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RESUMO GERAL

Os avangos computacionais oportunizaram uma maior viabilidade da coleta e armazenamento
de dados, e processamento de algoritmos com a expansédo de big data no setor florestal. Em
alinhamento com isso, técnicas de inteligéncia computacional tém sido adotadas como suporte
a tomada de decisdo em uma gama de problemas. Dentre suas aplicacGes, o processo de sele¢do
de atributos (Feature selection) contribui com éxito na automatizacdo da tarefa de reducédo da
dimensionalidade dos dados para otimiza¢do de um subconjunto de variaveis relevantes na
construcdo de modelos. Diante dessa perspectiva, a tese foca no uso do algoritmo genético
juntamente com o Random Forest (GA-RF) para selecdo de varidveis na modelagem da
produtividade de maquina florestal (Artigo 1) e do incremento periddico anual em diametro em
uma Floresta Estacional Semidecidual Montana (Artigo 2). No artigo 1, o objetivo do trabalho
foi testar diferentes abordagens metodolégicas na geracdo de modelos com boa capacidade
preditiva além da investigacdo da importancia de variaveis oriundas de condi¢cbes
edafoclimaticas, registros dos operadores e inventario florestal. O GA-RF foi selecionado por
apresentar alto poder de generalizacdo com reducdo do erro das estimativas além da
maximizacao da importancia das variaveis relevantes na produtividade da maquina. O artigo 2
objetivou avaliar a incorporacdo dos efeitos da competicdo em um modelo de crescimento em
nivel de arvores individuais, baseando-se na investigacdo de diferentes categorias de indices
classicos de competicdo e do uso de métricas de redes complexas, metodologia proposta nesse
estudo. A metodologia GA-RF foi eficiente em conciliar aspectos com significado ecolégico e
melhoria da acuracia por meio da selecdo de indices independentes da distancia e métricas de
redes complexas para a modelagem do crescimento das respectivas espécies, Xylopia
brasiliensis e Copaifera langsdorffii.

Palavras-chave: Inteligéncia computacional. Algoritmo genético. Crescimento e Producéo
Florestal. Colheita Florestal.



GENERAL ABSTRACT

Computational advances made possible greater viability of data collection, storage, and
algorithms processing with the expansion of big data in the forestry sector. In line with this,
computational intelligence techniques have been increasingly applied to support decision-
making in several problems. Among their applications, the feature selection process
successfully contributes to the task automation of reducing the dimensionality of the data for
optimizing a subset of relevant variables in the models building. Given this perspective, the
thesis focuses on the genetic algorithms' use in association with the Random Forest (GA-RF)
for selecting variables in the modeling of forest machine productivity (Article 1) and the
periodic annual diameter increment in a Semideciduous seasonal montane forest in Brazil
(Article 2). In article 1, the objective of the work was to test different methodological
approaches in the generation of models with good predictive capacity, in addition to
investigating the importance of variables arising from soil and climate conditions, operator
records, and forest inventory. We selected the GA-RF because it has a high generalization
power by reducing the errors' estimates, in addition to maximizing the importance of relevant
variables in the machine's productivity. Article 2 aimed to evaluate the incorporation of
competition effects in a growth model at individual trees level, based on the investigation of
different categories of classical competition indices and an additional methodology proposed
in this study, known as metrics of complex networks. The GA-RF methodology was efficient
by combining ecological meaning and accuracy improvements. It selected distance-
independent indices and complex network metrics for modeling the growth of the species,
Xylopia brasiliensis, and Copaifera langsdorffii, respectively.

