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ABSTRACT 

 

 

Knowledge of soil properties makes a significant contribution towards sustainable soil 

management, decision making, and soil conservation. For that, a quick, environmentally 

friendly, non-invasive, cost-effective, and reliable method for soil properties assessment is 

desirable. As such, this study used portable X-ray fluorescence (pXRF) spectrometry, visible 

near-infrared spectroscopy (Vis-NIR) and NixProTM color sensor data to characterize 1019 

Brazilian tropical soils samples, exploring the ability of six machine learning algorithms 

[ordinary least squares regression (OLS), Support Vector Machine with Linear Kernel 

(SVMLK), Cubist Regression (CR), XGBoost (XGB), Artificial Neural Network (ANN), and 

Random Forest (RF)] for prediction of different soil properties. The soil samples were 

collected in both surface and subsurface horizons of different soil classes, under several land 

uses, and with varying parent materials. Numerical prediction models were built for surface, 

and subsurface horizons separately and combined for the following soil properties: total 

nitrogen (TN), cation exchange capacity (CTC), soil organic matter (SOM), and soil texture 

(total sand, silt, clay, coarse sand, and fine sand contents). The study also encompasses the 

categorical prediction of properties, such as soil taxonomic classification at order and 

suborder levels, and soil textural classes (complete and simplified textural triangles). The 

NixProTM color sensor data were scanned under both dry and moist conditions. Four 

preprocessing methods were applied on the raw Vis-NIR spectra: first derivative, absorbance, 

smoothed, and binning. Samples were randomly separated into 70% for modeling and 30% 

for validation. The best approach varied according to the predicted soil property. However, 

pXRF data were a key information for the accuracy of soil properties prediction, followed by 

Vis-NIR spectra, and then, NixProTM color data. The results showed the increase in accuracy 

via fusion of proximal sensors data for soil properties prediction: TN (R2 = 0.50), CEC (0.75), 

SOM (0.56), total sand (0.84), silt (0.83), clay (0.90), coarse sand (0.87), fine sand (0.82), soil 

order (overall accuracy = 81.19%), soil suborder (74.35%), Family particle size classes 

(96.55%), and USDA soil texture triangle (82.75%). The results reported in this study for the 

tropical soils represent alternatives for reducing costs and time needed for assessing such soil 

properties data, supporting agronomic and environmental strategies. 

 

 

Keywords: PXRF. Vis-NIR. NixProTM. Machine learning. Prediction models. Sustainable soil 

management. Soil conservation. 

 

 

 

 



 

 

RESUMO 

 

 

O conhecimento das propriedades do solo contribui significativamente para o manejo 

sustentável do solo, tomada de decisões e conservação do solo. Para isso, é desejável um 

método rápido, ecologicamente correto, não invasivo, econômico e confiável para avaliação 

das propriedades do solo. Assim, este estudo utilizou a fluorescência de raios X (pXRF) 

portátil, espectroscopia no infravermelho próximo e visível (Vis-NIR) e dados do sensor de 

cores NixProTM para caracterizar 1019 amostras de solos tropicais brasileiros, explorando a 

capacidade de seis algoritmos de aprendizado de máquina [ordinary least squares regression 

(OLS), Support Vector Machine with Linear Kernel (SVMLK), Cubist Regression (CR), 

XGBoost (XGB), Artificial Neural Network (ANN), and Random Forest (RF))] para predição 

de diferentes propriedades do solo. As amostras de solo foram coletadas em horizontes 

superficiais e subsuperficiais de diferentes classes de solos, sob diversos usos da terra e com 

diferentes materiais de origem. Modelos numéricos de predição foram construídos para 

horizontes de superfície e subsuperfície separadamente e combinados, para as seguintes 

propriedades do solo: nitrogênio total (NT), capacidade de troca de cátions (CTC), matéria 

orgânica do solo (MOS) e textura do solo (areia total, silte, argila, areia grossa e areia fina). 

Este estudo também abrange a predição categórica de propriedades, como classificação 

taxonômica do solo em níveis de ordem e subordem e classes texturais do solo (triângulos 

texturais). Os dados do sensor de cores NixProTM foram adquiridos em condições secas e 

úmidas. Quatro métodos de pré-processamento foram aplicados nos espectros de Vis-NIR: 

primeira derivada, absorbância, smoothed e binning. As amostras foram separadas 

aleatoriamente em 70% para modelagem e 30% para validação. A melhor abordagem variou 

de acordo com a propriedade do solo a ser predita. No entanto, os dados pXRF foram uma 

informação chave para a acurácia da predição das propriedades do solo, seguidos pelos 

espectros do Vis-NIR e, em seguida, os dados de cor do NixProTM. Os resultados mostraram o 

aumento da acurácia via fusão de dados de sensores proximais para predição das propriedades 

do solo: TN (R2 = 0,50), CEC (0,75), SOM (0,56), areia total (0,84), silte (0,83), argila (0,90), 

areia grossa (0,87), areia fina (0,82), ordem do solo (precisão geral = 81,19%), subordem do 

solo (74,35%), Family particle size classes (96,55%) e triângulo de textura do solo do USDA 

(82,75%). Os resultados reportados neste estudo para os solos tropicais representam 

alternativas para redução de custos e tempo necessário para a avaliação dessas propriedades 

do solo, subsidiando estratégias agronômicas e ambientais. 

 

Palavras-Chave: PXRF. Vis-NIR. NixProTM. Aprendizado de máquina. Modelos de 

predição. Manejo sustentável do solo. Conservação do solo. 
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General Introduction 

 

Knowledge of soil properties makes a significant contribution towards sustainable soil 

management, decision making, and soil conservation. For its determination, soil samples have 

to be collected, submitted to traditional laboratory analyses, which are time-consuming and 

costly, require chemical reagents, and generate chemical waste, restricting the number of 

samples that can be processed (BAVER; GARDNER; GARDNER, 1972; BREMNER, 1996; 

GEE; BAUDER, 1986; NELSON; SOMMERS, 1996). A reliable, novel alternative to 

traditional approaches is the use of proximal sensors to assess soil properties, such as nutrient 

contents (FISCHER et al., 2020; PELEGRINO et al., 2021; TOWETT et al., 2020), base 

saturation (RAWAL et al., 2019), soil organic matter (RAVANSARI et al., 2021), among 

others. Some works have used proximal sensors to assess other soil aspects, such as its 

biology (TEIXEIRA et al., 2021), formation processes (STOCKMANN et al., 2016), soil 

contaminants (FERREIRA et al., 2021; HORTA et al., 2021; JANG, 2010; KIM et al., 2019; 

TIAN et al., 2018), and determination of heavy metal contents in archeological studies 

(KENNEDY; KELLOWAY, 2021). Besides optimizing time and reducing costs, proximal 

sensors also increase the number of samples that can be analyzed, in an environmentally 

friendly way (ANDRADE et al., 2020a; BENEDET et al., 2020b; FARIA et al., 2020; 

TEIXEIRA et al., 2020). In this study, three proximal sensors are discussed based on their 

recent acclaim or novelty: portable X-ray fluorescence (pXRF) spectrometry, visible/near-

infrared diffuse reflectance (Vis-NIR) spectroscopy and the NixProTM color sensor. 

The pXRF is the fastest-growing sensor in popularity within the soil science 

community. In Brazil, its introduction occurred for archeological purposes by (IKEOKA et 

al., 2012). This method requires minimal sample preparation, and, with adequate calibration, 

the equipment can be used both in laboratory and in field conditions to analyze elemental 

contents of soils (from Mg to U) (DIJAIR et al., 2020; RIBEIRO et al., 2017; WEINDORF; 

BAKR; ZHU, 2014; SILVA et al., 2021). When a sample is irradiated with X-rays, inner shell 

electrons are displaced. When outer shell electrons cascade down to fill inner orbitals, they 

give off energy termed fluorescence, which is characteristic of each element, allowing for its 

identification. The quantification of the element content is related to the intensity of the 

corresponding fluorescence. Therefore, this device with a single technique can both identify 

and quantify various elements simultaneously, quickly, without destroying the sample, and 

without generating any chemical residue (SILVA et al., 2021; WEINDORF; BAKR; ZHU, 

2014). 
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Vis-NIR has the highest number of published studies related to soils among the three 

mentioned sensors. It requires only a few seconds to measure a soil sample in the visible, near 

infrared (350-2500 nm) spectral region providing a spectral signature of the analyzed material 

(CONFORTI et al., 2015; LAZAAR et al., 2021). Quantitative near infrared soil spectral 

analysis presents more than 2,000 variables, thus requiring techniques to discern the response 

of soil properties using spectral characteristics. Different approaches have been developed to 

relate the soil spectrum to soil properties, but usually four methods are considered foremost, 

i.e., Satitzky-Golay first derivative (FD), absorbance (Abs), smoothed (Smo), and binning 

(Bin) (CONFORTI et al., 2015; STEVENS and RAMIREZ-LOPEZ, 2020), besides raw 

spectrum.  

NixProTM color sensor has only recently appeared in soil science studies, and hence 

there is a very limited number of published studies investigating its uses (ANDRADE et al., 

2020b; JHA et al., 2021; MANCINI et al., 2020; STIGLITZ et al., 2017; FARIA et al., 2021). 

It is a portable, rechargeable, extremely fast reading (1-2 seconds) and inexpensive tool that 

provides color reports in many different numerical color systems, such as RGB, XYZ, 

CIELAB, LCH, HEX, CMYK, and ACES (STIGLITZ et al., 2016), making soil color 

determination less subjective (STIGLITZ et al., 2016; MANCINI et al., 2020).  

More recently, with the increase in popularity of these proximal sensors, some studies 

have investigated different approaches to build prediction models aiming to increase their 

predictive power. One of these approaches is through data fusion, which means gathering 

different proximal sensor data as explanatory variables. Andrade et al. (2020c), Benedet et al. 

(2020a, 2020b), Swetha and Chakraborty (2021), Weindorf et al. (2016), Zhang and 

Hartemink (2020) successfully combined different proximal sensors data resulting in more 

robust and accurate prediction models. Another approach is through adding auxiliary input 

data to the explanatory variables. Andrade et al. (2020a) successfully predicted exchangeable 

Ca2+, Mg2+, and available K+ using pXRF plus soil texture as auxiliary input data. Stiglitz et 

al. (2017) built robust prediction models for soil organic carbon through NixProTM plus 

sample depth as auxiliary information.  

However, investigations towards data fusion for soil properties prediction in tropical 

soils are still rare. Moreover, studies across the globe that combine pXRF, Vis-NIR, and 

NixProTM data are unknown to date, to the best of the author’s knowledge. Such investigations 

are necessary to reliably guide future predictions on tropical environments. Additionally, 

considering that the acquisition and maintenance of these sensors are expensive, it is 

important to evaluate whether combining these sensors provides more robust and accurate 
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prediction models, supporting their acquisition, compared with using a unique proximal 

sensor.  

Given all the variability that can affect models’ accuracy, such as heterogeneity of the 

analyzed samples, chosen algorithm, and the data preprocessing methods applied, it is 

necessary to test different approaches for predicting soil properties in tropical regions. 

Therefore, the aims of this work were:  

i) chapter one – to use pXRF data to characterize the Brazilian Coastal Plains (BCP) 

soils and assess four machine learning algorithms [ordinary least squares regression (OLS), 

cubist regression (CR), XGBoost (XGB), and random forest (RF)] for prediction of total 

nitrogen (TN), effective CEC, and SOM using pXRF data; 

ii) chapter two - to use NixProTM colorimetric capacities and pXRF elemental data to 

characterize seven different soil orders in Brazilian tropical soils and explore the ability of 

three machine learning algorithms [Support Vector Machine with Linear Kernel (SVMLK), 

Artificial Neural Network (ANN), and Random Forest (RF)] with and without Principal 

Component Analysis (PCA) pretreatment for prediction of soil classifications at the order and 

suborder taxonomic levels for both dry and moist conditions of samples analyzed via 

NixProTM; 

iii) chapter three - to predict soil texture and soil textural classes through the random 

forest algorithm, evaluating: 1) separately and combined pXRF, Vis-NIR, and NixProTM data, 

2) proximal sensors plus environmental co-variates as explanatory variables, and 3) build 

prediction models in sub-datasets separated by soil order.  

We hypothesize that robust and accurate prediction models will be delivered for the 

soil properties analyzed by at least one of the abovementioned proximal sensors approaches, 

even though the dataset presents large variability of soil order, land use, and parent material. 
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Abstract 

Portable X-ray fluorescence (pXRF) spectrometry is becoming increasingly popular for 

predicting soil properties worldwide. However, there are still very few works on this subject 

under tropical conditions. Therefore, the objectives of this study were to use pXRF data to 

characterize the Brazilian Coastal Plains (BCP) soils and assess four machine learning 

algorithms [ordinary least squares regression (OLS), cubist regression (CR), XGBoost 

(XGB), and random forest (RF)] for prediction of total nitrogen (TN), cation exchange 

capacity (CEC), and soil organic matter (SOM) using pXRF data. A total of 285 soil samples 

were collected from the A and B horizons representing Ultisols, Oxisols, Spodosols, and 

Entisols. The pXRF reported elements helped in the characterization of the BCP soils. In 

general, the RF model achieved the best performances for TN (R2=0.50), CEC (0.75), and 

SOM (0.56) when A and B horizons were combined, although better results have been 

reported in the literature for soils from other regions of the world. The results reported here 

for the BCP soils represent alternatives for reducing costs and time needed for assessing such 

data, supporting agronomic and environmental strategies. 
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1. Introduction 

The Brazilian Coastal Plains (BCP) occupy a large part of the eastern Brazilian coast, 

representing 20 million ha and encompassing many federation states (Silva et al., 2015). The 

soils of the BCP are mainly originated from pre-weathered sediments of Barreiras Formation, 

with cohesive Ultisols and Oxisols as the dominant soil classes (Carvalho Filho et al., 2013; 

Fonsêca et al., 2007; Ker et al., 2017). They present natural chemical and physical properties, 

however, limit the management of agricultural/silvicultural crops (Carvalho Filho et al., 2013; 

Fonsêca et al., 2007). These limitations include low soil organic matter (SOM), cation 

exchange capacity (CEC), in addition to nutrient contents, and subsuperficial cohesion, which 

prevent the development of the plant root system mainly in the dry period (Ker et al., 2017; 

Santos et al., 2014b). The mineralogy of these soils is very uniform and dominated by quartz 

in the sand and silt fractions, and by kaolinite with very small contents of iron oxides and 

traces of gibbsite in the clay fraction (Carvalho Filho et al., 2013; Ker et al., 2017). 

With the rapid advances in soil proximal sensors, soil scientists are increasingly 

gaining access to tools that optimize soil properties predictions. One promising tool is the 

portable X-ray fluorescence (pXRF) spectrometry. Importantly, pXRF is able to quantify a 

great diversity of elements in soil, in a few seconds, at low cost and without generation of 

analytical wastes (Horta et al., 2015; Hseu et al., 2016; Ribeiro et al., 2017; Stockmann et al., 

2016; Weindorf et al., 2014; Zhu et al., 2011). The quantification of elemental contents occurs 

through detection of fluorescence energy that is characteristic of each element present in the 

material analyzed (Ribeiro et al., 2017). Additionally, the pXRF sensor provides adequate 

analytical accuracy (Stockmann et al., 2016; Wang et al., 2013; West et al., 2013) and have 

been used successfully in diverse studies (Che et al., 2012; Ribeiro et al., 2018; Silva et al., 

2016, 2017; Stockmann et al., 2016; Terra et al., 2014; Wang et al., 2013; Weindorf et al., 

2012; Wu et al., 2016). 

So far, pXRF has been successfully used to predict several soil properties (Duda et al., 

2017; Ribeiro et al., 2018; Sharma et al., 2015, 2014; Silva et al., 2018, 2017; Teixeira et al., 

2018; Zhu et al., 2011). The prediction accuracy was improved through the development of 

several machine learning algorithms. As pXRF generates a large data set, the use of machine 

learning tools may accelerate the data processing. Besides, the pXRF reported numerical 

variables can be associated with categorical variables via machine learning algorithms, 
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improving the soil attribute prediction models. Some of the widely used algorithms in soil 

science are the Ordinary Least Squares Regression (OLS) and the Random Forest (RF) 

(Pelegrino et al., 2018; Silva et al., 2017).  

Although the use of pXRF for predicting soil properties can be finetuned in 

combination with several robust algorithms, very few works have focused on the prediction of 

tropical soil properties so far. Therefore, the objectives of this work were to use pXRF data to 

characterize the BCP soils and assess four machine learning algorithms [ordinary least 

squares regression (OLS), cubist regression (CR), XGBoost (XGB), and random forest (RF)] 

for prediction of total nitrogen (TN), effective CEC, and SOM using pXRF data. We 

hypothesize that TN, CEC, and SOM in BCP soils correlate well with the soil elemental 

composition and, therefore, can be successfully predicted from pXRF reported elemental 

values.  

