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RESUMO 

A interceptação da precipitação pelos dosséis florestais é um dos processos 

hidrológicos mais importantes da zona crítica. As interações dossel-precipitação 

conduzem os ciclos da água e de nutrientes ao redistribuir a precipitação tanto no tempo 

quanto no espaço. Tais interações definem vários processos hidrológicos tais como a 

dinâmica da água no solo, a evapotranspiração, o escoamento superficial, os padrões 

espaço-tempo dos nutrientes, a recarga subterrânea, dentre outros. As relações dossel-

precipitação ainda são pouco conhecidas em vários biomas florestais, principalmente no 

tocante aos efeitos de condições climáticas severas (e.g., secas) nessas interações. Neste 

sentido, o presente estudo objetivou investigar a partição da precipitação em uma 

floresta Neotropical durante uma seca prolongada. A partição da precipitação se inicia 

com a interceptação da chuva pelo dossel dando início ao escoamento pelo tronco e 

precipitação interna. Precipitação interna e escoamento pelo tronco são as parcelas da 

precipitação que alcançam o solo e, juntas, são conhecidas como precipitação efetiva. 

Outra parcela da precipitação retorna à atmosfera por evaporação durante e após o 

evento. A evaporação do dossel e a precipitação interna são as maiores parcelas da 

partição da precipitação, podendo chegar a 99,5% em florestas tropicais e, por isso, são 

as variáveis analisadas nesse estudo. Modelos físicos imitam a realidade e são 

ferramentas essenciais para avançar no entendimento de processos físicos complexos 

como a interceptação da precipitação. Os modelos de Liu e Gash tiveram atuações 

satisfatórias modelando a interceptação da chuva em diferentes climas e florestas. 

Porém, eles nunca haviam sido aplicados para condições de seca. O modelo de Liu 

sobressaiu ao de Gash na floresta Neotropical por representar melhor a estratificação do 

dossel. Em períodos sem seca, a radiação solar e a energia armazenada no interior da 

floresta (ar e biomassa) são responsáveis pela evaporação do dossel. Além dessas fontes 

de energia, a advecção de áreas circunvizinhas tem atuação mais importante e aumenta a 

evaporação nas secas. Outra consideração importante é o comportamento da 

distribuição espacial da precipitação interna durante secas. O índice de estabilidade 

temporal foi utilizado para avaliar o comportamento da variabilidade espacial da 

precipitação interna ao longo do tempo e destacar a possível influência da dinâmica 

climática e florestal. Interpretações equivocadas da estabilidade temporal da 

precipitação interna foram observadas em estudos anteriores porque as mudanças 

estruturais da floresta e em padrões climáticos não foram consideradas. Biomassa, a 

dominância de algumas espécies e a ocupação por árvores são características florestais 

que conduzem a distribuição espacial e a estabilidade temporal da precipitação interna. 

Essas estruturas mudam devido a sucessões ecológicas ou recuperando de alguma 

perturbação (e.g., secas), o que altera a distribuição espacial da precipitação interna. 

Ademais, as intensidades máximas das precipitações são diferentes durante as secas, 

alterando os processos de saturação/instauração do dossel e, portanto, a estabilidade 

temporal. Assim, secas modificam as interações dossel-precipitação aumentando a 

evaporação do dossel e alterando a distribuição espacial da precipitação interna ao longo 

do tempo. 

 

 

Palavras-chave: Partição da Precipitação. Mata Atlântica. Modelagem. Balanço de 

Energia. Dinâmica Florestal 

 



 

 
 

ABSTRACT 

One of the most important processes in the hydrology of the critical zone is the 

rainfall interception by forest canopies. The canopy-rainfall interactions drive the water 

and nutrient cycles by redistributing rainfall in both time and space. This defines the 

fate of many hydrological processes, such as soil water dynamics, evapotranspiration, 

streamflow, spatiotemporal pattern of nutrients, and groundwater recharge. Although 

the canopy-rainfall interactions are well-known in many forests worldwide, there is still 

a knowledge gap in the effects of extreme weather (e.g., droughts) on these interactions. 

In this regard, the present study aims to improve the understanding regarding rainfall 

partitioning in a Neotropical forest during a prolonged drought. Rainfall partitioning 

starts with the canopy intercepting the rainfall and splitting it into stemflow and 

throughfall. Throughfall and stemflow is the amount of water that reaches the floor, 

known as net rainfall. A parcel of the intercepted water returns to the atmosphere by 

evaporation during and after the event. The canopy evaporation and throughfall are the 

most significant part of the rainfall partitioning, summing up to 99.5% in some tropical 

forests. Therefore, they are the subject of the present study. Physical models mimic 

reality and are key tools to advance the knowledge of complex physical processes such 

as rainfall interception. The Liu and Gash models have presented adequate 

performances to model the rainfall interception in different climates and forests. 

However, they had never been applied to drought conditions. The Liu model overcame 

the Gash model in the Neotropical forest because it better represents the stratified 

canopy. In non-drought periods, solar radiation and the energy stored in biomass and the 

air inside the forest are responsible for canopy evaporation. Besides the abovementioned 

energy sources, the energy advection from surrounding areas plays a more important 

role and increases canopy evaporation during droughts. Another important 

consideration is the spatial distribution of throughfall and how it behaves during 

droughts. The time stability index was considered to assess the behavior of the spatial 

variability of throughfall over time to highlight the likely influence of forest and 

weather dynamics on it. Misinterpretation of time stability of throughfall was observed 

in prior studies because the changes in forest structure and weather patterns had not 

been considered. Biomass, the dominance of some species, and tree occupation are 

forest characteristics driving the spatial distribution and time stability of throughfall. 

These structures change due to ecological succession or regenerating from a disturbance 

(e.g., droughts), which modify the spatial distribution of throughfall. Moreover, 

maximum rainfall intensities are different in drought periods, changing the canopy’s 

saturation/unsaturation processes, and therefore the time stability. In this sense, 

droughts modify the canopy-rainfall interactions by enhancing canopy evaporation and 

changing the spatial distribution of throughfall over time. 

 

 
Keywords: Rainfall Partitioning. Atlantic Forest. Modeling. Energy Balance. Forest 

Dynamics. 
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1 Introduction 

 Forests connect soil to the atmosphere by intermediating mass and energy 

exchanges. Among the processes encompassing the soil-forest-atmosphere continuum 

(e.g., evapotranspiration, soil moisture dynamics, root water uptake, preferential 

pathway formation, groundwater recharge), the rainfall-canopy interactions deserve a 

special attention because they are the genesis of the water and nutrient cycles. The 

forest canopy attenuates the gross rainfall and works as a reservoir, which may reach 

saturation depending on the rainfall amount, weather condition, and storage capacity. 

The stored water is redistributed toward the floor by dripping from the canopy or 

running down on the trunks. The raindrops can also splash water from the canopy and 

pass freely through the gaps. The drip, splash, and free water are known as throughfall, 

whereas the stemflow is the water draining on the trunk. These processes are part of the 

canopy water balance and are responsible for the soil moisture dynamics, spatial 

distribution of tree species, formation of hotspots for groundwater recharge, increasing 

the soil biodiversity, driving evapotranspiration, among others.  

Part of the water stored on the canopy returns to the atmosphere by evaporation 

during the rainfall event. This amount represents an unavailable fraction of water and is 

known as canopy interception. Although this fraction varies with weather conditions 

and canopy structure, it can reach up to 35% of gross (or incident) rainfall in tropical 

forests. This amount is likely to increase in the upcoming decades as more intense and 

prolonged droughts are expected in tropical regions. Canopy evaporation is likely to 

increase in dry years due to a drier and hotter atmosphere. In this regard, to attain the 

sustainable goals for water resources management, it is straightforward the importance 

of understanding the canopy interception under drought conditions, which have not 

been accounted for up to now. 

Although field experiments and remote sensing techniques have been applied to 

assess canopy interception worldwide, the development of physical models accelerated 

the understanding of the rainfall-canopy interactions. It enabled the forecasting of water 

loss by evaporation. However, such models have not been applied in droughts yet. 

Drought is likely to increase evaporation due to a greater energy availability, which 

increases the atmosphere dynamics. Besides the well-known sources of energy that 

drive canopy evaporation in normal conditions (such as air temperature and solar 

radiation), droughts may provide new sources of energy that are barely known yet. 
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Therefore, assessing rainfall interception in these conditions is mandatory to understand 

the water availability as long as droughts become more frequent and intense (as in the 

case of climate change). 

Canopy evaporation and the spatial and temporal distribution of throughfall are 

likely to change during droughts. Throughfall represents the most significant parcel of 

the canopy water balance and is the driving force of the water and nutrient cycles. 

Throughfall has already been recognized as a function of weather characteristics (e.g., 

rainfall amount, intensity, wind velocity, and air temperature) and canopy structure 

(e.g., leaf properties, storage capacity, branch architecture, and canopy hydrophobicity). 

However, the importance of forest structure (e.g., species diversity, dominance, 

biomass, number of individuals) has not been fully understood yet. Forests are dynamic 

environments in constant successional development and adapting to some disturbance 

(e.g., droughts, logging, and fire). The effects of these dynamics on the spatial 

distribution of throughfall should be assessed because they may change the water and 

nutrient cycles. Therefore, not considering the temporal changes of the spatial 

distribution of throughfall can lead to misinterpretation of the rainfall-canopy 

interception, which will obscure the relationships between weather, forests, and 

hydrology. 

 In this sense, this thesis aims to advance in the knowledge regarding the canopy-

rainfall interactions and the effects of droughts by (i) applying physically-based models 

to model rainfall interception in drought conditions, (ii) improving the understanding of 

the energy dynamics in the canopy-atmosphere interactions, and (iii) assessing the 

importance of forest structure and droughts on the spatial variability of throughfall. The 

study was carried out in a semi-deciduous Atlantic forest remnant throughout seven 

years of monitoring. This forest is in an advanced conservation stage and can provide 

meaningful insight into the importance of its preservation for water resources purposes. 

Moreover, this semi-deciduous Atlantic forest remnant has been the subject of many 

studies recently. These studies encompass soil water dynamics (JUNQUEIRA JUNIOR 

et al., 2017; OLIVEIRA et al., 2021; RODRIGUES et al., 2020), nutrient inputs 

(MANTOVANI et al., 2021), water balance (RODRIGUES et al., 2021b), rainfall 

interception (JUNQUEIRA JUNIOR et al., 2019; RODRIGUES et al., 2021a), rainfall 

water quality (MARQUES et al., 2019), stemflow (TERRA et al., 2018) and throughfall 

(RODRIGUES et al., 2022) dynamics, spatial variability of net precipitation 
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(RODRIGUES et al., 2020), and ecological succession (SOUZA et al., 2021). 

Therefore, studying this remnant has provided significant insights into the importance 

of the Atlantic Forest for local meteorology, hydrology, and biodiversity so far. 

2 Theoretical Framework 

2.1 Atlantic Forest 

The Brazilian Atlantic Forest is one of the world’s most biodiverse areas 

(MYERS et al., 2000), with remarkable endemism and hydrological importance 

(MELLO et al., 2019; RODRIGUES et al., 2021b). However, this biome has been 

highly degraded by the historical expansion of urban and agricultural activities (DEAN, 

1995; JOLY et al., 2014; RIBEIRO et al., 2009). The degree of threat, and its 

importance for species conservation, guaranteed the title of “biodiversity hotspot” to the 

Atlantic Forest (MYERS et al., 2000). Therefore, the Atlantic Forest is a priority biome 

for conservation. 

 The Atlantic Forest initially encompassesd15% of the Brazilian territory (17 out 

of 27 Brazilian federative units). However, only 12.4% of the original extent remains in 

remnants greater than 3 ha (SOS Mata Atlântica, access link: 

https://www.sosma.org.br/), which points out the biome devastation degree. Moreover, 

Atlantic Forest is home to 72% of the Brazilian people and is responsible for 70% of the 

Brazilian Gross Domestic Product (GPD) (SOS Mata Atlântica, access link: 

https://www.sosma.org.br/). These characteristics highlight the importance of this 

biome since most of the Brazilian economy depends on it. Fortunately, the largest 

remaining Atlantic Forest patches are located in mountain ranges, which are 

advantageous environments for water yield (MELLO et al., 2019; TEIXEIRA et al., 

2021) and hazard mitigation (NEHREN et al., 2019). This reinforces the importance of 

the Atlantic Forest for water management due to its close relationship with water 

availability (TERRA et al., 2018b). 

https://www.sosma.org.br/
https://www.sosma.org.br/
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Therefore, studies that highlight the importance of the Atlantic Forest biome as a 

provider of ecosystem services (such as water yield and biodiversity shelter) are crucial 

to support stakeholders and decision-makers in taking the best actions. They also 

provide supporting evidence to increase preserved areas to guarantee people’s well-

being and livelihood. 

2.2 Rainfall partitioning 

Precipitation falling on a forest canopy takes different pathways on its way to the 

forest floor. The incident (or gross) rainfall is routed to the subcanopy by throughfall 

and stemflow (CROCKFORD; RICHARDSON, 2000; GUO et al., 2020). Throughfall 

(TF) is defined as the most significant fraction of gross rainfall (GR) that passes directly 

through the canopy along with the portions that drip and splash from it. Stemflow is the 

minor fraction of GR that drains from outlying leaves and branches and is channeled to 

the bole (or stem) of plants (LEVIA; GERMER, 2015; LIU et al., 2018; LLORENS; 

DOMINGO, 2007). Such rainfall redistribution is driven by weather and forest 

characteristics (VAN STAN et al., 2020, YAN et al., 2021; ZHANG et al., 2015). 

Rainfall intensity, duration, and amount under different wind speeds and directions have 

been recognized as the main meteorological drivers of rainfall redistribution in forests 

(e.g., NANKO et al., 2011). On the other hand, the structure and architecture of the 

forest canopy are generally considered the most critical biotic features controlling 

rainfall redistribution in forests (STAELENS et al., 2006; TERRA et al., 2018a). 

The complexity of tropical forests is another characteristic driving the spatial 

and temporal patterns of rainfall partitioning. The diversity of species addresses 

heterogeneity on canopy storage capacity due to the variety of leaf shape, orientation, 

and texture, canopy hydrophobicity, and bark roughness (LEVIA; FROST, 2006; 

NANKO et al., 2014; POORTER et al., 2006; TERRA et al., 2018a). Moreover, the 

species-specific characteristics that improve (or decrease) canopy drainage (LEVIA; 

FROST, 2006) are unevenly distributed throughout the forest, which creates a particular 

time for starting canopy drainage (ALLEN et al., 2013). For instance, reduced canopy 

interception is observed in young trees due to their small crown (TERRA et al., 2018a; 

WULLAERT et al., 2009), funnel-shaped branches (GERMER et al., 2006; SU et al., 

2019), and greater canopy openness (MARTINS et al., 2004). The importance of 
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canopy gaps to decrease canopy interception is even greater in lower rainfall amounts 

(STAELENS et al., 2006), highlighting the importance of canopy openness during small 

events (ZIMMERMAN et al., 2009). This provides different conditions to intercept and 

route water, depending on rainfall characteristics (intensity, amount, and duration).  

Rainfall intensity increases splash throughfall (LEVIA et al., 2019) and 

decreases canopy storage capacity (CALDER et al., 1996). The time interval between 

rainfall events also influences rainfall redistribution because of canopy dryness levels 

(Allen et al., 2013). The importance of pre-event canopy storage on throughfall 

formation was highlighted by Allen et al. (2013) using isotopic tracers. Wind speed and 

direction also drive throughfall due to the canopy shaking (decreasing canopy storage 

capacity; ZHANG et al., 2019) and the rain shadow effects. Greater rainfall interception 

in the windward than the leeward canopy was observed by Fan et al. (2014), creating 

“dry” spots in the forest. 

Such heterogeneity of rainfall redistribution entails different spatial and temporal 

dynamics of forest hydrology and biogeochemistry dynamics (METZGER et al., 2021) 

that deserves further investigation. For instance, Stogsdill et al. (1986) assessed the 

relationship between thinning and throughfall input to improve soil water availability in 

a Pinus plantation. However, the complexity of rainfall redistribution increases in 

tropical forests because TF probably interacts and responds to the traits of several trees 

before reaching the floor (AUBRY-KIENTZ et al., 2019; GUAN et al., 2013). This 

greater interaction with the stratified canopy of tropical forests defines the fate of 

nutrient input (MANTOVANI et al., 2021; TONELLO et al., 2021), soil moisture 

(JUNQUEIRA JUNIOR et al., 2017; OLIVEIRA et al., 2021), distribution of tree 

species (PRESSLAND, 1976; TERRA et al., 2018b), evapotranspiration (GUSWA; 

SPENCE, 2011; RODRIGUES et al., 2021b), and groundwater recharge 

(BIALKOWSKI; BUTTLE, 2015; GUSWA; SPENCE, 2011). 

2.3 Physical models 

2.3.1 Rutter model (1971) 

 Rutter et al. (1971) proposed the first physics-based model, which relies on both 

climate and canopy characteristics. The model performs a running water balance, in 

which the balance between rainfall and evaporation drives both throughfall and canopy 

interception. Moreover, a portion of rain may reach the soil directly since gaps are 

present in forest canopies (RODRIGUES et al., 2021): 
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𝛥𝐶 = (1 − 𝑝) ∫ 𝑅 𝑑𝑡 − ∫ 𝐷 𝑑𝑡 − ∫ 𝐸 𝑑𝑡 (1) 

where ΔC is the change in canopy water storage in the interval dt; p is the free 

throughfall coefficient (i.e., the rainfall that reaches the forest floor without touching the 

canopy); R is the rainfall rate; D is the rate of water dripping (or draining) from the 

canopy, and E is the evaporation rate. Throughfall (TF) is composed of direct rainfall 

and dripping water: 

 
𝑇𝐹 = 𝑝 ∫ 𝑅 𝑑𝑡 + ∫ 𝐷 𝑑𝑡 (2) 

Dripping is modeled by an empirical relationship with canopy water storage (C) 

and only happens when C ≥ S (VALENTE; DAVID; GASH, 1997). S is defined as the 

minimum water necessary to saturate the canopy (i.e., the canopy storage capacity): 

 𝐷 = {
𝐷𝑠 exp[𝑏(𝐶 − 𝑆)]    𝑖𝑓 𝐶 ≥ 𝑆
             0                    𝑖𝑓 𝐶 < 𝑆

 (3) 

Ds is the minimum drainage rate (for C = S), and b is an empirical coefficient. From 5-

minutes observations of R and T in a Corsian pine forest, Rutter et al. (1971) defined Ds 

= 0.002 mm min
-1

. Since Ds was empirically determined, Rutter, Morton, and Robins 

(1975) proposed an improvement by relating the minimum drainage rate to the leaf area 

index (LAI), enabling the extrapolation for other forests. Moreover, these authors also 

observed that stemflow can be an important fraction of rainfall and should be 

considered apart from the canopy. Therefore, the trunk storage capacity (St) and the 

proportion intercepted by the trunks (pt) were introduced to define a second reservoir: 

 
𝛥𝐶 = (1 − 𝑝 − 𝑝𝑡) ∫ 𝑅 𝑑𝑡 − ∫ 𝐷 𝑑𝑡 − ∫ 𝐸 𝑑𝑡 (4) 

 
𝛥𝐶𝑡 = 𝑝𝑡 ∫ 𝑅 𝑑𝑡 − ∫ 𝐸𝑡  𝑑𝑡 (5) 

where ΔCt is the change in trunk water storage; and Et the evaporation rate from the 

trunks. Differently from the canopy drainage (or dripping), when Ct > St, the excess is 

promptly drained from the trunks as stemflow (RUTTER; MORTON; ROBINS, 1975). 
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 Rutter, Morton, and Robins (1975) considered that there are potential 

evaporation rates (Ep and Ept for the canopy and trunk, respectively) which are 

controlled by the available water in both reservoirs: 

 
𝐸 = 𝐸𝑝

𝐶

𝑆
 (6) 

 
𝐸𝑡 = 𝐸𝑝𝑡

𝐶𝑡

𝑆𝑡
 (7) 

 𝐸𝑝𝑡 = 𝑒 𝐸𝑝 (8) 

where e is an empirical ratio parameter. Rutter, Morton, and Robins (1975) and Valente, 

David, and Gash, (1997) argued that the potential evaporation from the trunks is way 

lower than that from the canopy and could be well represented by fitting the parameter e 

to the observed stemflow.  

Although there are many methods to retrieve the potential evaporation, the 

Penman-Monteith method was considered in the model’s conception because it is a 

physics-based approach, agreeing with the former assumptions (RUTTER et al., 1971). 

Since potential evaporation only happens when the canopy is saturated, transpiration 

can be neglected, and the resistance imposed by the stomata sets to zero (i.e. rs = 0): 

 
𝐸𝑃 =

∆𝑅𝑛 + 𝜌𝑎𝑐𝑝𝑔𝑎(𝑒𝑠 − 𝑒𝑎)

𝜆(∆ + 𝛾)
 (9) 

where Δ is the slope of the saturation vapor pressure curve; Rn is the net radiation; ρa is 

the mean air density at constant pressure; cp is the specific heat of the air; ga is the 

aerodynamic conductance; es is the saturation vapor pressure; ea is the actual vapor 

pressure; (es – ea) is known as the vapor pressure deficit; λ is the latent heat for water 

vaporization, and γ is the psychrometric constant. The other methods and some 

assumptions that should be considered before applying the Penman-Monteith techniques 

will be further described in the appropriate topic. 

2.3.2 Sparse Rutter model (1997) 

 There were some inconsistencies in the original formulation of the Rutter model, 

which impaired the canopy interception modeling of sparse forests (VALENTE; 
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DAVID; GASH, 1997). Gash, Lloyd, and Lachaud (1995) argued that portioning the 

rainfall rate as (1 – p – pt)R is unsuitable because two problems arise in sparse forests: 

 Gaps are more significant in sparse forests, and therefore p increases. In these 

conditions, the canopy may never reach saturation whether (1 – p – pt)R ≤ E. 

 Since �̅� is calculated per unit of the total plot area, the evaporation per unit of 

canopy area increases proportionally with canopy sparseness (with p). As p → 

∞, E follows its pattern (E → ∞), which is physically impossible. 

Moreover, the total canopy evaporation was inconsistent with the energy balance 

in the original formulation. The evaporation was split between the canopy (Equation 6) 

and the trunk (Equation 8), which encompass the entire plot area. Thus, the total 

evaporation per unit plot area was (1+e)Ep. This problem had been neglected because of 

the small values of e (VALENTE; DAVID; GASH, 1997). Valente, David, and Gash, 

(1997) fixed it by rewriting canopy evaporation as (1–e)Ep. 

To address the preceding problems, Valente, David, and Gash (1997) split the 

total plot area into covered (canopy + trunks) and open (gaps) subareas. The same 

rainfall intensity reaches both areas, and the evaporation (usually calculated with the 

Penman-Monteith method) regards only the covered area. Therefore, the evaporation 

from gaps is zero, (neglecting the evaporation from the understory). The canopy and 

trunk storage capacity were rewritten to model canopy interception having the canopy 

area as reference (GASH; LLOYD; LACHAUD, 1995). 

 
𝑆𝑐 =

𝑆

𝑐
 (10) 

 
𝑆𝑡,𝑐 =

𝑆𝑡

𝑐
 (11) 

where Sc is the canopy storage capacity per unit canopy area and St,c is the trunk storage 

capacity per trunk area. Valente et al. (1997) simplified the drainage function (Equation 

3) by considering that all excess water (C > S) is promptly routed to the floor. This 

change was made to eliminate the empirical parameters (Ds and b). A portion is 

designated to the trunk (pd) reservoir from this drainage and will further generate 

stemflow. One can realize that the trunk reservoir starts filling only after the canopy is 

saturated (VALENTE; DAVID; GASH, 1997). The sparse Rutter model can be written 

as: 
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𝑇𝐹 = (1 − 𝑐)𝐺𝑃 + 𝑐(1 − 𝑝𝑑) ∫ 𝐷𝑐𝑑𝑡 (12) 

 
𝑆𝐹 = 𝑐 (𝑝𝑑 ∫ 𝐷𝑐 𝑑𝑡 − 𝑆𝑡,𝑐 − ∫ 𝐸𝑡,𝑐𝑑𝑡) (13) 

 
𝑐𝐺𝑃 = 𝑐 (∫ 𝐸𝑐𝑑𝑡 + ∫ 𝐷𝑐 𝑑𝑡 + 𝑆𝑐) (14) 

where SF is the stemflow, Dc is the drainage per canopy area, and Et,c is the evaporation 

rate per unit trunk area. 

2.3.3 Gash model (1979) 

 Despite the advantages that the Rutter model had attained, there were some 

shortcomings to be addressed. First, the Rutter model demands a high temporal 

resolution of both rainfall and meteorological data, in which an hourly step produces the 

best results (MUZYLO et al., 2009; RUTTER; MORTON; ROBINS, 1975). Such a 

temporal resolution is far from the reality of many studies, mainly those in tropical 

forests. These forests are primarily found in developing countries with problems in 

research funding and technical staff. Therefore, a more straightforward model was 

necessary. Second, prior knowledge in programming was necessary to build the running 

water balance, which limited its widespread application (GASH, 1979). In this regard, 

Gash (1979) proposed a simpler rainfall interception model without losing the physical 

description of the rainfall-canopy interactions. It is also known as the analytical form of 

the Rutter model because a series of discrete storms represent the rainfall events with 

sufficient time between them to enable canopy and trunk to dry completely (GHIMIRE 

et al., 2017a; JUNQUEIRA JUNIOR et al., 2019; RODRIGUES et al., 2021). 

The model can be split into three phases: (i) the wetting phase, where the canopy 

is still unsaturated; (ii) the saturation phase; and (iii) the drying phase, where rainfall 

has already finished. Moreover, to simplify the Rutter model, some assumptions were 

considered: 

 The meteorological conditions of both the wetting and saturation phases are the 

same for each event, and their average can represent the meteorology of all 

events throughout the study period. Therefore, rainfall and evaporation means 
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computed during the saturation phase represents the overall meteorological 

condition; 

 There is no drip from the canopy before saturation. The excess of water is 

promptly drained from the canopy, remaining only the saturation capacity (S) at 

the end of a storm. This configures the water-box approach. 

 The interval between rainfall events must be sufficient to guarantee the complete 

dryness of the canopy and trunk, i.e., the reservoir (canopy + trunks) is empty 

before any rainfall. 

