RF trial. The overall accuracy, omission (inversely related to 

producer’s accuracy), and commission error rate (inversely related to user’s accuracy) were 

obtained for all the trials. Accuracy analysis were graphically presented using boxplots. RF 

analysis and tunning were undertaken using the mlr package (BISCHL et al., 2016), while 

confusion matrices were derived using the caret package (KUHN, 2008) in R v 4.1.0 (R CORE 

TEAM, 2016) 

The change mapping step was performed based on two analyses: the first evaluating the 

dataset, and the second the classification designs. 

2.5.1 Dataset Evaluation 

The dataset evaluation consisted of comparing accuracies of the three sets of prediction 

variables: 6 LandTrendr, 13 semivariogram, and 19 Blended. To test for statistical significance, 

we tested whether there were differences in overall accuracies between datasets. We performed 

paired t-tests for each dataset (comparing each of them with each other) to assess if the 

differences in accuracy were significant at the 5% level. The null hypothesis in the paired tests 

stated that the mean difference in the population equals zero.  

2.5.2 Classification Design Evaluation 

Classification designs mainly analyzed the relationship between classification 

accuracies and the number of classes plus major land-use and land-cover change types of the 

study area. We evaluated three classification designs based on the selection of the change 

classes. The first design used only non-change and vegetation loss observations, which is a 

common vegetation change analysis. Second, we selected non-change and post-change, which 

allowed us to investigate the performance of mapping areas of vegetation recovery and other 

types of land conversion. Third, we used all change classes – non-change, vegetation loss and, 

post-change to determine accuracies, and to analyze loss and gains in accuracy compared with 

the other two designs. Paired t-tests were also performed to analyze whether there were 

differences in overall accuracies between classification designs at 5% level. 

2.6 Qualitative Analysis 

A qualitative analysis through visual interpretation of Semivariogram variables and 

classification designs was also done. We calculated the variable importance of each RF model 

using the mean decrease in Gini index, which measures the difference in out-of-bag accuracy 
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with respect to the rest of the variables. The two most important variables considering all RF 

runs were selected. We then separately plotted the three classification designs and their 

respective variables in a 2-d plot to infer patterns of change. 

3 RESULTS 

3.1 Change Mapping Evaluation 

The overall accuracies for the 100 RF trials using boxplots allowed us to evaluate the 

overall performance among datasets and classifications designs (Figure 3). The overall accuracy 

median of Blended significantly outperformed the other datasets in all classification designs. 

For instance, the Blended median of the first classification design was 84.0%, while LandTrendr 

and Semivariogram had 80.0% and 68.0%, respectively. With regards to the maximum 

accuracy, LandTrendr had the highest value in the same classification design, 94.0%, while 

Blended and Semivariogram had 92.0% and 88.0%, respectively. Semivariogram dataset had 

the lowest overall accuracies considering the median, maximum, and minimum values. 

According to the paired t-test, overall accuracies of datasets were significantly different in 

almost all classification designs (Table 3). However, we did not find statistical difference at 5% 

level between LandTrendr and Blended overall accuracies in the classification design that used 

only non-change and post-change observations. 

 

Figure 3 – Boxplots of overall accuracies displaying datasets (SV – Semivariogram; LT – 

LandTrendr; BL – Blended) and classification designs (NC – Non-change; VL – 

Vegetation loss; PC – Post-change). 

 

Source: Author (2022). 
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Table 3 – Comparison of datasets overall accuracies (SV – Semivariogram; LT – LandTrendr; 

BL – Blended) using a paired t-test. The upper number indicates the t-value, the 

number in parentheses indicates the p-value, and bold values indicate no statistical 

significance at 5% level. (NC – Non-change; VL – Vegetation loss; PC – Post-

change). 

 NC + VL NC + PC NC + VL + PC 

 SV LT BL SV LT BL SV LT BL 

SV 
0.00 

(1.000) 
  

0.00 

(1.000) 
  

0.00 

(1.000) 
  

LT 
12.75 

(<0.001) 

0.00 

(1.000) 
 

5.54 

(<0.001) 

0.00 

(1.000) 
 

5.93 

(<0.001) 

0.00 

(1.000) 
 

BL 
21.14 

(<0.001) 

5.27 

(<0.001) 

0.00 

(1.000) 

7.05 

(<0.001) 

1.45 

(0.1502) 

0.00 

(1.000) 

10.08 

(<0.001) 

2.70 

(0.008) 

0.00 

(1.000) 

Source: Author (2022). 