Keywords: Computational Intelligence. Genetic Algorithm. Forest Growth and Yield. Forest
Harvesting.
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PRIMEIRA PARTE

1 INTRODUCAO GERAL

O aporte de informagdes fidedignas concernentes aos atributos florestais é criticamente
relevante para elaboracdo de planos de manejo com qualidade e confiabilidade. Esforcos na
compreensdo e quantificacdo acurada das estimativas configuram seu ponto-chave no suporte
a tomadas de decisdo para os gestores florestais. Face a crescente geracdo de big data
proveniente de diversas fontes de dados, as técnicas de inteligéncia artificial tém sido
potencialmente aplicadas na modelagem de uma gama de problemas florestais (ASHRAF et al.,
2015; LIU et al., 2018). A exemplo desses, pode-se citar a projecdo de diametro e altura
(VIEIRA et al., 2018), predicdo do afilamento (NUNES; GORGENS, 2016), estoque de
carbono (SAFARI et al., 2017), biomassa acima do solo (BISPO et al., 2020), crescimento e
producdo florestal (ASHRAF et al., 2013) e produtividade da colheita (ROSSIT et al., 2019).
Apesar da consolidacéo da regresséo classica na modelagem florestal, a alta variabilidade dos
dados florestais e as relacdes complexas ndo lineares entre as variaveis podem inviabilizar o
atendimento as suas pressuposi¢cdes estatisticas concernentes a independéncia dos dados,
normalidade e homoscedasticidade (ASHRAF et al., 2013; SILVA et al., 2021). Nesse sentido,
a inteligéncia artificial desponta com éxito no fornecimento de resultados satisfatorios devido
a suas vantagens competitivas que envolvem aprender a partir de uma amostra de dados limitada
(SHAO; LUNETTA, 2012), identificar padr6es em dados com rela¢cdes complexas ndo-lineares
(HAMIDI et al., 2021) e lidar com varidveis de naturezas distintas, alta dimensionalidade de
dados (CORTE et al., 2020), presenca de ruidos e dados faltantes (BRACKENRIDGE et al.,
2022).

Os avancgos tecnoldgicos tém oportunizado a coleta e armazenamento de grande
quantidade e variedade de dados no setor florestal, oriundos do monitoramento de atributos
florestais desde fontes de sensoriamento remoto até sistemas terrestres com obtencéo de dados
em tempo real. Apesar da aplicagdo de big data na gestdo florestal ainda situar-se em estagio
inicial, o seu progresso tem potencial para tornar o manejo florestal inteligente, interconectado
e digital no tocante ao atendimento a diferentes servigos e necessidades (ZOU et al., 2019).

Frente a complexidade dos dados, é demandado o processamento de diferentes técnicas de
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Machine learning, um ramo de inteligéncia artificial, com destaque para o Random Forest, as
redes neurais artificiais e a maquina vetor de suporte pelo bom desempenho preditivo
evidenciado em inameros trabalhos na literatura (HONG et al., 2018; OU; LEI; SHEN, 2019;
SILVEIRA et al., 2019; TAVARES JUNIOR et al., 2020). Entretanto, a alta dimensionalidade
dos dados representa um desafio para as analises e tomadas de decisdo, sendo a selecdo de
atributos (feature selection) uma tarefa eficiente no solucionamento desse problema. Feature
selection consiste em uma etapa de pré-processamento na mineracao de dados (Data mining) e
Machine learning fundamentada na remocdo de atributos irrelevantes e redundantes. A
relevancia dessa etapa € atribuida a sua comprovada eficiéncia na constru¢do de modelos mais
simples e interpretaveis com ganho no desempenho do algoritmo, melhoria da acuracia dos
resultados e reducdo do tempo computacional (CAI et al., 2018; KHALID; KHALIL;
NASREEN, 2014; LI et al., 2018; XUE et al., 2016). Os métodos de feature selection séo
categorizados em abordagens filter, wrapper e embedded. Estas categorias movem de uma
abordagem simplificada e computacionalmente rapida com menor acurécia (método filter) para
a busca do equilibrio entre tempo computacional e acuracia por meio da combinacdo dos
métodos filter e wrapper, que consiste no método embedded (APOLLONI; LEGUIZAMON;
ALBA, 2016; GHOSH et al., 2020). Comparado ao método filter, a vantagem da abordagem
wrapper reside em seu critério de selecdo de atributos, em que os subconjuntos de atributos
testados sdo avaliados conforme o desempenho do preditor. Desta forma, o preditor €
encapsulado em um algoritmo de busca que encontrara um subconjunto otimizado de atributos
que fornece uma maior acuracia das estimativas (CHANDRASHEKAR; SAHIN, 2014; HONG
et al., 2018). A abordagem wrapper com uso do algoritmo genético (AG) tem sido atrativa em
termos de operacionalidade e boa capacidade de busca (JIANG et al., 2017). Na literatura, a
implementacdo do AG na selecdo de atributos tem proporcionado ganhos em termos de acuracia
(HONG et al.,, 2018; MURTHY; KOOLAGUDI, 2018) e interpretabilidade ecoldgica e
biolgica na modelagem do afilamento de arvores (LACERDA et al., 2022) e altura total
(MIRANDA et al., 2022).