 

2. Material and Methods 

2.1. Study area 

This study was carried out using soil samples collected in the northcentral part of 

Espírito Santo state, southern Bahia state, and northeastern Minas Gerais state, Brazil (Fig. 1). 

The selected soils for this work represent most soil environments in the BCP across its 20 

million ha area. The parent materials of most soils are Tertiary sediments from the Barreiras 

Formation. The climate is humid tropical with a discrete dry season while the lowest average 

monthly rainfall is above 60mm (Gomes et al., 2017). 
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Fig. 1. Study area and sampling sites in Brazil. MG: Minas Gerais state; BA: Bahia state; ES: Espírito 

Santo state. 

 

2.2. Field sampling and laboratory characterization 

A total of 285 soil samples representing Ultisols, Oxisols, Spodosols, and Entisols 

were collected from the A and B horizons of 121 soil profiles (Fig. 1) (Soil Survey Staff, 

2014). All samples were analyzed in the laboratory for TN, effective CEC, and SOM. TN 

content was measured by the Kjeldhal method using concentrated H2SO4, K2SO4, and CuSO4 

to digest the samples (Bremner, 1996). The CEC was calculated from the sum of total 

exchangeable bases and the exchangeable acidity (Chapman, 1965). The exchangeable Ca2+, 

Mg2+, and Al3+ were extracted from the soil using a 1 mol L−1 KCl solution. Al3+ was 

determined by titration with a 0.0125 mol L−1 NaOH solution, whereas Ca2+ and Mg2+ were 

analyzed by atomic absorption spectrophotometry (Perkin Elmer® model AAnalyst 800). K+ 

was extracted by Mehlich-1 solution and determined by flame photometer. SOM content of the 

samples was determined by dichromate acid oxidation (Nelson and Sommers, 1996). 

A pXRF (Bruker® model S1 Titan LE) was used to obtain the contents of the diverse 

elements. The pXRF contains a 50 KeV and 100 μA X-ray tube, which allows for the 

detection of elements of the Periodic Table ranging from Mg to U in parts per million (ppm). 

Scans were performed in triplicate in Trace (dual soil) mode for 60 s using the Geochem 

software. The following elements/oxides were obtained in all soil samples used in this work: 

Al2O3, As, Ag, Bi, CaO, Cl, Cu, Fe, Hf, K2O, Mn, Mo, Nb, Ni, Pb, P2O5, Rb, Rh, S, SiO2, Sr, 

Ti, V, Y, Zn, and Zr.  
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Furthermore, the pXRF reported elemental contents of two NIST certified standards 

(2710a and 2711a) and one pXRF manufacturer standard (check sample) were compared with 

their respective certified values to calculate % recovery (% of recovery = 100 × pXRF 

reported content/certified content). The recovery values for the elements identified in all 

samples and used in this work are as follows (2710a/2711a/CS) (0 value indicates no 

reference value in the certified materials or no elemental detection by pXRF): Al2O3 

(0.31/0.63/0.91); CaO (0.81/0.48/0); Cl (0/0/0); Cu (0.87/0.71/0.97); Fe (0.71/0.69/0.91); K2O 

(0.66/0.49/0.89); Mn (0.72/0.61/0.89); Nb (0/0/0); P2O5 (1.36/4.79/0); SiO2 (0.41/0.51/0.42); 

Sr (1.00/0.90/0); Ti (0.94/0.70/0); Y (0/0/0); Zn (1.05/0.83/0); Zr (0.99/0/0). 

 

2.3. Statistical analyses and modeling 

Prior to the modeling, all pXRF results from scans of soil samples from A and B 

horizons were centralized (centralized elemental content = (x – mean(x)) / std. dev. (x), where 

x is the original elemental content) and scaled (scaled elemental content = (x – mean(x)), 

where x is the original elemental content). Besides scaling and centralizing, there was no 

other transformation in the data. Then, soil samples were randomly separated into modeling 

and validation datasets consisting of 70% (n = 197) and 30% (n = 88) of the total data, 

respectively. The models to predict TN, CEC, and SOM contents from pXRF data were 

created for three conditions: using only A horizon data (123 samples), only B horizon data 

(162 samples), and using A and B horizon data combined (A+B) (285 samples). 

In order to adjust the prediction models, four machine learning algorithms were tested: 

ordinary least squares (OLS), cubist regression (CR), XGBoost (XGB), and random forest 

(RF). The algorithms were developed in R software (version 3.4.4) (R Development Core 

Team, 2009) through “caret” package (Kuhn, 2008). In the OLS models, the statistically 

insignificant variables were removed using Akaike's information criterion via step function. It 

provides a global model of the variable for prediction based on the assumption that the 

explanatory variables are measured with minimal or no error, allowing the use of single or 

multiple explanatory variables in the model (Sharma et al., 2013). 

Cubist regression (CB) is a rule-based regression technique that was developed by 

Quinlan (1993). CB retrieves a set of rules associated with sets of multi-variate models. Then, 

a specific set of predictor variables will choose an actual prediction model based on the rule 

that best fits the predictors (Appelhans et al., 2015). Tuning hyperparameters of CB were 

optimized as follows: committees = 47, and neighbors = 6. XGBoost is an implementation of 

gradient boosted decision trees. It can be used for regression and classification models. It 
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builds the model in a stage-wise fashion like other boosting methods do, and it generalizes 

them by allowing optimization of an arbitrary differentiable loss function (Chen and Guestrin, 

2016). XGBoost models were performed with the following optimized hyperparameters: n 

rounds = 53, learning rate (η) = 2.7, lambda = 0.1, and alpha = 0.02. 

The RF analysis was performed with the following parameters: number of trees of the 

model (ntrees) = 500, node size = 5, and number of variables used in each tree (mtry) = 5, 

equivalent to the number of variables divided by 3, as suggested by Liaw and Wiener (2002). 

RF also provides the variables importance for the model, i.e., how the prediction accuracy 

changes as a variable is left out of the model, while other variables are maintained. Therefore, 

if a variable is removed and the prediction error increases, that variable is more important for 

the model (Breiman, 2001; Liaw and Wiener, 2002). 

Principal component analysis (PCA) is a multivariate statistical technique useful for 

displaying and analyzing the structure of multivariate data. Basically, this statistical technique 

represents the original dataset in a new reference system characterized by new orthogonal 

variables called principal components (PCs). PCA analysis was performed in R software, 

through the R packages factoextra (Kassambara and Mundt, 2016) and ggplot2 (Wickham, 

2016).  

 

2.4. Assessment of prediction accuracy 

The accuracy of TN, CEC, and SOM contents predictions by the machine learning 

algorithms was assessed by comparing the predicted with the observed values through the 

following statistical indexes: determination coefficient (R2) and root mean squared error 

(RMSE) (Eq. 1). The models with greater R2 and RMSE value closer to 0 were considered the 

best ones for predicting laboratory analysis using pXRF data. 

     𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑚𝑖)2 𝑛

𝑖=1      (1) 

where n: number of observations, yi: estimated value by the model, mi: measured value by the 

chemical analysis. 

 

3. Results 

3.1. Chemical elemental characterization of Brazilian Coastal Plain soils through pXRF 

The descriptive statistics of TN, CEC, and SOM values for A and B horizons, 

separately and combined, for BCP soils show the variability of data for such properties (Table 

1), mainly demonstrated by the coefficient of variation (CV%). This high variability of the 
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data can generate more realistic models for different conditions and land-uses, since the 

samples represent a wide range of values of the analyzed properties, such as TN ranging from 

0.50 to 4.40 g kg−1, the CEC from 0.40 to 12.69 cmolc kg−1, and the SOM from 0.40 to 69.90 

g kg−1. 

 

Table 1. Descriptive statistics of total nitrogen (TN), effective cation exchange capacity (CEC), and 

soil organic matter (SOM) values for the A and B horizons, and A+B horizons combined, from 

Brazilian Coastal Plain (BCP) soils. 

Soil Property Soil Horizon Min Max Mean STD a CV (%) b 

TN                                                   

(g Kg-1) 

A 0.70 4.40 1.83 0.75 40.98 

B 0.50 1.70 1.00 0.25 25.00 

A + B 0.50 4.40 1.36 0.67 49.26 

CEC                      

(cmolc Kg-1) 

A 0.66 12.69 4.05 2.41 59.51 

B 0.40 4.72 1.76 0.73 41.48 

A + B 0.40 12.69 2.75 2.02 73.45 

SOM                      

(g Kg-1) 

A 6.40 69.90 26.27 13.05 49.68 

B 0.40 62.60 8.04 6.35 78.98 

A + B 0.40 69.90 15.90 13.34 83.90 
a STD: standard deviation. 
b CV: coefficient of variation. 

 

Interestingly, PCA revealed that pXRF variables can discriminate the horizons for the 

soil orders (Fig. 2). The higher contents of CaO, S, P2O5, and SiO2 were found in the A 

horizon, while the higher contents of K2O, Fe, Al2O3, and Mo were found in the B horizon. 

Among the elements of greater stability found in tropical soils by Mancini et al. (2019), the 

higher contents of Ni, V, and Pb were found in the B horizon, while Sr, and P2O5 were found 

in higher contents in the A horizon of BCP soils. 
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Fig. 2. Principal Component Analysis (PCA) for the chemical soil attributes and pXRF data in A and 

B horizons, and for soil orders in Brazilian Coastal Plain (BCP) Soils. Chemical attributes: Total 

nitrogen (g kg−1), cation exchange capacity (cmolc kg−1), and soil organic matter (g kg−1). PXRF data: 

Al2O3, As, Bi, CaO, Cu, Fe, Hf, K2O, Mn, Mo, Nb, Ni, P2O5, Pb, Pd, S, SiO2, Sr, Ti, V, Zn, and Zr in 

parts per million (ppm). 

 

Despite the land use for all soils used in this study is similar, the soil orders were well 

discriminated by the pXRF information (Fig. 2). The high contents of Al2O3 and Fe were 

found in the more weathered Oxisols. High contents of SiO2 were found in Spodosols. Due to 

the ample dominance of Ultisols, their distinction from other soil orders became difficult. 

Such Ultisols show a marked variation between the sandy surface horizon and the more 

clayey subsurface horizon. This is reflected in the higher contents of Al2O3 along the soil 

depth, associated with kaolinite, and the higher contents of SiO2 in the A horizon, associated 

with quartz. Fig. 3 shows that the variables which less contributed to explaining the variation 

in PC1 were Hf, Mn, Ni, Pd, and Sr. The most important variables to explain the variation in 

PC1 were Al2O3, CaO, Fe, Nb, P2O5, and SiO2 (Fig. 3). In Fig. 2, the PC1 indicates a clear 

gradient of increasing soil fertility and decreasing acidity from right to left, better 

demonstrated by Fig. 3. Most of macro and micronutrients, higher CEC, and the highest 

contents of SiO2 are on the left side, the same side represented by the youngest soils 

(Entisols). The elements with the highest atomic weights, the highest contents of Al2O3 and 

Fe2O3 are on the right side, the same side represented by the Oxisols. 
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Fig. 3. Loading weight plot of principal component (PC1) of the Principal Component Analysis (PCA) 

for the chemical soil attributes and pXRF data in Brazilian Coastal Plain (BCP) Soils. 

 

3.2. Models performance for predicting TN, CEC and SOM 

Fig. 4 shows the performance of the models using data from A and B horizons, 

separately and combined (A+B). In general, the soil property prediction models for the 

combined horizons presented greater R2 and smaller RMSE than the models for A and B 

horizon separately. 
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Fig. 4. Determination coefficient (R2), and root mean square error (RMSE) of the total nitrogen (TN), 

effective cation exchange capacity (CEC), and soil organic matter (SOM) prediction models in A 

horizon (a), in B horizon (b), and in A+B horizons combined (c) in the Brazilian Coastal Plain (BCP) 

soils. OLS - ordinary least square; CR - cubist regression; XGB - XGBoost; RF - random forest. 
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For CEC in A and B horizons separately, the prediction models achieved maximum R2 

of 0.47 (XGB) and 0.42 (RF), respectively. However, for the combined horizons the RF-based 

CEC prediction model achieved the highest R2 of 0.75. For predicting SOM in A horizon and 

for A+B horizons combined, the highest obtained R2 remained almost the same (0.55 and 0.59 

for RF and XGB, respectively). 

However, for predicting SOM in B horizon, the models could not generate reliable 

predictions (maximum R2 = 0.14 for OLS). The same pattern was observed for predicting TN, 

where RF models for A horizon and the combined horizons performed better (R2 of 0.60 and 

0.50, respectively) than the models developed for the B horizon (highest R2 = 0.12 for CR). 

In general, among the machine learning algorithms, the RF model achieved the best 

performances. As shown in Fig. 5, the prediction error boxplots showed the low dispersion of 

errors for RF model compared to the other tested algorithms. The higher R2 and smaller 

RMSE yielded for predicting CEC (0.75 and 0.91) and SOM (0.56 and 9.13), when data from 

A+B horizons combined were used (Fig. 4). The TN prediction model using RF algorithm 

produced better performance in A horizon (0.60 and 0.57). 
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Fig. 5. Prediction error boxplots in the validation dataset for the total nitrogen (TN), effective cation 

exchange capacity (CEC), and soil organic matter (SOM) contents in A horizon, in B horizon, and in 

A+B horizons combined in the Brazilian Coastal Plain (BCP) soils. 

 

3.3. Variables importance 

The RF variables importance calculated for each soil property prediction model is 

given in Fig. 6. Percentage of increment of Mean Square Error (%IncMSE), estimated with 

out-of-bag-cross validation, is a robust and informative measure of the relative importance of 

one independent variable (Liaw and Wiener, 2002). Importantly, %IncMSE metric is 

considered adequate by several authors (Grömping, 2009; Ishwaran, 2007; González et al., 

2015). The larger the %IncMSE, the higher the importance of the variable for the prediction 

model (González et al., 2015). 
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Fig. 6. Plots of relative importance of variables in RF model for total nitrogen (TN), effective cation 

exchange capacity (CEC), and soil organic matter (SOM) prediction models in Brazilian Coastal Plain 

(BCP) soils. 
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In general, CaO, SiO2, Sr, and S were the five most important variables in all soil 

horizons studied. These variables, except for Sr, have a very dynamic behavior in the soil 

environment due to their radical temporal changes caused by the soil management. CaO and S 

are included in the most widely agricultural inputs used in tropical soils (limestone). 

Consequently, their behavior in soil is very dynamic and changes with soil management. As 

Sr appeared in almost all samples and in almost all models, it may be related to the parent 

material of the studied soils (Gomes et al., 2017). 

 

3.4. SOM influence on CEC and TN predictions 

Fig. 7 reveals the relationship between the pXRF data and SOM to influence the TN 

and CEC prediction behavior. In the A horizon, samples featuring SOM values > 40 g kg−1 

were underestimated while the same behavior was observed for TN and CEC predictions in 

samples with SOM > 40 g kg−1. Conversely, samples with SOM < 20 g kg−1 were 

overestimated. The same behavior was observed in TN and CEC predictions with SOM < 20 

g kg−1. Although the relation between N and CEC with SOM in the B horizon was not so 

evident, the same pattern of overestimation and underestimation can be observed. As tropical 

soils are highly weathered and leached, SOM mineralization plays a major role as the source 

of CEC and N supply to plants (Patrick et al., 2013). 
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Fig. 7. Prediction scatter plot of total nitrogen (TN), effective cation exchange capacity (CEC), and 

soil organic matter (SOM) contents by RF models for the validation dataset in A horizon, in B 

horizon, and in A+B horizons combined in the Brazilian Coastal Plain (BCP) soils based on pXRF 

data. 

 

4. Discussion 

4.1. Chemical characterization of the BCP soils 

The range of BCP soil properties analyzed in this study (Table 1) contribute to the 

generation of more reliable models, since they encompass greater variability of such data, 

such as suggested by Rawal et al. (2019). Furthermore, these values are similar to those found 
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by Barros et al. (2013), Santos et al. (2014a), and Silva et al. (2012, 2015) while working in 

BCP soils. These contents are smaller than those found in temperate regions (Konen et al., 

2003) because of the comparatively milder and warmer climate conditions and the lower 

degree of weathering, which make C and N stabilization mechanisms more effective (Six et 

al., 2002). 