 

Regarding the classification designs, all overall accuracies were significantly different 

(Table 4). An important result can be shown when analyzing classifications that used two 

change classes (non-change + vegetation loss and non-change + post-change), and the 

classification design with three classes (non-change, vegetation loss, and post-change). A 

comparison of both results reveals a decrease in accuracies when adding the third class. For 

instance, the overall accuracy median of Blended decreased 17.8% when adding the post-

change class in the first classification design, while 11.6% decreased in the second design when 

adding vegetation loss class. Other datasets also showed a decrease of accuracies close to 10% 

when adding the additional change class. The decrease of accuracy can also be represented by 

t values of paired t-test, where the comparisons with the third classification design had higher 

t-values (large difference existed between the two sample sets). In addition, the third 

classification design returned no accuracies higher than 80%, which suggests that the more the 

land cover change classes, the lower the overall accuracy values. 
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Table 4 – Comparison of classification designs overall accuracies using a paired t-test 

(classification design 1 – CD1: non-change + vegetation loss; classification design 

2 – CD2: non-change + post-change; classification design 3 – CD3: non-change + 

vegetation loss + post-change). The upper number indicates the t value, the number 

in parentheses indicates the p-value. All comparisons were statistically significant 

at 5% level. 

 Semivariogram LandTrendr Blended 

 CD1 CD2 CD3 CD1 CD2 CD3 CD1 CD2 CD3 

CD1 
0.00 

1.0000 
  

0.00 

1.0000 
  

0.00 

1.0000 
  

CD2 
4.77 

<0.0001 

0.00 

1.0000 
 

2.97 

0.0038 

0.00 

1.0000 
 

6.49 

<0.0001 

0.00 

1.0000 
 

CD3 
9.51 

<0.0001 

14.47 

<0.0001 

0.00 

1.0000 

17.15 

<0.0001 

14.27 

<0.0001 

0.00 

1.0000 

24.33 

<0.0001 

15.43 

<0.0001 

0.00 

1.0000 

Source: Author (2022). 

 

Omission and commission error rates for the 100 RF trials followed a similar trend 

compared to overall accuracies, where LandTrendr outperformed Semivariogram, and their 

combination returned the lowest error rates (Figure 4). It is also noticeable that error rates 

presented a higher range of output values. Considering all classifications designs, the omission 

error rate of NC, which were the non-change observations wrongly classified as land cover 

change, roughly ranged from 60% to 0%. These results suggest that vegetation seasonality 

affected the internal structure of image-objects regardless the dataset. The error rate increase 

when adding a third change class was also seen in omission and commission outputs. The error 

increase is even more apparent in post-change omission error rate where error rates reached an 

increase of 28.0% in Semivariogram dataset. 
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Figure 4 – Omission and commission error rates of classification designs (NC – Non-change; 

VL – Vegetation loss; PC – Post-change) and their respectively datasets (SV – 

Semivariogram, LT – LandTrendr, BL – Blended). 

 

Source: Author (2022). 

 

3.2 Qualitative Analysis 

Three Semivariogram variables were selected as the most important ones in RF 

classifications. In the first classification design, ∆RVF was the most important variable in the 

majority of RF trials, while ∆AFM was the second most important variable selected. In the 

second and third designs, ∆RVF was maintained as the most important variable, and ∆RSF 

turned into the second most important variable.  

Two-dimensional plots display land cover change image-objects in classification 

designs based on the most important Semivariogram variables (Figure  5). We found patterns 

of changes by analyzing individual image-objects. The first pattern can be seen in the first 

classification design, when vegetation loss image-objects presented an increase of both ∆RVF 

and ∆AFM, while values of non-change remained constant (Figure 5a). In Year 1, objects 

covered by native vegetation are composed of homogeneous pixels (low internal NDVI 
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variability) with low values of total variance. After change (e.g., deforestation), there was an 

increase in internal variability of NDVI values due to the conversion to bare soil, evidenced by 

higher variance values (Figure 5b). 

The classification design that investigated only post-change along with stable areas 

(Figure 5c), indicated three main patterns of change, which were: (i) both ∆RVF and ∆RSF 

increase; (ii) both ∆RVF and ∆RSF decrease; and (iii) both ∆RVF and ∆RSF remain constant. 

The first pattern was opposite of loss of vegetation, where heterogenous image-objects mostly 

covered by bare soil in Year 1 presented a vegetation recovery in Year 2, which stabilizes the 

textural variation and decreases the total variance (Figure 5d). In the second pattern, Year 2 

presented an uneven recovery inside the image-object, where part of the pixels recovered and 

part remained constant, then increasing its variance (Figure 5e). Finally, the third pattern 

presented the same land use in both Years 1 and 2 (Figure 5f). The classification design that 

combined non-change, vegetation loss, and post-change did not present a particular pattern 

although combines all patterns previously described (Figure 5g). 
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Figure 5 – The qualitative analysis through visual interpretation of Semivariogram most 

important variables, and classification designs using (a) non-change and 

vegetation loss; (c) non-change and post-change; and (g) non-change, vegetation 

loss, and post-change classes. The vegetation loss pattern of change is represented 

in (b); while post-change patterns were represented in (d), (e) and (f). 