 Canopy interception is the portion of rainfall returning into the atmosphere 

through evaporation. This evaporation happens in the three abovementioned phases (for 

each rainfall event) and can be written as follows: 

 

𝐶𝐼 = ∫ 𝐸 𝑑𝑡
𝑡′

0

+ ∫ 𝐸 𝑑𝑡

𝑡

𝑡′

+ 𝑆 (10) 

CI is the rainfall canopy interception of an event n; t’ is the time necessary for canopy 

saturation; t is the event duration; E is the evaporation rate for each time step dt, and S 

is the canopy storage capacity. The first member on the right-hand side is the wetting up 

phase, the second is the saturation phase, and the third is the drying phase. Considering 

the first assumption, mean evaporation and rainfall rates can be set to represent the 

meteorological conditions of all events: 

 
�̅� =

1

(𝑡 − 𝑡′)
∫ 𝐸 𝑑𝑡

𝑡

𝑡′
 (11) 

 
�̅� =

1

(𝑡 − 𝑡′)
∫ 𝑅 𝑑𝑡

𝑡

𝑡′
 (12) 

where �̅� and �̅� are the mean evaporation and rainfall rates for an event n. The mean 

rainfall rate can also be written in terms of the total rainfall that fell during the 

saturation phase (t – t’): 
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 𝐺𝑃 − 𝑃𝐺
′ = �̅�(𝑡 − 𝑡′) (13) 

where P
’
G is the minimum rainfall necessary for canopy saturation, the second 

assumption made by Gash (1979) is that there is no drip from the canopy before 

saturation (i.e., the water-box approach), and therefore P
’
G can be set as: 

 
(1 − 𝑝 − 𝑝𝑡)𝑃𝐺

′ = 𝑆 + ∫ 𝐸 𝑑𝑡
𝑡′

0

 (14) 

where p and pt are the free throughfall coefficient and the rainfall portion derived to the 

trunks (RUTTER et al., 1971; RUTTER; MORTON; ROBINS, 1975), respectively. 

Therefore, canopy interception is defined by integrating and rearranging the preceding 

equations: 

 
𝐶𝐼 = ∫ 𝐸 𝑑𝑡 

𝑡′

0

+
�̅�

�̅�
(𝐺𝑃 − 𝑃𝐺

′ ) + 𝑆 (15) 

Since this equation represents the rainfall canopy interception for one event, the 

total water intercepted by the forest canopy is the sum of all events throughout the study 

period: 

 
∑ 𝐶𝐼𝐽

𝑛

𝑗=1

= ∑ [∫ 𝐸 𝑑𝑡
𝑡′

0

+
�̅�

�̅�
(𝐺𝑃 − 𝑃𝐺

′ )]

𝑛

𝑗=1

+ 𝑛𝑆 (16) 

where n is the number of rainfall events in the study period. Equation 6 represents the 

three phases for all rainfall events and will be further described in the following 

sections. 

2.3.3.1 The wetting phase 

 Two magnitudes of events are considered to model the rainfall canopy 

interception in the wetting phase: (i) those which saturate the canopy and (ii) those 
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insufficient for saturation (i.e., GP < P
’
G). Equation 14 can be integrated to all events 

able to saturate the canopy: 

 
∑ 𝐶𝐼𝑗

𝑛

𝑗=1

= ∑ [∫ 𝐸 𝑑𝑡
𝑡′

0

]

𝑛

𝑗=1

= (1 − 𝑝 − 𝑝𝑡) ∑ 𝑃𝐺𝑗

′

𝑛

𝑗=1

− 𝑛𝑆 (17) 

 The m events insufficient to saturate the canopy are represented by the portion of 

the gross precipitation that reaches the canopy (1 – p – pt)*GP. Therefore, the final 

equation joining both events’ magnitude is: 

 
∑ 𝐶𝐼𝑗

𝑛+𝑚

𝑗=1

= (1 − 𝑝 − 𝑝𝑡) ∑ 𝑃𝐺𝑗

′

𝑛

𝑗=1

− 𝑛𝑆 + (1 − 𝑝 − 𝑝𝑡) ∑ 𝐺𝑃𝑗

𝑚

𝑗=1

 (18) 

2.3.3.2 The saturation phase 

 This phase only happens for those n events able to saturate the forest canopy 

(i.e., GP ≥ P
’
G) and ends when rainfall ceases: 

 
∑ 𝐶𝐼𝐽

𝑛

𝑗=1

=
�̅�

�̅�
∑ (𝐺𝑃𝑗 − 𝑃𝐺𝑗

′ )

𝑛

𝑗=1

 (19) 

2.3.3.3 The drying phase 

 For those events which saturate the canopy, the remaining water only leaves the 

canopy by evaporation after rainfall ceasing (water-box assumption). In this regard, the 

canopy storage capacity is added up to the n events as nS. 

2.3.3.4 Trunk interception and evaporation 

 The rainfall is derived to the trunks as soon as it reaches the canopy, being not 

considered in its water balance (RUTTER et al., 1971). The water-box approach also 

applies to the trunks because stemflow only occurs after St is satisfied (GASH, 1979). 

For GP ≥ St/pt, the trunk saturates, and the exceedance is promptly converted to 

stemflow. Since evaporation from the trunks is much lower than that from the canopy 
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(RUTTER; MORTON, 1977; VALENTE; DAVID; GASH, 1997) in the course of the 

rainfall event, it is neglected in the Gash model. Therefore, the water stored on the 

trunks is the only to be evaporated (GASH, 1979): 

 

∑ 𝐶𝐼𝑗

𝑛+𝑚

𝑗=1

= 𝑞𝑆𝑡 + 𝑝𝑡 ∑ 𝐺𝑃𝑗

𝑛+𝑚−𝑞

𝑗=1

 (20) 

where q is the number of rainfall events that satisfy GP ≥ St/pt. 

All the foregoing equations consider that the interval between rainfall events is 

sufficient to dry completely both canopy and trunk, i.e., every time a rainfall starts, the 

reservoirs (canopy + trunk) are empty. Finally, the original Gash model can then be 

written as: 

 
∑ 𝐶𝐼𝑗

𝑛+𝑚

𝑗=1

= (1 − 𝑝 − 𝑝𝑡) ∑ 𝑃𝐺𝑗

′

𝑛

𝑗=1

+
�̅�

�̅�
∑ (𝐺𝑃𝑗 − 𝑃𝐺𝑗

′ )
𝑛

𝑗=1

+ (1 − 𝑝 − 𝑝𝑡) ∑ 𝐺𝑃𝑗

𝑚

𝑗=1

+ 𝑞𝑆𝑡 + 𝑝𝑡 ∑ 𝐺𝑃𝑗

𝑚+𝑛−𝑞

𝑖=1

 

(21) 

2.3.3.5 The minimum rainfall to canopy saturation 

The only definition remaining is the minimum rainfall necessary to saturate the 

canopy (P
’
G). It relies on the canopy water balance in the wetting phase, having the 

canopy storage (C) from Rutter et al. (1971) as the dependent variable. 

 𝑑𝐶

𝑑𝑡
= (1 − 𝑝 − 𝑝𝑡)�̅� − 𝐸 (22) 

where E is the evaporation rate from the partially saturated canopy. Following Rutter et 

al. (1971), E can be written as a function of canopy storage 𝐸 =
𝐶

𝑆
∗ 𝐸𝑝. Considering the 

assumption that mean evaporation and rainfall during the saturation phase can represent 

the overall meteorological condition, E is set as 𝐸 =
𝐶

𝑆
∗ �̅�. Therefore, 
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 𝑑𝐶

𝑑𝑡
= (1 − 𝑝 − 𝑝𝑡)�̅� −

𝐶

𝑆
�̅� (23) 

and the solution: 

 
𝐶(𝑡) = (1 − 𝑝 − 𝑝𝑡)

�̅�𝑆

�̅�
[1 − 𝑒−�̅�𝑡/𝑆] (24) 

where C(t) is the canopy storage at each moment t between rainfall onset and canopy 

saturation. Equation 24 is valid for the interval [0, t’]. At t’, canopy saturation is 

fulfilled and the rainfall amount can be defined by 𝑃𝐺𝑗

′ = �̅�𝑡′. P
’
G is set by replacing 

these two conditions in Equation 24 and manipulating it algebraically. It is worth 

mentioning that P
’
G is constant for the analyzed period. To further details on the 

definition of P
’
G, readers should extend their attention to Gash (1979). 

 
𝑃𝐺

′ = −
�̅�𝑆

�̅�
𝑙𝑛 [1 −

�̅�

�̅�(1 − 𝑝 − 𝑝𝑡)
] (25) 

2.3.4 Liu model 

 Liu (1997) concentrated his efforts on developing a rainfall interception model 

without the empirical canopy drainage of the running model of Rutter et al. (1971) 

(Equation 3), and that was as simple as the Gash model (GASH, 1979). Canopy 

interception can be written as a function of the change in the canopy storage and the 

evaporation throughout the rainfall events: 

 𝐶𝐼 = 𝛥𝐶 + 𝐸𝑉 (26) 

where ΔC is the change in the canopy storage (in the Liu model represents both canopy 

and trunks) and EV is the canopy evaporation throughout the rainfall event.  

2.3.4.1 Change in canopy storage (ΔC) 
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The canopy is quickly filled in a rainfall event due to its storage capacity, and 

therefore the evaporation can be disregarded (LIU, 1997). In this initial phase, changes 

in rainfall after passing through the canopy are only due to the increase in canopy 

storage ΔC, i.e. 

 𝛥𝐶 = −(𝑇𝐹 − 𝐺𝑃) (27) 

 Liu (1997) described the changes in rainfall (TF – GP) as a function of rainfall 

intensity and duration, canopy dryness, and the canopy cover fraction: 

 (𝑇𝐹 − 𝐺𝑃) = 𝑐𝑅𝐷𝛥𝑇′ (28) 

where R is the rainfall intensity, D is the canopy dryness, and ΔT
’
 is the small time-step 

where evaporation can be neglected (LIU, 1997). Canopy dryness is another way to 

describe the canopy reservoir by representing its emptiness: 

 
𝐷 = 1 −

𝐶

𝐶𝑚
 (29) 

 where Cm is the storage capacity (canopy + trunk). 

 By rearranging and integrating Equations 27, 28, and 29, canopy dryness is 

expressed as a function of rainfall amount and the emptiness before the event had 

started (Di): 

 𝐷 = 𝐷𝑖𝑒
−𝑐𝐺𝑃/𝐶𝑚 (30) 

Equation 30 can be rewritten as a function of canopy storage to better understand 

the canopy water balance (Equation 31). Moreover, the overall representation of canopy 

storage changing (ΔC) should take into consideration some antecedent storage (Ci), i.e., 

𝛥𝐶 = 𝐶 − 𝐶𝑖, where 𝐶𝑖 = 𝐶𝑚(1 − 𝐷𝑖) (Equation 32). 

 𝐶 = 𝐶𝑚(1 − 𝐷𝑖𝑒−𝑐𝐺𝑃/𝐶𝑚) (31) 
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 𝛥𝐶 = 𝐶𝑚𝐷𝑖(1 − 𝑒−𝑐𝐺𝑃/𝐶𝑚) (32) 

2.3.4.2 Evaporation 

 As previously discussed (LIU, 1997), evaporation (E) is the integration of the 

product of the evaporation rate (E) and the wetness of the canopy (1 – D): 

 
𝐸𝑉 = ∫ 𝐸(1 − 𝐷)𝑑𝑡

𝑇

0

 (33) 

 
𝐸𝑉 = ∫ 𝐸(1 − 𝐷𝑖𝑒−𝑐𝑃𝑡/𝐶𝑚)𝑑𝑡

𝑇

0

 (34) 

where T is the duration of the rainfall event and P is the rainfall intensity in each time-

step dt. Therefore, the running form (LIU, 2001) of the canopy water balance developed 

by Liu (1997) is: 

 
𝐶𝐼 = 𝐶𝑚𝐷𝑖(1 − 𝑒−𝑐𝐺𝑃/𝐶𝑚) + ∫ 𝐸(1 − 𝐷𝑖𝑒−𝑐𝑃𝑡/𝐶𝑚)𝑑𝑡

𝑇

0

 (35) 

2.3.4.3 Assumptions and the analytical form 

 Although the running form of the Liu model (Equation 35) is more 

straightforward than that of Rutter et al. (1971), it still demands computational 

efficiency and a detailed dataset. In this regard, an analytical form of the Liu model was 

developed (LIU, 1997) to simulate the rainfall canopy interception on either a single-

storm or multiple-storm scale (LIU, 2001). To start the derivation of the analytical form 

of the Liu model, Equation 36 can be rewritten as follows: 

 
𝐶𝐼 = 𝐶𝑚𝐷𝑖 (1 − 𝑒

−
𝑐𝐺𝑃
𝐶𝑚 ) + ∫ 𝐸𝑑𝑡

𝑇

0

− ∫ 𝐸𝐷𝑖𝑒
−

𝑐𝑃𝑡
𝐶𝑚 𝑑𝑡

𝑇

0

 (36) 
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 Liu (1997) assumed that the evaporation and rainfall rates could be represented 

by their average (E ≅ E̅ and P ≅ R̅, respectively) throughout the rainfall event (GASH, 

1979). Moreover, the rainfall events are individuals, in which the canopy reservoir is 

empty (dry) before each rainfall onset (GASH, 1979). When the canopy is dry, Di = 1. 

Following this assumption, the integral could be solved analytically (from equation 37 

to 39): 

 
𝐶𝐼 = 𝐶𝑚 (1 − 𝑒

−
𝑐𝐺𝑃
𝐶𝑚 ) + ∫ �̅�𝑑𝑡

𝑇

0

− ∫ �̅�𝑒
−

𝑐�̅�𝑡
𝐶𝑚 𝑑𝑡

𝑇

0

 (37) 

 
𝐶𝐼 = 𝐶𝑚 (1 − 𝑒

−
𝑐𝐺𝑃
𝐶𝑚 ) + �̅�𝑡

𝑇
0

− {−�̅� [
𝐶𝑚

𝑐�̅�
𝑒

−𝑐�̅�𝑡
𝐶𝑚 ]}

𝑇
0

 (38) 

 
𝐶𝐼 = 𝐶𝑚 (1 − 𝑒

−
𝑐𝐺𝑃
𝐶𝑚 ) + �̅�𝑇 − {

�̅�𝐶𝑚

𝑐�̅�
[1 − 𝑒

−𝑐�̅�𝑇
𝐶𝑚 ]} (39) 

where 𝑇 =
𝐺𝑃

�̅�
. Rearranging Equation 39, the single-storm analytical form of the Liu 

model is defined as (LIU, 1997, 2001): 

 
𝐶𝐼 = 𝐶𝑚 [1 − 𝑒

−
𝑐𝐺𝑃
𝐶𝑚 ] [1 −

�̅�

�̅�𝑐
] +

�̅�

�̅�
𝐺𝑃 (40) 

 The multiple-storm is the summation of each single-storm CI: 

 
𝐶𝐼 = 𝐶𝑚 [𝑛 − ∑ 𝑒

−
𝑐𝐺𝑃
𝐶𝑚

𝑛

𝑖=1

] [1 −
�̅�

�̅�𝑐
] +

�̅�

�̅�
∑ 𝐺𝑃

𝑛

𝑖=1

 (41) 

where n is the number of rainfall events with sufficient time between them to enable the 

canopy to dry completely. 

2.4 Stochastic models 

2.4.1 Calder model (1986) 
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 Instead of considering the forest canopy as a reservoir from which water is 

routed toward the forest floor (GASH, 1979; RUTTER et al., 1971), Calder (1986) 

proposed a stochastic hypothesis to model rainfall canopy interception. Such a 

hypothesis relies on splitting the canopy into elemental areas which have the same 

probability of being struck by raindrops (CALDER, 1986). The Poisson distribution 

describes the probability of 0, 1, 2, …, r drops reach each elemental area during a 

rainfall event, respectively: 

 
𝑒−𝑚,

𝑚

1!
𝑒−𝑚,

𝑚2

2!
𝑒−𝑚, … ,

𝑚𝑟

𝑟!
𝑒−𝑚  (42) 

where m is the mean raindrop strikes per elemental area (disregarding evaporation). The 

non-exceedance probability of raindrops reaching the elemental areas is then written as: 

 
∑ 𝑃𝑟𝑜𝑏𝑥

𝑟

𝑥=0

= 𝑒−𝑚 +  
𝑚

1!
𝑒−𝑚 +  

𝑚2

2!
𝑒−𝑚, + ⋯ +

𝑚𝑟

𝑟!
𝑒−𝑚  (43) 

Intuitively, the exceedance probability is: 

 
𝑃𝑟𝑜𝑏𝑥>𝑟 = 1 − ∑ 𝑃𝑟𝑜𝑏𝑥<𝑟

𝑟

𝑥=0

 (44) 

Each elemental area has a maximum drop storage capacity (q), which can be a 

non-integer number (CALDER, 1986). The excess of drops (r – q) pours from the 

elemental areas when r > q. On the other hand, all r drops are stored for r ≤ q. From 

these concepts, the mean number of drops stored on the elemental areas (n) can be 

defined by: 

 
𝑛 = (1 − ∑ 𝑃𝑟𝑜𝑏𝑥<𝑟

𝑟

𝑥=0

) 𝑞 + 
𝑚

1!
𝑒−𝑚 + 2 

𝑚2

2!
𝑒−𝑚, + ⋯ + 𝑟

𝑚𝑟

𝑟!
𝑒−𝑚 (45) 

where the first right-hand side term represents the saturated elemental areas, whereas 

the other terms regard partially wet ones. 
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 The formulations described the rainfall canopy interception for the elemental 

scale, which is not interesting for water management purposes. Decision-makers need 

information on a forest scale to simulate and forecast the rainfall canopy interception 

(PAGE et al., 2020). In this regard, it was necessary to upscale the Calder model to the 

canopy scale. Calder (1986) introduced the number of elemental areas per unit ground 

area (L), the mean volume of the raindrops (v), and inserted evaporation (which was 

disregarded in the elemental model).  

2.4.1.1  From elemental to canopy scale 

The canopy storage per unit of ground area (C) can then be calculated: 

 𝐶 = 𝑛𝑣𝐿 (46) 

and the maximum canopy storage capacity (Cmax) is: 

 𝐶𝑚𝑎𝑥 = 𝑞𝑣𝐿 (47) 

 In the rescaled model, the mean number of raindrops striking the canopy during 

a rainfall event can be related to the gross rainfall amount as: 

  
𝑚 =

𝐺𝑃

𝑣𝐿
 (48) 

2.4.1.2 Inserting evaporation 

 As the evaporation withdraws water from the canopy reservoir (C), the stored 

water reduces simultaneously. Therefore, the changes in canopy storage are equivalent 

to the evaporation per unit ground area (CI): 

 𝑑𝐶

𝑑𝐶𝐼
= −1 (49) 

 From differentiating equation 46 and replacing equation 49, the change in the 

mean number of drops stored in the elemental area regarding the evaporation is: 



20 
 

 
 

 𝑑𝑛

𝑑𝐶𝐼
=

𝑑𝐶

𝑑𝐶𝐼
.
𝑑𝑛

𝑑𝐶
= −

1

𝑣𝐿
 (50) 

 Calder (1986) applied a finite differencing approach (Equation 51) to describe 

the changes in the mean number of raindrops striking the elemental areas (m) as a 

function of the balance between gross rainfall (GP) and evaporation (CI). Calder (1986) 

renamed the m variable the elemental mean number of raindrops because it represents 

the equivalent number of raindrops striking the elemental areas discounting those drops 

leaving by evaporation. 

 
𝛥𝑚 =

𝑑𝑚

𝑑𝐺𝑃
𝛥𝐺𝑃 +

𝑑𝑛

𝑑𝐶𝐼
.
𝑑𝑚

𝑑𝑛
𝛥𝐶𝐼 (51) 

 
𝛥𝑚 =

1

𝑣𝐿
𝛥𝐺𝑃 −

1

𝑣𝐿
{1

/ [𝑞𝑒−𝑚 +
(1 − 𝑞)

1!
(1 − 𝑚)𝑒−𝑚 +

(2 − 𝑞)

2!
(2𝑚 − 𝑚2)𝑒−𝑚

+ ⋯ +
(𝑟 − 𝑞)

𝑟!
(𝑟𝑚𝑟−1 − 𝑚𝑟)𝑒−𝑚]} 𝛥𝐶𝐼 

(52) 

where the evaporation increment (ΔCI) is calculated from the Penman-Monteith 

equation (CALDER, 1996) with the surface resistance set to zero to represent wet 

canopy conditions (GASH; VALENTE; DAVID, 1999). For more details regarding the 

step-by-step application of this model, we encourage readers to access the works of 

Calder (1986; 1996).  

2.4.1.3 Calder two-layer model (CALDER, 1996) 

To account for the observed influence of drop size on canopy storage capacity 

(CALDER, 1986) and to deal with some shortcomings (e.g., a single canopy layer), 

Calder (1996) proposed an improved model, in which the parameter q could vary with 

rainfall intensity, drop size, and drop kinetic energy since such relationships were 

highlighted by Calder (1986) but not inserted into the model. Furthermore, the new 
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version also considered the canopy interception to occur in a two-layer environment. 

The rainfall drops (the primary drops) reach the top layer directly, whereas the bottom 

layer is only stricken by the shed drops of the top layer (secondary drops) (CALDER, 

1996). 

The improvement started with the definition of the maximum elemental volume 

(ve), which is a vegetation-specific parameter. For drops reaching the canopy with zero 

kinetic energy, we can write the maximum elemental volume as: 

 𝑣𝑒0 = 𝑞𝑣0 (53) 

where ve0 and v0 are the maximum elemental volume and the mean drops volume for 

drops with zero kinetic energy, respectively. Upscaling to the canopy, the maximum 

storage capacity (Cmax), when drops have no kinetic energy is: 

 𝐶𝑚𝑎𝑥 = 𝑣𝑒0𝐿 = 𝑣0𝑞𝐿 (54) 

 However, drops have some kinetic energy (further described as a function of 

rainfall intensity), which decrease the maximum canopy storage capacity (Cm): 

 𝐶𝑚 = 𝑣𝑒𝐿 = 𝑣𝑞𝐿 (55) 

 Rearranging Equations 54 and 55, Calder (1996) wrote the maximum elemental 

volume for drops with non-zero kinetic energy as a function of the maximum elemental 

volume with zero kinetic energy: 

 
𝑣𝑒 =

𝐶𝑚

𝐶𝑚𝑎𝑥
𝑣𝑒0 (56) 

 Then, the dependence of the maximum drop retention number (q) to rainfall 

kinetic energy is written as: 
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𝑞 =

𝐶𝑚

𝐶𝑚𝑎𝑥

𝑣𝑒0

𝑣
 (57) 

 The values of Cmax and ve0 can be defined for a particular vegetation type 

(CALDER, 1996; CALDER et al., 1996), whereas the relationship of Cm/Cmax with v 

was determined using an experiment with a rainfall simulator as: 

 𝐶𝑚

𝐶𝑚𝑎𝑥
= 1 𝑓𝑜𝑟 𝑣 < 0.065 (58) 

 𝐶𝑚

𝐶𝑚𝑎𝑥
= 0.5 + 0.73𝑒−5.5𝑣 𝑓𝑜𝑟 𝑣 ≥ 0.065 (59) 

 Equations 58 and 59 highlight the dependence of canopy storage capacity on 

raindrops volume (Figure 1). Greater raindrops happen in intense rainfall, and therefore 

regions with more convective storms tend to intercept less rainfall than those with 

frontal systems (CALDER, 1996).  

 

Figure 1. Relationship of Cm/Cmax with v, highlighting the asymptotic pattern of 

decreasing maximum canopy storage capacity with raindrop size. Adapted from Calder 

(1996).  
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Torres, Porra, and Creutin (1994) proposed a relationship between the median 

raindrop diameter (D0) and rainfall intensity based on the Marshall and Palmer 

distribution (MARSHALL; PALMER, 1948): 

 𝐷0 = 𝛼𝑅𝛽 (60) 

where α and β are empirical parameters, which must obey α + 4β = 1. The drop volume 

reaching the top layer can be calculated from rainfall intensity, whereas those reaching 

the bottom layer are related to the canopy characteristic volume (CALDER, 1996). 

 The two-layer approach relies on splitting the projected canopy area index (Lp) 

into the top (Lp1) and bottom (Lp2) layers using Beer’s law: 

 𝐿𝑝1 = 1 − 𝑒−𝐿𝑝 (61) 

 𝐿𝑝2 = 𝐿𝑝 − 𝐿𝑝1 (62) 

 Relying on the projected canopy area index of both layers, the elemental areas 

(L1 and L2) can be split between them: 

 
𝐿1 =

𝐿𝑝1

𝐿𝑝

𝐶𝑚𝑎𝑥

𝑣𝑒0
 (63) 

 
𝐿2 =

𝐿𝑝2

𝐿𝑝

𝐶𝑚𝑎𝑥

𝑣𝑒0
 (64) 

 Finally, rainfall can be portioned between the top and the ground (since direct 

rainfall does not reach the bottom layer). The shedding water from the top layer can be 

portioned between the bottom layer and the ground. The same idea of the projected 

canopy area index is applied to the gross rainfall amount (Equation 65) and the input of 

water into the bottom layer is a fraction of the shed water (Equation 66): 

 𝐺𝑃1 = 𝑓1𝐺𝑃 = 𝐿𝑝1𝐺𝑃 (65) 
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 𝐺𝑃2 = 𝑓2𝑆ℎ = 1 − 𝑒−𝐿𝑝2𝑆ℎ (66) 

where f1 and f2 are the fractions of the gross rainfall and shed water (Sh), respectively. 

Overall, strengths and weaknesses could be drawn from Calder’s model 

(MUZYLO et al., 2009). First, Calder (1996) proved that by increasing rainfall intensity 

and raindrop size, the canopy storage capacity decreases proportionally, i.e., the Calder 

model advanced the knowledge of the physical processes encompassing rainfall canopy 

interception. These essential characteristics are not accounted for in Rutter, Gash, and 

Liu models, which consider that canopy storage capacity is a function of canopy 

structure regardless of the weather condition. Although the stochastic approach is an 

interesting way to look at interception modeling, its application is complex, time-

consuming, and without any significant improvement regarding the physical models 

(MUZYLO et al., 2009). Furthermore, physical models are more appropriate to deal 

with different weather and climate conditions than stochastic models. Therefore can be 

applied to forecast rainfall canopy interception outside the range within with they were 

calibrated (RODRIGUES et al., 2021). 

2.5 Parameters retrieving 

2.5.1 Weather parameters 

2.5.1.1 Rainfall 

 The Gash and Liu models rely on the mean rainfall rate for canopy saturation 

conditions (CARLYLE-MOSES; PARK; CAMERON, 2010; GASH, 1979; GASH; 

LLOYD; LACHAUD, 1995). Gash (1979) defined that canopy is saturated when 

rainfall intensity ≥ 0.5 mm h
-1

. The mean rainfall intensity considers all rainfall events 

throughout the study period (�̅� ≥ 0.5 mm h
-1

). Using the average, some studies observed 

an overestimation of �̅� because of its non-normal distribution (GHIMIRE et al., 2017a; 

RODRIGUES et al., 2021). In this regard, the median is a better approach for 

determining �̅�. 

2.5.1.2 Evaporation 

 The Penman-Monteith was the first method applied to define evaporation from a 

saturated canopy condition (RUTTER et al., 1971). When canopy is saturated, 
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transpiration can be neglected and, hence, the roughness resistance can be neglected 

(MONTEITH, 1965) 

 
EPM =

∆Rn + ρacpga(es − ea)

λ(∆ + γ)
 (67) 

where Δ is the slope of the saturation vapor pressure curve; Rn is the net radiation; ρa is 

the mean air density at constant pressure; cp is the specific heat of the air; ga is the 

aerodynamic conductance; es is the saturation vapor pressure; ea is the actual vapor 

pressure; (es – ea) is known as the vapor pressure deficit; λ is the latent heat for water 

vaporization; and γ is the psychrometric constant. 