Face ao exposto, objetivou-se com esta tese implementar o algoritmo genético em
associacdo com algoritmos de Machine learning em tarefas de selecdo de atributos para
modelagem florestal. No artigo 1 realizou-se a investigagdo de diferentes abordagens
metodoldgicas na modelagem da produtividade da garra tragadora envolvendo regresséo linear
via stepwise, algoritmos de Machine learning (Random Forest e redes neurais artificiais) e o

algoritmo genético na selecdo de atributos para os preditores Random Forest (GA-RF) e redes
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neurais artificiais (GA-RNA). Esta abordagem comparativa teve como objetivo avaliar o
desempenho preditivo dos modelos e revelar as variaveis independentes com maior poder
explicativo. O artigo 2 despontou da investigacdo do comportamento da competicdo na
modelagem do crescimento em diametro a nivel de arvores individuais em uma Floresta
Estacional Semidecidual Montana. O escopo desse artigo introduz um comparativo de
diferentes categorias de indices de competicdo classicos (dependentes, semi-independentes e
independentes da distancia) frente a metodologia proposta com base em meétricas topoldgicas
das redes complexas. Desta forma, o algoritmo genético com o Random Forest (GA-RF) foi
implementado para selecdo dos indices/métricas com maior poder preditivo em termos de

acurécia e interpretacéo ecoldgica do crescimento em diametro.

Com base nesta conjuntura, a estruturacdo da tese envolveu duas partes. A primeira
parte com foco na revisdo de literatura para uma introducdo e contextualizacdo das tematicas
bem como a explanacdo dos métodos utilizados e a segunda parte configurou um
aprofundamento na abordagem da produtividade da colheita florestal e do crescimento em
diametro em nivel de arvores individuais por meio do desenvolvimento dos respectivos artigos,
le2.
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2 REVISAO DE LITERATURA

2.1 Planejamento da colheita

A colheita de madeira demanda alto investimento de capital, sendo de extrema importancia
a viabilidade econdmica de suas operacdes (SOMAN; KIZHA; ROTH, 2019). Estas operacdes
abrangem desde a derrubada e processamento de arvores até o transporte secundario para as
usinas. E atribuido aos gestores florestais o planejamento adequado dessas operacoes
considerando as condi¢des ambientais, sociais e econdémicas no detalhamento das atividades,
horérios, locais e acessos a estrada. As especificacfes dessas atividades derivam de uma
variedade de fatores concernentes ao tipo de floresta, sistema de colheita e produtos finais
(FENG; AUDY, 2020).

O planejamento da colheita deve ser delineado de modo a assegurar que a producao florestal
atenda satisfatoriamente as especificacdes de matéria-prima requisitadas para o abastecimento
das fébricas, abrangendo diferentes niveis de abordagens categorizados em estratégico, tatico e
operacional. Em sintese, o planejamento estratégico concerne a determinacdo das areas de
florestas a serem colhidas afetando as decisGes de construcdo da malha rodoviaria florestal.
Enquanto o planejamento tatico e o operacional envolvem quais as &reas a serem cortadas,
quando, quais volumes e sortimentos, quais 0s requisitos em termos de membros de equipe e
equipamentos florestais. O maior detalhamento das informacd@es € inerente ao nivel operacional,
onde encontram-se muitos desafios técnicos no desenvolvimento e implementacdo de sistemas
de apoio a decisdo (FENG; AUDY, 2020)