 

Source: Author (2022). 

 

4 DISCUSSION 

In this research, we evaluated the accuracy of LandTrendr algorithm and semivariogram 

parameters to detect and to characterize land-use and land-cover changes in seasonal areas. 

LandTrendr and semivariogram were also evaluated as a unique dataset by combining both sets 

of variables, which increased map accuracies. In addition, our results infer about patterns of 

change in accordance to the temporal behavior of the semivariogram parameters. 
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4.1 Change Mapping Evaluation 

The first objective in this study sought to evaluate the accuracy of LandTrendr 

algorithm, semivariogram, and their combination to map vegetation changes in seasonal areas. 

Our results showed that variables generated from a LandTrendr map returned, on average, more 

accurate land-use and land-cover changes maps than semivariogram parameters. These results 

mirror those of the previous studies that have evaluated the potential of LandTrendr in mapping 

vegetation changes and dynamics in tropical dry forests (DE MARZO et al., 2021), savannas 

(SOUZA et al., 2020a), and mangroves (DE JONG et al., 2021). Using LandTrendr resulted in 

overall accuracies high enough detecting changes under the first two classification designs. A 

total of 44% in LandTrendr trials returned overall accuracy higher than 80% in the first 

classification design, and 33% in the second. Despite those potential errors, the low omission 

and commission error rates for both designs imply that the LandTrendr approach used in this 

research was robust. 

One unanticipated finding was the unsatisfactory performance of semivariogram 

predictor variables. This finding is contrary to previous studies that have suggested the spatial 

context may be not affected by vegetation seasonality (HAMUNYELA; VERBESSELT; 

HEROLD, 2016; SILVEIRA et al., 2018b). The concept of mapping land cover changes using 

spatial information was also evaluated by Silveira et al. (2019) in a location near our study area. 

In that study, the spatial context reduced the seasonal variations in the data and increased 

accuracies. However, this rather contradictory result may be explained by several factors. We 

used a full and repeated random selection of training and validation image-objects, which 

allowed us to explore a larger number of image-objects throughout the area and to obtain a more 

representative mapping analysis. However, some image-objects can be misclassified by RF. For 

instance, the random selection might have selected image-objects representing more than one 

vegetation type (e.g., deciduous forest and riparian forest), which might have different spectral 

responses to the seasonal noise; therefore, different internal variances. Another factor might be 

the selection of image-objects with mask errors from the Cadastro Ambiental Rural 

classification. In addition, we used a different period of analysis and image date acquisition 

from those previous studies, which might affect the seasonal noise captured by the analysis in 

this study.  

The combination of both sets of variables revealed more accurate land-use and land-

cover changes maps than assessing them individually. By investigating a similar hypothesis to 

what is described here, Silveira et al. (2019) also found gains in accuracy when combining 
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semivariogram indices and descriptive statistics of NDVI. In that study, semivariogram indices 

outperformed spectral features, while their combination returned a gain of 5% in overall 

accuracy. Others have also demonstrated the value of combining predictor variables for forest 

disturbance mapping. For instance, in a study by Hislop et al. (2019), disturbance mapping 

models based on a set of forest change maps, raster information and time series predictor 

variables, had higher accuracies than models with fewer variables. The combination of sets 

based on spatial and spectral information was also demonstrated to classify agriculture areas 

(AKAR; GÜNGÖR, 2015). 

Our study produced results that verify the findings of the previous work in land cover 

change mapping. One important feature of our method was the use of predictor variables from 

distinct methods. Besides the spatial context, semivariogram and LandTrendr differed with 

regards to the image frequency. The Semivariogram method analyzes changes in bitemporal 

NDVI images, which is a common change detection method based on image differencing (or, 

in this case, variance differencing). In image differencing studies, changes are defined by 

image-objects that show large differences. Some authors have demonstrated that a bi-temporal 

set of features shows high rates of accuracy in change detection classification and reduced 

vegetation phenology when used along with the spatial context (GIL-YEPES et al., 2016). On 

the other hand, the LandTrendr algorithm models time trajectories and demands historical time 

series data available at the same time. By constraining the image selection to the dry season, 

we also reduced the vegetation-phenology and view-illumination effects on clearing detection. 

Therefore, such a variety of predictor variables provided to our method the capability to exclude 

individual weakness and to benefit from particular advantages of each predictor variable, 

reducing the generalization error. 