 The success of the modeling depends on the correct determination of the 

aerodynamic conductance (ga). Such a conductance differs among the elements being 

transferred, i.e., the transfer of heat, vapor, and momentum in the canopy-atmosphere 

turbulent zone is different. However, the original studies (GASH, 1979; GASH; 

LLOYD; LACHAUD, 1995; LIU, 1997; RUTTER et al., 1971; RUTTER; MORTON; 

ROBINS, 1975; VALENTE; DAVID; GASH, 1997) did not considered these 

differences, and therefore computed evapotranspiration using the aerodynamic 

conductance for momentum (ga,M):  

 
𝑔𝑎,𝑀 = {

𝑘

ln[(𝑧 − 𝑑)/𝑧0]
}

2

∗ 𝑢 (68) 

where k is the von Kármáns’s constant velocity (0.41); u is the wind velocity (m s
-1

) 

measured at the MOT; z is the height of wind speed measurement; d is the zero plane 

displacement height (m); and z0 is the roughness length governing transfer of 

momentum, heat, and vapor (m). 

Although suitable performance of the models had been attained, Lankreijer, 

Hendriks, and Klaassen (1993) argued for the need to include the different mechanisms 

for vapor and heat transfer. Gash, Valente, and David (1999) performed a thoroughly 

investigation to point out the most suitable approach to compute aerodynamic 

computation for modeling rainfall canopy interception. Taking into account all the 

transfer mechanisms (heat, vapor, and momentum), the aerodynamic conductance can 

be written as: 

 
𝑔𝑎,𝑉 =

𝑘2𝑢

𝑙𝑛[(𝑧 − 𝑑)/𝑧0,𝑀]𝑙𝑛[(𝑧 − 𝑑)/𝑧0,𝐻]
 (69) 
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where z0,M is the roughness length for momentum; and z0,H is the roughness length for 

vapor and heat. The additional complexity of ga,V did not improve the results of ga,M 

because z0,M/z0,H ~ 1, which reduces Equation 69 into 68 (GASH; VALENTE; DAVID, 

1999). Therefore, ga,M can be applied to estimate evaporation under wet canopy 

condition without significant errors. FAO-56 (ALLEN et al., 1996) also recommend the 

use of ga,M, reinforcing it suitability. Even though substantial improvement has not been 

observed when considering atmosphere instability (GASH; VALENTE; DAVID, 1999), 

its effects can also be added to the aerodynamic conductance equation. 

 Gash (1979) proposed an indirect determination of the mean evaporation rate (E̅) 

based on the regression between canopy interception (CI) and gross rainfall (GP) for 

rainfalls that saturate the canopy (CI = aGP + b). According to Gash (1979), the slope 

(a) is E̅/R̅ and a previous determination of the mean rainfall rate for wet canopy 

condition is necessary. The methods for determining R̅ are described in the proper 

section. 

2.6 Structural parameters 

2.6.1 Canopy parameters 

Jackson (1975) proposed that the free throughfall coefficient (p) is the slope of 

the linear regression between TF and GP for small events (where canopy are still 

unsaturated). GP values between 1.0 and 2.0 mm have been considered as the threshold 

for this methodology (LEYTON; REYNOLDS; THOMPSON, 1967; GASH; 

MORTON, 1978). Leyton, Reynolds, and Thompson (1967) proposed an envelopment 

of the throughfall variation. The upper part of the envelope regards the conditions of 

minimum evaporation rate and canopy saturation (RUTTER et al., 1971). If a regression 

line is fit to the bottom part considering only events < 1 mm, the p value is the slope of 

the regression. Then, the canopy cover fraction can be determined as c = 1 − p. 

The mean method was proposed by Klaassen, Bosveld, and Water (1998) and 

relies on the water-box concept, i.e., drainage only happens when C > S. Based on this 

concept, the rainfall events can be split into two parts: (i) a wetting part, where canopy 

is unsaturated (GP < P’G) and (ii) a saturated part (GP ≥ P’G). Considering that for C > S 

the excess is quickly drained, the mean method by Klassen et al. (1998) is: 

 
𝐶𝐼 = (1 − 𝑝 −

�̅�

�̅�
) 𝑃′𝐺 +

�̅�

�̅�
𝐺𝑃 (70) 
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 Canopy interception and gross rainfall are plotted and linear regression (𝐶𝐼 =

𝛼𝐺𝑃 + 𝛽) is fit. α is the �̅�/�̅� ratio and 𝛽 = 𝑆 =  (1 − 𝑝 − �̅�/�̅�)𝑃′𝐺. Both free 

throughfall coefficient (p) and canopy storage capacity (S) can be retrieved from this 

approach. 

Instruments can also be applied to observe canopy gaps, and therefore define 

canopy cover fractions. Gash and Morton (1978) carried out a measurement of the 

canopy cover fraction over the rain gauge through an anascope. On the other hand, 

Carlyle-Moses, Park, and Cameron (2010) analyzed four digital fisheye photographs 

taken around the threes studied using a Gap Light Analyzer (GLA). Junqueira Junior et 

al. (2019) used the Leaf Area Index (LAI) measured at 32 inventory parcels within an 

Atlantic forest to determine the canopy cover fraction (c). These are some examples of 

retrieving canopy cover fraction from the direct measurement of the canopy structure. 

Because of the upper envelope of Leyton, Reynolds, and Thompson (1967) 

encompasses only events with minimum evaporation and canopy saturation, the 

interception of the linear regression is theoretically the canopy saturation capacity (S) 

since it is expected that the linear regression has unit slope (i.e. 𝑇𝐹 = 𝐺𝑃 − 𝑆). Gash 

and Morton (1978) and Rutter et al. (1971) used this methodology. The Rutter model 

can also be applied to define S in a canopy water balance approach. A water balance is 

performed when drainage (D) becomes 0.002 mm/min, which is the threshold when the 

actual canopy storage (C) equals S (RUTTER et al., 1971). From the rainfall onset until 

S equals C, the water balance can be written as: 

 ∑ 𝑅 − ∑ 𝑇𝐹 = ∑ 𝐸 − 𝑆 (71) 

 Since in the Rutter model the evaporation is a function of S, a running water 

balance with an initial value of S is necessary. Rutter et al. (1971) used a computer 

program and a 5-minute time-step to define S. This method is laborious and time 

demanding, and therefore has been poorly applied. 

Valente et al. (1997) proposed a methodology to retrieve the canopy storage 

capacity per unit area (S) based on the envelope of Leyton, Reynolds, and Thompson 

(1967) and the sparse Rutter equations. By considering individual storms, drainage can 

be disregarded and Equations 12 and 13 can be rewritten (Valente et al., 1997): 

 
𝑇𝐹 = (1 − 𝑐𝑝𝑑)𝐺𝑃 − (1 − 𝑝𝑑)𝑆 − (1 − 𝑝𝑑)𝑐 ∫ 𝐸𝑐𝑑𝑡 (72) 
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𝑆𝐹 = 𝑝𝑑/(1 − 𝑝𝑑)[𝑇𝐹 − (1 − 𝑐)𝐺𝑃] − 𝑆𝑡 − 𝑐 ∫ 𝐸𝑡,𝑐𝑑𝑡 (73) 

 The evaporation term of Equation 72 can be set to zero by fitting a linear 

regression in the upper envelope. S is the negative interception divided by (1 – pd) of the 

envelope regression with a pre-established slope of (1 – cpd). From Equation 73, the 

evaporation from the trunks can also be neglected for some selected rainfall events 

(VALENTE; DAVID; GASH, 1997). By fitting a regression line between SF and TF – 

(1 – c)GP, St is the negative value of the interception whereas pd = slope/(1+slope). 

2.6.2 Trunk parameters 

The regression approach is the widespread method applied to retrieve trunk 

storage capacity (St) and trunk portioning (pt) (GASH; MORTON, 1978). It relies on 

fitting a linear regression to the stemflow (SF) versus gross rainfall (GP) plot. The 

negative of the interception is St, and the slope is pt. 

 Carlyle-Moses, Park, and Cameron (2010) proposed a methodology to determine 

St based on the funneling ratio concept. The funneling ratio measures the amount of 

water reaching the ground as SF about the water that would be caught by a hypothetical 

rain gauge with an open area equal to the basal area of the studied tree. These authors 

suggested that the amount of rainfall that produced the maximum funneling ratio (GPF) 

is the amount of water needed to saturate the canopy and trunk (P
’’

G). Then, St,c can be 

determined using a water balance: 

 

 
𝑆𝑡,𝑐 = 𝐺𝑃𝐹,𝑐 − 𝑇𝐹𝑑 − 𝑆𝑐 −

�̅�𝑐

�̅�
𝐺𝑃 − 𝑆𝐹𝑐 (74) 

where the subscribed c means that the variables are considered per unit canopy area and 

TFd is the throughfall draining as drip. 

2.7 Problems in canopy interception modeling: Extra sources of energy 

Rainfall interception modeling has been spreading worldwide in a broad range of 

forest types since the development of the preceding models (Muzylo et al., 2009). 

Although it improved the understanding of the rainfall redistribution within a forest 
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considerably, deadlocks arose, and advances toward the physics of the atmosphere-

canopy relationship were deemed necessary (DIJK et al., 2015). Penman-Monteith 

theory was the first proposed methodology to determine canopy evaporation under 

rainfall conditions (RUTTER et al., 1971) because it relies on the energy balance 

(MONTEITH, 1965)  

Some assumptions were adopted when developing the Penman-Monteith theory 

and should be minutely analyzed (DIJK et al., 2015): (i) all ways of energy and water 

exchange are accounted for; (ii) the vegetation is homogeneous and horizontally 

distributed; (iii) the flow reaches the vegetation horizontally and is stationary. The 

Penman-Monteith approach had been such a notorious advance in evapotranspiration 

prediction that the Food and Agriculture Organization (FAO) standardized the 

parameters to its widespread use in irrigation and water management planning (ALLEN 

et al., 1998). However, other methodologies have been applied to appraisal the most 

suitable parameters to model rainfall interception. These methodologies are indirect and 

based on both linear regressions and canopy water balance (GASH, 1979; GASH; 

LLOYD; LACHAUD, 1995; GHIMIRE et al., 2017a; JUNQUEIRA JUNIOR et al., 

2019; RODRIGUES et al., 2021)  

By comparing them all, an underestimation of the Penman-Montieh approach 

raised concerns against the energy balance theory (DIJK et al., 2015). The energy 

balance of a forest can be described as: 

 𝑅𝑛 = 𝐻 + 𝜆𝐸 + 𝑄𝑎 + 𝑄𝑙 + 𝑄𝑏 + 𝑄𝐺 + 𝑄𝑃 + 𝑋 (75) 

where Rn is the net radiation flux; H and λE are the sensible and latent heat fluxes, 

respectively; Qa and Ql are the energy stored (as sensible and latent heat, respectively) 

in the air inside the forest; Qb is the energy stored in the forest biomass; QG is the 

energy stored in the soil; QP is the energy consumed by plants for photosynthesis; and X 

is the advection energy. Regarding the energy balance that based the Penman-Monteith 

theory, the only accounted sources of energy are H, λE, and Rn. Many studies did not 

observe an energy balance closure by considering only these three forms of energy 

(CAMPOS et al., 2019; KILINC et al., 2012; MICHILES; GIELOW, 2008). Dijk et al. 

(2015) called attention to the unaccounted energy stored inside the forest and their 

relevance for supporting wet canopy evaporation, which the greatest contribution of 

those stored as sensible heat (in the air and biomass). However, studies joining rainfall 

interception modeling and energy balance are still lacking. Furthermore, the importance 
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of extra sources of energy for evaporation is expected to be more highlighted in extreme 

weather conditions (as drought periods) since a more unstable atmosphere enhances 

evaporation (NÁVAR, 2019). 

Dijk et al. (2015) also described the importance of energy reaching the forest by 

advection. Drier and hotter surrounding areas can provide substantial energy by 

advection (KOCHENDORFER; PAW U, 2011). Návar (2019) observed the importance 

of energy advection to wet canopy evaporation due to temperature gradient to the 

atmosphere and surrounding areas. The strong updraft of bulk air also contributes to 

energy advection during convective rainfalls (DIJK et al., 2015). It is worth mentioning 

that changes in wind flow turbulence improve heat and momentum transport. Holwerda 

et al. (2012) attached the increase in evaporation to the steep topography in 

mountainous terrains. Complex terrains increase turbulence and, therefore, heat and 

momentum transport. Moreover, energy advection is also expected to increase in such 

circumstances (DIJK et al., 2015). 

In this context, studies that couple energy balance and rainfall interception 

modeling are urgent to better frame the complex process evolving the atmosphere-

canopy environment. Even more in the expected extreme weather conditions 

(OLIVEIRA et al., 2017). 

2.8 Throughfall 

2.8.1 The spatial variability 

The spatial distribution of throughfall controls soil moisture dynamics 

(JUNQUEIRA et al., 2017; OLIVEIRA et al., 2021), nutrient redistribution 

(MANTOVANI et al., 2021; TONELLO et al., 2021), the formation of preferential 

pathways and hotspots for groundwater recharge (BIALKOWSKI; BUTTLE, 2015; 

GUSWA; SPENCE, 2011), evapotranspiration (GUSWA; SPENCE, 2011; 

RODRIGUES et al., 2021b), root growth, and the distribution of tree species according 

to soil water availability (PRESSLAND, 1976; TERRA et al., 2018b). There are many 

ways to characterize the spatial variability of throughfall. One of the most applied is the 

coefficient of variation (CV), which can be related to the amount, duration, and intensity 

of rainfall events (LIU et al., 2019; SHENG; CAI, 2021; SU et al., 2019; ZHANG et al., 

2019; ZHU et al., 2021). 
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As long as rainfall amount, intensity, and duration increases, the spatial 

variability of throughfall decreases, indicating a more significant influence of the 

canopy in small events (SHENG AND CAI, 2;021; STAELENS et al., 2006; SU et al., 

2019; ZHU et al., 2021). For instance, Fan et al. (2015) observed a stable CV of 16.5% 

in a pine forest as long as the rainfall event proceeded. In a mixed deciduous forest, 

Staelens et al. (2006) observed 19% and 11% CV for the leafed and leafless periods, 

respectively. Sheng and Cai (2021), Zhu et al. (2021), and Su et al. (2019) observed a 

stable CV of ~ 20% in boreal, semiarid mountain forests, and mixed evergreen-

deciduous broadleaved forests, respectively. 

Although the coefficient of variation can describe the spatial variability of 

throughfall, it fails to characterize the spatial structure. In this sense, geostatistics has 

been considered to model the spatial structure of eco-hydrological variables 

(RODRIGUES et al., 2021b; VOSS; ZIMMERMANN; ZIMMERMANN). The first 

step is the calculation of the experimental semivariogram proposed by Matheron (1962). 

Matheron’s equation is widely applied because it is asymptotically unbiased and 

efficient (LARK, 2000). 

 

 

�̂�𝑀(𝒉) =
1

2 ∗ 𝑁(𝒉)
∑ {𝑧(𝒙𝑖) − 𝑧(𝒙𝑖 + 𝒉)}2

𝑁(𝒉)

𝑖=1

 (76) 

where z(xi) is the observed value at location xi, N(h) are the pairs of observations that 

are separated by each lag h. Some theoretical models (e.g., exponential, Gaussian, and 

spherical) are fitted to the experimental semivariograms using the ordinary least 

squares, weighted least square, or maximum likelihood to minimize the objective 

function. By carrying out a leave-one-out cross-validation, the best model can be 

selected and applied for forecasting the spatial variability of the target variable using 

kriging approaches (WEBSTER; OLIVER, 2007). The fitted model can also be used to 

optimize the monitoring set to better characterize the spatial variability of throughfall in 

forests (ZIMMERMAN; ZIMMERMAN, 2014). Further importance should be given to 

the drivers of the spatial distribution of throughfall to enhance the understanding of the 
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rainfall-forest-hydrology connections because a variety of internal and external factors 

are believed to influence the spatial patterns. 

2.8.2 The time stability 

Time stability has been used in a broad range of forests to assess the spatial 

variability of throughfall behavior over time (KEIM; LINK, 2018; VAN STAN et al., 

2020). This approach highlights the most time stable locations and is persistently wetter 

and drier than the spatial average. Therefore, this methodology enables defining time 

stable positions to decrease the monitoring effort since a few positions can be used to 

determine the spatial average of throughfall (VACHAUD et al., 1985). This approach 

has already been applied in a montane rainforest (WUALLERT et al., 2009), in a 

tropical forest (ZIMMERMANN et al., 2008), in a dominant beech tree (STAELENS et 

al., 2006), in xerophytic shrubs (ZHANG et al., 2016), in a semi-arid mountain forest 

(ZHU et al., 2021), in a boreal forest (SHENG; CAI, 2021), in young, deciduous, and 

old conifers (KEIM; SKAUGSET; WEILER., 2005), in a rubber plantation (LIU et al., 

2019), in a eucalyptus plantation (SATO et al., 2011), and a pine plantation (FAN et al., 

2015). 

In all these studies, the spatial variability of throughfall was classified as time 

stable. However, Zimmermann, Zimmermann, and Elsenbeer (2009) observed that the 

temporal persistence of throughfall at individual plots disappeared after one year in a 

tropical semideciduous moist forest. Assessing long periods is needed to observe 

patterns in the spatial distribution of throughfall (LEVIA; FROST, 2006) because 

weather and forest dynamics are likely to affect the time stability of throughfall. Intense 

droughts change forest dynamics and the biogeochemistry cycles, increasing biomass 

loss due to tree mortality (mainly the large ones) (RYAN, 2015). The duration and 

aggressiveness of such events influence water and soil nutrient availability and 

consequently change the structure and composition of the forest (HE; DIJKSTRA, 

2014). These conditions also modify the carbon balance and favor drought-tolerant tree 

species (CHOAT et al., 2018; ESQUIVEL-MUELBERT et al., 2018; SCHLESINGER 

et al., 2016). 

Such changes are likely to affect the spatial distribution of throughfall over time 

(STOGSDILL et al., 1989). However, only a few studies considered forest traits as 

drivers of throughfall time stability, mainly focusing on trees’ traits as opposed to forest 
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traits (e.g., canopy thickness, LAI, leaf characteristics, and stem architecture) (SHENG; 

CAI, 2021; STAELENS et al., 2006). The importance of forest structure (e.g., basal 

area) was highlighted in a Pinus plantation by Stogsdill et al. (1986), who assessed the 

relationship between thinning and throughfall input to improve soil water.  However, 

this evaluation is still lacking in tropical forests, where canopies are more complex and 

heterogeneous (AUBRY-KIENTZ et al., 2019; GUAN et al., 2013). Therefore, it is 

crucial to appraise the consequences of changes in forest structure on the spatial 

dynamics of throughfall. Without accounting for structural changes, misinterpretation of 

time stability of throughfall may occur. 

 

 

 

2.8.3 Measuring time stability 

The first step relies on computing the relative differences (RDi,j), which measure 

the differences of monitoring locations to the site’s average. The relative difference 

describes whether a location j is wetter, dryer, or close to the site’s average for each 

time interval i considered. The time average of the relative difference (MRDj) of 

throughfall is then calculated for each location j. MRDj is a description of the overall 

pattern of the spatial distribution over time (VACHAUD et al., 1985). 

 
𝑅𝐷𝑖,𝑗 =

𝑇𝐹𝑖,𝑗 − 𝑇𝐹̅̅̅̅
𝑖

𝑇𝐹̅̅̅̅
𝑖

 (76) 

 
𝑀𝑅𝐷𝑗 =

1

𝑛
∑ 𝑅𝐷𝑖𝑗

𝑛

𝑖=1

 (77) 

where n is the monitoring length and 𝑇𝐹̅̅̅̅
𝑖 is the spatial average of throughfall at each 

time i. MRDj > 0 represents wetter locations, MRDj < 0 drier locations, and MRDj ~ 0 

locations with TF amount close to the forest average. MRDj represents the plots of the 

Atlantic Forest remnant that are wetter, dryer, or closer to the spatial average TF. 

However, MRDj only describe the expected throughfall for each location regarding the 

site’s average nothing accounting for the variability of the spatial variability throughout 

the time. In this sense, the standard deviation of the relative positions (𝜎𝑅𝐷𝑗
) should be 
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considered to highlight how much the TF spatial pattern varies between events 

(VACHAUD et al., 1985).  

 

𝜎𝑅𝐷𝑗
= √

1

𝑛 − 1
∑(𝑅𝐷𝑖,𝑗 − 𝑀𝑅𝐷𝑗)

2
𝑛

𝑖=1

 (78) 

It is not appropriate to rely only on MRDj to define time stability because its 

variability (𝜎𝑅𝐷𝑖𝑗
) is also important. Therefore, the Time Stability Indicator (TSI) was 

developed (JACOBS et al., 2004) to integrate the effects of MRDj and 𝜎𝑅𝐷𝑗
. TSI is 

applied to identify the most time stable positions to describe the spatial average of 

throughfall (MINET et al., 2013). 

 
𝑇𝑆𝐼 = √(𝑀𝑅𝐷𝑗)

2
+ (𝜎𝑅𝐷𝑗

)
2

 (79) 

 The lower the TSI value, the more time stable is the location. Assessing TSI 

differs from MRD because it describes the persistence of the spatial distribution, i.e., the 

TF time stability, whereas MRD describes the expected spatial distribution of TF 

throughout the study period. 

The nonparametric Spearman’s test has also been applied to assess time stability 

(VACHAUD et al., 1985). The throughfall observed at location j is ranked (Rij) for 

every time interval i. For each location j, the same variable is ranked in the time i’. 

Then, the Spearman rank can be calculated as: 

 
𝑟𝑠 = 1 −

6 ∑ (𝑅𝑖,𝑗 − 𝑅𝑖′,𝑗)
2𝑛

𝑖=1

𝑛(𝑛2 − 1)
 (80) 

where n is the number of observations. For rs = 1 the rank positions are kept over time 

with a perfect time stability. Therefore, the closer rs is to the unity, the more time stable 

the spatial variability will be (VACHAUD et al., 1985). 

Temporal semivariance is another possibility to assess the time stability of 

throughfall (ZIMMERMANN; ZIMMERMANN; ELSENBEER, 2009). This approach 

will highlight the maximum period length in which time stability of throughfall could be 

considered without the risk of misinterpretation (ZIMMERMANN; ZIMMERMANN; 
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ELSENBEER, 2009). It relies on the calculation of the experimental semivariogram 

proposed by Matheron (1962): 

 

�̂�𝑀(𝒉) =
1

2 ∗ 𝑁(𝒉)
∑ {𝑧(𝒙𝑖) − 𝑧(𝒙𝑖 + 𝒉)}2

𝑁(𝒉)

𝑖=1

 (81) 

where z(xi) is the observed value at time xi, N(h) are the pairs of observations that are 

separated by each time lag h. The time lag is defined according to the monitoring 

schedule (and data availability). Theoretical semivariograms (e.g., exponential, 

Gaussian, and spherical) are fitted to the experimental semivariograms minimizing the 

objective function by means of: (i) ordinary least squares; (ii) weighted least square; or 

(iii) maximum likelihood. 

The advantages of temporal semivariograms over time stability indexes are the 

differentiation in temporal lags and the definition of the maximum period length, in 

which the spatial variability still holds (ZIMMERMANN; ZIMMERMANN; 

ELSENBEER, 2009). However, this method demands longer monitoring periods, which 

is not easily available in most forests worldwide. Therefore, this methodology is not 

widespread yet, which precludes comparison with the studies that used the time stability 

index. 

2.9 Drought characterization 

2.9.1 Drought assessment 

A shortage of water characterizes drought over time (QUIRING, 2009). The 

drought can be classified as meteorological, agricultural, hydrological, and 

socioeconomic, depending on where the shortage occurred and which affected systems 

(VICENTE-SERRANO et al., 2020). Meteorological drought occurs due to a 

precipitation deficit throughout a period. Hydrological drought is usually followed by a 

meteorological drought (JUNQUEIRA et al., 2020) in a delayed process and is related 

to the lower availability of surface and groundwater. The decrease in soil water 

availability may be classified as agricultural drought as long as it affects the growth and 

yield of agricultural fields. Socioeconomic drought is the most difficult to observe 

because it depends on the social and economic sector and how they were affected (e.g., 
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beef, dairy, crop production, unemployment, increased risk to fire rages) (WILHITE; 

GLANTZ, 1985). 

However, these definitions are not enough to assess whether a drought is 

occurring or not (WILHITE; GLANTZ, 1985). In this regard, drought indexes were 

developed to characterize the intensity, frequency, and duration of droughts and enable 

comparison among different climate conditions (QUIRING, 2009). Overall, these 

indexes quantify how much a period (e.g., day, week, season, and year) departure from 

the long-term average (or “normal” condition) (WILHITE; GLANTZ, 1985). One of the 

first and widely applied drought indexes was developed by Palmer (1965). The Palmer 

Drought Severity Index (PDSI) relies on daily precipitation, air temperature, and soil 

water availability. By running a daily water balance, the PDSI value is compared to the 

“normal” (or climatically expected) moisture conditions (QUIRING, 2009). However, 

some drawbacks limit the use of PDSI. The potential evapotranspiration is calculated 

using Thornthwaite’s method, relying only on the air temperature (QUIRING, 2009). 

Moreover, the runoff is only generated when soil is saturated, and plant growth (and 

root dynamics) is not considered between seasons (QUIRING, 2009). Therefore, other 

indexes were developed to solve drawbacks, such as the Standardized Precipitation 

Index (SPI). 

The SPI is a probabilistic approach idealized by McKee, Doesken, and Kliest 

(1993) to characterize drought occurrence, frequency, and duration based on 

precipitation time series. Interestingly, this index is that rainfall deficit, or surplus can 

be highlighted together with its return period. Moreover, it is spatially invariant and can 

compare droughts among different regions (and climates) (QUIRING, 2009). Because 

of its characteristics, this index is recommended by the World Meteorological 

Organization (WMO) as a standard index. 

The steps for computing SPI are: (i) a time series of rainfall accumulated on the 

scale of interest, such as daily, weekly, monthly, and yearly. The time series length 

strongly influences SPI, and more than 50 years is recommended to avoid distortions 

and 80 years to be more accurate (QUIRING, 2009). (ii) A theoretical probability 

function (e.g., two-parameter gamma, three-parameter Pearson type III, three-parameter 

generalized extreme value, four-parameter kappa) is fitted to the time series, and its 

adequacy should be assessed using the Anderson-Darling test (ANDERSON; 

DARLING, 1952, 1954) because this approach assesses the behavior at the distribution 
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tail, where the extreme events are; (iii) the respective probability is then applied to an 

inverse standard normal distribution (µ = 0; σ = 1) (MCKEE et al., 1993). The positive 

and negative deviations are the SPI and indicate rainfall surplus and deficit, 

respectively. This index has been widely applied in Brazil's Brazilian Savanna 

(JUNQUEIRA et al., 2020) and Atlantic Forest biomes (SILVA; MELLO, 2021) for 

water resources management. 