PCA showed the correlations between elemental contents obtained by pXRF and soil 

classes (Fig. 2), e.g., high contents of SiO2 were found in Spodosols, while high contents of 

Al2O3 and Fe2O3 were observed in Oxisols. This supports Oliveira et al. (2010) who observed 

that BCP Spodosols are of sandy texture dominated by quartz (SiO2) and that Fe and Al  

accumulation occur as oxide minerals in Oxisols. Also, most of these soils are Ultisols, 

presenting greater amounts of sand, mainly composed of quartz (SiO2) in the A horizon and 

greater amounts of clay (mainly kaolinite and Fe/Al-oxides) in the B horizon (Kämpf et al., 

2012). Such marked variation of texture in A and B horizons found in BCP soils (Cintra et al., 

2004; Ker et al., 2017) corresponds to the SiO2 versus Al2O3 and Fe2O3 contents present in the 

sand and clay fractions, respectively, which are also evident in Fig. 2. 

The entire area of study has been cultivated with Eucalyptus, so the soil management 

that includes the addition of ameliorants explains the higher values of macro- (Ca, S, N, P) 

and micronutrients (Mn, Cu) in the A horizon in addition to the nutrient recycling. Regarding 

other elements and compounds, Sr and P2O5 were elevated in the A horizon probably due to 

the addition of ameliorants, since such soils are highly leached. Similar data was reported by 

Teixeira et al. (2018), who also found higher contents of Sr and P2O5 in A horizon of soils 

cultivated in Brazilian Cerrado, contrasting the contents found in soils under native 

vegetation. Other studies have also reported the ability of pXRF to characterize different soil 

environments and properties (Cardelli et al., 2017; Chakraborty et al., 2019; Mancini et al., 

2019; Weindorf et al., 2016). 

 

4.2. Models performance for predicting TN, CEC, and SOM 

The results of the predictions in this study indicate the feasibility of obtaining TN, 

CEC, and SOM results from pXRF data in Brazilian soils. It is noteworthy that such tests are 

still under development in Brazil, requiring further investigation and comparison with other 

works on this topic (e.g., studies from temperate regions). For instance, only one previous 

study of Brazilian soils attempted to predict CEC and SOM from pXRF (Silva et al., 2017). 

That study was developed in Brazilian Cerrado, where soils are completely different from 

BCP soils (Resende et al., 2014). Silva et al. (2017) found the best predictions were delivered 
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by RF and reached R2 and RMSE of 0.96 and 0.89 cmolc dm−3 for CEC and 0.78 and 0.80 

dag kg−1 for SOM predictions, respectively. The disparity in predictive model performance 

between Brazilian Cerrado soils and those of the BCP reinforce that additional testing is vital 

toward reaching the optimal methodology to deliver the best results for each soil-

environmental condition. The present work is the first attempt to use pXRF for TN prediction 

in Brazilian soils. 

Comparatively, the works developed on temperate regions were able to predict CEC, 

SOM, and TN with greater accuracy than the present study for BCP soils. Yet eventually, the 

RMSE values of SOM and TN were lower or closer to those reported in previous studies 

using pXRF as proximal sensing technique (Cardelli et al., 2017; Wang et al., 2015). Sharma 

et al. (2015) predicted CEC from pXRF data achieving an R2 of 0.90 for soils from the United 

States of America. Duda et al. (2017) also successfully predicted TN [R2 = 0.73, RMSE (%) = 

0.05] and other soil properties in Romania using pXRF data. Xu et al. (2019) achieved an R2 

of 0.53 for predicting SOM in Chinese soils from pXRF data, however, better results (R2 = 

0.81) were obtained after combining the mid-infrared (mid-IR) spectrometer and laser-

induced breakdown spectroscopy (LIBS) sensors. These findings indicate the global search 

for cheaper, more rapid, and environmentally friendly methods to predict soil properties and 

the need for additional testing under variable soil conditions to verify the efficiency of this 

methodology. A final large question remaining is whether a single global model can 

effectively predict the parameter of interest or whether multiple, localized models will 

produce superior results.  

As a summary of the findings of this work, RF tended to deliver the best results. 

Regarding the comparison of the datasets, the best performances were achieved using the 

combined dataset (A+B horizon data), which can be attributed to the relatively larger dataset 

used to produce a more robust RF model. This supports the findings of Souza et al. (2016) 

and Silva et al. (2017). From a practical aspect, the best results obtained for the combined 

dataset may facilitate future analysis especially for samples collected without considering the 

soil horizon (a common practice worldwide). Similarly, Santana et al. (2018) successfully 

used unknown soil samples (i.e., samples collected in soils without considering the soil class 

or horizon) to develop models for predicting results of conventional laboratory analysis from 

pXRF.  

 

4.3. Model applicability 
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The range of predicted soil properties encompasses the values reported in the literature 

for BCP soils, and the models for combined A and B horizons generally delivered the best 

predictions. The models developed herein could be used for predicting TN, CEC, and SOM in 

soil samples collected at any depth that encompasses the A or B horizons within BCP biome 

(20 million ha). However, the models developed in this work only involved samples collected 

under eucalyptus plantations, indicating that other tests should be conducted for soils under 

other land uses (planted pastures, coffee, etc.). The most important model variables were 

those with dynamic behavior in the soil environment that are strongly influenced by soil 

management.  

Although the models developed in this study may be applicable to virtually all BCP 

soils under such conditions, future and continued calibration and validation of models may be 

required for establishing stronger relationships between elemental concentrations obtained by 

pXRF and TN, CEC, and SOM under other soil conditions. Finally, while regional differences 

may require localized standardization of the pXRF with a unique combination of elements 

germane to the study area, pXRF shows considerable promise as a technique for rapidly 

assessing such soil properties in addition to reducing the time and amount of chemical waste 

generated from conventional laboratory analyses (Rawal et al., 2019; Weindorf et al., 2014; 

Ribeiro et al., 2017). Although works have been published utilizing pXRF to predict soil 

properties worldwide, the efficiency of this methodology necessitates refinement with 

deference to soil variability, depth, land use, parent material, and environmental conditions.  

 

5. Conclusions 

The elemental contents reported by pXRF provided an adequate characterization of 

BCP soils. In general, RF algorithm produced better results in predicting TN, CEC, and SOM 

than OLS, XGBoost, and CR models. Variables such as CaO, SiO2, and S which exhibit 

dynamic behavior in the soil environment appeared as influential in RF based prediction 

models. Because of its intrinsic relationship, the patterns observed in SOM predictions 

through pXRF data were reflected in the TN and CEC predictions too. Further studies are 

needed to improve the predictions of chemical properties of BCP soils and other regions of 

the globe to determine which soil properties are capable of being predicted via pXRF data and 

if general or specific models are more prone to deliver the best results under contrasting soil 

and environmental conditions. 
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Abstract 

Proper soil taxonomic classification makes a significant contribution toward sustainable soil 

management, decision making, and soil conservation. For that, a quick, environmentally-

friendly, non-invasive, cost-effective, and reliable method for soil class assessment is 

desirable. As such, this study used NixPro color and portable X-ray fluorescence (pXRF) data 

to characterize seven different soil orders in Brazilian tropical soils, exploring the ability of 

three machine learning algorithms [Support Vector Machine with Linear Kernel (SVMLK), 

Artificial Neural Network (ANN), and Random Forest (RF)] with and without Principal 

Component Analysis (PCA) pretreatment for prediction of different soils at the order and 

suborder taxonomic levels under both dry and moist conditions. In total, 734 soil samples 

were collected from surface and subsurface horizons encompassing twelve suborders. The soil 

profiles were morphologically described, and taxonomy classified per the Brazilian Soil 

Classification System and the approximate correspondence was made with the US Soil 

Taxonomy. Soil samples were separated into modeling (70%) and validation (30%) sub-

datasets, overall accuracy and Cohen's Kappa coefficient evaluated model quality. Models 
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generated from B horizon sample with pXRF and NixPro (moist samples) data combined 

delivered the best accuracy for order (81.19% overall accuracy and 0.71 Kappa index) and 

suborder predictions (74.35% overall accuracy and 0.65 Kappa index) through RF algorithm 

without PCA pretreatment. Summarily, the use of these two portable sensor systems was 

shown effective at accurately predicting different soil orders and suborders in tropical soils. 

Future works should extend the results of this study to temperate regions to corroborate the 

conclusions presented herein. 

 

Keywords: pXRF, NixPro color sensor, Soil classification, Machine learning, Kappa 

coefficient. 

 

1. Introduction 

It is well known that a proper soil taxonomic classification makes a significant 

contribution to sustainable soil management (Resende et al., 2014). Once separated into 

different classes, soils are expected to be similar in terms of their intrinsic chemical and 

physical characteristics, and therefore, more useful in soil management, including cultivation 

planning and soil conservation. Worldwide, two international systems are most prominently 

used for soil classification: US Soil Taxonomy (USDA, 1999) and the World Reference Base 

for Soil Resources (FAO, 2014). But there are also many national systems that are used 

locally for soil classification; for example, The Australian Soil Classification from Australia 

(Isbell, 2016), Classification and Diagnostic System of Russian Soils from Russia (Shishov et 

al., 2004), Chinese Soil Taxonomy from China (CRGCST, 2001), Romanian System of Soil 

Taxonomy from Romania (Florea and Munteanu, 2000), Dutch Soil Classification System 

from the Netherlands (de Bakker and Schelling, 1966), the Canadian System of Soil 

Classification from Canada (Soil Classification Working Group, 1998), and the French Soil 

Classification System from France (Baize and Girard, 2009). Similarly, to most of those 

systems, the Brazilian Soil Classification System (dos Santos et al., 2018), currently in its 5th 

edition, reflects local pedological descriptions and consists of six levels: order, suborder, great 

group, sub-group, family, and series, very similar to the US Soil Taxonomy though family 

and series levels are still under development.  

The top level (order) features thirteen soil classes. For the main soil orders occurring 

in Brazil (Latossolos and Argissolos – equivalent to Oxisols and mostly Ultisols, respectively) 

in addition to other less expressive orders, soil color is utilized to define the suborder level, 

similar to the Yearbook of Agriculture 1938 (USDA, 1938), which featured soil classification 
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based on color. Soil color has strong influence in this classification system with inferences 

about soil genesis, natural fertility, texture, and management. In Brazil, color correlates well 

with most mineralogical, physical, and chemical characteristics of the soil.  

Soil color is a consequence of soil mineral and organic constituents. Regarding 

mineralogy, it is also an indicator of the presence of iron oxides (Fe), revealing the nature of 

these minerals and providing information on pedogenetic conditions. For example, hematite 

(Fe2O3) and goethite (FeOOH) occur in the clay fraction, contain Fe3+, and provide red and 

yellow colors, respectively (Resende et al., 2014). Gray colors in soil are caused by primary 

and secondary soil minerals in the absence of Fe(III) compounds. Conversely, darker color is 

promoted by organic matter (Schaetzl and Anderson, 2005). 

Traditionally, a soil classification combines a soil surveyor's specialized knowledge, 

field descriptions, and laboratory analysis (Vasques et al., 2014). However, with the 

increasing demand for precision agriculture, alternative methods to facilitate soil classification 

are sought. For instance, laboratory analyses are generally time-consuming, expensive, 

invasive, and produce chemical waste decreasing the number of soil samples feasibly 

collected and analyzed in the lab, consequently constraining soil survey. Therefore, quick, 

environmentally-friendly, non-invasive, cost-effective and reliable soil methodologies for 

classification are desirable (Benedet et al., 2020).  

A reliable, novel alternative to traditional approaches is the use of proximal sensors to 

assess soil properties (Lemière, 2018; Silva et al., 2019). Inexpensive, non-destructive, and 

less time consuming, the use of such tools to assess soil information have been applied to 

predict different soil attributes, such as pH, base saturation, soil texture, cation exchange 

capacity (Rawal et al., 2019; Sharma et al., 2014; Silva et al., 2017), soil organic carbon, and 

total nitrogen (Mikhailova et al., 2017; Stiglitz et al., 2018). Furthermore, elemental contents, 

nutrients, and heavy metals have been assessed (Chakraborty et al., 2019; Hu et al., 

2017;Mukhopadhyay et al., 2020; Teixeira et al., 2018). However, comparatively few efforts 

have been made applying proximal sensors for soil classification. In the United States, 

enhanced pedon horizonation has been documented in nondescript soils (Weindorf et al., 

2012a) and some subsoil diagnostic horizons have been identified via proximal sensors 

(Weindorf et al., 2012b). More recently, proximal sensing was used to distinguish chernozems 

from phaeozems in the Transylvanian Plain of Romania (Acree et al., 2020). In doing so, 

Acree et al. (2020) advocated for changes to the forthcoming third edition of Soil Taxonomy, 

whereby proximal sensor data could be directly used for taxonomic differentiation. Portable 

X-ray fluorescence (pXRF) spectrometry is one of the most capable proximal sensors, 
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providing multi-elemental quantification from Mg to U in the periodic table simultaneously 

(Hseu et al., 2016; Ribeiro et al., 2017; Weindorf et al., 2014). It requires minimal sample 

preparation and, with adequate calibration, the equipment can be used both in the laboratory 

or in field conditions (Ribeiro et al., 2017; Weindorf et al., 2014). Spatial and temporal 

monitoring of soil and plant properties are also easily accomplished (Kincey et al., 2018; 

Pelegrino et al., 2018). 

A complementary proximal sensor, the NixPro™ color sensor, has been recently 

applied in soil science for assessing soil color enabling correlation with soil organic carbon 

and total nitrogen (Mikhailova et al., 2017; Stiglitz et al., 2018; Stiglitz et al., 2017). It is a 

quick, portable, inexpensive, and rechargeable color sensor providing color reports in many 

different numerical color systems, being less subjective in soil color determination than the 

Munsell color chart (Stiglitz et al., 2016; Mancini et al., 2020). 

Some studies have shown that combining pXRF elemental data and NixPro™ color 

data may optimize the accuracy of the predictive models (Kagiliery et al., 2019; 

Mukhopadhyay et al., 2020). Given the success of such combined sensor approaches, their 

application and testing on soil order and suborder assessment appears timely, especially in 

developing countries where financial resources are increasingly scarce for soil 

characterization. Thus, the objectives of this research were to use NixPro™ colorimetric 

capacities and pXRF elemental composition to characterize seven different soil orders in 

Brazilian tropical soils and explore the ability of three machine learning algorithms [Support 

Vector Machine with Linear Kernel (SVMLK), Artificial Neural Network (ANN), and 

Random Forest (RF)] with and without Principal Component Analysis (PCA) pretreatment for 

prediction of different soils at the order and suborder taxonomic levels for both dry and moist 

conditions. Our hypothesis is that the combination of pXRF and NixPro™ will prove useful 

for rapid and accurate assessment of soil order and suborder in tropical soils. 

 

2. Material and Methods 

2.1. General occurrence and features 

This study was conducted using soil samples from four Brazilian states (Fig. 1). Mean 

annual temperature ranges from 20 to 22 °C, with 1300 to 1600 mm of annual rainfall. The 

Köppen-Gieger climate classification (Alvares et al., 2013; Kottek et al., 2006) of the sampled 

areas are tropical with dry winter (Aw) in Rio de Janeiro state, humid subtropical with dry 

summer (Csb) in São Paulo state, humid subtropical with temperate summer (Cfb) in Santa 

Catarina state, tropical with dry winter (Aw) and humid subtropical with dry winter and rainy 
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summer (Cwa) in Minas Gerais state. The samples collected included twelve soil suborders 

classified according to the Brazilian Soil Classification System (SiBCS) (dos Santos et al., 

2018); their correspondence to US Soil Taxonomy (USDA, 1999) is given in Table 1. Soils 

were collected under different land uses, encompassing native vegetation and crop areas 

featuring pasture, eucalyptus, coffee, tobacco, and corn. During the soil survey in the field, 

variable parent materials were identified therein inclusive of gneiss, basalt, gabbro, sandstone, 

alluvial and colluvial sediments, slate, phyllite, tuffite, quartzite, and Tertiary and Quaternary 

sediments. The cultivated areas have received application of limestone and fertilizers; no 

management practices have been conducted in areas under native vegetation. 

 

 

Fig. 1. Distribution of the collected samples in the different Brazilian states: Minas Gerais (MG), São 

Paulo (SP), Rio de Janeiro (RJ), and Santa Catarina (SC). Abbreviations see Table 1. 
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Table 1. Soil suborders according to the Brazilian Soil Classification System (SiBCS)  (Santos et al., 

2018) and corresponding US Soil Taxonomy (USDA, 1999) classes.  