With respect to the second objective, it was revealed that accuracies decreased when 

adding the third change class. A strong relationship between classification accuracies and the 

number of classes has been reported in the literature, where the classification accuracy 

decreases with an increase in the number of classes (MA et al., 2017). Others have also reported 

that the occurrence of accuracies below 85% in wetland classification studies increased after 

the number of classes exceeded four (DRONOVA, 2015). Our study demonstrated that 

accuracies can decrease based on a very low number of land-use and land-cover change classes. 

However, a possible explanation for this high decrease in accuracies may be the presence of 

observation uncertainties that are discussed in the next sections. 
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4.2 Post-Change Uncertainty 

The third objective in this research was to analyze patterns of change in accordance with 

the temporal behavior of the semivariogram variables to infer vegetation loss and recovery. The 

most important variables of Semivariogram, ∆RVF, ∆RSF, and ∆AFM were directly related to 

the difference of variance between consecutive years. The first two use semivariogram values 

near the origin and basically differ in their lag distances. ∆RVF is an indicator of the relationship 

between the spatial correlation at long and short distances. Its value increases when high 

variability at long distances and low variability at short distances occurs. ∆RSF provides 

information about changes in the variability of data at short distances. If we now turn to ∆AFM, 

this variable uses the semivariogram values ranging from the first lag up to the first local 

maximum of the experimental semivariogram. ∆AFM provides information about the 

semivariogram curvature and is also related to the variability of the data. 

However, we found different patterns when analyzing the second classification design, 

which used information of post-change image-objects. In general, the classification design 

using non-change and post-change classes performed well. For instance, 45% of Blended 

classification trials had an overall accuracy higher than 80.0%. Nevertheless, by adding the 

vegetation loss class, accuracies considerably decreased and the highest overall accuracy of 

Blended turned to 78.0%. On the question of these results, we found post-change uncertainties 

due to the variance similarity of post-change with vegetation loss and non-change image-

objects. Post-change uncertainties patterns were the main cause of poor accuracies in the 

classification designs that selected all land cover change classes.  

Some post-change image-objects did not follow the pattern of vegetation recovery in 

Year 2, which could be expected by an increase of NDVI pixels values and a decrease in the 

total variance. Nevertheless, the increase of variance inside post-change image-objects can 

easily be confused with vegetation loss observations, which decreases the overall accuracy and 

increases the omission error rate of the post-change class. Even though our image segmentation 

method considers both years during object formation and intends to capture the heterogeneity 

in Year 2, it may present some boundary errors in small objects. Boundary errors can be 

explained by the fixed minimum number of pixels inside the objects to allow the calculation of 

the semivariogram, which may create large image-objects. In addition, those errors raise 

intriguing questions regarding the optimal image segmentation and the suitable image objects 

for change mapping analysis. The second post-change uncertainty, the variance regularity in 

Year 2, also leads to a decrease in the overall accuracy and increase of the omission error rate 
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of the post-change class. The similarity of NDVI values in both years can be confused with 

non-change image-objects less affected by vegetation phenology. 

The uncertainties of post-change class support the importance of modeling change 

dynamics to improve mapping accuracies. Prior studies also have noted the importance of 

assessing post-change areas to infer land cover classes (ARÉVALO; OLOFSSON; 

WOODCOCK, 2020; HERMOSILLA et al., 2018) and to monitor forest dynamics (BARTELS 

et al., 2016). However, the poor accuracies caused by post-change uncertainties need to be 

interpreted with caution. The present study was limited by a low number of post-change 

observations, which might be unrepresentative for the study area. In future investigations, a 

straightforward analysis of a representative land cover change database should be considered 

as it can provide a trustful background of post-change information and its accuracy. 

4.3 Non-Change Variability 

Another important finding was the high variability of accuracies outputs, graphically 

presented by the boxplots. The high variability may be explained by the fact that non-change 

image-objects were more numerous than other classes, and their random selection was affected 

by vegetation phenology in some RF trials. The vegetation phenology has been reported as 

noise by several authors with regard to change mapping and monitoring, requiring appropriate 

methodologies to deal with such complexity (VENKATAPPA et al., 2019). There are 

comparable methods to what is described here that intended to capture spectrally complex and 

heterogeneous land change processes. For instance, in a study by De Marzo et al. (2021), 

LandTrendr along with RF had been reported as a valuable ensemble technique to map 

disturbances in tropical dry forests strongly affected by vegetation phenology.  

The results of our study indicate that vegetation phenology might be prevalent in some 

image-objects. It is possible that these results were influenced by the lack of vegetation classes 

since we considered forested (e.g., cerrado woodlands, deciduous forest, and riparian forest) 

and non-forested areas (e.g., cerrado grasslands, wetlands) as a unique vegetation class.  