 

2.9.2 Droughts and forests 

The effects of droughts on forests have been the subject of many studies and can 

be classified as an environmental effect (i.e., environmental drought), which can be 

highlighted by the observed increased wildfires, drought-driven tree mortality, and 

decreased forest growth (VICENTE-SERRANO et al., 2020). Long-term 

meteorological droughts can affect forest structure, function, and ecosystem services by 

leading to higher tree individuals loss and lower tree growth, ultimately reducing forest 

productivity (ANDEREGG; KANE; ANDEREGG, 2013) The duration and 

aggressiveness of such events influence water and soil nutrient availability and 

consequently change structure and composition of the forest (HE; DIJKSTRA, 2014). 

Because trees are long-lived organisms, they are expected to be more vulnerable to 

rapid changes in climate (BRODRIBB et al., 2020). 

Deciduous and semi-deciduous forests (such as the Atlantic Forest) are adapted 

to climate seasonality and to a certain degree of periodic drought (SOUZA et al., 2021). 

However, the intensification of droughts changes the forest structure with an observed 

loss of trees along with basal area (negative net change) (BERENGUER et al., 2021; 

PHILLIPS et al., 2009). Climate scenarios indicate that extreme weather events will 

increase in the future, making longer dry periods more likely (NEHREN et al. 2019). In 

such condition, more forests will dry up and likely accelerate climate change due to 

increased carbon losses and changing surface energy balances (PHILLIPS et al., 2009). 

Moreover, paleoenvironmental studies show that changes in precipitation patterns 

during the Late Quaternary have repeatedly led to shifts in the transition zone between 

the Cerrado and the Atlantic Forest biomes, and that even small changes in water 

balance affect the fragile ecological balance (KIRCHNER et al. 2015). 
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The water balance is directly related to disturbances in forests due to changes in 

evapotranspiration and soil water availability (RODRIGUES et al., 2021b). Preserved 

and well-managed Atlantic Forest remnants increased water yield in southeastern Brazil 

(TEIXEIRA et al., 2021) as well as improved groundwater recharge (MELLO et al., 

2019). These hydrological responses are due to small scale processes (e.g. the canopy 

water balance), which drive the rainfall redistribution (PAGE et al., 2020). This 

redistribution is the driving force of the subsequent hydrological processes (e.g., 

streamflow, groundwater recharge, evapotranspiration, and soil moisture dynamics). 

Although the recognized importance of canopy interception and rainfall redistribution, 

these processes are still poorly evaluated, and therefore further studies on this subject 

are required. 
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Abstract: Modeling canopy interception is fundamental for understanding the forests’ 

role in local and regional hydrology. In this study, canopy interception (CI), throughfall 

(TF), and stemflow (SF) were evaluated for a semi-deciduous Atlantic Forest (AFR) 

from 2013 to 2019, where a prolonged dry period occurred. The Gash and Liu models 

were analyzed in detail to determine the most appropriate for modeling CI throughout 

drought conditions. Thus, the climatic parameters were retrieved annually by a modified 

TF-based method (EI%), whereas the structural parameters represented the entire period. 

The contribution of the energy stored in the forest (i.e. air and biomass; Q) to CI was 

also assessed in the AFR stand. Both models performed well when using EI%, as the 

Gash model overestimated CI by 71 mm (4.6%), whereas the Liu model underestimated 

it by only 13 mm (0.85%). This performance is due to an increased Q and turbulent 

mechanisms (such as advection and strong updrafts) that occur in drought conditions 

and are indirectly accounted for in EI%. However, the Liu model stood out for modeling 

CI under a prolonged dry period, as the exponential wetting approach better represents 

the complex canopies of the semi-deciduous forests. Thus, we recommend the Liu 

model and additional energy sources when dealing with prolonged droughts, as in the 

case of climate change scenarios projected to the studied region. 

Keywords: Tropical forest; Liu model; Energy stored rate (ESR); Energy advection; 

Biomass energy; Gash model. 

1. Introduction 

 The Atlantic Forest biome is one of the most diverse tropical/subtropical 

ecosystems in the world, being classified as a biodiversity hotspot due to its high level 

of plant endemism and at the same time high losses of primary vegetation (Myers et al., 

2000). Despite its fragmentation and degradation, Atlantic Forest remnants provide 
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numerous important ecosystem functions and services, including hydrological cycle 

regulation (Mello et al., 2019) and hazard mitigation among them (Nehren et al. 2019). 

Groundwater recharge is of particular importance in order to maintain the water regime, 

especially during dry periods (Mello et al., 2019).  

 Another hydrologically important factor of the Atlantic Forest is the rainfall 

canopy interception which can achieve up to 32.4% of gross precipitation (Salemi et al., 

2013). It can reduce the water availability and impair the subsequent processes in the 

watershed, primarily during drought conditions when evaporation tends to increase. 

Canopy evaporation represents a considerable amount of water that is released into the 

atmosphere and should be thoroughly investigated. Thus, understanding the dynamics 

of canopy interception  under a changing climate situation is fundamental to overcome 

the unavoidable water scarcity which threatens southeastern Brazil (Oliveira et al, 2019; 

Oliveira et al., 2017). 

 The canopy water balance (CWB) is initiated by attaining the gross precipitation 

and partitioning it into throughfall, stemflow, and canopy interception. Throughfall and 

stemflow are routed toward the forest floor, whereas the intercepted water returns to the 

atmosphere by evaporation (Macinnis-ng et al., 2014; Salemi et al., 2013). Weather and 

forest traits interact to drive CWB, which occurs in unique responses in the Atlantic 

Forest (Junqueira Junior et al., 2019; Rodrigues et al., 2020) and other tropical forests 

worldwide (Ghimire et al., 2017; Holwerda et al., 2012).  

The best way to tackle the intrinsic responses of CWB is by means of canopy 

interception modeling. In an initial approach, Rutter et al. (1971) proposed a physical-

based model which required hourly meteorological information to run a simulation. 

Since then, this model has been used worldwide and has demonstrated satisfactory 

results (Muzylo et al., 2009). However, the Rutter model is discouraged for developing 
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countries which have limited hydrological instrumentation (Muzylo et al., 2009). Thus, 

the analytical model proposed by Gash (1979) and further expanded for sparse canopies 

(Gash et al., 1995) has been preferred, as it enables simulation on a per-day basis. 

 The Gash model is based on six parameters, which can be divided into weather 

(E̅ and R̅) and structural (S, p, St, and pt) parameters. E̅ and R̅ describe the evaporation 

and rainfall rates for the wet canopy condition (during rainfall), whereas S and St 

represent the minimum water depth to saturate the canopy and trunks, respectively. 

Lastly, p and pt are the free throughfall coefficient and the water partition derived to the 

trunks after canopy saturation, respectively. The Gash model performed properly over 

the entire period for an Atlantic Forest remnant in Brazil (Junqueira Junior et al., 2019), 

two rainforests with different recovery stages in Madagascar (Ghimire et al., 2017), and 

a montane rainforest in Puerto Rico (Holwerda et al., 2012), resulting in relative errors 

below 12%. These studies showed some differences in the structural parameters; 

however, the main condition for improving the model performance was correct 

assessment of the weather parameters, primarily E̅ (Carlyle-Moses et al., 2010; Linhoss 

and Siegert, 2016). Retrieving the evaporation parameter by Gash’s methodology (ETF; 

Gash, 1979) was preferred to the Penman-Monteith approach (EPM), as the latter usually 

underestimated evaporation (Dijk et al., 2015).  

Many reasons for such discrepancies between E̅ determinations have been 

studied by Dijk et al. (2015). However, the most intriguing concept is the additional 

energy sources which are those stored within the forest (in the air and biomass) and 

arriving by advection from surrounding areas (Kochendorfer and Paw, 2011; Návar, 

2019; Ringgaard et al., 2014). The energy budget has been studied for forest closure 

(Kilinc et al., 2012; Michiles and Gielow, 2008), but has not been accounted for 

supplying canopy evaporation. This is of even greater concern for prolonged dry 
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periods, as the atmospheric stress imposed on the Atlantic Forest is expected to increase 

canopy evaporation. Thus, we hypothesize that atmospheric dynamics during drought 

periods may increase the difference between ETF and EPM as a consequence of additional 

energy sources (Dijk et al., 2015) taking place in rainless periods between events. 

Furthermore, the Gash model assumes that canopy drainage does not start until 

saturation, which configures a water-box approach. This has likely led to an 

overestimation of canopy interception (Carlyle-Moses and Price, 2007; Cuartas et al., 

2007), as drainage begins prior to saturation in complex canopies (as will be further 

demonstrated in this paper). In this sense, Liu (1997) proposed a new model based on 

exponential canopy wetting which enables drainage to start before canopy saturation. 

This exponential approach resembles the actual wetting of a stratified canopy, where 

upper layers are filled before bottom leaves (Carlyle-Moses et al., 2010) due to the 

sheltering effect. In addition, the Liu model also differs from the Gash model by (i) 

accounting together for canopy and trunk storages; and (ii) eliminating empirical issues 

(Carlyle-Moses et al., 2010). Since the original Liu model (Liu, 1997) does not account 

for canopy sparseness, Carlyle-Moses and Price (2007) proposed its analytical form for 

sparse canopies. The Liu model relies on the same set of parameters as the Gash model. 

Although Junqueira Junior et al. (2019) investigated both the Gash and Liu 

models for the Atlantic Forest biome in a dry year (2014), there is a lack of 

understanding how to model canopy interception during prolonged drought periods 

(successive dry years). Tropical forests are well-known to change their structure in a 

delayed process after drought conditions (Rowland et al., 2018). Thus, a prolonged 

monitoring period is crucial to address this behavior. For addressing the above 

knowledge gaps, we aim to answer the following questions: (i) Is there a better 

approach for retrieving E̅ for drought periods?; (ii) Are additional energy sources 
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important for canopy evaporation? In the positive case, are they increased under 

prolonged droughts?; (iii) Is the Gash or the Liu model better for simulating canopy 

interception under drought conditions? The canopy interception modeling for a 

prolonged drought period is a novel approach in tropical regions. Thus, with these 

results, we want to support decision-making of the international community based on 

climate change scenarios. 

 

2. Study area 

 This study was conducted in a semi-deciduous Atlantic Forest remnant (AFR) in 

southeastern Brazil. The AFR covers an area of 6.35 ha with an Oxisols soil type 

(USDA Soil Taxonomy) (Figure 1). The topography is mostly undulating with slopes 

from 5 to 15% (Junqueira Junior et al., 2017). The forest stand is surrounded by dry 

areas mostly consisting of cropland, urban areas, and bare soils (Figure 1a). As a 

consequence of uneven heating of the surfaces, such a configuration can affect the 

micrometeorology of the forest, since the surrounding environment may provide an 

additional energy source (Kochendorfer and Paw, 2011). 
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Figure 1. The location of the AFR: (a) spatial distribution of the monitoring sets and 

surrounding areas; (b) rain gauge and stemflow apparatus; (c) drone image highlighting 

the AFR canopy gaps (red arrows) and the Meteorological Tower (MOT); and (d) the 

bottom view of the MOT. 
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One of the primordial characteristics of AFR is its semi-deciduousness, in which 

up to 50% of the species lose their leaves in response to water deficiency. This shedding 

can be tracked by the leaf area index (LAI) fluctuation, which ranged from 3.7 m
2
 m

-2
 to 

5.0 m
2
 m

-2
 throughout the study period (2013/2019). The AFR is composed of 136 

different species (DBH > 5 cm) with a density of 2,036 individuals ha
-1

. According to 

Oliveira-Filho et al. (1994), the most abundant species are Xylopia brasiliensis, 

Copaifera langdorffii, Ocotea odorifera, Sclerolobium rugosum, Amaioua guianensis, 

and Tapiria obtusa. Most of these species are within the 5 – 15 cm (67%) and 15 – 25 

cm (25%) DBH ranges (Junqueira Junior et al., 2019). 

The forest canopy consists of a scattered upper layer of emergent trees (~ 20 m 

height), a main layer (10 – 15 m height), and an under-layer mostly composed of shrubs 

and seedlings. Canopy gaps are observed throughout the area due to falling trees, 

resulting in a degree of sparseness to the AFR (Figure 1c). 

 The Köppen climate classification is Cwa, which means a seasonal precipitation 

pattern that splits the hydrological year into a wet (October to March) and a dry (April 

to September) period. The long-term annual precipitation is 1,462 mm, of which 81% 

falls in the wet season (Instituto Nacional de Meteorologia – INMET; access link: 

http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas). January, 

February, and December are the wettest months, together accounting for 53% of the 

average annual precipitation. The maximum and minimum average temperatures are 

22.8 °C (February) and 16.9 °C (June and July), respectively. The average relative 

humidity ranges from 62.3% in August to 79.8% in December. Furthermore, an average 

wind velocity of 2.5 m s
-1

 (± 0.25) is expected to hit the forest canopy in either an 

easterly or northeasterly direction. 

http://www.inmet.gov.br/portal/index.php?r=clima/normaisClimatologicas
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 The analyzed period spanned from 2013 to 2019 and included one 

meteorological year with slightly below-average precipitation (2013), followed by six 

years with precipitation well below the long-term average (Figure 2). Such climate 

anomalies are the consequence of changes in the regional atmospheric circulation and 

an associated blockage of cold fronts from the south and moisture from the Amazon 

(Nobre et al., 2016), impairing the action of the South Atlantic Convergence Zone 

(SACZ), which brings significant amounts of rainfall in summer. 

 

 

Figure 2. Precipitation anomalies from 1981 to 2019 according to INMET’s data 

highlighting the study period (2013: blue; 2014 to 2019: red). 

3. Material and Methods 

3.1  Experimental design and monitoring strategies 

 The present study was conducted with the objective of monitoring a broad 

period from January 2013 to December 2019, encompassing seven years of 

measurements. This is a novelty in terms of canopy interception modeling, as most of 

the studies have been carried out for two years or less (Cuartas et al., 2007; Fan et al., 

2014; Ghimire et al., 2017; Holwerda et al., 2012; Sadeghi et al., 2015). Gross 
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precipitation (GP) was measured using a tipping bucket rain gauge with 0.20 mm 

resolution (Campbell Scientific CR10X) installed at the top of a 22-meter 

meteorological tower (MOT) in a 10-minute-time-step configuration (upscale to one 

hour). The MOT was placed inside the AFR and was equipped with meteorological 

instruments and a totalizing rain gauge.  

GP for both the bucket tipping and the totalizing gauge agreed well (rain gauge 

= 1.047 * tipping bucket, r² = 0.95) according to Junqueira Junior et al. (2019) (from 

September 2012 to March 2015). Three external rain gauges were installed around the 

AFR to obtain improved data from 2016. Their measurement reliability was assessed by 

comparing the daily average of the external gauges (y, mm) with a gauge operated by 

INMET (x, mm) located 2 km from the forest. The measurements matched with good 

agreement (y = 1.019 * x, r² = 0.98). 

Throughfall (TF) was measured using 32 Ville de Paris-type rain gauges (Figure 

1). Junqueira Junior et al. (2019) observed low standard errors for this configuration, 

implying high spatial representativeness. These gauges were built with an open area of 

378.5 cm
2
 and installed 150 cm above the ground to avoid splash-in. TF measurements 

were carried out at least four hours after the end of a rainfall event, except for those that 

occurred in the late afternoon, in which readings were taken the next morning. 

A stemflow (SF) apparatus with a total of 32 measuring points was installed in 

the tree shading the rain gauges. This apparatus consists of a hose slit to the length and 

nailed to the trunk in a spiral configuration. The SF drained into a vessel and was 

collected at the same moment as TF. Trees were selected based on both abundance and 

DBH to represent the forest structure as close as possible. 

Meteorological variables were monitored above the forest canopy in a 10-minute 

time step and included as an l-hour average. Wind velocity (m s
-1

) and direction (°) 
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were measured by the Wind Speed and Direction Set Smart Sensor (S-WSET-A). The 

incoming and outgoing radiation (W m
-2

) was measured by a Solar Radiation Smart 

Sensor – Silicon Pyranometer (S-LIB-M003). Air temperature (°C) and relative 

humidity (%) were measured using a 12-bit Temperature/Relative Humidity Smart 

Sensor (S-THB-M002). 

3.2  Interception measurement 

 The preceding measurement provided a daily dataset in which the canopy 

interception (CI) was determined by canopy water balance. Since TF + SF is the net 

precipitation (NP) (i.e. the parcel of GP which reaches the forest floor), CI can be 

obtained as follows: 

 CI = GP − (TF + SF) (1) 

3.3  Canopy interception modeling 

3.3.1 Gash model for sparse canopy (Gash et al., 1995; Gash, 1979) 

 The Gash revised analytical model (Gash et al., 1995) replaced the original 

version (Gash, 1979) to correct some physical inconsistences and to account for forest 

sparseness. Two major changes were made: first, the parameter pertaining to 

evaporation rate per unit area basis (E̅, mm h
-1

) was replaced by evaporation originating 

exclusively from the canopy (E̅c, mm h
-1

). Evaporation for the entire area can be scaled 

to the canopy area as: 

 
E̅c =

E̅

c
 (2) 

where c is the canopy cover fraction (c = 1 – p); and p is the free throughfall coefficient. 

The second modification was related to the fact that the rainfall fraction directed 

to the trunks (pt) only occurs after canopy saturation (Gash et al., 1999). In this regard, 

the sparse model is compound by climate and structural parameters. The structural 
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parameters describe the canopy excluding the stems. Sc (mm) is the canopy saturation 

capacity relative to the canopy cover fraction (c), while stems are represented by the 

trunk saturation capacity (St, mm) and pt. For the climate parameters, E̅c (mm h
-1

) and 

the rainfall rate (R̅, mm h
-1

) describe the weather influence on evaporation for saturated 

canopy conditions throughout the entire period. A rainfall rate ≥ 0.5 mm h
-1

 was 

adopted as the threshold for canopy saturation (Gash, 1979). 

Overall, the Gash sparse model is based on three phases: (i) the wetting phase, in 

which GP is lower than necessary for canopy saturation (P
’
G, mm); (ii) the saturation 

phase, in which rainfall surpasses P
’
G; and (iii) the drying phase, in which no more 

precipitation occurs (Table 1). In addition, this model considers that these phases occur 

separately for each rainfall event, and therefore an adequate time for complete canopy 

dryness must be defined. This was accomplished using the daily interception database. 

 

Table 1. The revised analytical model of Gash. 

Interception loss components Gash sparse model  

Small storms insufficient to saturate the 

canopy (m). 

c ∑ GPj

m

j=1

 (3) 

Wetting phase for n rainfalls that 

saturate the canopy (> P
’
G). 

ncP′G − ncSc (4) 

Saturated phase where evaporation 

happens until rainfall ceases. 

(
cE̅c

R̅
) ∑(GPj − P′G)

n

j=1

 (5) 

Drying phase 
ncSc (6) 

Evaporation from trunks, for q storms (> 

St/pt) saturating the stems and the n – q 

that do not saturate. 

qSt + pt ∑ GPj

n−q

j=1

 (7) 

Rainfall amount necessary to saturate the 

canopy. 

P′G = −
R̅Sc

E̅c

ln [1 −
E̅c

R̅
] (8) 
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3.3.2 Liu model (Liu, 1997) 

 The Liu model (Liu, 1997) considers exponential wetting of the canopy instead 

of a water-box approach. This gradual storage resembles the wetting on a stratified 

canopy, where the bottom leaves only receive rainfall after it has been stored on the 

upper layers (Carlyle-Moses et al., 2010). This model is also applied to individual 

events that reach a completely dry canopy. The single storm analytical form for sparse 

canopy was proposed by Carlyle-Moses and Price (2007): 

 
𝐶I = c [Cmc [1 − exp [(−

1

Cmc
) GP]] × [1 −

E̅c

R̅
] +

E̅c

R̅
GP] (9) 

where Cmc is the canopy plus trunk storage capacity (i.e. Sc + Stc); and Stc is the trunk 

saturation capacity scaled to the canopy as Stc =
St

c
. 

 Further assumptions include (Carlyle-Moses et al., 2010): (i) storage capacity is 

reached exponentially; (ii) exponential wetting differs from the water-box approach 

because drainage starts before canopy saturation; (iii) canopy and trunk storages are 

accounted together; (iv) there is no empirical parameter. 

 

3.4  Retrieving the model parameters 

3.4.1 Structural parameters 

 The p coefficient was derived as the angular coefficient of the linear regression 

between TF and GP for events below 1.9 mm (Jackson, 1975). This value ensures that 

the canopy is still unsaturated. Hence, c = 1 − p. Canopy storage capacity per unit area 

(S) follows Valente et al. (1997), and it is scaled to the canopy area as Sc = S/c . For 

the stems, St and pt were derived from the relationship between SF and TF (Valente et 

al., 1997). 
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 Canopy interception modeling has demonstrated some sensitivity to canopy 

storage capacity (S) (Linhoss and Siegert, 2016) and it has been suggested that its 

seasonality should be considered (Wallace and Mcjannet, 2008). This is of concern in 

the AFR due to its semi-deciduousness, and therefore a sensitivity analysis was 

performed to track its seasonal relevance. Sensitivity was assessed by varying the S 

value in 10%, as this range encompasses most of the S in tropical forests worldwide 

(Cuartas et al., 2007; Dykes, 1997; Ghimire et al., 2017; Junqueira Junior et al., 2019). 

The other structural parameters were not evaluated as they have previously 

demonstrated low sensitivity to different forest stands (Pereira et al., 2016). 

 

3.4.2 Climate parameters 

 Two methods were applied to derive evaporation from a saturated canopy (E̅). 

The first regards the Penman-Monteith ( EPM) method defined for a wet-canopy 

condition (R̅ > 0.5 mm h
-1

), where the roughness resistance (rs) can be neglected 

(Monteith, 1965): 

 
EPM =

∆Rn + ρacpga(es − ea)

λ(∆ + γ)
 (10) 

where Δ is the slope of the saturation vapor pressure curve (kPa °C
-1

); Rn is the net 

radiation (MJ m
-2

 h
-1

); ρa is the mean air density at constant pressure (kg m
-3

); cp is the 

specific heat of the air (MJ kg
-1

 °C
-1

); ga is the aerodynamic conductance (m s
-1

); es is 

the saturation vapor pressure (kPa); ea is the actual vapor pressure (kPa); (es – ea) is 

known as the vapor pressure deficit (kPa); λ is the latent heat for water vaporization (MJ 

kg
-1

); and γ is the psychrometric constant (kPa °C
-1

). 

 Aerodynamic conductance (ga) was determined following the FAO-56 (Allen et 

al., 1998) recommendation for a nearly neutral condition: 
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𝑔𝑎 = {

𝑘

ln[(𝑧 − 𝑑)/𝑧𝑜]
}

2

∗ 𝑢 (11) 

where k is the von Kármáns’s constant velocity (0.41); u is the wind velocity (m s
-1

) 

measured at the MOT; z is the height of wind speed measurement (22.0 m); d is the zero 

plane displacement height (m); and zo is the roughness length governing transfer of 

momentum, heat, and vapor (m). The parameters d and zo can be defined by: 

 
d =

2h

3
 (12) 

 zo = h ∗ 0.123 (13) 

where h is the mean tree height of the AFR (10.2 m). 

 The second method was proposed by Gash (1979) as the linear relationship 

between GP and CI, whose slope is  E̅/R̅. This methodology is known as the TF-based 

evaporation from saturated canopy conditions (ETF). Such an approach demands 

previous determination of the rainfall rate parameter (R̅), which is the median from all 

hourly events greater than 0.5 mm. R̅ and EPM are usually averaged for saturated canopy 

conditions (Fan et al., 2014; Sadeghi et al., 2015), however, the median was firstly 

preferred since these parameters showed a non-normal distribution (Shapiro-Wilk test; 

p-value < 0.05). 

Both E̅ and R̅ were retrieved from the entire period (Gash et al., 1995; Gash, 

1979). However, as our study period encompasses dry years (Figure 2), it is different 

from the previous ones, and therefore a different canopy-atmosphere relationship can be 

expected. Thus, these parameters were also determined annually to detect the effects of 

dry weather conditions on canopy interception. Figure 3 clarifies the methodology. 
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Figure 3. Methodological flowchart for canopy interception modeling. 

 

3.5 Performance of the models 

 The bootstrap approach was carried out in the R language to create samples with 

the same dataset size (473 events) in order to validate the Liu and Gash models. Ten 

samples with replacement were created to address the variability in the canopy 

interception in prolonged drought periods. The models’ performance for both 

calibration and validation was assessed through the mean relative error (MRE): 

 
MRE =  

1

n
∑

|Oi − Ei|

Oi

n

i=1

 (14) 

where Oi is the observed canopy interception (mm); Ei is the simulated canopy 

interception (mm); and n is the number of events. 

3.6  Energy balance 
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 Although minor energy sources and sinks have been evaluated to improve forest 

energy balance (Kilinc et al., 2012), the vertical balance described by EPM was preferred 

in canopy interception modeling. The energy balance of a forest can be described as 

follows: 

 Rn = H + λE + Q (15) 

where H is the sensible heat flux (W m
-2

); λE is the latent heat flux (W m
-2

); and Q is 

the minor energy contribution (W m
-2

). Q can also be defined as the energy storage rate 

(ESR) which is the rate of energy leaving a given forest component as heat flux per unit 

ground area: 

 Q = Qa + Ql + Qb + QG + QP (16) 

where Qa and Ql are the energy rates (as sensible and latent heat, respectively) stored in 

the air column between the MOT instrumentation and the forest floor (W m
-2

); Qb is the 

rate of energy stored in the forest biomass (W m
-2

); QG is the rate of energy stored in the 

soil (W m
-2

); and QP is the rate of energy consumed by the plants for photosynthesis (W 

m
-2

). QG and QP are not considered in this study as they represent a small fraction of 

ESR for tall forests with complex canopies (Dijk et al., 2015; Kilinc et al., 2012). 

 In aiming to overcome the robust instrumentations (such as eddy-covariance flux 

tower) and measurement configurations (temperature and humidity profile of trees and 

air) demanded to study ESR, Michiles and Gielow (2008) proposed an analytical 

approach that requires less information about the forest: 

 
Qa = ρacp∆Ta

∆z

∆t
 (17) 
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Ql = ρaλ∆q

∆z

∆t
 (18) 

 
Qb = mbcb

∆Tb

∆t
 (19) 

where ΔTa (°C) and Δq (kg m
-2

) are the variation in temperature and humidity of the air 

column, respectively; Δz is the height of the air column (22.0 m); mb (kg m
-2

) and cb (J 

kg
-1

 °C
-1

) are the aboveground biomass per unit area and the specific biomass heat, 

respectively; Δt (s) is the interval between two measurements; and ΔTb (°C) is the 

variation in the biomass temperature. 

 Ta and Tb were considered the same for intervals without rainfall. The variation 

in air temperature (ΔTa) was that from one hour before the onset of the rainfall to the 

lowest temperature during the event. The air humidity (q) values followed the hours 

considered for Ta. Regarding the fresh biomass, Tb is a well-known lagged temperature 

expected to differ from that of the air (Haverd et al., 2007) once rainfall begins. 