Identif. SiBCS classification  Soil Taxonomy classification 

PA Argissolo Amarelo Typic Hapludult 

PV Argissolo Vermelho Rhodic Kandiudult 

PVA Argissolo Vermelho-Amarelo Typic Hapludult 

CX Cambissolo Háplico Typic Dystrustept 

GX Gleissolo Háplico Typic Endoaquent 

GM Gleissolo Melânico Mollic Endoaquent 

LA Latossolo Amarelo Xanthic Hapludox 

LV Latossolo Vermelho Anionic Acrudox 

LVA Latossolo Vermelho-Amarelo Typic Hapludox 

RR Neossolo Regolítico Typic Udorthent 

NV Nitossolo Vermelho Typic Rhodudult 

OX Organossolo Háplico Typic Udifolist 

 

2.2. Soil sampling and laboratory analyses 

Samples were collected from the following surficial or subsurficial horizons: A (311 

samples), O (5 samples), E (1 sample), B (403 samples), and C (14 samples), per dos Santos 

et al. (2015), constituting a total of 734 samples. Samples were air-dried, passed through a 2-

mm sieve, and analyzed in the laboratory for soil texture via the pipette method (Gee and 

Bauder, 1986). Soil pH (1:2.5 - v:v, soil:water) was measured with an electrometric pH-meter 

(Donagema et al., 2011). Exchangeable Ca2+, Mg2+, and Al3+ were extracted with 1 mol L−1 

KCl (McLean et al., 1958), and available K+ and P were extracted using Mehlich−1 solution 

(Mehlich, 1953). Al3+ was determined by titration with a 0.0125 mol L−1 NaOH solution, 

whereas Ca2+ and Mg2+ were analyzed by atomic absorption spectrophotometry (Perkin 

Elmer® model AAnalyst 800). K+ was determined by flame photometer and quantification of 

available P was made through molecular absorption spectrometry. Soil organic carbon was 

determined via titration per Walkley and Black (1934). Finally, soils were classified 

according to the Brazilian Soil Classification System and the approximate correspondence 

was made with the US Soil Taxonomy. 

 

2.3. PXRF analysis 

A pXRF spectrometer (Bruker® model S1 Titan LE) was used to scan all samples and 

obtain the elemental composition per Weindorf and Chakraborty (2016). The equipment 
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features a Rh X-ray tube and was operated at 50 kV and 100 μA online power (220 VAC) 

with an integrated silicon drift detector (145 eV), which allows for the detection of elements 

ranging from Mg to U. Scans were performed in triplicate in Trace (dual soil) mode for 60 s 

using the Geochem software. The following elements were obtained in all soil samples used 

in this work: Al, As, Ca, Cr, Cu, Fe, K, Mn, Ni, P, Pb, Rb, S, Si, Sr, Ti, V, Y, and Zn. 

To ensure the quality and accuracy of the data generated by pXRF, prior to use the 

equipment was calibrated using the manufacturer calibration alloy coin. PXRF-reported 

elemental contents from National Institute of Standards and Technology (NIST) certified 

standards (2710a and 2711a) and one pXRF manufacturer standard (check sample) were 

compared with their respective certified values to calculate recovery (% of recovery = 100 x 

pXRF reported content/certified content) (Koch et al., 2017). The recovery values for the 

elements identified in all samples and used in this work are as follows (2710a/2711a/CS) (0 

value indicates no reference value in the certified materials or no elemental detection by 

pXRF): Al (85/72/90), As (92/63/0), Ca (32/44/0), Cr (0/110/0), Cu (77/69/89), Fe (71/65/90), 

K (52/48/85), Mn (69/58/86), Ni (0/65/91), P (372/512/0), Pb (112/105/97), Rb (99/102/0), S 

(0/0/0), Si (57/54/95), Sr (240/210/0), Ti (80/67/0), V (48/24/0), Y (0/0/0), and Zn (91/83/0). 

 

2.4. NixPro™ analysis 

An inexpensive NixPro™ color sensor (Hamilton, Ontario, Canada) was used to 

collect numerical color data from each soil sample. The sensor is controlled wirelessly by a 

smartphone or tablet through Bluetooth and has its own light-emitting diode (LED) light 

source located within the concave base of the sensor about 1 cm above the field of view. 

Spectral acquisition range is 380 – 730 nm. The sensor produces scan results in various color 

system codes, such as RGB, XYZ, CIELAB, LCH, HEX, CMYK, and ACES; all are 

interrelated and can be easily converted to uniquely identify individual colors of matrix being 

scanned. Kagiliery et al. (2019) provides an overview of the various color systems acquired 

by the NixPro™ sensor. The sensor is also rechargeable, easily accessible because of its small 

size, and can be recalibrated easily. 

All samples were scanned by placing the sensor on each soil sample that was leveled 

to give the sensor a flat area to rest directly on, completely covering the base of the sensor, 

allowing no outside light to enter the scan area. Each sample was scanned under both dry and 

moist soil conditions following the methods described previously by Stiglitz et al. (2017; 

2016). Samples were moistened using a water dropper to the point of no more color change in 

the soil. 
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All CIE (1978) color coordinates (lightness (L*), redness (a*), and yellowness (b*) 

colorimetrics) were collated and then used to calculate hue angle (H°) and chroma (C*) (dos 

Santos et al., 2015). The H° and C* were calculated based on the following equations: H° = 

arctg (b*/a*) and C*=(a*2+b*2)1/2. The total color change (ΔE) for each soil suborder was 

then calculated as per AMSA (2012) by the following equation ΔE = [(ΔL*)2 + (Δa*)2 + 

(Δb*)2]0.5. All numerical color data collected from the color system codes, H° and C* were 

utilized as explanatory variables for the prediction models. 

 

2.5. Data analysis and modeling 

Prior to analyses, principal component analysis (PCA) was applied for data 

dimensionality reduction. PCA is a mathematical orthogonal transformation that creates new 

uncorrelated variables that successively maximizes variance. It was executed using R 

software version 3.6.1 (R Development Core Team, 2018). The principal components (PC) 

derived from PCA that explain most of the data variance were applied to all prediction models 

in order to test the performance of models built with and without dimensionality reduction. 

In order to predict both soil order and suborder, soil samples were separated into 

modeling and validation datasets consisting of 70% and 30% of the total data, respectively. 

Three types of predictions were evaluated: 1) models using only pXRF data, 2) models using 

only NixPro™ color sensor data (Color systems, H° and C*) (dry and moist samples), and 3) 

models with both data combined (general) (Table 2). Moreover, the models were created 

separately for three conditions: using surface horizon data (316 samples), using subsurface 

horizon data (418 samples), and with both horizons combined (734 samples); these were split 

by soil profile in order to avoid autocorrelation. The ability of the generated models to 

correctly predict soil order and suborder was tested by an independent validation dataset (30% 

of the full dataset). 

 

Table 2. Summary of the order and suborder prediction models showing the explanatory variables in 

each model. 

Models Explanatory variables Number of predictor variables 

1 pXRF 19 

2 Nix (dry samples) 27 

3 Nix (moist samples) 27 

4 pXRF + Nix (dry samples) 46 

5 pXRF + Nix (moist samples) 46 
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Support Vector Machine with Linear Kernel (SVMLK), Artificial Neural Network 

(ANN), and Random Forest (RF) algorithms were utilized in each data set to generate the soil 

order and suborder prediction models, using R software (version 3.5.3) (R Development Core 

Team, 2018), through the “caret” package (Kuhn, 2008). The SVMLK parameter cost (Cost) 

was set to default. ANN models were created with size (hidden units), and decay (weight 

decay) parameters set to default. The RF parameter ntree (number of trees in the model) was 

set to 5000, mtry (number of variables used in each tree) corresponded to one third the 

number of predictors (Liaw and Wiener, 2002), and nodesize (minimum node size) was set to 

default. RF does not provide a final equation, but the variable importance for the model can 

be assessed. The more important the variable, the more the prediction error increases as this 

variable is left out of the model, while other variables are maintained (Breiman, 2001; Liaw 

and Wiener, 2002). One of the metrics released by RF algorithm is percentage of increment of 

mean square error (%IncMSE). %IncMSE is a robust and informative metric about the 

relative importance of each independent variable (Grömping, 2009; Ishwaran, 2007) and 

prevents bias (González et al., 2015). It represents the percentage of increase in mean square 

error (MSE) of predictions (estimated with out-of-bag cross validation) as a certain variable is 

permuted while others are maintained in trees during RF modeling (Liaw and Wiener, 2002). 

The larger the %IncMSE value, the higher the importance of the variable for the prediction 

model (González et al., 2015). 

 

2.6. Evaluating model performance 

The predicted and measured soil orders and suborders were arranged into an error 

matrix. Then, overall accuracy, ranging from 0 to 100%, was calculated by the sum of the 

major diagonal (the correctly classified samples) divided by the total number of samples in 

the entire error matrix (the closer to 1, the greater the accuracy). The performance of the 

models was also assessed using Cohen's Kappa coefficient (Cohen, 1960; Sim and Wright, 

2005) (Eq. 1). Kappa values range from −1 to 1, indicating increasing accuracy as the values 

move closer to 1. 

𝐾𝑎𝑝𝑝𝑎 =  
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
     (1) 

where Po is the proportion of correctly classified sites and Pe is the probability of random 

agreement (Landis and Koch, 1977). 
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3. Results and discussion 

3.1. Tropical soil characterization via proximal sensors 

Boxplots showing the elemental distribution for the twelve soil suborders in Brazilian 

tropical soils are shown in Fig. 2. Elemental composition provided by pXRF was able to 

detect differences between the soil suborders. Certain elements, such as Al, Fe, and Zn, 

display a clear disparity in their range of content, being able to discriminate at least two soil 

suborders among themselves. For instance, Al clearly discriminates GX and OX. Zn, in turn, 

clearly discriminates OX from GX, and NV. Also, some elements presented a marked range 

for certain soil suborders, for instance, greater contents of As, Ca, Cu, K, Mn, Sr, and Zn were 

found in CX. Greater contents of Fe, Cr, Ni, Pb, and Y were found in LV, caused by mafic 

parent rocks. These relationships may be related to soil management, mineralogy, and parent 

material. Mancini et al. (2019), also working in tropical conditions, and Stockamann et al. 

(2016), working in a temperate region, found remarkable differences in elemental 

composition provided by pXRF for a myriad of soils derived from several parent materials, 

such as phyllite, basalt, dolerite, mudstone, and sandstone, indicating that the differences 

found in this study may also be a result of parent material influence. 
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Fig. 2. Boxplots comparing twelve soil suborders through elemental contents obtained via portable X-

ray fluorescence (pXRF) spectrometry in Brazilian tropical soils. 
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A clear distinction among soil orders and suborders based on pXRF data was not 

attained. The diverse land uses of the evaluated soils, including distinct soil management 

practices with applications and doses of fertilizers and conditioners at different depths alter 

the original chemical composition of soils, especially for the macro- and micronutrients. 

Some patterns related to soil mineralogy were identified from the elemental contents shown in 

Fig. 2. For that, recall the mineralogy of most Brazilian soils is basically composed of quartz 

and muscovite in the coarse fractions, and kaolinite, hematite, goethite, and gibbsite in the 

clay fraction, in different proportions (Kämpf et al., 2012; Brinatti et al., 2010). Thus, red 

soils (LV, NV and PV) presented the greatest Fe contents since they were derived from 

gabbro, basalt, melanocratic gneiss, etc., which contributes to the greater amount of hematite 

formation under oxidizing conditions and hence, their red color. This pattern was somewhat 

followed by Ti, Pb, and Ni. Conversely, GM, GX, and OX had low Fe contents, due to their 

occurrence under saturated conditions that favor the reduction of Fe(III) compounds, 

facilitating Fe(II) removal from these soil systems. So, they are basically composed of quartz, 

kaolinite, and gibbsite (Resende et al., 2011; Resende et al., 2014). Si and Al variability rely 

on soil parent materials and the degree of weathering leaching. Both elements, mainly Si, tend 

to be removed from soils as the degree of weathering advances (Kämpf et al., 2012), as 

demonstrated by the lowest Si contents found in Oxisols (LV and LVA). An elemental 

analysis by pXRF including only soils under natural conditions may deliver an optimized 

pattern between certain elements and soil orders and suborders. 

PCA revealed that pXRF and NixPro™ color sensor combined can modestly 

discriminate soils that feature color in the second level (suborder) of soil classification from 

those which do not (Fig. 3). The PC1 and PC2 combined explained 60.45% of the total 

variance. Soils that feature color at suborder level presented the highest content of elements of 

greater stability in the soil, such as Ni, V, and Pb (Mancini et al., 2019). The highest content 

of Fe was also found in those soils, probably due to the presence of iron oxides which can 

confer color to the soil matrix. Hematite (Fe2O3) and goethite (FeOOH) occur in the clay 

fraction, and provide red and yellow colors, respectively (Resende et al., 2014).  
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Fig. 3. Principal component analysis (PCA) for twelve soil suborders through elemental composition 

provided by portable X-ray fluorescence (pXRF) and numerical color information provided by 

NixPro™ color sensor in Brazilian tropical soils. Abbreviations see Table 1. 

 

Soils that feature yellow color at the suborder level were the least distinguished from 

the colorless soils at the suborder level, followed by red-yellow, and finally red. Red soils 

presented the greatest disparity between soils with color at suborder level, with the highest 

values of a* (from CIELab color system, −green:red+), M (from CMYK color system, 

representing magenta contribution), and Y (from CMYK color system, representing yellow 

contribution). 

 

3.2. Classification performance at soil order level 

The performance of the models using data from A and B horizons, separately and 

combined (A + B), for the prediction of first level (order) of soil classification without and 

with PCA pretreatment are shown in Figs. 4 and 5, respectively. The best model was 

generated using B horizon data via pXRF and NixPro™ (moist samples) data through RF 

algorithm, resulting in an overall accuracy of 81.19% and Kappa index of 0.71. 
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Fig. 4. Overall accuracy and Kappa coefficient values for the prediction models in the first level 

(order) of soil classification for Brazilian tropical soils. SVMLK – Support Vector Machine with 

Linear Kernel; ANN – Artificial Neural Network; RF – Random Forest. 

 

 

Fig. 5. Overall accuracy and Kappa coefficient values for the prediction models with principal 

component analysis (PCA) pretreatment in the first level (order) of soil classification for Brazilian 

tropical soils. SVMLK – Support Vector Machine with Linear Kernel; ANN – Artificial Neural 

Network; RF – Random Forest. 
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The prediction models presented a slight increase in accuracy when fitting data from 

both proximal sensors in B horizon samples. Studying the prediction of S content in lignite, 

Kagiliery et al. (2019) found a modest increase in predictive accuracy (pXRF = 0.80 R2, 

pXRF + NixPro™ = 0.85 R2) afforded by utilizing combined pXRF and NixPro™ color data. 

The authors emphasize that NixPro™ color system data is a worthwhile addition since it is 

inexpensive and quick (<2.5 s). 

In general, models generated using data from A horizons and A + B horizons 

combined provided at least one prediction model, in all different sub-datasets, with overall 

accuracy surpassing 60%. Surface horizons were generally more affected by the soil 

management practices such as fertilizers, liming and gypsum application. In addition, soil 

management can lead to changes in soil organic matter content which may affect soil color. 

Moreover, nutrient recycling and weathering are also responsible for changing the elemental 

composition of the soil. The high elemental and color variability in the surface horizons may 

be the reason for comparatively lower accuracy of the A, and A + B prediction models. 

Models developed from NixPro™ color data in isolation delivered lower accuracy; 

overall accuracy ranged between 56.65% and 68.37%, and Kappa coefficients ranged between 

0.34 and 0.51. Dimensional reduction through PCA (Fig. 5) did not perform well, as none of 

the models achieved 80% overall accuracy. 

Analyzing the confusion matrix delivered by the best prediction model (B horizon sub-

dataset via pXRF and NixPro™ data with RF algorithm) (Table 3), it is noteworthy that with 

exception of R, all other soil orders achieved at least 50% classification accuracy. O, C, and L 

soil orders achieved the best classification accuracy (100, 95.74, and 82.22%, respectively). 
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Table 3. Confusion matrix and classification accuracy obtained from the best prediction model (pXRF 

+ NixPro™ (moist samples) data) for the first level (order) prediction delivered by Random Forest 

model in B horizons without principal component analysis (PCA) pretreatment 

in Brazilian tropical soils. 

From\To P C G L N R O Total % correct 

Pa 9 1 0 0 7 0 0 17 52.94 

C 1 45 0 1 0 0 0 47 95.74 

G 0 1 1 0 0 0 0 2 50.00 

L 3 3 0 37 2 0 0 45 82.22 

N 0 0 0 2 2 0 0 4 50.00 

R 0 0 0 1 0 0 0 1 0.00 

O 0 0 0 0 0 0 1 1 100.00 
a P – Argissolos (Ultisols), C – Cambissolos (Inceptisols), G – Gleissolos (Entisols), L – Latossolos 

(Oxisols), N – Nitossolos (Ultisols), R – Neossolos (Entisols), O – Organossolos (Histosols). 