Another interesting finding based on the high variability of accuracy outputs was the 

high omission error rate of non-change class in Semivariogram classifications. For instance, the 

highest non-change omission error reached 64% in the first classification design, which means 

19 out of 30 non-change image-objects from the validation set were wrongly classified as 

vegetation loss. Such unsatisfactory finding is contrary to previous studies that have suggested 

that the spatial variability of NDVI and semivariogram indices might be not affected by 

vegetation seasonality (SILVEIRA et al., 2019). However, the reader must be cautioned since 
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Semivariogram classifications also returned 8% of omission error rate of non-change and 88% 

of overall accuracy (highest accuracy), which was in line with those of previous studies.  

The observed accuracy variability can be attributed to a unique feature of our method 

that was the repeated random selection of non-change observations. A few training samples of 

non-change image-objects might be more affected by vegetation phenology than others, 

returning higher omission error rates and vice-versa. There were efforts in the remote sensing 

community to improve continuous land cover classification accuracy with regards to training 

samples. Large samples of training pixels was suggested to classify land cover changes in large 

areas (ZHOU; TROY; GROVE, 2008; ZHU et al., 2016). However, there is difficulty in 

collecting large sets of samples through traditional approaches including manual interpretation 

or from high-resolution imagery. Others have used multiple existing databases to mitigate the 

uncertainties of training samples selection (LI et al., 2021). There are still unanswered questions 

about the effect of vegetation phenology on change mapping. Further research is required to 

evaluate the effect of training data selection, especially stable vegetated areas affected by 

phenology. 

5 CONCLUSION 

We evaluated the accuracy of LandTrendr algorithm and semivariogram parameters to 

map and to characterize land-use and land-cover changes in Brazilian seasonal biomes. 

LandTrendr predictor variables outperformed semivariogram features to map land-use and 

land-cover changes; however, the combination of the two datasets produced the best result. Our 

findings provide important insights into the role of predictor variables for mapping and 

monitoring land cover changes in tropical seasonal biomes. Our study also indicated that 

predictor variables extracted from semivariogram faithfully captured patterns of vegetation loss 

and recovery. The knowledge of these relationships allows the analyst not only to detect change 

events, but also to infer the type of change, whether caused by deforestation or by areas in 

regeneration. In addition, we reinforced the importance of post-change characterization to 

improve map accuracies, and the evaluation of training data selection, especially stable areas 

affected by vegetation phenology. 

 

Acknowledgments: This study was financed in part by the Coordenação de Aperfeiçoamento 

de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001. 



139 

 

6 REFERENCES 

ACERBI JÚNIOR, F. W. et al. Change Detection in Brazilian Savannas Using Semivariograms 

Derived from NDVI Images. Ciência e Agrotecnologia, v. 39, n. 2, p. 103–109, abr. 2015. 

DOI: 10.1590/S1413-70542015000200001. 

AKAR, Ö.; GÜNGÖR, O. Integrating multiple texture methods and NDVI to the Random 

Forest classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey. 

International Journal of Remote Sensing, v. 36, n. 2, p. 442–464, 17 jan. 2015. DOI: 

10.1080/01431161.2014.995276. 

ARÉVALO, P.; OLOFSSON, P.; WOODCOCK, C. E. Continuous monitoring of land change 

activities and post-disturbance dynamics from Landsat time series: A test methodology for 

REDD+ reporting. Remote Sensing of Environment, v. 238, p. 111051, 1 mar. 2020. DOI: 

10.1016/J.RSE.2019.01.013. 

BAATZ, M.; SCHAPE, A. Multiresolution segmentation - An optimization approach for high 

quality multi-scale image segmentation. In ANGEWANDTE GEOGRAPHISCHE 

INFORMATIONS-VERARBEITUNG XII, 2000, Karlsruhe. Anais eletrônicos… Wichmann 

Verlag, 2000. Acesso em: 20 out. 2020 

BALAGUER-BESER, A. et al. Using semivariogram indices to analyse heterogeneity in spatial 

patterns in remotely sensed images. Computers & Geosciences, v. 50, p. 115–127, 1 jan. 2013. 

DOI: 10.1016/J.CAGEO.2012.08.001. 

BALAGUER, A. et al. Definition of a comprehensive set of texture semivariogram features and 

their evaluation for object-oriented image classification. Computers & Geosciences, v. 36, n. 

2, p. 231–240, fev. 2010. DOI: 10.1016/j.cageo.2009.05.003. 

BARTELS, S. F. et al. Trends in post-disturbance recovery rates of Canada’s forests following 

wildfire and harvest. Forest Ecology and Management, v. 361, p. 194–207, fev. 2016. DOI: 

10.1016/j.foreco.2015.11.015. 

BELGIU, M.; DRĂGUŢ, L. Random forest in remote sensing: A review of applications and 

future directions. ISPRS Journal of Photogrammetry and Remote Sensing, v. 114, p. 24–

31, abr. 2016. DOI: 10.1016/j.isprsjprs.2016.01.011. 