However, Dijk et al. (2015) suggested the wet-bulb temperature (Tw) to represent the 

rapid drop of Tb as a consequence of the evaporative cooling. Tw was determined 

following Stull (2011). 

 The AFR aboveground biomass was firstly determined for each species through 

a pantropical allometric model proposed by Chave et al. (2014) for tropical forests 

worldwide. The fresh biomass of 5,142 individuals totaled 918.8 Mg, occurring in an mb 

of 14.5 kg m
-2

. Determining the specific heat of biomass (cb) is challenging since it 

demands knowledge of the moisture content and the temperature of tree traits (Michiles 

and Gielow, 2008). Furthermore, it varies among species, thus configuring as a costly 

and time-consuming endeavor. In this sense, the proposed value of 2407 J kg
-1

 °C
-1

 for 

the Amazon forest (Michiles and Gielow, 2008) was applied in this study. 
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4. Results 

4.1  Gross precipitation, throughfall, stemflow, and canopy interception 

 Gross precipitation (GP) for the entire period (2013-2019) was 7,303 mm, 

varying from 894 mm (2016) to 1,178 mm (2019) (Table S1). An average rainfall rate 

of 15.4 mm d
-1

 (ranging from 0.33 mm d
-1

 to 93.6 mm d
-1

) was observed on a daily 

basis for a total of 473 events, with the highest average observed in 2017 (18.9 mm d
-1

; 

57 events) and the lowest in 2015 (13.1 mm d
-1

; 81 events). 

A remarkable seasonality was observed, since at least 75% of the GP (Figure 4) 

occurred in the wet period (October to March). These events showed intensities which 

ranged from 14.1 mm d
-1

 to 18.5 mm d
-1

 and from 8.1 mm d
-1

 to 18.8 mm d
-1

 for the wet 

and dry periods, respectively. 

 

Figure 4. Seasonality of the gross precipitation (GP), canopy interception (CI), 

throughfall (TF), and stemflow (SF). 

 Throughfall (TF) accounted for 5,716 mm, representing the greatest parcel of the 

rainfall portion (78%). There is a decrease in TF contribution in the dry years (Table S1) 

as the study period encompasses one “normal” year (2013) and six years with 

precipitation below the long-term average (dry years). The lowest TF/GP was observed 
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for 2015 and 2018, coinciding with the lowest daily rainfall intensities (i.e. the 

meteorological conditions in these years seemed to provide greater evaporation). 

Furthermore, TF followed the seasonality of the region, in which 84% occurred during 

the wet period (Figure 4). 

 Stemflow (SF) was the minor contribution of rainfall reaching the forest floor. 

Only 0.5% of GP was derived to SF on average, which is a similar value to those found 

by Junqueira Junior et al. (2019) and Terra et al. (2018).  

 Canopy interception (CI) accumulated to 1,548 mm (21% of GP) and ranged 

from 16% in 2013 to 24% in 2015. Interception was greater in all dry years when 

compared to 2013 (Table S1). Moreover, up to 89% of the water returning to the 

atmosphere occurred during the wet period which follows GP seasonality (Figure 4). 

4.2  Simulation results and model performance 

 Canopy interception modeling was performed in two ways: (i) a single 

calibration for the entire period; and (ii) calibration of a set of parameters for each year 

separately. Both approaches were tested using the Liu and Gash models. 

The canopy (S = 1.22 mm, p = 0.28, St = 0.029 mm, pt = 0.01) and weather (ETF 

= 0.16 mm h
-1

, EPM = 0.11 mm h
-1

,  

R̅ = 1.78 mm h
-1

) parameters were the same for both models for the entire period. 

Regardless of applying ETF or EPM, the models had a poor performance, underestimating 

CI. In applying ETF, Gash and Liu estimated a CI of 1,192 mm and 1,132 mm, 

respectively. 

A modification regarding the yearly approach was proposed to estimate ETF 

(hereafter EI%). Following Gash (1979), the slope of the linear regression between CI 

and GP for the events that saturate the canopy (GP > 1.9 mm in the present case) is E̅/R̅. 

However, some events with small CI/GP seemed interfere with the linear regression 
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throughout the drier years (Table 2), and hence underestimated evaporation. Therefore, 

five CI/GP ratios were tested (3%, 5%, 10%, 15%, and 20%) as thresholds for 

discarding rainfall events in order to improve ETF. The best estimates are presented in 

Table 2 together with the linear regression coefficients. Despite the natural variability of 

the phenomenon (CV ~ 76%), the linear model generally showed superior performance 

as the simulated CI approached the observed values (Figure 5). 

Table 2. Yearly evaporation parameter (Gash 1979) and the proposed methodology 

(EI%) with the slope parameter (a) of the linear regressions and the respective R
2
.
 

  All events   Event elimination   § 

Year ETF† a R²   EI% a R² Threshold (%) Events ‡   EPM �̅�  

2013 0.06 0.0501 0.1574   0.13 0.1059 0.4914 5 7   0.11 1.27 

2014 0.19 0.0837 0.2206   0.29 0.1247 0.3925 3 3   0.12 2.29 

2015 0.29 0.1611 0.324   0.29 0.1657 0.3662 3 4   0.09 1.78 

2016 0.25 0.1650 0.4318   0.26 0.1735 0.4851 5 4   0.10 1.52 

2017 0.18 0.0863 0.2981   0.35 0.1708 0.5981 15 10   0.13 2.03 

2018 0.21 0.1379 0.733   0.27 0.1785 0.6588 5 1   0.09 1.52 

2019 0.14 0.1079 0.5647   0.18 0.1427 0.6655 15 8   0.11 1.27 

†
Considering all events. 

‡
Number of eliminated events. 

§
Applied for all simulations. 

 

 

 



69 
 

 
 

Figure 5. Total observed and simulated canopy interception (CI) based on three 

different methodologies for retrieving E̅, two models (a: Gash; b: Liu), and the yearly 

approach (Modified Gash). 

At this point, one can notice the increase in evaporation for 2014 and 2017 (> 

0.1 mm h
-1

), which is even greater than most of the values retrieved by the EPM, with the 

exception of 2013. This increase corresponds to the largest precipitation deficit of our 

study period confirming previous concerns regarding canopy interception dynamics 

throughout drier years (Figure 6). 

 

 

Figure 6. Relationship of the precipitation anomalies with: (a) the Penman-Monteith 

evaporation (EPM) and (b) net radiation (Rn); and (c) the yearly cumulative frequencies 

of rainfall rate. 

In addition, the inter-annual variability of the canopy parameters was also tested, 

as the forest could respond differently under drought conditions (Corlett, 2016). 

Therefore, a sensitivity analysis was performed to assess the impact of S in the 
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modeling. For this purpose, S was varied by ± 10% (i.e. 1.10 mm and 1.34 mm). The 

results did not differ by more than 4% and were in agreement with Carlyle-Moses and 

Price (2007). In this sense, the S determined for the entire period is suitable for the 

yearly approach without having significant impact on the simulation. 

 Next, the yearly approach was further explored in this study as it showed the 

best results (Figure 5). Both the Gash and Liu models enhanced their performance 

regarding EPM by applying this methodology (Figure 7). The CI for EPM was 

underestimated by 734 mm and 775 mm for the Gash and Liu models, respectively. 

Otherwise, in considering EI% the Gash model overestimated CI by 71 mm, whereas the 

Liu model underestimated it by 13 mm. The Liu model underestimated CI by only 

0.85%, and provided a yearly simulation which was closer to the observations (Table 3). 

Furthermore, despite the fact that the Gash and Liu models were developed to simulate 

long-term CI, their performance on an event basis was also satisfactory, with MRE of 

0.48 and 1.23, respectively. 

 

Figure 7. Observed and simulated cumulative canopy interception (CI) by both Gash (a, 

b) and Liu models (c, d) applying EI% (a, c) and EPM (b, d). 
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Table 3. Yearly canopy interception with EPM and EI%, using both the Gash and Liu 

models. 

Year Observed (mm) 

EI% EPM 

Gash (mm) Liu (mm) Gash (mm) Liu (mm) 

2013 177 199 189 132 126 

2014 186 195 185 110 105 

2015 251 262 246 121 113 

2016 199 214 204 97 93 

2017 238 245 234 103 98 

2018 231 251 237 115 109 

2019 266 253 240 135 129 

Entire Period 1548 1619 1535 814 773 

 

 The Liu model overcame the Gash model when applying EI% in the validation. 

The Liu model presented MRE ranging from 0.39 to 0.56 and differences in total CI of -

0.57 ± 63 mm for ten bootstrap samples, whereas the Gash model presented MRE 

ranging from 0.40 to 0.53 and differences in total CI of 45.5 ± 172.6. 

 

4.3  Forest energy budget 

The colored areas displayed in Figure 8 represent each parcel of minor energy 

sources’ and sinks’ contribution to Q. As expected, Qa and Qb were the greatest 

fractions regardless of the year analyzed (together accounting for up to 94% in 2013), 

attaining the maximum significance of -96.4 W m
-2

 and -108.8 W m
-2

, respectively. Ql 

became more negative toward 2019, reaching 26% of Q. Although 2017 presented the 

highest contribution (-58.6±52.5), there was no clear trend in Q (Table S2), revealing 

that minor energy sources are important for canopy evaporation, regardless of climatic 

conditions. 
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Figure 8. Individual importance of the energy stored in the forest. Qa: sensible heat; Ql: 

latent heat; Qb: energy stored in biomass; Q: energy stored in the AFR. 
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Supposing that Q is fully converted to latent flux, we can add it to the vertical 

energy balance described by EPM. Figure 9 highlights the importance of Q in the 

“normal” year (2013) as EPM + Q approached EI% when scaled to the canopy (EcI%). 

However, this was not observed in the dry years. This evidences that unaccounted 

energy sources are likely occurring, which demands evaluation. 

 

 

Figure 9. Comparison of the evaporation parameters (EPM and EcI%) by accounting for 

Q as a potential source for evaporation (EPM + Q). EPM is the evaporation rate from 

Penman-Monteith; EcI% is the evaporation rate from the new methodology scaled to the 

canopy; Q is the energy stored within the forest. 

5. Discussion 

5.1 Canopy water balance 

 Canopy interception and water partitioning are driven by both weather and forest 

structure (Zheng and Jia, 2020). In this study, a TF/GP of 78.3% was obtained over an 

observation period of seven years. This value is lower than those observed by Junqueira 

Junior et al. (2019), who obtained 87% in the AFR (2012/2015). This period 

encompassed a close to average hydrological year (2012/2013) which resulted in a 
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greater TF. The same was reported for a lower montane tropical forest in Panama (82%; 

Macinnis-ng et al., 2014), a rainforest in Brunei (81.2%; Dykes, 1997), and an Atlantic 

Forest in the Mantiqueira mountain range in Brazil (81.2%; Arcova et al.,  2003), where 

precipitation was close to or above average. Two main characteristics were considered 

to explain increased TF in wet years (Junqueira Junior et al., 2019; Ghimire et al., 

2017): (i) rainfall amount and intensity; and (ii) consecutive rainy days. 

Despite the importance of rainfall characteristics on canopy partitioning, they 

did not seem to be the primary cause of decreasing TF in drier years, since the 

cumulative frequencies of the event classes (Figure 6c) were not statistically different 

(ANOVA 5% of significance). However, a significant decrease in TF/GP was observed 

(Table S1) along with an increment in evaporation demand (Table 2). This means that 

evaporation is the leading cause of the canopy water balance in the AFR. 

The increased CI/GP ratio (21.2%) in the dry years is similar to that observed by 

Holwerda et al. (2012) for a lower montane forest in Panama (21.6%), where more 

intense atmospheric dynamics occurred. EPM increased with precipitation anomalies, 

indicating that the drier the year, the higher the atmospheric demand during rainfall 

events (Figure 6a). Although Rn is the main driving force for evaporation (Figure 6b), 

this is not sufficient to explain the observed evaporated water, since CI tended to be 

underestimated when applying EPM. The Penman-Monteith evaporation calculation 

requires hours of meteorological data when rainfall intensity (R) is greater than 0.5 mm 

h
-1

, which guarantees the models’ evaporation condition during rainfall. Instead, 

atmospheric conditions of the canopy during the rainless periods are also accounted for 

when determining the evaporation rate from daily events (i.e. Ei%). The significant 

improvement of CI simulation applying Ei% stresses that the meteorological conditions 

of rainless periods (intra and inter-events) are crucial for modeling canopy interception. 
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This increment can be attached to additional energy sources (Dijk et al., 2015; 

Kochendorfer and Paw, 2011; Michiles and Gielow, 2008), which are further discussed 

in this paper.  

 The increase in CI was not followed by a significant change in the forest canopy 

structure, as the LAI showed little fluctuation between the years, ranging from 3.7 m
2
 

m
-2

 to 5.0 m
2
 m

-2
. CI was also not sensitive to S, one of the main parameters driving 

canopy interception. This behavior demonstrates that semi-deciduous Atlantic Forests 

may be adapted to drier years (Bonal et al., 2016), at least for shorter periods. In a 

climate change scenario in which drought may be more intense, prolonged, and frequent 

(Corlett, 2016), a drier and warmer atmosphere and higher incoming radiation (more 

cloudless days) will lead to an environment with higher evaporation. The increase in 

evaporation in such a scenario will exacerbate water scarcity in Southeastern Brazil, 

primarily in the watersheds dominated by Atlantic Forests (Mello et al., 2019). 

SF had the lowest contribution to canopy water balance (Table S1), accounting 

for only 0.5% of GP. Terra et al. (2018) related the low SF to the canopy architecture of 

main species which favor evaporation. Our findings support this assumption, as SF 

decreases as Ei% increases. In comparing 2013 (a “normal” meteorological year) and 

2017 (the driest studied year), SF was greater in the first year (9 mm), matching with 

the extremes of canopy evaporation (0.13 mm h
-1

 and 0.35 mm h
-1

, respectively). A 

greater SF/GP ratio has been reported for tropical forests with a significant presence of 

palms and small trees (Germer et al., 2010; Holwerda et al., 2012; Macinnis-ng et al., 

2014), as they present an array of branches which favors the funneling ratio. SF 

contribution in the AFR is of minor relevance due to the predominant horizontal 

position of leaves on the upper trees (Terra et al., 2018) and the high observed 

evaporation. 
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5.2 Modeling canopy interception 

 The canopy interception modeling will focus on the yearly approach, as it 

demonstrated the best results in simulating CI over continuous dry years. The 

application of EI% improved the simulation (Table 3) for both models, and provided 

similar to or even better results than other studies (Cuartas et al., 2007; Ghimire et al., 

2017; Holwerda et al., 2012). These results are even more satisfactory due to the 

extension of the study period (most of the related studies spanned up to 2 years) and the 

unusual weather condition faced in those years. Furthermore, one can realize how the 

Liu model matched CI for the driest years of 2014 and 2017 when performed with EI% 

(Table 3), indicating that this array is the best choice when dealing with CI for a tropical 

forest under drought conditions. The validation reinforces these results, where the Liu 

model showed the best performance in bootstrap samples. The modeled CI was within 

the standardized error of the observations on the event scale, confirming the spatial 

representativeness of the arrangement (Junqueira Junior et al., 2019) and the suitability 

of the proposed methodology. 

 The Liu model performed best in the AFR (Figure 7), indicating an exponential 

wetting of the canopy in which the upper leaves are become wet faster than the 

sheltered ones. This approach better represents the dynamics of canopy interception, as 

the closer the storage gets to saturation, the lower the storage is, since a fuller reservoir 

drains more water toward the forest floor. The Liu model underestimated CI by 1.9 mm 

for the AFR, whereas the Gash model overestimated it by 4.5 mm when only 

considering events lower than 1.9 mm. This difference may be significant for periods 

when low rainfall is prevalent, making the former model preferable. However, this is 

not sufficient to explain the notoriously superior performance of the Liu model. Overall, 
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CI was greater for the Gash than the Liu model (Table 3). This difference goes beyond 

small events and is mostly related to how the canopy stores water (either the water-box 

or exponential approach).  

Although the exponential wetting has been highlighted as the better approach for 

tropical forests (Holwerda et al., 2010; Junqueira Junior et al., 2019), an analytical 

analysis of both models is fundamental to resolve their conceptual discrepancies. After 

some algebraic manipulation, the models can be rewritten as follows: 

 
CIGASH =  {cP′G (1 −

E̅c

R̅
) + St + ptGP + cGP} + c

E̅c

R̅
GP (20) 

 
CILIU =  {cCmc [1 − exp [(−

1

Cmc
) GP]] × [1 −

E̅c

R̅
]} + c

E̅c

R̅
GP (21) 

where for CIGASH, the ptGP and cGP terms take place for the non-saturating events 

(stems and canopy, respectively). 

 It can be seen that the second member on the right-hand side is the same for both 

models. Thus, the discrepancies between them are in the first member, which describes 

the storing process. Thus, we applied a set of parameters obtained for tropical forests 

(Table 4), in addition to the ones with the lowest and the highest E̅/R̅ determined in this 

study (2013 and 2018, respectively) to understand their differences. The analysis 

demonstrates that the Gash model simulates greater CI than the Liu model with an 

increasing difference up to P’G (dashed line) and a tendency to stabilize thereafter 

(Figure 10). This may not be a concern for short time periods (up to one year) where the 

Gash model slightly overestimated the observed CI (Ghimire et al., 2017; Holwerda et 

al., 2012). In addition, both models are likely to provide satisfactory results for regions 

with low E̅/R̅ and a closed canopy (i.e. Cuartas et al., 2007). On the other hand, larger 

time periods are problematic as the discrepancies accumulate throughout the years, 

especially under extreme weather, as differences between simulated CI were greater for 
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2018 than for 2013 (Figure 10). These aspects highlight the shortcomings of the Gash 

model. 

 

Table 4. Canopy interception parameters for different tropical forests worldwide. 

Study Forest biome Parameters 

E̅/R̅ P'G c Sc Stc Cmc pt 

Junqueira Jr et al. 

(2019) 

Semi-deciduous Atlantic 

Forest 

0.02 1.58 0.83 1.56 0.76 2.32 0.01 

Holwerda et al. 

(2012) 
Tabonuco-type rainforest 

0.20 0.54 0.77 0.48 0.18 0.66 0.05 

Ghimire et al. 

(2017) 
Semi-mature rainforest 

0.17 1.96 0.70 1.71 0.10 1.81 0.03 

Dykes (1997) Low land tropical forest 
0.13 1.13 0.95 1.05 0.11 1.16 0.03 

Cuartas et al. 

(2007) 
Amazon Forest 

0.04 1.11 0.97 1.08 0.06 1.14 0.01 

This study (2013) 
Semi-deciduous Atlantic 

Forest 

0.10 1.79 0.72 1.70 0.04 1.74 0.01 

This study (2018) 
Semi-deciduous Atlantic 

Forest 

0.18 1.87 0.72 1.70 0.04 1.74 0.01 
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Figure 10. The behavior of the storing process of the Gash and Liu models regarding 

different sets of parameters from tropical forests worldwide. The dashed line represents 

the minimum rainfall to saturate the canopy (P’G). 
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Moreover, another caution is required before selecting the best model. From the 

range of parameters encompassing tropical forests worldwide, Gash overestimates CI 

with regard to Liu saving the set of parameters from Junqueira Junior et al. (2019). The 

variation of c, pt, Sc, and E̅/R̅  for other studies only influenced the discrepancies 

between the models without reversing the trend (Figure 10). The reversion occurs as a 

consequence of the greatest Stc determined by Junqueira Junior et al. (2019). Unlike 

Gash, the Liu model does not split the storage between Stc and Sc; however, it does 

account for a total storage (Cmc) which is filled at the onset of the rainfall. As Stc was 

almost 50% of Sc, either an overestimation of Cmc or an underestimation of P’g (since it 

only considers Sc) seems to be the reason for the poorer simulation provided by the 

Gash model in Junqueira Junior et al. (2019). The above Stc demands a rainfall amount 

> 78 mm to saturate the entire canopy, which is not feasible even for studies that have 

considered the funneling ratio for determining the capacity of trunks to store water 

(Carlyle-Moses et al., 2010). Thus, future studies dealing with significantly greater 

values of Stc should consider adding it at least on the determination of P’g for proper 

application of the Gash model. Given the shortcomings of the Gash model as presented, 

we recommend the Liu model for studying the canopy water balance in tropical forests, 

particularly when dealing with prolonged dry periods. 

For different climate zones (where tree species, architecture, age, leaf density, 

canopy sparseness, leaf shedding patterns, rainfall intensity, atmospheric demand, and 

wind velocity might vary), the use of the proposed methodology is encouraged if 

drought conditions are expected. However, some cautions should be taken. First, the 

CI/GP ratio varies according to the vegetation and weather characteristics (Zheng and 

Jia, 2020), and therefore other thresholds for pre-selecting rainfall events should be 

evaluated. Second, since canopy structure may change significantly in different climate 
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zones, we recommend future studies to assess the models’ sensitivity to the canopy 

parameters before modeling interception (Linhoss and Siegert, 2016). 

 

5.3 Potential energy sources in AFR 

 The individual contribution of Qa, Qb, and Ql can be better understood when 

analyzed on an event basis. Overall, Q was negative (Figure 8), indicating a release of 

energy after the onset of rainfall which contributes to evaporation. The Q for the AFR 

reached a value of -196 W m
-2

, which is similar to that observed in the Amazon forest (-

200 W m
-2

) (Michiles and Gielow, 2008). Kilinc et al. (2012) observed that 78% of 

energy was stored in both air and biomass, which is close to the dry years of this study. 

Furthermore, the few positive cases are due to rapid events with a small amount of 

water, where the energy for evaporation was entirely supplied by Rn.  

Ql increased from 2013 and reached its maximum contribution in 2019 (all years 

were greater than 2013; Figure 8). The contribution of Ql increased with the duration of 

the drought, with a maximum energy release of -91.1 W m
-2

. Although Michiles and 

Gielow (2008) observed a release of up to -140 W m
-2

, this amount accounted for Qa 

and Ql together, precluding an evaluation of their individual contributions. The negative 

value of Ql indicates that water vapor condenses, favoring TF. This seems paradoxical 

since CI/GP increased in the drier years. In this sense, upward flux of bulk air is likely 

occurring to provide the observed evaporation, as hypothesized by Dijk et al. (2015). 

This mechanism would carry the condensed drops away from the forest environment, 

providing another opportunity for it to evaporate in the upper atmosphere. The sudden 

and strong vertical updrafts are common during convective rainfall, which partially 

explains the amount of evaporated water, as convective storms are more common in dry 

years.  
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In Figure 9, we can see that EPM was virtually EI% (scaled up to the canopy area; 

EcI%) for 2013 considering the minor energy sources. Although the contribution of Q 

may be linked to the onset of the rainfall, the terms described in Equation (15) seem to 

be the main energy sources expected in average rainfall years. However, only adding Q 

to EPM was not enough to explain the dimension of EcI% in the drier years. Therefore, an 

advection of energy from the surrounding dry areas, which adds up to a strong updraft, 

is likely the cause of the greater evaporation in drought conditions. In agreement with 

our findings, Kochendorfer and Paw (2011) observed that horizontal and vertical 

advection of latent and sensible heat play a significant role in the energy balance in a 

field with an abrupt change from dryland to cropland. Furthermore, Návar (2019) 

highlighted the importance of advection on CI during convective rainfall as a 

consequence of the temperature gradient to the atmosphere and surrounding areas. 

Based on these results, we recommend that future studies consider forest energy balance 

and the abovementioned turbulent mechanisms when forecasting CI for tropical forests, 

primarily when drier years are expected. 

6. Conclusions 

 Canopy evaporation increases in drier years as a consequence of a more 

turbulent environment associated with additional energy sources. Qa, Ql, and Qb play an 

important role in the available energy, as EPM approaches the observed evaporation rate 

(EI%) when added to the minor energy sources in normal meteorological years. 

However, these extra sources are not enough to explain the canopy evaporation in drier 

years. This highlights the importance of advection. 
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The modified approach proposed (EI%) is recommended for prolonged drought 

as it satisfactorily describes the evaporating process, provided that external energy 

sources are indirectly considered.  

 Both the Gash and Liu models satisfactorily simulated canopy interception in the 

AFR when EI% was applied. However, the Liu model stood out in both calibration and 

validation, representing the exponential wetting of the canopy. 
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8. Supplementary Material 

Table S1. The contributions of canopy interception (CI), throughfall (TF), and stemflow 

(SF) to gross precipitation (GP) and the number of rainfall events for the study period. 

Year 

GP† 

(mm) 

GP‡ 

(mm) 

CI 

(mm) 

TF 

(mm) 

SF 

(mm) 

I/GP 

(%) 

TF/GP 

(%) 

SF/GP 

(%) 

N° of 

events 

Events 

with 

SF 

2013 1,381 1,128 177 943 9 15.7 83.6 0.8 70 48 

2014 1,088 977 186 785 6 19.0 80.3 0.7 66 46 

2015 1,246 1,060 251 804 5 23.7 75.8 0.5 81 49 

2016 1,241 894 199 690 5 22.2 77.2 0.6 55 36 

2017 1,097 1,078 238 837 2 22.1 77.7 0.2 57 28 

2018 1,285 987 231 750 6 23.4 76.0 0.6 69 47 

2019 1,147 1,178 266 907 6 22.6 76.9 0.5 75 50 

Entire period 8,484 7,303 1,548 5,716 39 21.2 78.3 0.5 473 304 

†
From INMET. 

‡
From MOT after discarding inconsistent events. 

Table S2. Yearly average rate and standard deviation of the energy stored in the AFR 

(Q) and its components in the air, sensible (Qa) and latent heat (Ql), in biomass (Qb), 

and net radiation (Rn). 

Year Rn† (W m
-2

) Qa (W m
-2

) Ql (W m
-2

) Qb (W m
-2

) Q (W m
-2

) 

2013 123.2±182.6 -14.9±17.1 -2.6±11.9 -22.1±14.7 -39.5±33.0 

2014 128.9±120.1 -14.1±13.2 -6.2±10.8 -18.8±15.4 -39.1±32.2 

2015 97.7±105.4 -18.4±18.7 -9.0±19.3 -19.2±17.0 -46.7±43.5 

2016 109.5±116.2 -16.6±16.6 -6.0±23.0 -16.9±16.2 -39.5±39.8 

2017 140.5±132.0 -24.8±20.7 -9.4±32.2 -24.4±20.8 -58.6±52.5 

2018 97.7±78.4 -16.6±17.3 -8.3±18.5 -14.6±15.2 -39.4±39.7 

2019 114.1±169.7 -20.6±20.9 -13.4±22.7 -18.3±21.1 -52.4±58.3 

†For rainfall conditions on the daytime. 
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Abstract: The complexity of rainfall-canopy interactions is likely to increase under 

extreme weather events. Extreme conditions may affect forest structure and change the 

throughfall (TF) spatial distribution over time. Mistakenly claiming the time stability of 

TF spatial variability can lead to misunderstanding the rainfall-canopy interactions, 

obscuring the relationships between weather, forests, and hydrology. Herein we rely on 

an unprecedented six-hydrological-year event-based dataset from the Brazilian Atlantic 

Forest, spanning from 2013 to 2019 (summing up 427 rainfall events) to assess: (i) the 

effects of a prolonged drought period on the TF time stability; and (ii) the importance of 

forest structure for the TF time stability. The mean relative difference and time stability 

index were applied for different period lengths and related to forest structure, gross 

rainfall amount (GR), maximum rainfall intensity, and drought occurrence to assess 

whether they affect the TF spatial variability. The results indicated that the throughfall 

spatial variability is less time stable during droughts due to a combination of more light 

intensity events with some extreme intensities (> 20 mm h
-1

), which were not observed 

in the non-drought period. Changes in forest structure became evident after drought 

conditions and could not be tracked in studies with short monitoring periods. Since 

throughfall spatial distribution is driven by forest structure (e.g., tree density, species 

dominance, and biomass), such dynamics affected the time stability of the spatial 

variability. The time instability was even greater for GR < 10 mm because of the greater 

rainfall-canopy interactions prior to canopy saturation. Therefore, not accounting for 

forest dynamics and drought effects on the TF spatial variability lead to misinterpreting 

time stability. 