 

3.3. Classification performance at the suborder level 

In general, the performance of the prediction models for the second level (suborder) of 

soil classification (Figs. 6 and 7) were modestly worse. The best prediction model was 

generated using B horizon data via pXRF and NixPro™ (moist samples) data through RF 

algorithm, resulting in overall accuracy of 74.35% and a Kappa index of 0.65. From the 

twelve soil suborders, four soils presented 0.0 of classification accuracy, PVA, GM, LA, and 

RR (Table 4). Conversely, OX and GX achieved 100.0% classification accuracy. Within the 

order of the Ultisols (Argissolos, P), PV achieved the best classification accuracy (75.0%). 

Within the order of Oxisols (Latossolos, L), LV and LVA were better classified (79.17 and 

81.25%, respectively). 
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Fig. 6. Overall accuracy and Kappa coefficient values for the prediction models in the second level 

(suborder) of soil classification for Brazilian tropical soils. SVMLK – Support Vector Machine with 

Linear Kernel; ANN – Artificial Neural Network; RF – Random Forest. 

 

 

Fig. 7. Overall accuracy and Kappa coefficient values for the prediction models with principal 

component analysis (PCA) pretreatment in the second level (suborder) of soil classification for 

Brazilian tropical soils. SVMLK – Support Vector Machine with Linear Kernel; ANN – Artificial 

Neural Network; RF – Random Forest. 

 



59 

 

Table 4. Confusion matrix and classification accuracy obtained from the best prediction model (pXRF 

+ NixPro™ (moist samples) data) for the second level (suborder) prediction delivered by Random 

Forest model in B horizons without principal component analysis (PCA) pretreatment in Brazilian 

tropical soils. 

From\To PA PV PVA CX GX GM LA LV LVA NV RR OX Total % correct 

PAa 1 0 0 1 0 0 0 0 0 0 0 0 2 50.00 

PV 0 6 0 0 0 0 0 2 0 0 0 0 8 75.00 

PVA 0 1 0 1 0 0 0 0 5 0 0 0 7 0.00 

CX 0 0 1 45 0 0 0 0 1 0 0 0 47 95.74 

GX 0 0 0 0 1 0 0 0 0 0 0 0 1 100.00 

GM 0 0 0 1 0 0 0 0 0 0 0 0 1 0.00 

LA 0 0 0 2 0 0 0 0 3 0 0 0 5 0.00 

LV 0 2 0 0 0 0 0 19 1 2 0 0 24 79.17 

LVA 0 0 0 3 0 0 0 0 13 0 0 0 16 81.25 

NV 0 0 1 0 0 0 0 2 0 1 0 0 4 25.00 

RR 0 0 0 1 0 0 0 0 0 0 0 0 1 0.00 

OX 0 0 0 0 0 0 0 0 0 0 0 1 1 100.00 

 a Abbreviations see Table 1. 

 

The SVMLK models performed slightly better than ANN models with overall 

accuracy ranging between 50.0 and 70.94% for SVMLK, and between 48.78% and 63.24% 

for ANN. The RF algorithm delivered the most accurate predictions for suborder models, 

showing the highest overall accuracy and Kappa coefficient values in almost all sub-datasets 

(Fig. 6). Other research also found that RF was the best algorithm in predicting TN, CEC, and 

SOM (Andrade et al., 2020b), exchangeable Ca2+ and Mg2+, and available K+ (Andrade et al., 

2020a), and also, mapping exchangeable Ca2+, Mg2+, Al3+, pH, SOM, base saturation, 

potential and effective CEC, and P-rem (Silva et al., 2017). Mancini et al. (2019) found that 

RF was the most consistent algorithm in predicting parent material in tropical soils. 

Considering the difficulties of soil survey in tropical areas (e.g., scarce financial resources) 

RF could be an adequate alternative for building reasonable soil order and suborder predictive 

models. 

Although the prediction accuracy for both soil order and suborder were acceptable, the 

best models present some limitations. In this study, prediction models were built with 

different subsuperficial soil horizons (E, B, and C). However, the models only apply for the 

soils listed in Table 1. Further studies are encouraged to apply RF algorithm for the prediction 

of the thirteen soil orders in Brazilian Soil Classification System (SiBCS) (dos Santos et al., 

2018). 
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3.4. Variable importance 

The most important variables for the best soil order and suborder prediction models 

(pXRF + NixPro™ (moist samples) data) are shown in Fig. 8. K, Si, Rb, and Ti were the most 

important pXRF variables in both order and suborder prediction models. 

 

 

Fig. 8. Variables importance for the best prediction model (portable X-ray fluorescence pXRF + 

NixPro™ (moist samples) data) for order and suborder predictions delivered by Random Forest model 

in B horizons without principal component analysis (PCA) pretreatment in Brazilian tropical soils. 
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Si and K have a very dynamic behavior in the soil environment due to their radical 

temporal changes caused by soil management. However, even though K is a macronutrient 

and soil management may be the major influencer in elemental K content (Andrade et al., 

2020a), there is some soils that can potentially present kaolinite intergraded with other soil 

minerals such as mica. Having K as a component of the crystalline structure of the mineral 

makes this element a marker for the soils that feature such mineralogy, thus assisting 

algorithms in accuracy predictions. Conversely, Rb and Ti have been considered fingerprint 

elements for distinguishing soil parent material (Carvalho Filho et al., 2015), since these 

elements tend to be more stable in soils (Gomes et al., 2017; Schaetzl and Anderson, 2005). 

Relating these results to the elemental distribution for different soil suborders (Fig. 2), 

it is noteworthy that RF models were able to identify as important variables those elements 

presenting very distinct elemental content distributions. For example, K and Si did not show a 

clear disparity in their range content; the same was true for Ti and Rb. 

The most important numerical color variables for soil order prediction were H (from 

LCH color system), hue angle (H*, calculated from the CIELab color system), and a* (from 

CIELab color system). LCH uses cylindrical coordinates instead of rectangular coordinates 

whereby H reflects hue expressed in degrees. By comparison, a* ranges from greenness (−) to 

redness (+). For suborder prediction models the most important variables were H, Hue angle 

(H*), and M (from CMYK color system). CMYK uses a percentage scale (0–100%) to define 

the contributions of the colors, whereby M represents magenta contribution. The H (from 

LCH color system) was also the most important NixPro™ color variable for Kagiliery et al. 

(2019) in predicting lignite S content. 

As found by Kagiliery et al. (2019), pXRF provided the most important variables for 

the prediction models, followed by NixPro™ numerical color information which supports it 

as an auxiliary proximal sensor. NixPro™ color variables were more important for suborder 

prediction models (Fig. 8). This was likely because soil color is utilized to define the second 

level (suborder) of soil classification. 

 

3.5. NixPro™ improvement of soil order and suborder predictions 

The inclusion of NixPro™ data in the prediction models helped to improve the 

accuracy of P, L, and O soil orders, and PA, LV, LVA, and OX soil suborders (Table 5). The 

major improvements occurred in OX and PA soil suborders, which presented 0.00% accuracy 
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using only pXRF data, and achieved 100.0 and 50.0% of accuracy respectively, when 

NixPro™ data (moist samples) were added. 

 

Table 5. Classification accuracy for the best (pXRF + NixPro™ (moist samples) data) and second-best 

prediction models (pXRF data) for order and suborder predictions delivered by Random Forest model 

in B horizons without principal component analysis (PCA) pretreatment in Brazilian tropical soils.   

Soil order % correctb % correctc   Soil suborder % correctb % correctc 

Pa 47.06 52.94   PAa 0.00 50.00 

C 95.74 95.74   PV 75.00 75.00 

G 50.00 50.00   PVA 14.29 0.00 

L 80.00 82.22   CX 97.87 95.74 

N 50.00 50.00   GX 100.00 100.00 

R 0.00 0.00   GM 0.00 0.00 

O 0.00 100.00   LA 0.00 0.00 

        LV 66.67 79.17 

        LVA 75.00 81.25 

        NV 50.00 25.00 

        RR 0.00 0.00 

        OX 0.00 100.00 

Bold numbers represent improved accuracy when adding NixPro™ color data to the prediction 

models. 
a Abbreviations see Table 1. 
b Second-best model. 
c Best model. 

 

Table 5. Classification accuracy for the best (pXRF + NixPro™ (moist samples) data) 

and second-best prediction models (pXRF data) for order and suborder predictions delivered 

by Random Forest model in B horizons without principal component analysis (PCA) 

pretreatment in Brazilian tropical soils. 

P and L feature color in the second level of classification (suborder) in Brazilian Soil 

Classification System (dos Santos et al., 2018). O, by its proper conditions, feature a darker 

color due the greater content of soil organic matter (Resende et al., 2014). Thus, although the 

increase in predictive accuracy afforded by utilizing NixPro™ color data were modest (2.56% 

for Overall accuracy and 0.03 for Kappa coefficient in soil suborder prediction models), PA 

and OX only could be more accurately predicted by adding soil color information in the 

prediction models. This establishes NixPro™ as an important auxiliary proximal sensor in 

order to improve the accuracy of different soil suborder prediction when the elemental 
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composition provided by pXRF are no longer efficient in proving soil information for 

distinguishing soil classes. 

 

3.6. NixPro™ numerical color data: Dry or moist samples? 

A CIELab plot for dry and moist soil samples is shown in Fig. 9. Moisture made soil 

samples appeared darker, decreasing the lightness variable (L*) range, which was from 8.44 

to 79.97 for dry samples, and from 10.02 to 58.25 for moist samples. This occurred because 

the presence of moisture in soil decreases its reflectance. Lobell and Asner (2002) reported 

that although the soil reflectance changed according to soil order, the oven and air dry soil 

samples featured a greater reflectance factor, and as moisture increased, the reflectance factor 

for all soils decreased. 

 

 

Fig. 9. CIELab color system plot for dry and moist samples of Brazilian tropical soils. 

 

As soil moisture increases, water covers soil particle surfaces, and then proceeds to fill 

micro and macropores (Hillel, 1998). However, Lobell and Asner (2002) stated that once soil 

water is sufficient to cover most of the particle surfaces, additional water that fills large pore 

spaces will no longer cause a large effect on reflectance factor. Other factors like soil texture 

(sand, silt, and clay contents), surface roughness, the presence of iron oxides and organic 

matter may also affect soil spectral reflectance (Benedet et al., 2020). 

The total color change index (ΔE) was also affected by moisture (Table 6). ΔE reports 

the total color range variation; the larger the ΔE, the greater the variation in color range 

(Cakmak et al., 2018; Holman et al., 2019). It is noteworthy that the ΔE index presented 

greater values under dry conditions, i.e., dry samples delivered a greater range of numerical 
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soil information for the same soil class which makes prediction difficult for the algorithms. 

Conversely, soil scans delivered more homogeneous numerical colors when samples were 

moist, as evidenced by a lower ΔE. 

 

Table 6. Total color change (∆E) for dry and moist condition scans of samples in Brazilian tropical 

soils. 

Soil suborder ∆Eb ∆Ec 

PAa 32.11 14.89 

PV 54.32 30.95 

PVA 58.14 35.81 

CX 57.04 50.39 

GX 32.33 22.89 

GM 33.38 32.24 

LA 43.70 45.15 

LV 63.97 36.33 

LVA 41.80 35.09 

NV 44.83 22.85 

RR 50.95 46.91 

OX 43.85 28.69 
a Abbreviations see Table 1. 

b Dry samples. 

c Moist samples. 

 

PA, NV, LV, PV, PVA, and OX presented the greatest decreases in ΔE comparing dry 

and moist samples (53.6, 49.0, 43.2, 43.0, 38.4, and 34.6%, respectively). PA, LV, and OX 

showed more prediction accuracy when NixPro™ numerical color information from moist 

samples were added to the prediction models. LVA, even though presenting less ΔE reduction 

(16.1%), was also more accurately predicted through moist color information. 

Stiglitz et al. (2016) reported that the NixPro™ color sensor determined the true color 

of a soil sample regardless of moisture content, i.e., the results were nearly identical for both 

dry and moist conditions. Raeesi et al. (2019) found that dry and moist samples presented a 

different correlation coefficient between the soil color variables and soil organic matter 

(SOM). Stiglitz et al. (2017) compared the performance of SOC prediction models built with 

dry and moist sample color information and reported that the results delivered by dry scans 

presented higher accuracy. In the present study, moist samples featured lower ΔE within the 

same soil suborder compared with dry samples allowing the algorithms to improve the 

accuracy when using numerical color data from moist samples (Figs. 4 and 6). Therefore, for 
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the prediction of soil classes in tropical regions, moist samples deliver more efficient 

numerical color data. However, what will decide whether the most appropriate dataset is dry 

or moist is the soil characteristic or attribute to be predicted. 

 

4. Conclusions 

Although the models developed in this study likely have limitations, the achieved 

accuracy for soil order and suborder predictions were moderately reliable. The soil samples 

used in this study were from a variety of different soils, with different weathering degrees, 

developed from a myriad of parent materials, with different SOM contents, and a high range 

of iron content. Even so, the prediction models delivered acceptable results. It is likely that 

independent models developed for soils of different land-uses may achieve greater accuracy. 

Also, soils that are not used agriculturally may impact SOM content and the accuracy of the 

models based on soil color may vary. 

Soil order and suborder prediction models offer a rapid and inexpensive method for 

soil physicochemical assessment which could assist in determining best management 

practices, most appropriate land-use, and appropriate taxonomic classification. The best 

prediction models highlight the considerable promise of using the pXRF and NixPro™ 

techniques for rapidly assessing soil order (81.19% of overall accuracy and 0.71 of Kappa 

coefficient), and suborder (74.35% and 0.65) through RF algorithm. Although the increase in 

predictive accuracy afforded by utilizing NixPro™ color data were modest (2.56% for Overall 

accuracy and 0.04 for Kappa coefficient), PA and OX could only be accurately predicted with 

soil color information included in the prediction models. Further studies to predict soil order 

and suborder in field conditions are advisable. Since pXRF and NixPro™ can be used as rapid 

field assessment tools, this can enable a much higher spatial density of samples which can 

make prediction models more robust and may improve the understanding of the distribution 

of soils across landscapes. 
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Abstract 

Soil texture is a primary variable influencing many soil chemical-physical-biological 

processes, providing important information for decision-making regarding sustainable soil 

management. The standard traditional methods for determining soil texture, however, are 

performed manually and are time-consuming, costly, and generate chemical wastes. As an 

alternative, portable X-ray fluorescence (pXRF) spectrometry and visible near-infrared 

spectroscopy (Vis-NIR) have been increasingly used worldwide to predict soil attributes. 

Other sensors (e.g., NixProTM color sensor) are also promising, but less evaluated to date. 

Thus, investigations towards proximal sensor data fusion for prediction of soil textural 

separates (clay, silt, and total, coarse, and fine sand contents) and soil textural classes (loam, 

loamy sand, etc) in tropical soils are rare. Therefore, this study aimed to evaluate proximal 

sensor data for predicting soil particle size fractions and soil textural classes (both Family 

particle size classes and USDA soil texture triangle) via random forest algorithm in tropical 

regions. A total of 464 soil samples were collected from A (n = 208) and B (n = 256) horizons 
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in Brazil. Soil samples were submitted to laboratory analyses for soil texture and proximal 

sensor (pXRF, Vis-NIR, and NixProTM) scanning. Samples were randomly split into 70% for 

modeling and 30% for validation. The best approach varied according to the predicted 

attribute; however, pXRF data were key information for soil texture prediction accuracy. The 

best results delivered highly accurate predictions via the aforementioned proximal sensors for 

rapid assessment of soil texture (total sand R2 = 0.84, RMSE = 7.60%; silt 0.83, 6.11%; clay 

0.90, 5.64%; coarse sand 0.87, 6.30%; fine sand 0.82, 5.27%). Categorical prediction 

accuracy for soil textural classes (Family particle size classes, overall accuracy = 0.97, Kappa 

index = 0.95; USDA soil texture triangle, 0.83, 0.73) was enhanced when the predictions were 

made by soil order sub-datasets. Smoothed Vis-NIR preprocessing and dry NixProTM color 

data positively influenced the results. The results reported here represent alternatives for 

reducing costs and time needed for evaluating soil texture, supporting agronomic and 

environmental strategies in Brazilian conditions. Further works should extend the results of 

this study to temperate regions to corroborate the conclusions presented herein regarding the 

fusion of these three proximal sensors. 