140 

 

BEUCHLE, R. et al. Land cover changes in the Brazilian Cerrado and Caatinga biomes from 

1990 to 2010 based on a systematic remote sensing sampling approach. Applied Geography, 

v. 58, p. 116–127, mar. 2015. DOI: 10.1016/j.apgeog.2015.01.017. 

BISCHL, B. et al. mlr: Machine Learning in R. R package version 2.19.0. 2021 Disponível 

em: https://mlr.mlr-org.com/. 

BREIMAN, L. Random forests. Machine Learning, v. 45, n. 1, p. 5–32, out. 2001. DOI: 

10.1023/A:1010933404324. 

BUENO, I. T. et al. Object-Based Change Detection in the Cerrado Biome Using Landsat Time 

Series. Remote Sensing, v. 11, n. 5, p. 570, 8 mar. 2019. DOI: 10.3390/rs11050570. 

BUENO, I. T. et al. Spatial Agreement among Vegetation Disturbance Maps in Tropical 

Domains Using Landsat Time Series. Remote Sensing, v. 12, n. 18, p. 2948, 11 set. 2020. DOI: 

10.3390/rs12182948. 

CURRAN, P. J. The semivariogram in remote sensing: An introduction. Remote Sensing of 

Environment, v. 24, n. 3, p. 493–507, 1 abr. 1988. DOI: 10.1016/0034-4257(88)90021-1. 

DE JONG, S. M. et al. Mapping mangrove dynamics and colonization patterns at the Suriname 

coast using historic satellite data and the LandTrendr algorithm. International Journal of 

Applied Earth Observation and Geoinformation, v. 97, p. 102293, 1 maio 2021. DOI: 

10.1016/j.jag.2020.102293. 

DE MARZO, T. et al. Characterizing forest disturbances across the Argentine Dry Chaco based 

on Landsat time series. International Journal of Applied Earth Observation and 

Geoinformation, v. 98, p. 102310, 1 jun. 2021. DOI: 10.1016/j.jag.2021.102310. 

DEFINIES AG. Definiens eCognition Developer 8 User Guide. Munich: Definies AG, 2009.  

DESCLÉE, B.; BOGAERT, P.; DEFOURNY, P. Forest change detection by statistical object-

based method. Remote Sensing of Environment, v. 102, n. 1–2, p. 1–11, maio 2006. DOI: 

10.1016/j.rse.2006.01.013. 

DRONOVA, I. Object-Based Image Analysis in Wetland Research: A Review. Remote 

Sensing, v. 7, n. 5, p. 6380–6413, 21 maio 2015. DOI: 10.3390/rs70506380. 



141 

 

DURO, D. C.; FRANKLIN, S. E.; DUBÉ, M. G. A comparison of pixel-based and object-based 

image analysis with selected machine learning algorithms for the classification of agricultural 

landscapes using SPOT-5 HRG imagery. Remote Sensing of Environment, v. 118, p. 259–

272, 15 mar. 2012. DOI: 10.1016/j.rse.2011.11.020. 

GIL-YEPES, J. L. et al. Description and validation of a new set of object-based temporal 

geostatistical features for land-use/land-cover change detection. ISPRS Journal of 

Photogrammetry and Remote Sensing, v. 121, p. 77–91, nov. 2016. DOI: 

10.1016/j.isprsjprs.2016.08.010. 

GORELICK, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. 

Remote Sensing of Environment, v. 202, p. 18–27, dez. 2017. DOI: 

10.1016/j.rse.2017.06.031. 

HAMUNYELA, E.; VERBESSELT, J.; HEROLD, M. Using spatial context to improve early 

detection of deforestation from Landsat time series. Remote Sensing of Environment, v. 172, 

p. 126–138, jan. 2016. DOI: 10.1016/j.rse.2015.11.006. 

HERMOSILLA, T. et al. Disturbance-Informed Annual Land Cover Classification Maps of 

Canada’s Forested Ecosystems for a 29-Year Landsat Time Series. Canadian Journal of 

Remote Sensing, v. 44, n. 1, p. 67–87, 2 jan. 2018. DOI: 10.1080/07038992.2018.1437719. 

HISLOP, S. et al. A fusion approach to forest disturbance mapping using time series ensemble 

techniques. Remote Sensing of Environment, v. 221, p. 188–197, fev. 2019. DOI: 

10.1016/j.rse.2018.11.025. 

HOEKSTRA, J. M. et al. Confronting a biome crisis: global disparities of habitat loss and 

protection. Ecology Letters, v. 8, n. 1, p. 23–29, 3 dez. 2004. DOI: 10.1111/j.1461-

0248.2004.00686.x. 