Keywords: Ecohydrology, rainfall partitioning, canopy traits, spatial variability, 

drought, Atlantic Forest 
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1. Introduction  

Forest ecosystems are recognized for their fundamental role in climate 

regulation, water yield, carbon uptake and storage, as well as biochemical dynamics at 

local, regional, and even continental scales (Zhang et al., 2017). However, specific 

hydrological-forest studies are needed to better understand these important ecosystem 

services. These studies can enhance knowledge on water regulation and thereby 

contribute to improve management and conservation policies. This could lead to more 

sustainable practices to mitigate the negative impacts of extreme weather events, such 

as those caused by prolonged droughts which affect people’s livelihood and ecosystem 

health (Coelho et al., 2016; Ellison et al., 2017). This is critical since anomalously dry 

years entail more intense droughts in tropical regions (Nobre et al., 2016), expanding 

their effects over the wet period, and modifying the water budget in many forested 

catchments (Helman et al., 2017). 

Precipitation falling on a forest canopy takes different pathways on its way to the 

forest floor. The incident (or gross) rainfall is routed to the subcanopy by throughfall 

and stemflow (Crockford and Richardson, 2000; Guo et al., 2020). Throughfall (TF) is 

defined as the largest fraction of gross rainfall (GR) which directly passes through the 

canopy along with the portions that drip and splash from it. Stemflow is the minor GR 

fraction which drains from outlying leaves and branches and is channeled to the bole (or 

stem) of plants (Levia and Germer, 2015; Liu et al., 2018; Llorens and Domingo, 2007). 

Such rainfall redistribution is driven by both weather and forest characteristics (Van 

Stan et al., 2020, Yan et al., 2021; Zhang et al., 2015). Rainfall intensity, duration, and 

amount under different wind speeds and directions have been recognized as the main 

meteorological drivers of rainfall redistribution in forests (e.g., Nanko et al., 2011). On 

the other hand, the structure and architecture of the forest canopy are generally 
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considered the most critical biotic features controlling rainfall redistribution in forests 

(Staelens et al., 2006; Terra et al., 2018a).   

Such redistribution entails different spatial and temporal dynamics of TF, being 

an important element of forest hydrology and biogeochemistry dynamics (Metzger et 

al., 2021), as it controls soil moisture patterns (Junqueira Junior et al., 2017; Oliveira et 

al., 2021), nutrient input and redistribution (Mantovani et al., 2021; Tonello et al., 

2021), preferential pathway formation and groundwater recharge (Bialkowski and 

Buttle, 2015; Guswa and Spence, 2011), forest transpiration (Guswa and Spence, 2011; 

Rodrigues et al., 2021b), root growth, and the distribution of tree species according to 

soil water availability (Pressland, 1976; Terra et al., 2018b). Although many studies 

have addressed the connections between TF and soil moisture in both time and space 

(Junqueira Junior et al., 2017; Molina et al., 2019; Oliveira et al., 2021; Rodrigues et al., 

2020; Zhu et al., 2021), further importance should be given to TF spatial variability and 

its drivers to enhance understanding of the rainfall-forest-hydrology connections. A 

variety of internal and external factors are believed to influence TF spatial patterns, but 

the methods for testing them are still in their infancy. This is particularly the case for 

tropical forests. Therefore, there is a great need for studies that address the physical 

relationships related to the influence of canopy properties on forest hydrological 

variables. 

One approach used worldwide in various forest ecosystems is that of time 

stability to assess the dynamics of TF spatial variability over time (Keim and Link, 

2018; Van Stan et al., 2020). This approach highlights the most time stable locations as 

well as those which are persistently wetter and/or drier than the TF spatial average, 

regardless of the time. Keim and Link (2018) studied the temporal persistence of TF 

spatial patterns in forest stands in the US Pacific Northwest region, linking time 
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stability with geostatistical properties. Staelens et al. (2006) analyzed the TF spatial 

variability and temporal stability under a dominant beech tree in relation to the canopy 

cover and found that the TF spatial variability was significantly higher during the leafed 

season than during the leafless season at different time scales. Zhang et al. (2016) found 

that TF spatial variability in xerophytic shrub canopies is temporally stable. Zhu et al. 

(2021) also studied TF time stability in a semi-arid mountain range in China and related 

the stability to the spatial dynamics of soil moisture. Wullaert et al. (2009) classified the 

TF spatial variability in a montane rainforest as “extremely” stable over time regardless 

of the time period analyzed. Therefore, the TF spatial variability seems to be time stable 

in most of the ecosystems around the world.  

However, Zimmermann et al. (2009) observed that the temporal persistence of 

throughfall at individual plots disappeared after one year in a tropical semi-deciduous 

moist forest. The need for longer event-based sample periods to better characterize 

patterns in throughfall distribution was highlighted by Levia and Frost (2006) in a broad 

review about the spatial and temporal variability of throughfall. Long sample periods 

enable observing forest and weather dynamics and how these dynamics affect TF 

variability. None of the abovementioned studies performed an assessment based on 

more than four years of observation and/or included extreme weather conditions, such 

as prolonged droughts. A knowledge gap arises as the time stability of TF spatial 

variability may be affected by intense droughts, which in turn would lead to: (i) greater 

impacts on forest dynamics and biogeochemistry cycles, such as biomass loss due to 

tree mortality, especially for large ones (Ryan, 2015); (ii) favoring of drought-tolerant 

tree species (Esquivel-Muelbert et al., 2018); and (iii) change in carbon balance (Choat 

et al., 2018; Schlesinger et al., 2016).  
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Although several studies have evaluated the temporal persistence of throughfall 

spatial patterns in temperate forests (i.e. Staelens et al., 2006), semi-arid mountain 

forests (i.e. Zhu et al., 2021), and tropical forests (i.e. Wullaert et al., 2009), only a few 

studies considered forest traits as drivers of throughfall time stability, mostly focusing 

on  individual tree traits as opposed to forest traits (e.g., canopy thickness, LAI, leaf 

characteristics, and stem architecture) (Sheng and Cai, 2021; Staelens et al., 2006). 

Aware of this importance, Stogsdill et al. (1986) assessed the relationship between 

thinning and throughfall input to improve soil water availability in a Pinus plantation. 

However, the TF observed in tropical forests where canopies are closed, stratified, and 

complex (Aubry-kientz et al., 2019; Guan et al., 2013) has probably interacted and 

responded to the traits of several trees. Therefore, it is crucial to appraise the 

consequences of changes in forest structure (as a consequence of droughts) on the TF 

dynamics. As further highlighted in this study, the usually short monitoring period has 

blurred the real dynamics of TF spatial distribution, which in turn has led to 

misinterpretation of TF time stability. Tropical forests are dynamic ecosystems that 

respond to soil moisture and nutrient availability, and are therefore subject to constant 

modification (Souza et al., 2021; Terra et al., 2018b). As the spatiotemporal distribution 

of soil moisture and nutrient availablitiy is partly determined by TF (Metzger et al., 

2021; Oliveira et al., 2021), misunderstanding the TF spatiotemporal distribution 

precludes correctly assessing forest growth and dynamics under a changing climate with 

more likely stressful conditions (Anderegg et al., 2020). A better understanding of forest 

resilience therefore depends on a proper assessment of the temporal evolution of TF 

spatial distribution. 

Southeastern Brazil harbors part of the Brazilian Atlantic Forest, one of the 

world’s most biodiverse areas (Myers et al., 2000), with remarkable endemism and a 
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strong hydrological role (Mello et al., 2019; Rodrigues et al., 2021b). However, this 

biome has been highly degraded by the historical expansion of both urban and 

agricultural activities (Dean, 1995; Joly et al., 2014; Ribeiro et al., 2009). There is 

currently ca. 12.4% of the original extent when considering remnants larger than 3 

hectares (SOS Mata Atlântica, access link: https://www.sosma.org.br/), which points 

out the biome devastation degree. Fortunately, the largest remaining Atlantic Forest 

patches are located in mountain ranges, which are advantageous environments from a 

hydrological perspective (i.e. water yield) (Mello et al., 2019; Teixeira et al., 2021). 

This reinforces the importance of the Atlantic Forest for water management due to its 

close relationship with water availability (Terra et al., 2018b). However, long-term field 

data for hydrology and water management are scarce in Brazil since collecting long-

term field data is extremely time and resource consuming. However,  such datasets are 

essential for better resource planning and enable evaluating hydrological behavior at 

different temporal and spatial scales. In brief, they provide a better understanding of 

complex hydrological processes, notably in relation to tropical forest environments.  

Against this background, our study relies on an unprecedented six-hydrological-

year event-based dataset spanning from 2013 to 2019 to track the temporal and spatial 

variability of throughfall in an Atlantic Forest remnant in Southeastern Brazil. The 

study was carried out per hydrological year (October to September) to answer the 

following questions: (i) Do dry conditions affect the time stability of throughfall 

patterns?; (ii) What are the effects of forest structure on throughfall spatial variability 

and time stability under different drought conditions?; and (iii) Have previous studies 

mistakenly suggested throughfall time stability? Considering that the Atlantic Forest is a 

fundamental biome for water resources in Brazil (Mello et al., 2019; Teixeira et al., 

2021), answering these questions can help the eco-hydrological stakeholders address 

https://www.sosma.org.br/
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adaptations to adverse conditions and improve strategies to maintain ecosystem 

services. Moreover, this study aims to stimulate reflection on the suggested throughfall 

time stability in a dynamic environment, as misinterpretation can lead to erroneously 

understanding the rainfall-forest-hydrology connections in a climate change scenario. 

 

2. Material and Methods 

2.1 Study site 

The study site (44°58’15’’ W and 21°13’42’ S) is a 6.35 ha Atlantic Forest 

remnant (Figure 1) in an advanced successional stage after full protection in 1986 

(Souza et al., 2021). The forest is classified as semi-deciduous since up to 50% of its 

trees lose their leaves during the dry season, which is an adaptation to rainfall 

seasonality (Oliveira-Filho and Fontes, 2000). The canopy is stratified, and three tree 

layers can be identified. The main layer consists of trees ranging from 10 m to 15 m in 

height and forms the remnant body. Emergent trees scatter across the main layer with 

~20 m in height (upper layer), whereas small trees, seedlings, and bushes compose the 

understory layer (Junqueira Junior et al., 2019; Terra et al., 2018a). There are canopy 

gaps distributed across the remnant formed by fallen trees (Rodrigues et al., 2021a). The 

position and openness of such gaps are random and mainly depend on the size of the 

felled trees which caused the openness. The study area is upon a gneiss geological 

formation from the Archean period (access link: 

http://www.portalgeologia.com.br/index.php/mapa/#col-form-download-tab). The soil 

is a red Oxisol, with slopes ranging from 5% to 15% in an undulating topography 

(Junqueira Junior et al., 2017), forming a common landscape in Southeast Brazil 

(Atlantic Forest – Oxisol site). 

http://www.portalgeologia.com.br/index.php/mapa/#col-form-download-tab


101 
 

 
 

 

Figure 1. (a) Atlantic Forest remnant geographical location; (b) the plots distribution, 

external rain gauges (RG), and meteorological tower (MOT) location; (c) a rain gauge 

for monitoring throughfall; (d) the rain gauge installed on the top of the MOT. 

The climate is characterized by rainy summers and dry winters with well-defined 

rainfall seasonality. The wet season extends from October to March and is responsible 
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for ~80% of the rainfall, whereas the dry season lasts from April to September. The 

average monthly vertical water balance (rainfall minus potential evapotranspiration) 

ranges from -75.9 mm in August to 158.6 mm in December. The average maximum and 

minimum temperatures are 27.2 ± 1.6 °C and 15.4 ± 2.5 °C, respectively. Wind 

intensity is greatest in September (2.9 m s
-1

) and least in February, May, and June (2.2 

m s
-1

), with slight variations throughout the year. Easterly wind directions prevail in the 

rainy season and northeasterly directions in the dry season. Average sunshine per day 

ranges from 4.9 hours in December to 8.0 hours in August, highlighting the influence of 

clouds during the rainy season. The climate is temperate Cwa according to the Köppen 

classification. These climatological features are based on the 1981-2010 time series 

from a weather station placed 2 km from the Atlantic Forest remnant provided by the 

National Institute of Meteorology (INMET). 

 

2.2 Gross rainfall and throughfall monitoring  

GR was collected from October 2013 to September 2019 using both totalizing 

and tipping bucket rain gauges. Both gauges were installed on the top of a 22 m 

meteorological tower (MOT) (Figure 1d) and presented good agreement between their 

readings (R
2 

= 0.95; Junqueira Junior et al., 2019). The tipping gauge measured rainfall 

at 0.2 mm resolution (Campbell Scientific CR10X) and stored it in a 10-minute time-

step in a Hobbo datalogger. The water collected in the totalizing gauge was drained into 

a 60-L bin placed at the base of the MOT. The readings were performed with graduated 

cylinders of measuring volumes ranging from 0.1 L to 1.0 L. Next, three totalizer rain 

gauges were installed surrounding the Atlantic Forest remnant to correct inconsistencies 

in the GR dataset (Rodrigues et al., 2021a) (Figure 1b). 
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Throughfall (TF) was measured using 31 rain gauges across inventory plots 

(Figure 1c). These plots were selected because they represent the main tree species 

distribution and the terrain features (Oliveira et al., 2021). Such gauges have a collected 

area of 378.5 cm
2
 and were installed 150 cm above the floor to avoid splash-in 

(Rodrigues et al., 2021a). The gauges were equipped with meshes to avoid clogging 

with leaves and debris. The meshes were cleaned at least once a week during the rainy 

season to guarantee representativeness of the measuring observed by Junqueira Junior et 

al. (2019). This representativeness refers to a low standard error in the non-roving 

distribution of the 31 gauges, and periodic maintenance was needed to maintain the 

suitability of the present configuration. 

Throughfall and gross rainfall were monitored four hours after the rainfall event 

to guarantee total dryness of the canopy. The monitoring was carried out the next 

morning for events that had started in the late afternoon. 

2.3 Standardized Precipitation Index (SPI) 

The Standardized Precipitation Index (SPI) is a probabilistic approach to 

characterize drought occurrence, frequency, and duration based on a time series of 

rainfall (McKee et al., 1993). The interesting aspect about this index is that rainfall 

deficit or surplus can be highlighted together with its return period. The SPI was 

selected because it has been widely applied in both Brazillian Savanna (Junqueira et al., 

2020) and Atlantic Forest biomes (Silva and Mello, 2021) for water resource 

management. The second reason is because SPI standardizes the rainfall for a location 

and period of interest (Quiring, 2009), which enables the results of this study (regarding 

drought occurrence) to be compared with others dealing with throughfall spatial 

variability worldwide. 
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The steps for computing SPI were: (i) a monthly time series of rainfall (provided 

by INMET) was accumulated on the scale of a hydrological year (from October to 

September) from 1961 to 2019, resulting in a total of 58 hydrological years. SPI is 

strongly influenced by the time series length and more than 50 years is recommended to 

avoid distortions (Quiring, 2009); (ii) The Gamma-2-parameter probability function was 

fitted to this time series and its adequacy was assessed using the Anderson-Darling test 

(Anderson and Darling, 1952, 1954) at 5% probability level; (iii) the respective 

probability was applied to an inverse standard normal distribution (µ = 0; σ = 1) 

(McKee et al., 1993). The positive and negative deviations are the SPI and indicate 

rainfall surplus and deficit, respectively. Monthly rainfall was integrated from October 

to September to account for drought occurrence in the hydrological year scale, which 

covers the period from 1961/1962 to 2018/2019 in order to analyze the studied period in 

the context of prolonged drought. Different time scales indicate different impacts of 

rainfall deficits on water availability, characterizing the agricultural, meteorological, 

and hydrological droughts (Quiring, 2009). Although long periods (such as the 

hydrological year) are preferred for water resource management, prolonged droughts 

increase forest dynamics, making the use of the hydrological year scale adequate to 

assess their effect on throughfall. Further evidence for considering long periods is that 

forests have a delayed response to droughts (Anderegg et al., 2020; Rodrigues et al., 

2021b). 

The persistent dry weather can also be shown by comparing the gross rainfall 

(GR), air temperature (T), and air relative humidity (RH) of the 2013-2019 period 

(study period) to the regional climatological average (1981-2010). Moreover, the 

maximum rainfall intensity of one hour (imax) was selected from each rainfall event to 
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assess the likely differences on rainfall variability in the presence (or absence) of 

droughts.  

2.4 Spatial variability and time stability 

 The spatial variability of throughfall was assessed on an event scale by means of 

the coefficient of variation (CV) and the 31-rain-gauge datasets collected in the study 

period. The time stability was assessed through the Time Stability Indicator (TSI), 

which is a function of the mean relative difference (MRDj) and the standard deviation of 

the relative difference (𝜎𝑅𝐷𝑖𝑗
) (Minet et al., 2013; Vachaud et al., 1985): 

 
𝑅𝐷𝑖,𝑗 =

𝑇𝐹𝑖,𝑗 − 𝑇𝐹̅̅̅̅
𝑖

𝑇𝐹̅̅̅̅
𝑖

 (1) 

 
𝑇𝐹̅̅̅̅

𝑖 =
1

𝑚
∑ 𝑇𝐹𝑖𝑗

𝑚

𝑗=1

 (2) 

 
𝑀𝑅𝐷𝑗 =

1

𝑛
∑ 𝑅𝐷𝑖𝑗

𝑛

𝑖=1

 (3) 

 

𝜎𝑅𝐷𝑗
= √

1

𝑛 − 1
∑(𝑅𝐷𝑖,𝑗 − 𝑀𝑅𝐷𝑗)

2
𝑛

𝑖=1

 (4) 

In which: RDij is the relative difference of time i in the rain gauge position j; 𝑇𝐹̅̅̅̅
𝑖 is the 

spatial mean of TF on time i; 𝑀𝑅𝐷𝑗  is calculated for all rain gauges and represents the 

behavior of TF in the position j in relation to the spatial average TF. MRDj > 0 

represents wetter locations, MRDj < 0 drier locations, and MRDj ~ 0 locations with TF 

amount close to the forest average. MRDj represents the plots of the Atlantic Forest 

remnant that are wetter, dryer, or closer to the spatial average TF. However, the 

standard deviation of the relative positions indicates how much the TF spatial pattern 
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varies between events (Vachaud et al., 1985). Therefore, it is not appropriate to only 

rely on MRDj to define time stability because its variability (𝜎𝑅𝐷𝑖𝑗
) is also important. 

Therefore, TSI was developed to integrate the effect of MRDj and 𝜎𝑅𝐷𝑖𝑗
: 

 
𝑇𝑆𝐼 = √(𝑀𝑅𝐷𝑗)

2
+ (𝜎𝑅𝐷𝑗

)
2

 (5) 

 The lower the TSI value, the more time stable the location is. Assessing TSI 

differs from MRD because it describes the persistence of the spatial distribution (i.e. the 

TF time stability), whereas MRD describes the expected TF spatial distribution 

throughout the study period. Two approaches were considered to assess the TF time 

stability: (i) the single (from 2013/2014 to 2018/2019) and (ii) the integrated 

(2013/2015, 2015/2017, 2017/2019, 2013/2016, 2016/2019, 2013/2017, 2013/2019) 

hydrological years. 

 

2.5 Forest structure 

Forest structure variables used in this study were obtained from a permanent plot 

network sampled in the Atlantic Forest remnant. A total of 126 plots of 20 x 20 m (400 

m
2
) were established in the fragment in 1987. These plots were re-measured in the years 

1992, 1996, 2001, 2006, 2010, 2015, and 2017. All arboreal individuals with a diameter 

at breast height (DBH) ≥ 5 cm were identified and measured in each plot (Souza et al., 

2021). For the trees which presented tillering, we transformed the diameter to a unique 

value according to the following equation (Macdicken et al. 1991): 

 
𝐷 =  √𝑑𝑛1

2 + 𝑑𝑛2
2 + ⋯ + 𝑑𝑛

2 (6) 

In which: D is the transformed diameter, and dn is the tillered tree diameter.  
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Botanical material was collected and exsiccates were made for species 

identification. Tree nomenclature was standardized using the “Flora do Brasil” 

according to the APG IV classification system (BFG, 2021; The Angiosperm Phylogen 

Group, 2016). We selected the 31 abovementioned plots from the field survey (Figure 

1b) (i.e. each of the 31 forest plots that contained a rain gauge). 

We calculated the following variables for each plot from the forest inventory 

data of 2010, 2015, and 2017: aboveground biomass (AGB), basal area (G), mean 

diameter at breast height (DBH), coefficient of variation from the mean DBH (CV 

DBH), number of trees per hectare (N ha
-1

), species richness (S), Shannon diversity 

index (H), and Pielou evenness index (J) (Table 1). The aboveground biomass for each 

plot was determined by each forest inventory year (i.e. 2010, 2015, and 2017) using the 

equation proposed by Chave et al. (2014) through the Biomass package (Réjou-Méchain 

et al., 2017) in R language (R Core team, 2020). The equation provides individual tree 

AGB by considering the tree diameter (D) and wood density (WD), as well as the site 

coordinates which enable estimating the measure of environmental stress (E). To do so, 

the wood density is achieved from “The Global Wood Density database” (GWD). 

Therefore, the plot AGB was obtained as the sum of the AGB of the trees within the 

plot. 
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Table 1. Description of forest variables measured in the forest inventory of an Atlantic Forest remnant. 

Variable Description Formula 

DBH (cm) 

Mean diameter at breast height - Represents the mean value of the 

tree's diameter measured at 1.30 meters high in relation to the 

ground level of each plot. 

- 

G (m
2
 ha

-1
) 

Basal area – Represents the cross-sectional area of trees at breast 

height; provides the occupation level by wood in an area. 

𝐺 = ∑ 𝑔𝑖

𝑛

𝑖=1

=  ∑
𝜋 .  𝐷𝐵𝐻2

40000

𝑛

𝑖=1

 

DBH in cm 

CV DBH (%) 
Coefficient of variation of the diameter at breast height - 

Expresses the variability of diameters within each plot. 

𝐶𝑉 =  
𝑠

𝐷𝐵𝐻̅̅ ̅̅ ̅̅
 

Where: s is the standard deviation. 

AGB (Mg ha
-1

) 
Aboveground biomass - Defined as all living tree woody biomass, 

expressed as a mass per unit area. 

AGB = exp (−2.024 − 0.896 ∗ E + 0.920 ∗ log 

(WD) + 2.795 ∗ log (D) − 0.0461∗ (log (D)
2
)) 

(Chave et al., 2014) 

N (individuals ha
-1

) 
Represents tree density at the site, i.e., the number of individuals 

per plot in hectares. 
- 

S 
Species richness - Expresses the number of species sampled in a 

specific area. 
- 

H (nats ind
-1

) 
Shannon diversity index - Diversity index based on the 

proportional abundance of the community species. In other words, 

it represents the measurement of the quantity of different species 

𝐻 =  
[𝑁. 𝑙𝑛(𝑁) − ∑ 𝑛𝑖𝑙𝑛 (𝑛𝑖)𝑆

𝑖−1 ]

𝑁
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in a specific area. Where: N is the total number of tree individuals 

sampled in each plot; ni is the number of tree 

individuals sampled of the i-th species; S is the 

number of species sampled in each plot; ln is the 

natural logarithm. 

 

J (nats ind
-1

) 

 

Pielou evenness index - Express the number of individuals 

distribution in relation to the species. 

𝐽 =  
𝐻

𝐻𝑚𝑎𝑥
 

Where: H max is the maximum diversity (ln(S)); S 

is the number of species sampled at each plot. 
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2.6 Multivariable analyses 

We followed the protocol presented in Figure 2 in order to conduct the analyses 

correlating MRD and forest strucucture data. We ran this protocol for both the < 10 mm 

and the > 10 mm set of events. Therefore, we first ran a Principal Components Analysis 

(PCA) (Pearson, 1901; Hotelling, 1933; Jolliffe, 1973) of the annual mean relative 

difference (MRD) data (MRD-13/14, MRD-14/15, MRD-15/16, MRD-16/17, MRD-

17/18, and MRD-18/19) and a PCA for the annual Time Stability Indicator (TSI) data 

(TSI-13/14, TSI-14/15, TSI-15/16, TSI-16/17, TSI-17/18, and TSI-18/19) in order to 

deal with a set of multiple variables. PCA is a much-used unconstrained ordination 

analysis, and is considered the best way to reduce the dimensionality of multivariate 

data to determine what statistically and practically matters. Moreover, this analysis is 

widely used as an exploratory tool which helps to visualize patterns out of multivariate 

data. The basic assumptions of PCA are: (i) multiple variables (multiple variables are 

required to perform the analysis); (ii) variables should be measured at continuous level, 

although ordinal variables are frequently used (see Hoshiyar et al., 2021); (iii) sample 

adequacy: generally, at least 5 to 10 cases per variable is recommended for PCA 

analysis; (iv) linear relationships among variables (it is assumed that the relationships 

between variables are linear, since PCA is based on Person’s correlation coefficients); 

and (v) no significant outliers. Assumptions i, ii, and iii were obviously met. Since the 

variables are scaled prior to the analysis, assumptions iv and v were also met (see 

Tables S1, S2, S3, and S4 and Figures S1, S2, S3, and S4). 
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Figure 2. Flowchart of the statistical analyses used to represent the correlations between 

annual mean relative difference of throughfall (MRDj) and time stability indicator (TSI) 

and forest structure variables in a Atlantic Forest remnant. envfitenvfit 

Thus, we used the envfit function (“vegan” package for R; Oksanen et al., 2020) 

in aiming to interpret the meaning of the PCA outputs with the available forest variables 
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(DBH-10, N-10, G-10, CV DBH-10, AGB-10, S-10, H-10, J-10, DBH-15, N-15, G-15, 

CV DBH-15, AGB-15, S-15, H-15, J-15, DBH-17, N-17, G-17, CV DBH-17, AGB-17, 

S-17, H-17, and J-17) and to only select a subset of forest variables that appear to be 

important for the PCA arrangements. The envfit function is designed to calculate 

regression of supplementary (not “explanatory”) variables on ordination axes of 

uncontrained ordination and test the significance of these regressions by a permutation 

test. Therefore, the forest variables were projected onto the PCA ordination diagrams as 

supplementary variables (i.e. regressions of each forest variable were independently fit 

to ordination axes and their significance was tested by a permutation test, with the 

number of permutations = 999).  