 

Keywords: pXRF, Vis-NIR, NixProTM, machine learning, prediction models, tropical soils. 

 

1. Introduction 

Soil texture represents the mineral particle size distribution and is usually described as 

the contents of sand (2-0.05 mm), silt (0.05-0.002 mm), and clay (<0.002 mm) (Resende et 

al., 2014). Sand particles can be divided into coarse sand (0.5–2 mm) and fine sand (0.05–0.5 

mm), being the balance of these two fractions highly influential in water retention and 

infiltration capacity. Coarse-sand-textured soils present greater aeration and water conduction 

under saturated conditions, while fine-sand-textured soils present smaller pores with more 

water retention and lower conduction under unsaturated conditions (Parahyba et al., 2019; 

Resende et al., 2014). Soil texture can also be placed in textural classes, which can reflect a 

soil’s potential uses and limitations, besides being highly relevant for soil classification 

(Almagro et al., 2021; Groenendyk et al., 2015). Moreover, soil texture provides insights into 

pedogenetic processes and factors of soil formation and is also related to water infiltration and 

storage, plant nutrient availability and uptake, soil temperature, erosion susceptibility, ease of 

compaction (Tümsavaş et al., 2019), cation exchange capacity, soil organic matter content, 

soil aeration, soil aggregation, and land suitability for different crops (Phogat et al., 2015). 



74 

 

To determine soil particle size distribution, soil samples are subjected to traditional 

laboratory analysis. The most widespread methodologies are the hydrometer and pipette 

methods (Baver et al., 1972; Gee and Bauder, 1986), which are time-consuming, costly, and 

require chemical reagents, restricting the number of samples that can be processed. To 

overcome these issues, proximal sensors have been used to predict soil properties, including 

soil texture, optimizing time, reducing costs, and increasing the number of samples analyzed 

in an environmentally friendly way (Andrade et al., 2020b; Benedet et al., 2020a). Besides the 

increasing adoption of proximal sensors on this matter, questions remain regarding the need 

for fusing data of multiple sensors, selection of the data preprocessing method that provides 

optimal results, extra explanatory variables that may enhance the predictions, etc.  

Portable X-ray fluorescence (pXRF) spectrometry, a technique that identifies and 

quantifies the chemical elements on the analyzed material, and visible near-infrared 

spectroscopy (Vis-NIR), a technique that provides a spectral signature of the analyzed 

material, have been successfully utilized for the prediction of soil texture. Soil texture 

predictions achieved R² values ranging from 0.73 to 0.88 via pXRF (Silva et al., 2020), and 

from 0.70 to 0.81 via Vis-NIR (Conforti et al., 2015). Although these works have been 

successful in predicting sand, silt, and clay contents, the literature still does not report the use 

of these sensors, neither separately nor combined, for the prediction of coarse sand and fine 

sand. Also, other increasingly-used sensors have not been evaluated for such predictions, such 

as the NixProTM color sensor.  

The NixProTM color sensor is an inexpensive tool that provides color reports in many 

different numerical color systems such as RGB, XYZ, CIELAB, LCH, HEX, CMYK, and 

ACES (Stiglitz et al., 2016). Since it is less subjective and extremely fast reading (1-2 

seconds), it has been more used for soil prediction-related studies lately. Depending on the 

variable to be predicted, the color information can be used directly for the prediction or be 

used as complementary information. Stiglitz et al. (2018), when predicting ln(Total Nitrogen), 

reached R2 0.67 and RMSE 0.53 ln(%) using only CIELAB color system. Still, Andrade et al. 

(2020c) used pXRF data to predict soil order and suborder plus NixProTM color as auxiliary 

information, which slightly increased model’s accuracy. Although color itself is not correlated 

with color, as clay-, silt-, and sand-sized particles can assume varied colors depending on the 

minerals present therein, NixProTM color data has not yet been tested for soil texture 

prediction, since in specific conditions color may be able to indirectly help predictions of soil 

texture in combination with other proximal sensors.  
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More recently, as proximal sensor popularity has grown, some studies have 

investigated different approaches to build prediction models aiming to increase their 

predictive power. One of these approaches is through data fusion, which means gathering 

different proximal sensor data as explanatory variables aiming to encompass more 

information about the soil property being predicted. Andrade et al. (2020c), Benedet et al. 

(2020a, 2020b), Swetha and Chakraborty (2021), Weindorf et al. (2016), Zhang and 

Hartemink (2020) successfully combined different proximal sensors data resulting in more 

robust and accurate prediction models. However, investigations towards data fusion for soil 

texture prediction in tropical soils are still rare. Moreover, studies across the globe that 

combine pXRF, Vis-NIR, and NixProTM data for soil texture prediction are unknown to date, 

to the best of the authors’ knowledge. Such investigations are necessary to reliably guide 

future predictions on tropical environments. Additionally, since the acquisition of pXRF and 

Vis-NIR spectrometers are expensive, it is important to evaluate in tropical conditions 

whether combining these sensors provides more robust and accurate prediction models than a 

single sensor in isolation, since in temperate soils it has already been established (Weindorf 

and Chakraborty, 2018).  

Another approach to attempt to build powerful prediction models is through auxiliary 

input data, which could be a cheaper and faster solution instead of combining different 

proximal sensor data. Andrade et al. (2020a) successfully predicted exchangeable Ca2+, Mg2+, 

and available K+ using pXRF plus soil texture as auxiliary input data. Stiglitz et al. (2017) 

built robust prediction models for soil organic carbon through NixProTM plus sample depth as 

auxiliary information. However, whether this approach works and which auxiliary input data 

works best for soil texture prediction is not yet known. For instance, soil order, soil horizon, 

and parent material may enhance such soil texture predictions due to the relations between 

these factors and particle size distribution (Schaetzl and Anderson, 2015). 

Given all the variability that can affect model accuracy (e.g., heterogeneity of the 

analyzed samples, chosen algorithm, and the applied data preprocessing methods) it is 

necessary to test different approaches for predicting soil textural separates and soil textural 

classes in tropical regions. Therefore, this work aimed to predict both on tropical soils through 

the random forest algorithm, evaluating the feasibility of the following approaches: 1) 

separately and combined pXRF, Vis-NIR, and NixProTM data, 2) proximal sensors plus 

environmental co-variates as explanatory variables, and 3) prediction models in sub-datasets 

separated by soil order. We hypothesize that robust and accurate prediction models will be 

delivered for soil textural separates (total sand, silt, clay, coarse sand, and fine sand contents) 
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and soil textural classes by at least one of the aforementioned approaches, despite large 

variability in soil order, land use, and parent material in the dataset. Furthermore, we 

hypothesize that pXRF alone will provide results comparable with the data fusion of the three 

sensors. 

 

2. MATERIAL AND METHODS 

2.1 General occurrence and features 

This study was conducted using soil samples from four Brazilian states, Minas Gerais 

(MG), São Paulo (SP), Rio de Janeiro (RJ), and Santa Catarina (SC). Mean annual 

temperature ranges from 20 to 22 °C, with 1300 to 1600 mm of annual rainfall. The Köppen 

climate classification (Alvares et al., 2013; Köppen, 1936; Kottek et al., 2006) of the sampled 

areas are tropical with dry winter (Aw) in Rio de Janeiro state, humid subtropical with dry 

summer (Csb) in São Paulo state, humid subtropical with temperate summer (Cfb) in Santa 

Catarina state, tropical with dry winter (Aw) and humid subtropical with dry winter and rainy 

summer (Cwa) in Minas Gerais state. The soils collected included Ultisols (85 samples), 

Inceptisols (135), Mollisols (3), Entisols (23), Oxisols (211), Alfisols (2), and Histosols (5) 

(Soil Survey Staff, 2014). The soil profiles were morphologically described and classified per 

the Brazilian Soil Classification System (SiBCS) (Santos et al., 2018); then, the approximate 

correspondence was made with the US Soil Taxonomy (Soil Survey Staff, 2014).  

Soil samples were collected under different parent materials, encompassing amphibole 

(2 samples), slate (60), Botucatu sandstone (27), Mafra-Formation sandstone (19), basalt (8), 

limestone (1), charnokite (1), Rio-do-Sul-Formation shale (37), gabbro (42), granite-gneiss 

(215), itabirite (1), mica-schist (3), pelitic rocks (12), quartzite (23), alluvial sediments (10), 

and tuffite (3) with varying land uses better described in Andrade et al. (2021). During the soil 

survey in the field, the sampling points were chosen in areas covering a complete description 

of the spatial variability of soil classes and properties, besides soil parent material and land 

use. 

 

2.2 Soil sampling and laboratory analyses 

Samples were collected from surface (208 samples) and subsurface (256) horizons, 

comprising a total of 464 samples. The collected samples were air-dried, disaggregated to 

pass a 2-mm sieve, and analyzed by pipette method to determine the particle size distribution 

per the pipette method (Gee and Bauder, 1986) (Fig. 1). The sand fraction was separated into 

coarse sand (0.5–2 mm) and fine sand (0.05–0.5 mm) through sieving. Soil samples were 
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classified according to the Family particle size classes and USDA soil texture triangle (Soil 

Survey Staff, 2014), which were adapted to the Brazilian conditions (Fig. 1). 

 

 

 

Fig. 1. Soil textural classes of the collected samples and their distribution per parent material 

of Brazilian soils. a) Family particle size classes, b) USDA soil texture triangle. Both adapted 

from US Soil Taxonomy (Soil Survey Staff, 2014).  

 

2.3 Proximal sensors scanning 

2.3.1 pXRF analysis 

A pXRF spectrometer (model S1 Titan, Bruker Analytical Instrumentation, Billerica, 

MA, USA) was applied to scan all soil samples and acquire the elemental composition per 

Weindorf and Chakraborty (2016). The pXRF features a 50 KeV and 100 μA X-ray tube, 

which perform the scans of the elements of the Periodic Table ranging from Mg to U in mg 

kg-1. Scans were performed in air dry samples, in triplicate in Trace (dual soil) mode for 60 s 

using the Geochem software. In total, the pXRF spectrometer detected the concentration of 

twenty elements in all soil samples and they were all used in this work: Al, As, Ca, Cl, Cr, 

Cu, Fe, K, Mn, Ni, P, Pb, Rb, Si, Sr, Ti, V, Y, Zn, and Zr. 

To guarantee the quality of the data generated by pXRF, National Institute of 

Standards and Technology (NIST) certified references (2710a and 2711a) and the pXRF 

manufacturer check sample had their contents acquired by pXRF contrasted to certified 
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reference values. From these certified materials, the recovery values obtained by the 

equipment per element were calculated (recovery value = elemental content obtained by 

pXRF/certified elemental content). The elements obtained through the pXRF analyses and 

their recovery values (2710a/2711a/check sample) were: Al (0.88/0.74/0.91), As (0.86/0.64/--

), Ca (0.35/0.45/--), Cl (--/--/--), Cr (--/1.19/--), Cu (0.75/0.65/0.91), Fe (0.74/0.66/0.93), K 

(0.54/0.51/0.83), Mn (0.70/0.61/0.88), Ni (--/0.62/0.90), P (3.62/5.05/--), Pb (1.12/1.05/1.07), 

Rb (1.01/1.04/--), Si (0.59/0.57/0.94), Sr (2.35/2.07/--), Ti (0.78/0.70/--), V (0.48/0.20/--), Y 

(--/--/--), Zn (0.91/0.85/--), and Zr (1.08/--/--). Dashes (--) indicates either that the element has 

no certified content in the reference material or was not detected by pXRF. 

 

2.3.2 NixProTM analyses 

A NixProTM color sensor (Hamilton, Ontario, Canada) was utilized to collect 

numerical color data from all soil sample. The sensor is controlled wirelessly by a smartphone 

or tablet through Bluetooth and has its own light-emitting diode (LED) light source located 

within the concave base of the sensor about 1 cm above the field of view. The color sensor is 

inexpensive, and the spectral acquisition range is 380–730 nm. The color system codes 

reported are interrelated and can be used uniquely identify individual colors of the scanned 

matrix. The sensor is also rechargeable, easily accessible due  its small size, and can be 

readily recalibrated (Kagiliery et al., 2019).  

All samples were leveled to give the sensor a flat area to rest directly on, completely 

covering the base area, allowing no outside light to enter the scanned sample (Stiglitz et al., 

2017, 2016). All samples were scanned under both air dry and moist soil conditions following 

the methods described previously by Andrade et al. (2020), given the different prediction 

capacity of samples analyzed in both conditions (Stiglitz et al., 2017). For moist scans, 

samples were moistened with distilled water using a water dropper to the point of no further 

color change in the soil. All numerical color data collected from the color system codes were 

utilized as explanatory variables for the prediction models. 

 

2.3.3 Vis-NIR analysis 

Reflectance spectra were acquired in air dry samples, utilizing a model PSR-3500 

spectroradiometer (Spectral Evolution, Haverhill, MA, USA) at 1 nm intervals with the 

spectral bands covering 350 to 2,500 nm. For Vis-NIR scanning, soil samples were 

homogeneously distributed into Petri dishes. A handheld contact probe featuring a 5W 

halogen lamp was laid onto the uniformly leveled sample, eliminating the entry of outside 
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light while acquiring the spectrum. All samples were scanned three times by physically 

moving the probe between scans; thereafter, the three scans were averaged to ensure 

homogeneity of scanning. The mean values of the triplicates were used to build the prediction 

models. Before the scan, for each soil sample, the spectroradiometer was calibrated using a 

white 12.7-by-12.7-cm NIST traceable radiance calibration panel made of 

polytetrafluoroethylene (PTFE).  

To test the effect of different spectra preprocessing methods on prediction results, as 

reported by different studies (Benedet et al., 2020b; Conforti et al., 2015; Lazaar et al., 2021; 

Zhang and Hartemink, 2020), four methods were applied on the raw spectra: i) Savitzky-

Golay first-order derivative transformation (FD) - the spectrum is expressed as reflectance (R) 

as a function of wavelength (λ), [First-order, dR/dλ = f′(λ)] (7 smoothing points); ii) 

absorbance transformation (Abs) by taking the reciprocal logarithm of the spectrum [Abs = 

log (1/R)]; iii) smoothed spectrum (Smo) using 2nd-order Savitzky-Golay smoothing method 

with 11 smoothing points (Savitzky and Golay, 1964); and iv) the reduction from 2151 to 250 

spectral variables through binning (Bin) - a method that substitutes spectrum values contained 

in smaller intervals (original resolution) by mean central values encompassing larger 

intervals. Thus, including raw spectra, five types of spectral data were tested (Fig. 2). All 

preprocessing methods were applied via the “prospectr” package (Stevens and Ramirez-

Lopez, 2020) in R software (R Development Core Team, 2018). An overview of the raw 

spectra and all preprocessed spectral curves is given in Fig. 2. 
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Fig. 2. Overview of raw and preprocessed Vis-NIR mean spectral curves for all soil samples 

of Brazilian soils. 

 

2.4 Data analyses and modeling 

Soil data were randomly separated into modeling and validation sub-datasets 

consisting of 70% and 30% of the total samples, respectively. The splitting scheme was 

performed considering all samples from the same soil profile together in the modeling or 

validation sub-datasets to maintain independence. Initially, 35 different data fusion 

approaches were used to build the prediction models using proximal sensor data alone and 

combined (pXRF, Vis-NIR, and NixProTM) and their respective data pre-treatment (Vis-NIR - 

Raw, FD, Abs, Smo, Bin) and condition (NixProTM - dry and moist) (Table 1). Prediction 

models were built using only A horizon data (208 samples), only B horizon data (256 

samples), and using A and B horizon data combined (A+B) (464 samples) totaling 105 

prediction models for each soil property.  
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Table 1. Generated models, preprocessing treatments applied, and the number of explanatory 

variables utilized to build proximal sensors data fusion prediction models through the random 

forest algorithm in Brazilian soils.  

Models Predictor variables Preprocessing1 Condition2 Number of predictor variables 

1 Vis-NIR + NixProTM + 

pXRF 
Raw 

dry 

2196 

2 First derivative 2190 

3 Absorbance 2196 

4 Smoothed 2196 

5 Binning 295 

6 Vis-NIR + NixProTM + 

pXRF 
Raw 

moist 

2196 

7 First derivative 2190 

8 Absorbance 2196 

9 Smoothed 2196 

10 Binning 295 

11 NixProTM + pXRF - dry 45 

12 NixProTM + pXRF - moist 45 

13 NixProTM + Vis-NIR Raw 

dry 

2176 

14 First derivative 2170 

15 Absorbance 2176 

16 Smoothed 2176 

17 Binning 275 

18 NixProTM + Vis-NIR Raw 

moist 

2176 

19 First derivative 2170 

20 Absorbance 2176 

21 Smoothed 2176 

22 Binning 275 

23 NixProTM - dry 25 

24 NixProTM - moist 25 

25 pXRF - - 20 

26 pXRF + Vis-NIR Raw - 2171 

27 First derivative - 2165 

28 Absorbance - 2171 

29 Smoothed - 2171 

30 Binning - 270 

31 Vis-NIR Raw - 2151 

32 First derivative - 2145 

33 Absorbance - 2151 

34 Smoothed - 2151 

35 Binning - 250 

 

1Preprocessing refers to the Vis-NIR data; 2Condition in which NixProTM data was obtained. 