KENNEDY, R. et al. Implementation of the LandTrendr Algorithm on Google Earth Engine. 

Remote Sensing, v. 10, n. 5, p. 691, 1 maio 2018. DOI: 10.3390/rs10050691. 

KENNEDY, R. E.; YANG, Z.; COHEN, W. B. Detecting trends in forest disturbance and 

recovery using yearly Landsat time series: 1. LandTrendr — Temporal segmentation 

algorithms. Remote Sensing of Environment, v. 114, n. 12, p. 2897–2910, 15 dez. 2010. DOI: 

10.1016/j.rse.2010.07.008. 



142 

 

KUHN, M. Building Predictive Models in R Using the caret Package. Journal of Statistical 

Software, v. 28, n. 1, p. 1–26, 10 nov. 2008. DOI: 10.18637/jss.v028.i05. 

LI, C. et al. A novel automatic phenology learning (APL) method of training sample selection 

using multiple datasets for time-series land cover mapping. Remote Sensing of Environment, 

v. 266, p. 112670, 1 dez. 2021. DOI: 10.1016/J.RSE.2021.112670. 

LU, M. et al. Land cover change detection by integrating object-based data blending model of 

Landsat and MODIS. Remote Sensing of Environment, v. 184, p. 374–386, out. 2016. DOI: 

10.1016/j.rse.2016.07.028. 

MA, L. et al. A review of supervised object-based land-cover image classification. ISPRS 

Journal of Photogrammetry and Remote Sensing, v. 130, p. 277–293, ago. 2017. DOI: 

10.1016/j.isprsjprs.2017.06.001. 

MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature, v. 403, n. 6772, p. 

853–858, 24 fev. 2000. DOI: 10.1038/35002501. 

OLIVEIRA-FILHO, A. T. et al. Workshop: Definição e delimitação de domínios e subdomínios 

das paisagens naturais do Estado de Minas Gerais. In: Mapeamento e inventário da flora 

nativa e dos reflorestamentos de Minas Gerais. Lavras: Editora UFLA, 2006. p. 21–35.  

OLOFSSON, P. et al. Good practices for estimating area and assessing accuracy of land change. 

Remote Sensing of Environment, v. 148, n. October, p. 42–57, maio 2014. DOI: 

10.1016/j.rse.2014.02.015. 

PEEL, M. C.; FINLAYSON, B. L.; MCMAHON, T. A. Updated world map of the Köppen-

Geiger climate classification. Hydrology and Earth System Sciences, v. 11, n. 5, p. 1633–

1644, 11 out. 2007. DOI: 10.5194/hess-11-1633-2007. 

PITTOCK, J. et al. Managing freshwater, river, wetland and estuarine protected areas. In: 

WORBOYS, G. L. et al. (Eds.). . Protected Area Governance and Management. Camberra: 

ANU Press, 2015. p. 966.  

POWERS, R. P. et al. Remote sensing and object-based techniques for mapping fine-scale 

industrial disturbances. International Journal of Applied Earth Observation and 

Geoinformation, v. 34, n. 1, p. 51–57, 1 fev. 2015. DOI: 10.1016/J.JAG.2014.06.015. 



143 

 

R CORE TEAM. R: A language and environment for statistical computing. Viena, 2016. R 

Foundation for Statistical Computing, Vienna, Austria. 2019. Disponível em: https://www.R-

project.org/. Acesso em: 20 de out. 2020. 

RIBEIRO, S. C. et al. Above- and belowground biomass in a Brazilian Cerrado. Forest Ecology 

and Management, v. 262, n. 3, p. 491–499, 1 ago. 2011. DOI: 10.1016/j.foreco.2011.04.017. 

RUIZ, L. A. et al. A feature extraction software tool for agricultural object-based image 

analysis. Computers and Electronics in Agriculture, v. 76, n. 2, p. 284–296, maio 2011. DOI: 

10.1016/j.compag.2011.02.007. 

SCHWIEDER, M. et al. Mapping Brazilian savanna vegetation gradients with Landsat time 

series. International Journal of Applied Earth Observation and Geoinformation, v. 52, p. 

361–370, out. 2016. DOI: 10.1016/j.jag.2016.06.019. 

SILVEIRA, E. M. O. et al. Assessment of geostatistical features for object-based image 

classification of contrasted landscape vegetation cover. Journal of Applied Remote Sensing, 

v. 11, n. 3, p. 036004, 21 jul. 2017. DOI: 10.1117/1.JRS.11.036004. 

SILVEIRA, E. M. O. et al. Object-based land-cover change detection applied to Brazilian 

seasonal savannahs using geostatistical features. International Journal of Remote Sensing, 

v. 39, n. 8, p. 2597–2619, 18 abr. 2018a. DOI: 10.1080/01431161.2018.1430397. 