Next, we used redundancy analyses to represent the relationship between the 

MRD and the forest variables, as well as the relationship between TSI and the forest 

variables. Redundancy analysis (RDA) reduces the multivariable universe to an easier-

to-understand two- or three-dimensional space, where the variations of the response 

variables can be related to those of the explanatory variables (ter Braak and Looman, 

1994). Therefore, RDA is a contrained ordination technique (ordination with covariates 

or predictors) used to explain a dataset “Y” using a dataset “X” (Legendre et al., 2011). 

We used the forest dataset (“X”) as the explanatory variable of the scaled MRD dataset 

(“Y”) (as well as the scaled TSI dataset), only including those variables in the forest set 

(“X”) whose vectors were significantly or marginally significant (p-value <0.1) 

according to the envfit outputs for each case (Tables S5, S6, S7, and S8). The 

assumptions of RDA are rather the same as the PCA and have been met for our data 

(Tables S1, S2, S3, and S4).  
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One of the main advantages of both PCA and RDA is the diagram (“biplot”) 

which enables visually interpreting multiple correlations. The variables are typically 

positively correlated when two vectors are close in the diagram and form a small angle. 

 

3. Results 

3.1 Prolonged drought during the study period  

The adequacy of the Gamma PDF to model the frequency distribution of the 

hydrological year rainfall series was confirmed through the Anderson-Darling test 

(Figure 3a). Therefore, the SPI can be applied to assess drought conditions in the study 

region. 

Figure 3. (a) The SPI accumulated frequency (F obs) and the Gamma probability 

distribution; (b) the Standardized Precipitation Index (SPI); and (c) the monthly gross 

rainfall (GR), air temperature (T), and relative humidity (RH) (blue, red, and green bars, 
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respectively) for the study period (2013-2019), with the climatological average (1981-

2010) (black dotted lines). Dark to light bars represent 2013 to 2019 monthly values.  

Dry and wet hydrological years interspersed up to 2011/2012, indicating drought 

seasonality occurrence in the region. However, a prolonged drought period could be 

observed at the end of the time series (Figure 3b). Such a prolonged meteorological 

drought impacts the Atlantic Forest hydrology, as highlighted by Rodrigues et al. 

(2021b) and Souza et al. (2021), and is therefore expected to interfere in the throughfall 

time stability. Thus, the study period was split into two to assess the effects of droughts 

on the throughfall time stability: (i) prolonged drought period (October 2013 to 

September 2018) and (ii) non-drought period (October 2018 – September 2019). Table 

S1 depicts the SPI classification in accordance with the World Meteorological 

Organization (WMO) (World Meteorological Organization – WMO, 2012). 

 GR and RH were below average for most of the months during the study period, 

whereas temperature was greater than average (Figure 3c). Overall, GR was 250 mm 

less than the climatological year average. RH ranged from 58.4% to 74.8% and from 

62.3% to 79.8% for the 2013-2019 and 1981-2010 periods, respectively. Moreover, T 

ranged from 17.2 °C to 23.6°C in the study period, whereas T ranged from 16.9 °C to 

22.8 °C for the climatological average. The behavior of GR, T, and RH indicated that 

the study period was drier and hotter than the average long-term conditions of the 

region. 

The box plots regarding rainfall intensity highlight the different distribution of 

maximum rainfall intensity between the prolonged drought and non-drought period 

(Figure 4). A greater concentration of light rainfall events was observed in the 

prolonged drought period, in which the first, second, and third quartiles were 0.25 mm 

h
-1

, 1.78 mm h
-1

, and 5.08 mm h
-1

, respectively. Conversely, they were 0.76 mm h
-1

, 
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3.05 mm h
-1

, and 7.87 mm h
-1

 during the non-drought period, respectively. However, 

heavier rainfall events were observed in the prolonged drought period, characterizing a 

greater variability of rainfall intensities (Figure 4). This is confirmed by the greater 

coefficient of variation in the prolonged drought (CV = 141%) versus that in the non-

drought period (CV = 108%). 

Figure 4. Histogram and box plot of the maximum rainfall intensity (imax) for the 

prolonged drought (c, d) and non-drought (a, b) periods, respectively. 

3.2 Canopy water balance 

 Box-plot and filtering techniques highlighted 25 rainfall events out of 427 

(encompassing 6 hydrological years) as outliers. These events were then removed 

before the analyses. Annual gross rainfall (GR) ranged from 860 mm (2013/2014) to 

1422 mm (2018/2019). Throughfall (TF) ranged from 707 mm to 1135 mm (2013/2014 

and 2018/2019, respectively) and represented up to 84.5% of GR (2016/2017). Most of 
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the throughfall occurred in the wet season (up to 94.2% in 2015/2016). GP and TF in 

the prolonged drought period added up to 5232 mm and 4097 mm, respectively, with 

TF/GP of 78.3%. In contrast, GP and TF in the non-drought period were 1422 mm and 

1135 (TF/GP = 79.8%), respectively. 

On the event scale, the TF/GR ratio increased with gross rainfall, regardless of 

the period analyzed (prolonged drought or non-drought periods) (Figure 5). TF/GR 

ranged from 2.4% to 99.1% and from 19.8% to 98.1% in the prolonged drought and 

non-drought periods, respectively. The TF/GR followed logarithmic behavior in both 

analyzed periods, with GR describing 60.7% of the TF/GR variability in the non-

drought period (Figure 5b). In contrast, only 33.4% of TF/GR variability was described 

by GR in the prolonged drought period (Figure 5b). The logarithimic tendency was 

similar for small rainfall events (GR < 10 mm) and became different beyond this 

threshold. Moreover, GR represented 99% and 97% of TF’s variability in the prolonged 

drought and non-drought periods, respectively (Figure 5a). The linear pattern is the 

same regardless of the rainfall amount (< or > 10 mm), highlighting an overall 

relationship between these two variables. 

Figure 5. (a) Linear relationship between TF and GR, (b) The ratio of throughfall (TF) 
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to gross rainfall (GR), (c) relationship beteween throughfall spatial variability 

(measured by the coefficient of variation (CV)) and gross rainfall, and (d) relationship 

between throughfall spatial variability and maximum rainfall intensity (imax) 

Evaporation from canopy interception accounted for an average 22.4% of GR, 

ranging from 153.4 mm (17.8%) to 333.8 mm (27.7%) in 2013/2014 and 2015/2016, 

respectively. Canopy evaporation in the prolonged drought added up to 1135 mm, 

accounting for 21.7% of GR, whereas 287 mm (20.2% of GR) was observed in the non-

drought period. As shown in Figure 3a,  the range of canopy evaporation was larger in 

the prolonged drought (0.9% to 97.6%) than in the non-drought periods (1.9% to 

80.2%).  

 

3.3 Gross rainfall, period length, and throughfall time stability  

The TF spatial variability (represented by the coefficient of variation) decreased 

up to the threshold of GR = 10 mm and stabilized at CV = 25%, regardless of drought or 

non-drought condition (Figure 5c), i.e. greater spatial variability occurs for events < 10 

mm, even under different climatological conditions (Table S1). 

The wet and dry plots were more acute for events below the threshold (GR = 10 

mm), whereas MRDj was closer to 0 for GR > 10 mm (Figures 6 and 7). The greater TF 

time stability is remarkable for greater amounts of gross rainfall (GR) due to the lower 

fluctuations of MRDj (Figure 7). This is confirmed by TSI, which was 0.25±0.09 and 

0.49±0.21 when only considering events above and below the threshold (GR = 10 mm), 

respectively. Overall, the TF spatial pattern is more sensitive to changes in GR for 

events < 10 mm, since water input to the remnant becomes more homogeneous as long 

as gross rainfall increases. Plots representing the remnant TF average (MRD < 1%) 

varied between the study years and rainfall amount. Regarding GR < 10 mm, plots 70, 
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70, 118, 109, 122, and 65 represented the TF spatial average for 2013/2014, 2014/2015, 

2015/2016, 2016/2017, 2017/2018, and 2018/2019 periods, respectively. In contrast, 

plots 1, 67, 3, 62, 24, 64, and 60 could be used to determine the TF spatial average in 

2013/2014, 2014/2015, 2015/2016, 2016/2017, 2017/2018, and 2018/2019, 

respectively, for GR > 10 mm. 

Figure 6. Throughfall time stability regarding gross rainfall (GR) < 10 mm throughout 

six hydrological years (2013-2019). Temporal stability index (TSI): gray dashed line; 

mean relative difference (MRD): black dots; standard deviation of MRD (𝜎𝑅𝐷𝑖𝑗
): 

vertical bars; SPI: the Standardized Precipitation Index. 
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Figure 7. Throughfall time stability regarding gross rainfall (GR) > 10 mm throughout 

six hydrological years (2013-2019). Temporal stability index (TSI): gray dashed line; 

mean relative difference (MRD): black dots; standard deviation of MRD (𝜎𝑅𝐷𝑖𝑗
): 

vertical bars; SPI: the Standardized Precipitation Index. 

 

Although there were no differences in the metric ranges, the relative positions of 

the inventory plots changed throughout the hydrological years (Figures 6, 7, and S2). 

The most drastic changes in the rank position were observed in plots 45, 62, 96, 100, 

and 101, which changed betweem wet and dry positions. Plots 45, 96, and 101 ranged 

from 19% (21%), 26% (22%), and 57% (43%) drier to 18% (16%), 14% (5%), and 6% 
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(9%) wetter than the remnant TF average for GR < 10 mm (for GR > 10 mm). 

Moreover, plots 62 and 100 ranged from 42% (41%) and 53% (38%) wetter to 15% 

(15%) and 41% (39%) drier than the TF spatial average for GR < 10 mm (for GR > 10 

mm). In contrast, plot 120 was drier than the TF spatial average, while plot 42 was 

wetter than the TF spatial average, regardless of the measurement time. We also 

integrated different time periods to verify the influence of the the dataset lengths on the 

time stability of TF spatial variability. The rank position of the inventory plots changed 

among the different lengths regardless of the rainfall amount, highlighting different time 

evolutions of TF spatial variability for the integrated datasets (from two hydrological 

years to the entire period) (Table 2 and Figures S3 and S4).  
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Table 2. The driest, wettest, and closest to the spatial average TF plots for different period lengths and gross rainfall (GR). 

GR < 10 mm 

  
2013/

2014 

2014/

2015 

2015/

2016 

2016/

2017 

2017/

2018 

2018/

2019 

2013/

2015 

2015/

2017 

2017/

2019 

2013/

2016 

2016/

2019 

2013/

2017 

2013/

2019 

Driest plots 
101 101 120 120 21 21 101 120 21 101 120 120 120 

120 120 101 100 120 120 120 100 120 120 21 101 101 

Average stable plots 

60 70 118 34 102 62 60 34 6 60 34 60 34 

- - 13 - 45 70 70 13 104 70 - 70 70 

- - - - 70 - - - - - - - 45 

Wettest plots 

42 42 115 30 109 41 115 30 115 24 30 24 115 

100 115 24 42 118 42 42 24 42 115 42 42 42 

GR > 10 mm 

  
2013/

2014 

2014/

2015 

2015/

2016 

2016/

2017 

2017/

2018 

2018/

2019 

2013/

2015 

2015/

2017 

2017/

2019 

2013/

2016 

2016/

2019 

2013/

2017 

2013/

2019 

Driest plots 
101 101 120 120 21 21 101 120 21 101 120 120 120 

120 120 101 100 120 120 120 100 120 120 21 101 101 

Average stable plots 

60 6 96 45 127 6 60 96 70 70 6 60 70 

21 67 102 70 45 1 70 13 6 118 70 70 45 

- 127 - 6 70 - - - -   - 118 60 

Wettest plots 

30 3 127 65 115 118 62 127 118 62 30 62 30 

100 62 62 87 87 42 42 42 42 42 42 42 42 
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3.4 Rainfall intensity, droughts, and the throughfall time stability  

Regarding the maximum rainfall intensity, the TF spatial variability decreased 

up to the threshold of imax = 2.5 mm h
-1

 stabilizing at CV = 25% (Figure 5d) in both 

prolonged drought and non-drought periods, i.e. the greater spatial variability occurs for 

imax < 2.5 mm h
-1

 in the presence and absence of droughts. 

The spatial variability of TF is more time stable in the non-drought than in the 

prolonged drought period as indicated by the lower fluctuation of MRDj (Figure 8). This 

is reinforced by the TSI of 0.30 ± 0.11 and 0.41 ± 0.13 in the non-drought and 

prolonged drought period, respectively. Regarding the threshold (imax = 2.5 mm h
-1

), TSI 

was 0.30 ± 0.13 and 0.29 ± 0.08 for events below and above the threshold in the non-

drought period, respectively. A greater instability of the TF spatial variability was 

observed during lighter (imax < 2.5 mm h
-1

) than heavier rainfall events in the prolonged 

drought period indicated by TSI of 0.45 ± 0.12 and 0.37 ± 0.14, respectively. Plots 

representing the remnant TF average (MRD < 1%) were different regarding rainfall 

intensity and the presence (or absence) of droughts. For imax < 2.5 mm h
-1

, plots 21 and 

64 (prolonged drought period) and 1 (non-drought period) can be considered as 

representative of TF spatial average. For imax > 2.5 mm h
-1

, plots 96 and 1 represented 

the TF spatial average in the prolonged drought and non-drought periods, respectively. 
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Figure 8. Throughfall time stability regarding maximum rainfall intensity (imax) < 2.5 

mm h
-1 

(a, c) and > 2.5 mm h
-1

 (b, d) for the prolonged drought and non-drought 

periods, respectively. Temporal stability index (TSI): gray dashed line; mean relative 

difference (MRD): black dots; standard deviation of MRD (𝜎𝑅𝐷𝑖𝑗
): vertical bars. 

The presense (or absence) of droughts defined the relative postions of the plots 

(Figure 8). Changes in plots 101, 6, 41, 60, 45, and 21 were more relevant because they 

changed between wet and dry positions when the study period was split into prolonged 

drought and non-drought periods. For instance, plots 101, 41, 60 and 6 became wetter in 

the non-drought period, while plot 21 became drier. This pattern was observed for imax < 

2.5 mm h
-1

 and > 2.5 mm h
-1

 (Figure 8). Overall, these plots concentrated at drier and 

wetter positions in the prolonged drought and non-drought periods, respectively, 

highlighting the influence of rainfall intensity distribution (Figure 4) in the relative 

spatial distribution of TF 
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3.5 Forest structure and the throughfall time stability  

The PCA with envifit selected forest variables correlated with variations in MRD 

and TSI data. MRD PCA for < 10 mm events only pointed out the number of trees 

(N10, N15, and N17) as being important for MRD data arrangement (Table S5), 

whereas MRD PCA for > 10 mm selected the number of trees, the plot mean diameter 

and the evenness index (N10, N15, N17, DBH10, DBH15, DBH17, and J17) (Table 

S6). TSI PCA for < 10 mm events pointed out basal area, aboveground biomass, plot 

mean diameter, diversity and evenness as important for TSI events (G10, G15, G17, 

CV_DBH10, H10, H15, J10, J15, DBH17, AGB10, AGB15, and AGB17) (Table S7), 

whereas TSI PCA for >10 events only selected tree occupation/cover variables 

(DBH10, DBH15, DBH17, G10, G15, G17, AGB10, AGB15, and AGB17) (Table S8).   

The redundancy analysis (RDA) highlighted different interactions between 

forest and rainfall redistribution (MRD) when the threshold (GR = 10 mm) was 

considered (Figure 9). RDA for GR < 10 mm shows that the first and second axes 

explained nearly 95% of the constrained variation in the data. Three forest structure 

variables presented significant (p < 0.1) contributions to explain variation in the TF 

matrix: N-10, N-15, and N-17 with positive correlations to MRD (Figure 9a). RDA for 

GR > 10 mm demonstrates that the first and second axes explained nearly 79% of the 

constrained variation in the data. A total of 8 forest structure variables showed 

significant (p<0.1) contributions to explain variation in the TF matrix: N-10, N-15, and 

N-17, with overall positive correlations to MRD and DBH-10, DBH-15, DBH-17, J-15, 

and J-17 with negative correlations to MRD (Figure 9b). 
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Figure 9. Redundancy analysis (RDA) biplot of throughfall variables (MRD and TSI) 

constrained by forest structure variables (using three years of data from the Atlantic 

Forest stand). Red vectors are the significant (p < 0.1) forest variables according to the 

envfit function. The RDA was carried out regarding rainfall events < 10 mm (a, c) and > 

10 mm (b, d). TSI: time stability index; MRD: mean relative difference. 

The RDA showed a different influence of forest structure on the TF time 

stability regarding TSI. For GR < 10 mm, the first and second axes explained 78.2% of 

the constrained variation with fourteen variables responsible for such variability: G-10, 

CVDBH-10, AGB-10, H-10, J-10, G-15, CVDBH-15, AGB-15, H-15, J-15, G-17, 

DBH-17, AGB-17, and H-17 (p<0.1) with positive correlations to TSI. On the other 

hand, DBH-10, AGB-10, G-10, DBH-15, AGB-15, G-15, DBH-17, AGB-17, and G-17 

(p<0.1) were responsible for explaining 70.3% of the constraining variation in the two 

axes with positive correlations to TSI for GR > 10 mm (Figure 9). 
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4. Discussion 

4.1 Canopy-rainfall interactions and the TF spatial variability 

 Although studies have demonstrated the influence of rainfall intensity and 

amount in throughfall behavior (Liu et al., 2019; Sheng and Cai, 2021; Su et al., 2019; 

Zhang et al., 2019; Zhu et al., 2021), we did not find a difference in the CV tendency 

regardless of the drought intensity (Figure 5c,d). Moreover, the frequency of rainfall 

events was similar among the study years (Figure S1). This means that the forest 

structure and architecture determined the spatial variability of throughfall, not the 

rainfall distribution. For gross rainfall < 10 mm, the canopy is still filling, and water 

entering the forest is mainly due to the existence of gaps (free throughfall), the 

formation of some preferential dripping points (Staelens et al., 2006), and drops 

splashing from the canopy (Levia et al., 2019). As rainfall progresses, the canopy 

reservoir fills and more water is routed to the forest floor (Carlyle-Moses et al., 2010; 

Rodrigues et al., 2021a). Spatial variability decreases as long as more dripping points 

occur and stabilizes for events higher than 10 mm (CV ~ 25%) when the canopy is 

saturated and the water drains into all dripping pathways (Allen et al., 2013; Fathizadeh 

et al., 2014). 

The same pattern was observed in other forest worldwide (Sheng and Cai, 2021; 

Staelens et al., 2006; Su et al., 2019; Zhu et al., 2021), only differing by the threshold 

and the stable CV (Table S2). For instance, Fan et al. (2015) observed a threshold of 20 

mm in a pine forest, decreasing to a stable CV of 16.5%. In a mixed deciduous forest, 

Staelens et al. (2006) observed a threshold of 10 mm and a stable CV of 19% and 11% 

for the leafed and leafless periods, respectively. Sheng and Cai (2021), Zhu et al. 
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(2021), and Su et al. (2019) observed a stable CV of ~20% in a boreal, semi-arid 

mountain forests, and mixed evergreen-deciduous broadleaved forests, respectively. The 

greater stable CV value (25%) observed in the Atlantic Forest remnant may be due to its 

higher species diversity and stratified canopy (Terra et al., 2018a), which create 

different zones for throughfall (Carlyle-Moses and Lishman, 2015). Moreover, the 

greater stable CV value could also be a consequence of the non-roving approach used in 

this study, since roving rain gauges (after each rainfall event) may decrease the 

throughfall spatial variability (Fan et al., 2015). However, Junqueira Junior et al. (2019) 

and Rodrigues et al. (2021a) confirmed the adequacy of the spatial distribution of rain 

gauges to represent the TF spatial variability in the forest remnant. Therefore, the more 

noticeable CV value can be related to the complexity of the Atlantic Forest remnant. 

 The increase in TF/GR ratio supports the assumptions about the formation of 

more drainage pathways as the canopy gets fuller, increasing the transformation of GR 

into TF up to a stable ratio of ~82% (Figure 5b). Although TF linearly increases with 

GR (Figure 5a), the TF/GR stabilization indicates that the canopy has reached its 

maximum drainage capacity. Beyond this point, no more drainage pathways are formed 

and the water entering the forest as TF is a function of the maximum drainage capacity, 

the canopy openness, and the weather conditions. Therefore, the canopy-rainfall 

interactions are minimized and the observed variability is mainly due to atmosphere 

dynamics rather than forest structure for GR > 10 mm.  

TF/GR variability is driven by canopy evaporation, which is a function of the 

available energy during and between events (Rodrigues et al., 2021a). Rodrigues et al. 

(2021a) called attention to the importance of the energy stored in biomass and air within 

the Atlantic Forest remnant in both drought and non-drought conditions. However, 

external energy arrives by advection and increases canopy evaporation during droughts 



128 
 

 
 

(Rodrigues et al., 2021a), which explains the differences in the TF/GP fluctuations 

between the two analyzed periods (Figure 5b). This fluctuation can also partly be 

explained by the semi-deciduous characteristic of the Atlantic Forest remnant (Oliveira-

Filho and Fontes, 2000) due to the natural leaf loss seasonality, which is intensified 

during prolonged droughts (Rodrigues et al., 2021b). Furthermore, wind direction and 

intensity contribute to the increase in variability through the rain-shadow phenomenon 

(Fan et al., 2015). Although evaporation, leaf shedding, and wind patterns are important 

in the variability of TF/GR for events < 10 mm, the acuteness of the increase on the 

TF/GR ratio is mainly due to canopy filling, which leads to new dripping points and the 

greater contribution of TF (Figure 5b). 

 

4.2 Influence of forest structure on the time stability of TF spatial variability 

The redundancy analysis of MRD (Figure 9) pointed out the forest 

characteristics that drive the overall TF spatial distribution in the study period (2013-

2019), highlighting the characteristics which improve water input. More populated plots 

(i.e. plots with a higher number of trees) in our study area input more water to the 

forest, regardless of the rainfall amount (Figure 9). Plots with higher numbers of 

individuals usually indicate those that are recovering from a disturbance (i.e. gaps 

created by fallen trees), and therefore have higher densities of young trees (Martins et 

al., 2004; Oliveira-Filho et al., 1997). Reduced canopy interception is observed in 

young trees due to their small crown (Terra et al., 2018a; Wullaert et al., 2009), funnel-

shaped branches (Germer et al., 2006; Su et al., 2019), and greater canopy openness 

(Martins et al., 2004).  

For GR > 10 mm, the higher dominance of certain tree species (lower J values) 

also increases throughfall (Figure 9). Tree species in tropical forests show a wide range 
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of anatomic and architectural traits (Poorter et al., 2006), which can either boost rainfall 

interception (Terra et al., 2018a) or increase throughfall. Therefore, plots with greater 

water inputs via throughfall are probably dominated by species with improved drainage 

capacity. Moreover, higher mean tree diameter (in 2010, 2015, and 2017) had a negative 

effect on throughfall for GR > 10 mm (Figure 9). This is expected, since the more trees 

there are per area in tropical forests, the thinner they tend to be (Hallé et al.,1978; 

Ngueguim et al., 2018). 

The greater rainfall-canopy interaction before saturation (GR < 10 mm) 

highlights the effect of canopy openness for TF since free throughfall is more relevant 

in events with lower rainfall amounts (Staelens et al., 2006). The importance of canopy 

openness for TF decreased in large events as also observed by Zimmerman et al. (2009). 

Therefore, the canopy drainage capacity becomes more relevant than the rainfall-canopy 

interaction to spatially distribute throughfall after canopy saturation. This is reinforced 

by the importance assigned to tree species (Figure 9), which points out the species-

specific characteristics that improves canopy drainage (Levia and Frost, 2006). This 

information can support decisions toward reforestation by selecting tree species that 

increase water input. 

Forest structure and architecture drive the time stability of TF spatial variability 

in the Atlantic Forest remnant, as indicated by the RDA plot considering the TSI 

(Figure 9). Regardless of the gross rainfall amount (< 10 mm or > 10 mm), the larger 

the area occupied by the tree boles in a plot (as indicated by AGB and G), the less time 

stable the plot was. This means that throughfall time stable conditions are related to 

lesser biomass per area. The biomass of the Atlantic Forest remnant is increasing as it 

moves toward an advanced successional stage (Souza et al., 2021). This is likely the 

explanation for the importance assigned to DBH, because the temporal increase in 
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biomass was greatest in the large diameters classes in the study remnant (Souza et al., 

2021), which is consistent with the abovementioned importance of tree occupation for 

TF time instability. 

In contrast, the importance of H and J for GR < 10 mm can be attached to the 

onset of new dripping points, which increases the time instability of TF spatial 

distribution. Since tropical forests have a wide range of species with different canopy 

storage capacity, leaf properties (such as shape, orientation, and texture), branch 

architecture, canopy structure and hydrophobicity, and bark roughness (Levia and Frost, 

2006; Nanko et al., 2014; Poorter et al., 2006; Terra et al., 2018a), the diversity and 

dominance of certain species provide a distinct time for starting canopy drainage (Allen 

et al., 2013). This condition, in combination with varying rainfall amounts, resulted in a 

variety of spatial configurations of dripping pathways since forest canopy is unsaturated 

when GR < 10 mm. These different configurations of dripping points decreased TF time 

stability, i.e. TF spatial variability was unstable for GR < 10 mm. This is confirmed by 

the non-significance of H and J in the RDA for GR > 10 mm. Beyond this rainfall 

amount, all dripping points had already started, homogenizing the time evolution of the 

TF spatial distribution. 

RDA highlights linear relationships between explanatory and response variables 

(ter Braak and Looman, 1994) and some cautions should be taken when dealing with 

rainfall partitioning. The canopy is a complex environment due to the heterogeneity of 

species, leaf characteristics, branch angulation, water storage capacity, and seasonality 

(leaf shedding in the dry period), among others. The association of the abovementioned 

characteristics can lead to non-linear responses, which cannot be observed using RDA 

(Legendre et al., 2011; ter Braak and Looman, 1994). Therefore, some connections and 

potential drivers of the throughfall spatial distribution could have been left out. 
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However, RDA was used as an exploratory analysis to shed light on the importance of 

considering forest dynamics when dealing with the throughfall time stability. The 

results of this study will supplement future studies on forest hydrology and point to the 

need for considering forest dynamics and weather conditions. Future works should also 

increase the time resolution of the measured forest structure variables (to track inter-

season variation) and implement scanning technologies (such as LiDar) for a 3D 

characterization of the canopy. 