 

Aiming to verify accuracy improvement, the models were built separated for the three 

main soil orders in the study: Ultisols, Inceptisols, and Oxisols adding more than 315 different 

prediction models for each soil property. In another approach, additional environmental 

covariates were used as explanatory variables in the prediction models: soil horizon (SH), soil 
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order (SO), parent material (PM), and their combinations: SH+SO, SH+PM, SO+PM, and 

SH+SO+PM, adding 245 more different prediction models. 

The same data modeling was performed for categorical predictions of textural classes 

provided by Family particle size classes and USDA soil texture triangle, both adapted from 

US Soil Taxonomy (Soil Survey Staff, 2014). A flowchart was designed to simplify the 

understanding of the whole methodological process implemented in this work (Fig. 3). 

 

 

Fig. 3. Flowchart illustrating the different approaches for predicting soil textural separates 

(total sand, silt, clay, coarse sand, and fine sand content), and soil textural classes (loam, 

loamy sand, etc) via proximal sensors (pXRF, Vis-NIR, and NixProTM), separately and 

combined, through random forest algorithm in Brazilian soils. a) Family particle size classes, 

b) USDA soil texture triangle. Both adapted from US Soil Taxonomy (Soil Survey Staff, 

2014). FD - first derivative; Abs - absorbance; Smo - smoothed; Bin - binning. pXRF - 

portable X-ray fluorescence spectrometry; Vis-NIR - visible near-infrared spectroscopy. 

 

In total, numerical predictions accomplish 3,325 different prediction models (665 for 

each soil property), and the categorical prediction, 1,330 (665 for each textural triangle). All 

models were adjusted with the random forest (RF) algorithm in R software (Version 3.4.4) (R 

Development Core Team, 2018) through the ‘caret’ package (Kuhn, 2008). 

 

2.5 Evaluating models performance 

The accuracy of the predicted total sand, silt, clay, coarse sand, and fine sand 

numerical contents by random forest algorithm was evaluated by comparing the predicted 

with the observed values through the coefficient of determination (R2), root mean square error 

(RMSE) (Eq. 1), mean absolute error (MAE) (Eq. 2), and residual prediction deviation (RPD) 
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(Eq. 3). Both MAE and RPD are presented in the Supplementary Material. The equations are 

given as: 

  𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖 − 𝑚𝑖)2 𝑛

𝑖=1      (1) 

𝑀𝐴𝐸 =
1

𝑛
∑ |𝑦𝑖 − 𝑚𝑖| 𝑛

𝑖=1                                  (2) 

𝑅𝑃𝐷 = 𝑆𝐷/𝑅𝑀𝑆𝐸      (3) 

where, n: number of observations, yi: estimated value by the model, mi: measured value by 

the chemical analysis, SD: standard deviation of the observed values. RPD has been 

characterized into three classes: RPD > 2, prediction models delivering accurate results, 1.4 ≤ 

RPD ≤ 2, prediction models providing moderately accurate results, and RPD <1.4, prediction 

models being non-reliable (Chang et al., 2001). The models with greater R2 and smaller 

RMSE were considered optimal for predicting laboratory analysis. 

The validation of predicted textural classes (loam, loamy sand, etc) was performed by 

overall accuracy and the Cohen’s Kappa coefficient calculated by Eqs. (4) and (5), 

respectively, in a confusion matrix as: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑃𝑐

𝑁
     (4) 

𝐾𝑎𝑝𝑝𝑎 =  
𝑃𝑜−𝑃𝑒

1−𝑃𝑒
     (5) 

where, Pc is the sum of the confusion matrix’s main diagonal (predicted soil textural classes), 

N is the total number of validation samples, Po is the observed agreement, and Pe is the 

probability of random agreement (Landis and Koch, 1977). 

The overall accuracy, ranging from 0 to 1, was calculated by the sum of the correctly 

classified samples (the major diagonal) divided by the total number of samples in the entire 

error matrix (the closer to 1, the greater the accuracy) (Congalton, 1991). Kappa coefficient, 

ranging from −1 to 1, takes into account the number of correctly classified samples, the total 

number of samples and the misclassifications to deliver the results of the predictions (the 

closer to 1, the greater the prediction reliability) (Cohen, 1960; Landis and Koch, 1977). 

 

2.6 Relative improvement 

To visualize how model accuracy performed in comparison with pXRF-based models, 

the RMSE increase percentage was calculated (Eq. 6). To calculate this index, the RMSE 

values achieved by the most accurate prediction model (lowest RMSE) were used to assess 

the relative improvement (RI) from models built using only pXRF data. Thus, it was possible 

to assess if other sensor data combinations could outperform pXRF-based prediction models. 
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In cases that pXRF data alone delivered the best prediction model, the second most accurate 

prediction model was used for this comparison. The RI equation follows: 

RI =
𝑅𝑀𝑆𝐸 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑  − 𝑅𝑀𝑆𝐸 𝑝𝑋𝑅𝐹

𝑅𝑀𝑆𝐸 𝑝𝑋𝑅𝐹
∗ 100 (6) 

where 𝑅𝑀𝑆𝐸 𝑝𝑋𝑅𝐹 is the RMSE of pXRF models, and 𝑅𝑀𝑆𝐸 𝑐𝑜𝑚𝑝𝑎𝑟𝑒𝑑  is the RMSE value 

from models built by other sensor data being compared to the performance of pXRF-based 

models. 

 

3. RESULTS AND DISCUSSION 

3.1 Descriptive statistics for soil texture in tropical soils 

The descriptive statistics of total sand, silt, clay, coarse sand, and fine sand contents 

for A and B horizons separately and combined for the study area indicates the variability of 

such data (Table 2), mainly demonstrated by the coefficient of variation (CV%). The coarse 

sand fraction presented the greatest variability with a CV > 82.8% for A and B horizons 

separately and combined. In this study, the total sand, silt, and clay contents ranged, 

respectively, from 1.0 to 93.0%, 0.0 to 65.0%, and 5.0 to 81.0%, which is similar to those 

found by Pinheiro et al. (2018) and Silva et al. (2016) also working in soils from tropical 

areas. 

 

Table 2. Descriptive statistics of total sand, silt, clay, coarse sand, and fine sand contents (%) 

for the A and B horizons separately and combined in Brazilian soils. 

Particle size class Horizon Min. Max. Mean SD1 CV (%)2 

Total sand A 2.0 93.0 36.4 19.2 52.8 

  B 1.0 86.0 33.9 19.6 57.9 

  A+B 1.0 93.0 35.0 19.4 55.5 

Silt A 0.0 65.0 24.9 12.8 51.4 

  B 0.0 64.0 21.5 13.9 64.6 

  A+B 0.0 65.0 23.0 13.5 58.7 

Clay A 7.0 73.0 38.7 15.0 38.7 

  B 5.0 81.0 44.7 18.6 41.7 

  A+B 5.0 81.0 42.0 17.3 41.3 

Coarse sand A 0.0 67.0 19.2 15.9 82.8 

  B 0.0 64.7 18.3 16.7 91.1 

  A+B 0.0 67.0 18.7 16.3 87.1 

Fine sand A 1.0 60.0 16.9 12.8 76.0 

  B 1.0 65.0 17.5 13.7 78.5 

  A+B 1.0 65.0 17.2 13.3 77.3 
1 SD: standard deviation. 
2 CV: coefficient of variation. 
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The soil samples of the study area covered most of the textural classes (except for sand 

and silt classes) (Fig. 1). Soil samples came from seven soil orders at different weathering 

degrees and with varying parent materials, resulting in different proportions of total sand, silt, 

and clay contents. Due to the greater amount of mafic minerals, and/or a lesser amount of 

quartz and/or a higher weathering degree, soils derived from gabbro, granite-gneiss, and slate 

tended to be more clayey and with a high proportion of fine sand in relation to coarse sand 

(Fig. 4). The opposite occurs for Botucatu sandstone and Rio-do-Sul-Formation shale, which 

features a large amount of quartz resulting in more sandy soils with greater proportions of 

coarse sand. 

 

 

 

Fig. 4. Coarse and fine sand boxplot separated by soil parent materials of Brazilian soils.  

              

3.2 Prediction models accuracy  

3.2.1 Assessing proximal sensors data fusion prediction models 

Fig. 5 shows the yielded results of the models using data from A and B horizons, 

separately and combined, through the random forest algorithm. Overall, the prediction models 

for the combined horizons (A+B) presented greater R2 and smaller RMSE (total sand R2 = 

0.84, RMSE = 7.67%; silt 0.83, 6.11%; clay 0.89, 5.75%; coarse sand 0.84, 7.23%; fine sand 

0.75, 6.14%) than the models for A and B horizons separately. Models built with combined 

samples from both surface and subsurface horizons allow for greater applicability of the 
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prediction models since these models can predict soil texture from samples at any unknown 

soil horizon, i.e., these models can be used in cases when horizon information is not available. 

Silva et al. (2020) also found more accurate results for predicting silt and sand contents from 

the surface and subsurface data combined through the random forest algorithm.  
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Fig. 5. Coefficient of determination (R2) and root mean square error (RMSE) for soil texture 

(total sand, silt, clay, coarse sand, and fine sand contents) prediction models for the A and B 

horizons separately and combined obtained from the random forest algorithm in Brazilian 

soils. The numbers refer to Vis-NIR data pretreatment: 1: Raw, 2: First derivative, 3: 

Absorbance, 4: Smoothed, 5: Binning. The letters refer to NixProTM scanning condition: D: 

dry, M: moist. pXRF - portable X-ray fluorescence spectrometry; Vis-NIR - visible near-

infrared spectroscopy. 
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The best proximal sensor data for soil texture prediction, separately or combined, 

varied according to which soil horizon dataset (A, B, and A+B) the models were trained. For 

A+B prediction models, the following proximal sensors delivered the most accurate results: 

total sand pXRF, silt Vis-NIRFD+NixProTM
D+pXRF, clay Vis-NIRSmo+pXRF, coarse sand 

Vis-NIRBin+pXRF, and fine sand pXRF. Thus, pXRF was the unique sensor that appeared in 

the best dataset for all the soil properties (5 times), followed by Vis-NIR (3 times) and Nix 

ProTM (once). Since each particle size fraction features different mineral composition, 

different techniques (elemental composition, spectral signature, and soil color) enable the 

random forest algorithm to make accurate predictions. The relatively simple composition of 

the sand fraction, dominated by quartz (SiO2) and muscovite (KAl2(AlSi3O10)(F,OH)2) in 

Brazilian soils (Kämpf et al., 2012), may be one of the reasons why elemental composition 

delivered by pXRF data produced good validation scores. The clay fraction tends to be more 

diverse in its mineralogy and, hence, chemical composition, thus requiring elemental 

composition and spectral signature techniques be combined to deliver optimal results. For 

instance, soils developed from gneiss tend to have kaolinite as the prevalent clay mineral and 

gibbsite, goethite and hematite as main oxide minerals; while soils derived from gabbro, 

besides the aforementioned minerals, tend to have a greater proportion of maghemite in the 

clay fraction (Costa et al., 1999). The silt fraction, intermediate in size between the sand and 

clay fractions, featured elements/minerals present in the two other fractions and required all 

three sensors to deliver accurate results.  

Although the aforementioned results (Fig. 5) already indicated elemental composition 

provided by pXRF were the main information used for soil texture prediction, followed by 

Vis-NIR, the RI of RMSE (RMSE%) highlights a clearer visualization in this regard (Table 

3). When comparing the models based only on pXRF data versus proximal sensor data 

combinations, 11 out of 15 RMSE values decreased when other proximal sensor information 

was added to the modeling. Five decreases in RMSE occurred due to the addition of Vis-NIR 

data, resulting in reductions from -0.9% to -12.1%. The other six reductions in the RMSE 

values were due to the incorporation of Vis-NIR and NixProTM data into the modeling, 

resulting in reductions from -1.7 to -7.8% in the RMSE values, compared to modeling only 

with pXRF data. This aspect is also highlighted by Fig. 6, where only models featuring pXRF 

data delivered the most accurate results, followed by Vis-NIR and then NixProTM. 
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Table 3. Relative root mean square error improvement (RMSE%) of the best proximal sensor 

(PS) data fusion prediction models compared with pXRF data-based prediction models 

through the random forest algorithm in Brazilian soils. Positive and negative RMSE% values 

indicate decrease and increase, respectively, in RMSE relative to pXRF results. 

Dataset 

pXRF- 

based 

models   

PS-based models 

 Total sand 

A horizon pXRF 7.8 Vis-NIR + NixProTM + pXRF 

B horizon pXRF 6.2 Vis-NIR + NixProTM + pXRF 

A+B horizons pXRF -3.4 Vis-NIR + NixProTM + pXRF 

  Silt 

A horizon pXRF 7.2 Vis-NIR + NixProTM + pXRF 

B horizon pXRF 3.2 Vis-NIR + NixProTM + pXRF 

A+B horizons pXRF 6.5 Vis-NIR + NixProTM + pXRF 

  Clay 

A horizon pXRF -3.8 Vis-NIR + NixProTM + pXRF 

B horizon pXRF 0.9 Vis-NIR + pXRF 

A+B horizons pXRF 12.1 Vis-NIR + pXRF 

  Coarse sand 

A horizon pXRF -1.1 Vis-NIR + NixProTM + pXRF 

B horizon pXRF 5.7 Vis-NIR + pXRF 

A+B horizons pXRF 8.4 Vis-NIR + pXRF 

  Fine sand 

A horizon pXRF 9.2 Vis-NIR + pXRF 

B horizon pXRF 1.7 Vis-NIR + NixProTM + pXRF 

A+B horizons pXRF -0.3 Vis-NIR + NixProTM + pXRF 

 pXRF - portable X-ray fluorescence spectrometry; Vis-NIR - visible near-infrared 

spectroscopy. 
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Fig. 6. Number of times each sensor or sensors combined delivered the most accurate 

prediction model from the random forest algorithm in Brazilian soils. pXRF - portable X-ray 

fluorescence spectrometry; Vis-NIR - visible near-infrared spectroscopy. 

 

Comparable results were found by Benedet et al. (2020a) and Zhang and Hartemink 

(2020) testing pXRF and Vis-NIR data separately and combined to predict soil texture. Both 

studies concluded that pXRF data could be uniquely used to predict soil texture, the former 

study worked with 315 soil samples on Brazilian conditions, and the latter study used 197 soil 

samples from Wisconsin, USA. Contrariwise, Wang et al. (2013) working with 276 soil 

samples in China, found that the most accurate model for the prediction of clay and sand 

contents was calibrated by fused elemental composition and spectral signature information. 

Also, Conforti et al. (2015), Curcio et al. (2013), and Lazaar et al. (2021) working on Italy, 

Sicily, and Morocco, respectively, accurately predicted soil texture fractions using only 

spectral signature data. Thus, due to variations in the mineral composition of soil fractions 

according to weathering degree and parent material, the techniques needed to build strong 

prediction models for soil texture may change. In Brazil, the elemental composition provided 

by pXRF, followed by spectral signature from Vis-NIR, and NixProTM numerical color 

information when available, seems to be a solid base for soil texture predictions according to 

the obtained results on this research.  
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Reasonable results were found from Vis-NIR-data based models (total sand R2 = 0.56, 

silt 0.80, clay 0.69, coarse sand 0.76, and fine sand 0.61) (Fig. 5). However, for models based 

on NixProTM data, none of the predictions delivered accurate results (total sand 0.24, silt 0.29, 

clay 0.38, coarse sand 0.33, fine sand 0.13). Andrade et al. (2020c) concluded that although 

the increase in predictive power afforded by applying NixProTM color data was fairly small 

(2.56% for Overall accuracy and 0.04 for Kappa coefficient), some soil suborders could only 

be accurately predicted when soil color information was included in the prediction models, 

using color data as complementary information to refine model accuracy. 