SILVEIRA, E. M. O. et al. Reducing the effects of vegetation phenology on change detection 

in tropical seasonal biomes. GIScience and Remote Sensing, v. 56, n. 5, p. 699–717, 4 jul. 

2019. DOI: 10.1080/15481603.2018.1550245. 

SILVEIRA, E. M. O. et al. Using spatial features to reduce the impact of seasonality for 

detecting tropical forest changes from landsat time series. Remote Sensing, v. 10, n. 6, p. 808, 

23 maio 2018b. DOI: 10.3390/rs10060808. 

SOUZA, A. A. et al. Dynamics of savanna clearing and land degradation in the newest 

agricultural frontier in Brazil. GIScience and Remote Sensing, v. 57, n. 7, p. 965–984, 2 out. 

2020a. DOI: 10.1080/15481603.2020.1835080. 

TRANCOSO, R.; SANO, E. E.; MENESES, P. R. The spectral changes of deforestation in the 

Brazilian tropical savanna. Environmental Monitoring and Assessment, v. 187, n. 1, p. 4145, 



144 

 

4 jan. 2015. DOI: 10.1007/s10661-014-4145-3. 

TRUMBORE, S.; BRANDO, P.; HARTMANN, H. Forest health and global change. Science, 

v. 349, n. 6250, p. 814–818, 21 ago. 2015. DOI: 10.1126/science.aac6759. 

VENKATAPPA, M. et al. Determination of vegetation thresholds for assessing land use and 

land use changes in Cambodia using the Google Earth Engine cloud-computing platform. 

Remote Sensing, v. 11, n. 13, 2019. DOI: 10.3390/rs11131514. 

VERBESSELT, J. et al. Phenological change detection while accounting for abrupt and gradual 

trends in satellite image time series. Remote Sensing of Environment, v. 114, n. 12, p. 2970–

2980, 15 dez. 2010. DOI: 10.1016/j.rse.2010.08.003. 

VERMOTE, E. F. et al. Preliminary analysis of the performance of the Landsat 8/OLI land 

surface reflectance product. Remote Sensing of Environment, v. 185, p. 46–56, nov. 2016. 

DOI: 10.1016/j.rse.2016.04.008. 

WU, X. et al. Evaluation of semivariogram features for object-based image classification. Geo-

spatial Information Science, v. 18, n. 4, p. 159–170, 2 out. 2015. DOI: 

10.1080/10095020.2015.1116206. 

WULDER, M. A. et al. Satellite-based time series land cover and change information to map 

forest area consistent with national and international reporting requirements. Forestry: An 

International Journal of Forest Research, v. 93, n. 3, p. 331–343, 14 maio 2020. DOI: 

10.1093/forestry/cpaa006. 

YUE, A. et al. Texture extraction for object-oriented classification of high spatial resolution 

remotely sensed images using a semivariogram. International Journal of Remote Sensing, v. 

34, n. 11, p. 3736–3759, 10 jun. 2013. DOI: 10.1080/01431161.2012.759298. 

ZHOU, W.; TROY, A.; GROVE, M. Object-based Land Cover Classification and Change 

Analysis in the Baltimore Metropolitan Area Using Multitemporal High Resolution Remote 

Sensing Data. Sensors, v. 8, n. 3, p. 1613–1636, 10 mar. 2008. DOI: 10.3390/s8031613. 

ZHU, Z. et al. Optimizing selection of training and auxiliary data for operational land cover 

classification for the LCMAP initiative. ISPRS Journal of Photogrammetry and Remote 

Sensing, v. 122, p. 206–221, 1 dez. 2016. DOI: 10.1016/J.ISPRSJPRS.2016.11.004. 



145 

 

ZHU, Z. Change detection using landsat time series: A review of frequencies, preprocessing, 

algorithms, and applications. ISPRS Journal of Photogrammetry and Remote Sensing, v. 

130, p. 370–384, ago. 2017. DOI: 10.1016/j.isprsjprs.2017.06.013. 

  



146 

 

7 SUPPLEMENTARY MATERIAL 

Table 1S – Data of acquisition of Landsat OLI images.  

Orbit/row Date of acquisition (mm/dd/yyyy) 

219/070 06/13/2013 07/02/2014 06/19/2015 07/07/2016 08/11/2017 

219/071 06/13/2013 08/03/2014 06/19/2015 07/07/2016 08/11/2017 

220/071 07/06/2013 08/10/2014 05/25/2015 07/14/2016 08/02/2017 

Source: Author (2022). 

 

Figure 1S – Correlation matrix of the 19 variables. See Table 2 for legend details. 

 

Source: Author (2022). 