 

4.3 Influence of rainfall intensity on the time stability of TF spatial variability 

The different distribution of the maximum rainfall intensity between the non-

drought and prolonged drought periods (Figure 4) affected the time stability of the TF 

spatial variability (Figure 8). The TF spatial variability was less time stable in the 

prolonged drought period, in which a greater variability of imax (CV = 141%) was 

observed. This instability increased even more for rainfall events with imax < 2.5 mm h
-1

 

(Figure 8). Canopy-rainfall interactions are greater (Figure 5d) for light events because 

they can either saturate or unsaturate the canopy. Long events with low intensity 

saturate the canopy, activate all dripping pathways (as previously stated), and decrease 

the TF spatial variability. Conversely, unsaturation is likely to occur in short events with 

low intensity (Yan et al., 2021). Different spatial configurations of dripping pathways 

are formed depending on the rainfall amount, intensity, and duration. This drives the 

throughfall redistribution in each event, changing the spatial distribution over time 

(Figure 8). Therefore, more unstable time conditions can be expected as long as 

droughts, with a concentration of light events, become more frequent. 

The TF spatial variability was more time stable for imax > 2.5 mm h
-1

. Intense 

events have greater kinetic energy, which reduces canopy storage capacity (Calder et 
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al., 1996) and increases TF (Yan et al., 2021), i.e. the canopy is easily saturated in these 

events. The TF spatial variability tends to homogenize with greater TF (Figure 5d), 

decreasing TSI (Figure 8). However, greater TSI values were observed during the 

prolonged drought period. This was likely due to the occurrence of heavier events since 

the imax was limited to 20 mm h
-1

 in the non-drought period (Figure 4). Higher rainfall 

intensities splash more water from the canopy (Nanko et al., 2006), which can either be 

recaptured or become throughfall, depending on the canopy thickness (Nanko et al., 

2008). More splashes from the canopy added to the diversity of canopy structures (Terra 

et al., 2018a) increased the TF spatial variability in the Atlantic Forest remnant during 

the prolonged drought period. However, the relative contribution of each throughfall 

type (free, drip, and splash) in the time stability needs further investigation. For 

instance, the formation of splash throughfall is greater at the onset of events (Levia et 

al., 2019) and its random distribution likely increases spatial variability. Therefore, 

future studies dealing with diverse and dynamic environments (as in tropical forests) 

should consider partitioning throughfall (as well as their respective size and volume) 

because it is another source of spatial variability that can affect the time stability of 

throughfall (Levia et al., 2019, 2017; Nanko et al., 2016). 

4.4 Forest-drought feedback and TF time stability  

 Long-term meteorological droughts can affect forest structure, function, and 

ecosystem services by leading to higher individual tree loss and lower tree growth, 

ultimately reducing forest productivity (Anderegg et al., 2013). The duration and 

aggressiveness of such events influence water and soil nutrient availability and 

consequently change structure and composition of the forest (He and Dijkstra, 2014). 

Trees are long-lived organisms, and so they are expected to be more vulnerable to rapid 

changes in climate (Brodribb et al., 2020).  
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The Atlantic Forest remnant where our study was conducted is adapted to 

climate seasonality, and therefore to a certain level of periodic drought (Souza et al., 

2021). However, the region went through various stages of abnormal drought during 

2013-2019 (Figure 3), which certainly impacted its structural dynamics. Although the 

remnant has been reported to show a long term increase in biomass, decreasing tree 

density and increasing abundance of late-successional plants, which are indicators of the 

late-successional stage due to protection (Souza et al., 2021), we observed a strong 

increase in the loss of trees along with basal area (negative net change) in the 2015-

2017 interval (Figure 10). This may have been intensified by drought conditions, 

corroborating previous studies on forest changes under severe and long droughts 

(Berenguer et al., 2021; Phillips et al., 2009). These changes in the forest structure have 

the potential to modify the inputs of water because the TF spatial variability is 

connected to forest structure, as previously highlighted (Figure 9). Therefore, the time 

stability of the TF spatial variability disappears as long as the lengths of the monitoring 

period extends, because the longer the monitoring period, the higher the probability that 

natural changes in forest structure will affect the spatial distribution of TF. 
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Figure 10. The number of individuals and basal area calculated based on the forest 

inventory of the years of 2015 and 2017. 

The influence of the different study periods (and the length of the periods) is in 

accordance with the abovementioned changes in the TF spatial variability. Different 

configurations of the rank positions highlighted the changes in the TF spatial variability 

as long as the monitoring period was modified (Table 2 and Figures S3 and S4), i.e. this 

claims that TF time stable conditions are unfeasible in a dynamic environment because 
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the TF spatial distribution changes over time. Moreover, attention must be paid to the 

feedback effects of forest moisture stress on climate change. The more forests dry up, 

the more likely they are to accelerate climate change through carbon losses and 

changing surface energy balances (Phillips et al., 2009). Climate scenarios for the study 

area indicate that extreme weather events will increase in the future, making longer dry 

periods more likely (Nehren et al. 2019). In turn, paleoenvironmental studies show that 

changes in precipitation patterns during the Late Quaternary have repeatedly led to 

shifts in the transition zone between the Cerrado and the Atlantic Forest biomes, and 

that even small changes in water balance affect the fragile ecological balance (Kirchner 

et al. 2015). Future studies could also track possible changes in species composition in 

face of such events, as an increase in abundance of drought-tolerant species is likely to 

happen (Esquivel-Muelbert et al., 2018). 

 

4.5 Misinterpretation of throughfall time stability in previous studies 

Throughfall time stability is related to forest structure and architecture (Figure 

6), and therefore changes in the forest configuration modify the spatial distribution of 

throughfall. Three main factors are able to modify the forest structure: (i) anthropogenic 

activities (i.e. logging and fire); (ii) ecological succession (i.e. gaps created by falling 

trees and differences in forest structure in forest edge versus forest interior); and (iii) 

natural disturbances (i.e. droughts). The investigated Atlantic Forest remnant is in an 

advanced successional stage and has been under protection since 1986 (Souza et al., 

2021), which means that some throughfall instability, as indicated by the variability in 

the rank position throughout the years (Figure 6 and 7), is due to natural changes in the 

forest structure over time. These changes may be exacerbated by prolonged drought 
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conditions that the forest has experienced (Figure 3), which could have increased both 

tree mortality and biomass losses in the past years (Figure 10). Such behavior questions 

the previous statement of TF time stability and precludes the definition of a specific 

position to represent the remnant average TF (Vachaud et al., 1985), as claimed by most 

of the published studies (Table S2). In this regard, claiming throughfall time stability 

without considering structural changes can lead to misinterpretation. 

Several studies have argued about the throughfall time stability in different types 

of forests around the world, indicating positions which could be used to monitor the 

throughfall spatial average (Table S2). Moreover, the importance of weather 

characteristics (e.g., rainfall intensity, duration and amount, and wind speed) on 

throughfall time stability (Liu et al., 2019; Zhang et al., 2019; Zhu et al., 2021) have 

also been highlighted. However, canopy structure has been recognized to be more 

important than weather characteristics for throughfall spatial and temporal dynamics 

(Nanko et al., 2016; Sheng and Cai, 2021; Staelens et al., 2006; Wullaert et al., 2009). 

The significance has already been linked to leafed and leafless periods (or growing and 

dormant periods) because a shift in the spatial distribution was observed when both 

periods were evaluated separately (Staelens et al., 2006; Zimmermann et al., 2008). 

Since the hydrological year scale encompasses wet and dry periods, some instability in 

the spatial variability of throughfall (Figures 6 and 7) can be attached to the semi-

deciduousness of the Atlantic Forest stand.  

However, most studies consider a short monitoring period, such as a season or 

just one hydrological year, whereas longer studies (> 4 years) are scarce (Table S2). 

Because the response to drought conditions is delayed (see Forest-drought feedbacks 

and the TF time stability topic), significant changes in the forest structure (and canopy 

composition) were not ascertained in the studies with short monitoring periods. Even 
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forests which have not faced stressful droughts, short periods were also unable to 

account for forest succession. This caused a false impression of throughfall time 

stability for different time intervals and period lengths (Table 2 and Figures S2, S3, and 

S4). Future studies should apply temporal variograms to appraise the period length that 

the time stability of throughfall persists (Zimmermann et al., 2009). This approach will 

highlight the maximum period length in which throughfall time stability could be 

considered without the risk of misinterpretation. Moreover, it will also provide insights 

into throughfall spatial variability between different time intervals (Zimmermann et al., 

2009). 

Most studies did not split the events (i.e. GR > 10 mm and < 10 mm) before 

assessing the throughfall time stability. The canopy-rainfall interaction is greater for GR 

< 10 mm as a consequence of rainfall amount and formation of dripping points, causing 

instability in the throughfall spatial variability. When all events are put together to 

account for time stable positions, the abovementioned interactions are smoothed due to 

events > 10 mm, homogenizing the water inputs within the forest (Figures 5c, 6, and 7). 

Zimmermann and Zimmermann (2014) pointed out increased relative errors (> 40%) in 

the mean throughfall estimates for small events due to a greater canopy-rainfall 

interaction in heterogeneous forests (such as tropical forests). These authors 

recommended boosting the number of gauges to decrease throughfall uncertainty, 

mainly when dealing with small events. Therefore, beyond the abovementioned 

importance of splitting the analyses into saturated (GR >10 mm) and unsaturated (GR < 

10 mm) canopy for a correct assessment of time stability, we recommend future studies 

to improve their monitoring set according to Zimmermann and Zimmermann (2014). 

Incorrect accounting for the throughfall spatial variability is another source of 
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uncertainty in defining time stable positions, mainly regarding small events in tropical 

forests. 

Additional precautions should be taken as long as drier years become more 

frequent and intense. More instability of the TF spatial variability can be expected 

during droughts due to the greater variability of maximum rainfall intensity (as 

highlighted by the greater coefficient of variation) and presence of lighter events (Figure 

4). Light events create canopy saturation and unsaturation episodes, increasing the time 

instability of the throughfall spatial variability. This instability is also due to the 

decreased canopy storage capacity and increased splash throughfall as a consequence of 

heavier events (imax > 20 mm h
-1

). Therefore, indicating overall stable positions will 

become even harder during droughts. 

 

5. Conclusion 

The throughfall spatial variability decreased with gross rainfall amount because 

a greater canopy-rainfall interaction occurred prior to canopy saturation (GR < 10 mm). 

The different spatial configuration of dripping points, which depends on rainfall amount 

and specie-specific characteristics, added to the greater importance of canopy openness 

(free throughfall is more relevant in events with lower rainfall amounts), increased the 

temporal changes of the spatial distribution before canopy saturation (i.e. throughfall is 

more time instable for small events). Forest structure also demonstrated importance for 

the throughfall spatial variability after canopy saturation, highlighting species which 

either booster rainfall interception (drier plots) or improve canopy drainage (wetter 

plots). However, tropical forests are in constant development, either ecologically 

succeeding or adaptating to natural/anthropogenic disturbances (e.g., droughts, logging, 
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and fire). This development changes forest structure, and therefore the throughfall time 

stability, i.e. defining time stable positions is not straightforward because the 

throughfall spatial distribution changes with forest dynamics, as highlighted by the 

differences in the time stable positions for different periods lengths. These results can 

only be tracked by long monitoring periods and claiming time stability in shorter 

periods (one year or less) can lead to misinterpretation. 

The throughfall spatial variability was less time stable in the prolonged drought 

period than in the non-drought period. The greater concentration of events with light 

intensities and the presence of more extreme events (heavy intensities > 20 mm h
-1

) are 

responsible for increasing time instability. Light events can either saturate or unsaturate 

the canopy depending on their duration (long or short events). This creates different 

spatial configurations of throughfall distribution, affecting the spatial variability over 

time. Moreover, the heavier the event, the lower the storage capacity of the canopy and 

the greater the amount of splash throughfall formed. This increases the throughfall input 

and the randomness of the spatial distribution. In a climate change scenario where 

droughts become more intense and frequent, more throughfall time instability can be 

expected as long as the observed distribution of rainfall intensities (in the prolonged 

drought) is maintained. 

Future works should consider the effects of droughts and forest dynamics on 

throughfall time stability. Considering the abovementioned issues will prevent 

misinterpreting time stability and provide a more precise definition of time stable 

positions. 
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7. Supplementary Material 

Table S1. Pearson coefficient correlation for MRDj data used in the PCA for small 

rainfall events (GR < 10 mm) in the Atlantic Forest remnant.  

 

MRD-

13/14 

MRD-

14/15 

MRD-

15/16 

MRD-

16/17 

MRD-

17/18 

MRD-

18/19 

MRD-13/14 1 0.807753 0.511616 0.36708 0.337268 0.315945 

MRD-14/15 0.807753 1 0.710708 0.5356 0.394799 0.415502 

MRD-15/16 0.511616 0.710708 1 0.746348 0.432505 0.409264 
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MRD-16/17 0.36708 0.5356 0.746348 1 0.630024 0.591104 

MRD-17/18 0.337268 0.394799 0.432505 0.630024 1 0.80852 

MRD-18/19 0.315945 0.415502 0.409264 0.591104 0.80852 1 

 

Table S2. Pearson coefficient correlation for MRDj data used in the PCA for rainfall 

events with gross precipitation > 10 mm in the Atlantic Forest remnant. 

 

MRD-

13/14 

MRD-

14/15 

MRD-

15/16 

MRD-

16/17 

MRD-

17/18 

MRD-

18/19 

MRD-13/14 1 0.638877 0.511751 0.043459 0.005336 0.062621 

MRD-14/15 0.638877 1 0.606198 0.015569 -0.09677 -0.04901 

MRD-15/16 0.511751 0.606198 1 0.360595 0.100243 0.234276 

MRD-16/17 0.043459 0.015569 0.360595 1 0.716613 0.397088 

MRD-17/18 0.005336 -0.09677 0.100243 0.716613 1 0.53829 

MRD-18/19 0.062621 -0.04901 0.234276 0.397088 0.53829 1 

 

 

 

 

 

Table S3. Pearson coefficient correlation for TSI data used in the PCA for small rainfall 

events (GR < 10 mm) in Atlantic Forest remnant.  

 
TSI-13/14 TSI-14/15 TSI-15/16 TSI-16/17 TSI-17/18 TSI-18/19 

TSI-13/14 1 0.587917 0.127826 0.235208 0.265127 0.270514 

TSI-14/15 0.587917 1 0.234486 0.349661 0.244912 0.526435 

TSI-15/16 0.127826 0.234486 1 0.34256 -0.03134 0.339151 

TSI-16/17 0.235208 0.349661 0.342559 1 0.470336 0.371058 

TSI-17/18 0.265127 0.244912 -0.03134 0.470336 1 0.400504 

TSI-18/19 0.270514 0.526435 0.339151 0.371058 0.400504 1 

 

Table S4. Pearson coefficient correlation for TSI data used in the PCA for rainfall 

events with gross precipitation > 10 mm in Atlantic Forest remnant. 

 
TSI-13/14 TSI-14/15 TSI-15/16 TSI-16/17 TSI-17/18 TSI-18/19 

TSI-13/14 1 0.505657 0.054914 0.302366 0.138155 0.176704 

TSI-14/15 0.505657 1 0.14323 0.359967 0.046769 0.143627 

TSI-15/16 0.054914 0.14323 1 0.337435 -0.04474 0.200386 

TSI-16/17 0.302366 0.359967 0.337435 1 0.314773 0.185113 

TSI-17/18 0.138155 0.046769 -0.04474 0.314773 1 0.330296 
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TSI-18/19 0.176704 0.143627 0.200386 0.185113 0.330296 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table S5. Output of the envfit function of forest structure data onto the MRDj PCA for 

small rainfall events (GR < 10 mm) in the Atlantic Forest remnant.  

 
PC1 PC2 r

2
 Pr(>r) 

 
DBH-10 -0.29375 -0.95588 0.1278 0.157 

 
N-10 0.88732 0.46115 0.218 0.036 * 

G-10 0.78592 -0.61833 0.0996 0.246 
 

CV_DBH-10 0.38783 -0.92173 0.0131 0.821 
 

AGB.10 0.64001 -0.76837 0.1085 0.215 
 

S.10 0.76035 0.64952 0.0269 0.694 
 

H-10 0.90227 0.43117 0.0115 0.853 
 

J-10 -0.81005 -0.58636 0.0144 0.811 
 

DBH-15 -0.46609 -0.88474 0.0935 0.265 
 

N-15 0.88241 0.47048 0.2114 0.042 * 

G-15 0.90395 -0.42763 0.0936 0.263 
 

CV_DBH-15 -0.3169 -0.94846 0.0117 0.834 
 

AGB-15 0.7417 -0.67074 0.0901 0.276 
 

S-15 0.89068 0.45462 0.0419 0.545 
 

H-15 0.99841 0.05633 0.0176 0.79 
 

J-15 -0.92438 -0.38148 0.0832 0.297 
 

DBH-17 -0.33773 -0.94124 0.0621 0.407 
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N-17 0.84873 0.52883 0.2427 0.025 * 

G-17 0.96031 -0.27893 0.0863 0.28 
 

CV_DBH-17 -0.82051 -0.57164 0.0341 0.624 
 

AGB-17 0.76164 -0.648 0.0669 0.388 
 

S-17 0.90714 0.42082 0.0731 0.35 
 

H-17 0.98221 0.18781 0.0209 0.746 
 

J-17 -0.93953 -0.34246 0.1378 0.121 
 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

 

 

 

 

 

Table S6. Output of the envfit function of forest structure data onto the MRDj PCA for 

rainfall events with gross precipitation > 10 mm in the Atlantic Forest remnant.  

 
PC1 PC2 r

2
 Pr(>r) 

 
DBH-10 0.37398 -0.92744 0.2294 0.021 * 

N-10 -0.78047 0.62519 0.2226 0.037 * 

G-10 -0.30933 -0.95096 0.0702 0.362 
 

CV_DBH-10 0.16706 -0.98595 0.0254 0.688 
 

AGB.10 -0.16168 -0.98684 0.0915 0.259 
 

S.10 -0.41092 0.91167 0.0422 0.546 
 

H-10 -0.60423 0.79681 0.0258 0.702 
 

J-10 0.70382 -0.71038 0.0138 0.818 
 

DBH-15 0.42543 -0.90499 0.1804 0.061 . 

N-15 -0.82863 0.5598 0.2056 0.047 * 

G-15 -0.60196 -0.79852 0.0842 0.292 
 

CV_DBH-15 0.18464 -0.98281 0.0284 0.655 
 

AGB-15 -0.38245 -0.92398 0.0921 0.261 
 

S-15 -0.8311 0.55612 0.0432 0.565 
 

H-15 -0.99999 0.00358 0.0103 0.869 
 

J-15 0.83574 -0.54912 0.1663 0.078 . 

DBH-17 0.31367 -0.94953 0.1547 0.1 . 

N-17 -0.74555 0.66645 0.252 0.023 * 

G-17 -0.80392 -0.59474 0.0544 0.451 
 

CV_DBH-17 0.54263 -0.83997 0.0266 0.694 
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AGB-17 -0.43405 -0.90089 0.0539 0.442 
 

S-17 -0.74358 0.66865 0.1003 0.248 
 

H-17 -0.90449 0.4265 0.0264 0.685 
 

J-17 0.80468 -0.59372 0.2234 0.032 * 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

 

 

 

 

 

 

 

Table S7. Output of the envfit function of forest structure data onto the TSI PCA for 

small rainfall events (GR < 10 mm) in Atlantic Forest remnant.  

 
PC1 PC2 r

2
 Pr(>r) 

 
DBH-10 -0.93542 0.35355 0.1063 0.213 

 
N-10 0.66627 0.74571 0.0147 0.813 

 
G-10 -0.63054 0.77616 0.2321 0.025 * 

CV_DBH-10 -0.5188 0.8549 0.167 0.088 . 

AGB.10 -0.66421 0.74754 0.2749 0.012 * 

S.10 -0.68977 0.72403 0.1169 0.185 
 

H-10 -0.83485 0.55048 0.2386 0.021 * 

J-10 -0.96478 0.26307 0.2091 0.041 * 

DBH-15 -0.98455 0.17508 0.1291 0.146 
 

N-15 0.84573 0.53361 0.0263 0.684 
 

G-15 -0.63724 0.77066 0.2054 0.037 * 

CV_DBH-15 -0.58211 0.81311 0.1571 0.104 
 

AGB-15 -0.67686 0.73612 0.2535 0.02 * 

S-15 -0.54697 0.83715 0.1384 0.125 
 

H-15 -0.8009 0.59879 0.1994 0.049 * 

J-15 -0.97598 -0.21787 0.2022 0.051 . 

DBH-17 -0.98556 0.16934 0.1936 0.042 * 

N-17 0.96948 0.24518 0.0245 0.689 
 

G-17 -0.71458 0.69956 0.2316 0.02 * 
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CV_DBH-17 -0.53764 0.84318 0.1081 0.209 
 

AGB-17 -0.71339 0.70077 0.255 0.018 * 

S-17 -0.58444 0.81144 0.1155 0.17 
 

H-17 -0.81239 0.58311 0.1501 0.106 
 

J-17 -0.93032 -0.36676 0.1153 0.183 
 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

 

 

 

 

 

 

Table S8. Output of the envfit function of forest structure data onto the TSI PCA for 

rainfall events with gross precipitation > 10 mm in the Atlantic Forest remnant.  

 
PC1 PC2 r

2
 Pr(>r) 

 
DBH-10 -0.74874 -0.66286 0.2112 0.04 * 

N-10 0.02186 0.99976 0.058 0.445 
 

G-10 -0.84945 -0.52767 0.2089 0.051 . 

CV_DBH-10 -0.48704 -0.87338 0.131 0.144 
 

AGB.10 -0.76411 -0.64509 0.2665 0.022 * 

S.10 -0.80582 0.59216 0.0535 0.47 
 

H-10 -0.99853 -0.05425 0.0784 0.344 
 

J-10 -0.66325 -0.7484 0.1248 0.16 
 

DBH-15 -0.88273 -0.46989 0.1987 0.056 . 

N-15 0.46162 0.88708 0.0176 0.771 
 

G-15 -0.84686 -0.53182 0.2272 0.033 * 

CV_DBH-15 -0.53279 -0.84625 0.1481 0.108 
 

AGB-15 -0.77348 -0.63382 0.2819 0.017 * 

S-15 -0.98867 0.15013 0.0262 0.713 
 

H-15 -0.95838 -0.2855 0.0638 0.411 
 

J-15 -0.84436 -0.53577 0.0705 0.362 
 

DBH-17 -0.89938 -0.43716 0.2892 0.011 * 

N-17 0.71847 0.69556 0.015 0.797 
 

G-17 -0.81046 -0.58579 0.3125 0.011 * 
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CV_DBH-17 -0.4586 -0.88864 0.1061 0.215 
 

AGB-17 -0.7388 -0.67393 0.3265 0.009 ** 

S-17 -0.98536 -0.17049 0.026 0.678 
 

H-17 -0.91594 -0.40131 0.0578 0.448 
 

J-17 -0.76225 -0.64729 0.0397 0.552 
 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

 

 

 

 

 

 

 

 

Table S9. The Standardized Precipitation Index (SPI), the associated return level, and 

the WMO classification throughout the study period. 

Hydrological year SPI Return period (years) WMO classification 

2013/2014 -1.89 34.4 severely dry 

2014/2015 -1.29 10.2 moderately dry 

2015/2016 -0.33 2.7 near normal 

2016/2017 -1.31 10.4 moderately dry 

2017/2018 -1.51 15.1 severely dry 

2018/2019 0.38 1.5 near normal 
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Table S10. Studies that have assessed the spatial variability and time stability of 

throughfall. Their assumptions, methodologies, findings, and conclusions. 

 

The table is on .xlsx format due to its size. Please check out the Supplementary 

Materials (Table S2 – Supplementary Materials.xlsx) 

 

 

 

 

 

 

 

Figure S1. PCA diagram of MRDj data for small rainfall events (GR < 10 mm) in 

Atlantic Forest remnant. Arrows represent forest structure variables selected by the 

envfit function. Proportion explained by the axes: 1. 61%; 2. 19%. 
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Figure S2: PCA diagram of MRDj data for rainfall events with gross precipitation > 10 

mm in Atlantic Forest remnant. Arrows represent forest structure variables selected by 

the envfit function. Proportion explained by the axes: 1. 40%; 2. 33%. 
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Figure S3. PCA diagram of TSI data for small rainfall events (GR < 10 mm) in Atlantic 

Forest remnant. Arrows represent forest structure variables selected by the envfit 

function. Proportion explained by the axes: 1. 44%; 2. 17%. 
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Figure S4. PCA diagram of TSI data for rainfall events with gross precipitation > 10 

mm in the Atlantic Forest remnant. Arrows represent forest structure variables selected 

by the envfit function. Proportion explained by the axes: 1. 35%; 2. 19%. 
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Figure S5. Histograms of gross rainfall (GR) distribution (green bars) and the 

cumulative frequency of GR occurrence (black line) for the six hydrological years. 
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Figure S6. Spatial distribution of the study plots highlighting the wettest, driest, and 

most time stable plots throughout the six hydrological years and considering gross 

rainfall (GR) > 10 mm and < 10 mm. 
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Figure S7. Mean relative difference (MRD) and Temporal Stability Index (TSI) for 

different period lengths and gross rainfall (GR) > 10 mm. 
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Figure S8. Mean relative difference (MRD) and Temporal Stability Index (TSI) for 

different period lengths and gross rainfall (GR) < 10 mm. 
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Final Remarks 

This study highlights increasing canopy evaporation during droughts due to 

greater energy advection from surrounding areas. Droughts also change the spatial 

distribution of throughfall over time because different species respond differently to 

water shortage (i.e. leaf loss, mortality, recovering, among others). In such conditions, 

less water reaches the forest floor following different patterns of spatial distribution, 

affecting soil water availability, forest transpiration and dynamics, groundwater 

recharge, and the nutrient cycle. Understanding how forests partition rainfall and 

redistribute it in both time and space is urgent because canopy-rainfall interactions drive 

hydrological responses from site to regional scales. 

Extreme weather is expected to increase in tropical regions as one of the global 

warming consequences. Droughts will become more frequent, intense, and lasting, 

affecting ecosystems dynamics. Therefore, we can expect that the rainfall-canopy 

interactions are likely to change in the near future due to ecosystem shift to more 

adapted conditions as a response to increased evaporation and lowered soil water 

availability. Most of the remaining Atlantic Forest is located in headwater regions that 

supply water to the wealthiest and most populous region of Brazil. The abovementioned 

changes in the rainfall partitioning (with lower water reaching the forest floor) are likely 

to decrease water yield with consequences for people’s well-being and livelihood. 

Decreased water availability can impact agriculture, hydropower plants, water supply, 

and industry income, among others. However, how much and to which extent the 

environment, society, and economy will be impacted by changes in rainfall-canopy 

interactions should be the subject of future studies. 

This study is the first glance toward the impacts of dry weather on the rainfall 

partitioning in tropical regions and calls attention to the importance of this subject to 

improve ecosystem resilience and water management in the near future. The new 

insights of this study will support stakeholders in their decisions regarding forest 

restoration to improve water input as some forest structures and tree characteristics have 

demonstrated potential to improve throughfall. Therefore, the proper use of such forest 

characteristics is a powerful tool to mitigate the likely impact of climate change on 

water yield in tropical watersheds. 