 

3.2.2 Assessing additional explanatory variables 

The validation indexes for soil texture prediction models based on proximal sensors 

plus auxiliary input data are shown in Fig. 7. All soil textural fractions (except for silt) had 

their RMSE values decreased and R2 increased when at least one of the natural environmental 

co-variates was added as explanatory variables to the prediction models [(total sand R2 = 0.84, 

RMSE = 7.67% pXRF → 0.84, 7.60% pXRF+PM); (clay 0.89, 5.75% pXRF+Vis-NIR → 

0.90, 5.64% pXRF+Vis-NIR+NixProTM+PM); (coarse sand 0.84, 7.23% pXRF+Vis-NIR → 

0.87, 6.30% pXRF+NixProTM+SH+PM); (fine sand 0.75, 6.14% pXRF → 0.82, 5.27% 

pXRF+PM)]. For total sand, clay, and fine sand, the best auxiliary input data was PM, and for 

coarse sand, the best auxiliary input data was SH and PM, which support findings that parent 

material considerably influences all soil texture fractions (Greve et al., 2012). Stiglitz et al. 

(2018) used soil depth as auxiliary input information to increase soil organic carbon 

prediction accuracy. 
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Fig. 7. Determination coefficient (R2) and root mean square error (RMSE) for the best 

proximal sensor result versus proximal sensors plus additional explanatory variables for soil 

texture (total sand, silt, clay, coarse sand, and fine sand contents) prediction models obtained 

from the random forest algorithm in Brazilian soils. PS: proximal sensors, SH: soil horizon, 

SO: soil order, PM: parent material. 

 

3.2.3 Influence of soil order on prediction accuracy 

Separating data through a more homogenous condition delivered more accurate results 

in some sub-datasets. The best improvement was found for the total sand fraction in which 

higher R2 and lower RMSE values were found for all soil orders (Fig. 8) compared with the 

general models. Lower RMSE values were also found for the silt fraction when using the 

Oxisol sub-datasets, and for fine sand using Ultisol and Oxisol sub-datasets. Thus, dividing 

soil samples into specific soil orders before model training increases prediction accuracy for 

total sand, silt, coarse sand, and fine sand textural fractions. Inceptisols delivered the least 

accurate results. 
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Fig. 8. Determination coefficient (R2) and root mean square error (RMSE) for soil texture 

(total sand, silt, clay, coarse sand, and fine sand contents) prediction models for sub-datasets 

separated by soil order through the random forest algorithm in Brazilian soils. 

 

Stiglitz et al. (2018) also made soil organic carbon (SOC) predictions for the whole 

dataset, and for soil samples from Alfisols and Entisols separately. The authors found that the 

highest R2 was delivered by specific models trained for Alfisol samples (0.81). Thus, dividing 

the dataset into more homogeneous sub-datasets can lead to more accurate results.  

 

3.2.4 Categorical prediction: A better option? 

The predictions for soil textural classes via Family particle size classes and USDA soil 

texture triangle were made through proximal sensor data fusion, proximal sensor plus 

auxiliary input data, and in sub-datasets separated by soil order. The different approaches 

resulted in different results for soil textural class predictions. The Family particle size classes, 

as they present only 5 categories, was easier to predict correctly than the USDA soil texture 

triangle. This could be observed through the high overall accuracy (correct prediction of soil 
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textural classes) for the Family particle size classes (0.85) when compared with reasonable 

accuracy for the USDA soil texture triangle (0.69) (Fig. 9). The overall accuracy of the 

categories was higher in the Family particle size classes than in the USDA soil texture 

triangle. The overall accuracy indicated the practical performance of the models while 

considering the soil textural class, reflecting soil water retention, soil aeration, cation 

exchange capacity, and many other soil properties (Phogat et al., 2015; Resende et al., 2014; 

Tümsavaş et al., 2019).  

 

 

 

Fig. 9. Overall accuracy and Kappa coefficient values for the best soil texture triangle 

prediction models through the random forest algorithm in Brazilian soils. Inside bold numbers 

refer to class accuracy percentage. Classes without accuracy numbers had no samples. a) 

Family particle size classes, b) USDA soil texture triangle. Both adapted from US Soil 

Taxonomy (Soil Survey Staff, 2014). pXRF - portable X-ray fluorescence spectrometry, SO: 

soil order, PM: parent material. 

 

The best prediction model for the Family particle size classes was built through pXRF 

data alone (overall accuracy = 0.85, Kappa coefficient = 0.76) indicating that is possible to 

predict the soil textural class based only on the soil elemental composition. The prediction 

models separated by soil order sub-datasets reached even higher accuracy values for Ultisols 

(0.89, 0.81) and Oxisols (0.97, 0.95) (Table 4), suggesting that in more homogeneous 

conditions (i.e., samples separated per soil order), the categorical prediction models for soil 

texture are even more powerful. 
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Table 4. Overall accuracy and Kappa coefficient values for the best-adjusted models for Family particle size classes and USDA soil texture 

triangle prediction models through the random forest algorithm in Brazilian soils.  

  

 Dataset 

Family particle size classes   USDA soil texture triangle 

Explanatory Variables 

Overall 

Accuracy 

Kappa 

index 

  

Explanatory Variables 

Overall 

Accuracy 

Kappa 

index     

A Horizon pXRF 0.82 0.68   Vis-NIR + NixProTM + pXRF 0.55 0.41 

B Horizon pXRF 0.85 0.76   pXRF 0.66 0.57 

A+B Horizons pXRF 0.84 0.74   Vis-NIR + pXRF 0.66 0.55 

Vis-NIR + pXRF + SH 0.84 0.73   pXRF + SH 0.66 0.55 

Vis-NIR + pXRF + SO 0.84 0.73   pXRF + SO 0.67 0.57 

pXRF + PM 0.84 0.74   pXRF + PM 0.68 0.58 

pXRF + SH + SO 0.84 0.73   pXRF + SH + SO 0.68 0.57 

pXRF + SH + PM 0.84 0.73   Vis-NIR + pXRF + SH + PM 0.66 0.55 

NixProTM + pXRF + SO + PM 0.84 0.73   pXRF + SO + PM 0.69 0.60 

pXRF + SH + SO + PM 0.83 0.72   pXRF + SH + SO + PM 0.66 0.56 

  Ultisols   Ultisols 

A Horizon Vis-NIR + NixProTM + pXRF 0.89 0.81   Vis-NIR + NixProTM + pXRF 0.56 0.42 

B Horizon pXRF 0.64 0.48   pXRF 0.45 0.33 

A+B Horizons Vis-NIR + NixProTM + pXRF 0.68 0.52   Vis-NIR + NixProTM + pXRF 0.54 0.44 

  Inceptisols   Inceptisols 

A Horizon NixProTM + pXRF 0.88 0.71   Vis-NIR + NixProTM + pXRF 0.59 0.50 

B Horizon Vis-NIR + NixProTM  0.82 0.68   Vis-NIR + pXRF 0.59 0.53 

A+B Horizons Vis-NIR + pXRF 0.83 0.66   pXRF 0.51 0.44 

  Oxisols   Oxisols 

A Horizon pXRF 0.89 0.70   Vis-NIR + pXRF 0.65 0.34 

B Horizon pXRF 0.97 0.95   pXRF 0.83 0.73 

A+B Horizons Vis-NIR + NixProTM + pXRF 0.86 0.73   Vis-NIR + NixProTM + pXRF 0.73 0.58 

Optimal values obtained for each soil attribute are given in bold. pXRF - portable X-ray fluorescence spectrometry; Vis-NIR - visible near-

infrared spectroscopy. SH: soil horizon, SO: soil order, PM: parent material.
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For the USDA soil texture triangle, besides pXRF data, auxiliary input data of SO and 

PM were needed to achieve the optimal result (0.69, 0.60) (Fig. 9, Table 4). Only sub-dataset 

prediction models for Oxisols delivered higher accuracy (0.83, 0.73) than the model built with 

the entire dataset (considering all soil orders). Prediction models built for Inceptisols did not 

deliver high accuracy values (0.59, 0.53).  

Recently, some studies have tried to predict continuous soil properties categorically. 

Andrade et al. (2021) effectively predicted available B (Overall accuracy = 0.86), Cu2+ (0.62), 

and Mn2+ (0.75) availability classes using only pXRF data. Wan et al. (2019), when 

estimating the classification risk of soil heavy metal contamination, achieved a 0.91 Kappa 

coefficient through pXRF and Vis-NIR data combined. The advantage of using categorical 

prediction models is highlighted when only a mixed dataset (numerical and categorical 

observations) or a large range in values are available to build the prediction models (Weiss, 

2015). Categorical models may also be an alternative to surpass dataset outliers (Congalton, 

1991). Moreover, since almost all soil properties can be categorized or separated into 

availability classes, which is largely used by decision-makers from a practical point of view, 

categorical prediction models could be an elegant solution to rapidly and inexpensively 

predict soil properties. 

 

3.3 Evaluating Vis-NIR data preprocessing and NixProTM scanning conditions 

Fig. 10 shows the number of times each Vis-NIR preprocessing and NixProTM 

condition delivered the most accurate prediction model for the proximal sensors data fusion 

approach. The best spectrum preprocessing method for soil texture predictions under this 

study was found to be smoothed, which helped to best cover data variability, delivering a 

fivefold increase in prediction model accuracy (when considering only Vis-NIR-data based 

prediction models).  
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Fig. 10. Number of times each Vis-NIR preprocessing and NixProTM condition delivered the 

most accurate prediction model through the random forest algorithm in Brazilian soils. FD - 

first derivative, Abs - Absorbance, Smo - Smoothed, Bin - binning. Vis-NIR - visible near-

infrared spectroscopy. 

 

Vis-NIR data preprocessing is done to improve data quality before modeling, reducing 

noise, and enhancing the reflectance/absorption frequences. The first derivative removes 

equally additive and multiplicative influences in the spectra and compensates for instrumental 

drift (Stevens and Ramirez-Lopez, 2020). Absorbance is used to decrease noise, offset effects, 

and improve the linearity between the measured absorbance and soil properties (Conforti et 

al., 2015). Smoothed preprocessing optimizes the signal to noise ratio and reduces the impact 

of light scattering during spectral acquisition. Binning decreases the impact of noises and 

errors from the scanning process (Fig. 2) (Stevens and Ramirez-Lopez, 2020). 

Some studies using Vis-NIR data to predict soil texture have used other data 

preprocessing methods to build stronger prediction models, such as multiplicative scatter 

correction, baseline offset correction, 1st- and 2nd-order detrending (Wang et al., 2013), 

continuum removal (Benedet et al., 2020a), partial least-squares regression (Curcio et al., 

2013), and principal component analysis (Zhang and Hartemink, 2020). This highlights that 

each dataset, even though predicting the same soil property, requires a specific exploratory 

data analysis and preprocessing evaluation in order to enhance prediction accuracy. 

The best NixProTM condition for data acquisition was found to be dry, delivering 

eleven times the most accurate prediction models (when considering only prediction models 

based on NixProTM data) compared with just four times for moist conditions. As the samples 
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with higher clay contents are the ones that present the highest red values when dry (Fig. 11), 

the models trained with data coming from this condition were able to better distinguish the 

more clayey ones from the more sandy ones. A CIELab plot for dry and moist soil samples of 

this study shows how moisture drastically changes soil color, decreasing L (lightness, -black: 

white+) and a amplitudes (-green: red+) (Fig. 11). Predicting soil order and suborder, Andrade 

et al. (2020c) found that the best models were built with pXRF plus moist NixProTM data. 

Conversely when predicting soil organic carbon, Stiglitz et al. (2017) reported that the results 

delivered by dry scans presented higher accuracy. Thus, whether to use dry or moist 

conditions for NixProTM data acquisition seems to vary according to the predicted soil 

property, dataset variability, and environmental conditions.  

 

 

Fig. 11. CIELab color system plot for dry and moist samples of Brazilian soils. The higher the 

clay content, the larger the point size. 

 

3.4 Operational aspects related to data processing 

Initially, a suitable outcome for soil texture prediction was found through the simplest 

approach, i.e. linear equation (R2 = 0.75, RMSE = 6.7% for clay content (Broge et al., 2004)). 

In seventeen years of research, it was possible to build powerful prediction models through 

machine learning algorithms (R2 = 0.92, RMSE = 3.4% for clay content (present study)), 

requiring not only software that can provide resources for such complex modeling, such as the 

R language (R Development Core Team, 2018), but also computational power and human 

resources that can master such techniques.  

For Vis-NIR data preprocessing methods, a complete package that delivers many 

preprocessing techniques is very recent (Stevens and Ramirez-Lopez, 2020). This shows that 
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research towards the operational aspects related to data processing are needed in order to 

make this novel way to assess soil properties more democratic and accessible to all, and not 

only for the academic community. 

 

3.5 Models applicability and perspectives 

The term hybrid laboratory was used by Demattê et al. (2019) to combine soil 

analytical quality control by both traditional and spectroscopy techniques. Such an approach 

combines alacrity of processing with cost savings and low environmental impact. Soil 

analyses provide requisite information in agriculture and environmental monitoring. Thus, a 

hybrid laboratory  could perform 20% of the analyses via traditional laboratory analysis and 

80% by proximal sensing techniques allowing data acquisition from substantial amounts of 

samples. 

In this sense, the efforts of the academic community to test different approaches to 

build more robust and accurate prediction models are making hybrid laboratories a growing 

reality around the world. From the first publication on soil texture prediction using proximal 

sensor data through simple linear approaches (Broge et al., 2004) to the most recent one with 

more advanced data processing techniques and different machine learning algorithms 

(Dhawale et al., 2021), many questions were resolved, opening a new frontier with a range of 

possibilities to be explored. However, other questions were raised, which explains the efforts 

made herein on the advancement of the best methods to achieve the best predictions (fusion of 

sensors, modeling per more specific dataset, usage of other auxiliary variables, etc). 

Thus, in cases when pXRF, Vis-NIR, and NixProTM proximal sensors are available, 

accurate prediction models can be trained for silt (pXRF+Vis-NIRFD+NixProTM
d), clay 

(pXRF+Vis-NIRSmo+NixProTM
m), and coarse sand (pXRF+Vis-NIRBin+NixProTM

d). 

Conversely, pXRF data alone is capable of yielding accurate predictions as well as requiring 

less data preprocessing, with the support of Andrade et al. (2020b), Benedet et al. (2020b), 

Gholizadeh et al. (2018), Heggemann et al. (2017), Mahmood et al. (2012), Piikki et al. 

(2016), Silva et al. (2020), Wang et al. (2013), and Zhu et al. (2011). 

 

4. Conclusions 

From the different prediction models trained in this work, the most accurate prediction 

models highlighted that whether or not to combine proximal sensor data depends on the 

variable to be predicted (total sand: pXRF; silt: Vis-NIRFD+NixProTM
D+pXRF; clay: Vis-
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NIRSmo+pXRF; coarse sand: Vis-NIRBin+pXRF; fine sand: pXRF). However, the elemental 

composition provided by pXRF was central to creating accurate prediction models. The best 

results achieved for total sand (R2 = 0.84), silt (0.83), clay (0.90), coarse sand (0.87), and fine 

sand (0.82) confirm the stated hypothesis that robust and accurate prediction models would be 

delivered for soil texture by at least one of the tested approaches, even though the dataset 

included large variability of soil order, land use, and parent material.  

Soil texture prediction models built with proximal sensors plus auxiliary input data 

turned out to be effective. All soil textural fractions (except for silt) had their RMSE values 

decreased and R2 increased when at least one of the natural environmental co-variates (soil 

horizon, soil order, and parent material) was added as explanatory variables, with PM being 

the most important. Creating specific models per soil order also improved the results, mainly 

for Oxisols (total sand R2 = 0.91; silt 0.72; clay = 0.90; coarse sand = 0.91; and fine sand = 

0.86) and Ultisols (total sand R2 = 0.97; silt = 0.91; clay = 0.91; coarse sand = 0.91; and fine 

sand = 0.92). 

Categorical predictions are an alternative for soil textural classes prediction (Family 

particle size classes: overall accuracy = 0.85, Kappa = 0.76; USDA soil texture triangle: 0.69, 

0.60), mainly when only a mixed dataset (numerical and categorical observations) or with a 

large range of values (with outliers) is available to build the prediction models. The best Vis-

NIR spectra preprocessing method was Smoothed, followed by First Derivative and Binning. 

The best NixProTM scanning condition was on dry soil samples. 

The models created in this study can be used to accurately predict soil texture (total 

sand, silt, clay, coarse sand, and fine sand contents) and soil textural classes (loam, loamy 

sand, etc). They can be applied to tropical regions including weathered soils developed from 

sixteen different parent materials. Additionally, predictive models suited very well for soil 

samples on A+B horizons combined. Further studies are encouraged to extend the findings of 

this study to other tropical regions with similar soils, in order to rapidly and costly predict soil 

texture in a large number of samples in an environmentally friendly way. 
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