A complexidade dos fatores que norteiam as operacgdes de colheita tornam dificil a tomada
de decisdo no tocante ao sistema de colheita mais eficiente (GHAFFARIYAN; BROWN,
2013), sendo primordial para suporte as tomadas de decisdo, o desenvolvimento de modelos de
produtividade das maquinas florestais. Mundialmente, a produtividade de maquinas de colheita
tem sido foco de estudos por mais de 25 anos. A literatura existente tem comprovado que a
produtividade esté sujeita a variagao de diferentes fatores como condigdes do povoamento e do
local, configuragcdo do equipamento, objetivos do manejo e experiéncia do operador (HIESL;
BENJAMIN, 2013). Congruente a isso, a industria florestal tem avancado em dire¢do ao
conceito da Industria 4.0 com a incorporagdo de tecnologias orientadas a automatizacéo da

coleta de dados, configurando novas oportunidades e desafios para a modelagem da
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produtividade das operacdes de colheita (ERIKSSON; LINDROOS, 2014; FENG; AUDY,
2020; LISKI et al., 2020). Nesse sentido, hd uma tendéncia crescente na aplicacdo de métodos
de Machine learning para melhorias na acuracia das estimativas e na compreensao da relacao
entre as variaveis preditoras e a resposta (LISKI et al., 2020). Levers et al. (2014) ressalta a
capacidade da abordagem Machine learning frente aos modelos de regressao linear em extrair
conhecimento a partir da dados de colheita caracterizados por relagdes ndo lineares entre as
variaveis. Adicionalmente, o uso de métodos de Machine learning confere vantagens em termos
de inclusdo de variaveis categdricas nos modelos. Gongalves et al. (2022) demonstraram éxito
na aplicacdo desses métodos na modelagem do corte florestal mecanizado via harvester
resultando em um maior desempenho preditivo da produtividade com uso do algoritmo
Boosted, sequido pelas redes neurais artificiais e 0 ANFIS (Adaptive network-based fuzzy
inference system). Rossit et al. (2019) utilizaram arvores de decisdo para predicdo da
produtividade de harvesters, alcancando elevado nivel de acuracia (em média 90%) e
interpretabilidade dos modelos com base na obtencdo das variaveis com maior importancia
preditiva. Portanto, a modelagem da produtividade via métodos de Machine learning é uma
ferramenta atil no fornecimento de valiosos insights, que podem contribuir decisivamente no
manejo florestal e no direcionamento de politicas e investimentos florestais (LEVERS et al.,
2014). Complementarmente, face ao aumento da quantidade e complexidade dos dados, Liski
et al. (2020) destaca que as futuras dire¢cbes conduzem a operacionalidade de modelos de
Machine learning em websites ou plataformas em nuvem com alimentacdo dos modelos por

meio de dados fornecidos continuamente as previsoes.

2.2 Competicdo entre arvores: Do estado da arte as futuras direcoes

O estudo da dinamica florestal busca entender as mudancas na estrutura e composicao
da floresta ao longo do tempo, incluindo seu comportamento em resposta a perturbacdes
antropicas e naturais (PRETZSCH, 2009). A simulacdo da dinamica florestal em nivel de
arvores individuais é fundamentada em um sistema de equacGes que agregam o crescimento, 0
ingresso e a mortalidade das arvores (BURKHART; TOME, 2012). Portanto, torna-se
fundamental a identificagdo de fatores que impulsionam a dinamica florestal (DING et al.,
2019). Dentre estes fatores, tem-se o clima, micro-ambiente, caracteristicas genéticas, tamanho
da arvore, idade e competicdo. A competicdo entre as arvores, em nivel de vizinhanca local,

destaca-se como um dos principais fatores que fornece uma melhor compreensédo sobre o
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desenvolvimento das arvores em uma floresta (BURKHART; TOME, 2012; JIANG et al.,
2018; OHEIMB et al., 2011), tornando-se parte importante do manejo florestal, bem como para
a ecologia (HUI et al., 2018).

As arvores em uma floresta encontram-se em continuo estado de competicdo por
recursos limitados, acima do solo (luz), abaixo do solo (dgua e minerais), ou ambos. Assim, seu
desenvolvimento é resultante das seguintes condigdes: o quanto cada arvore cresce depende do
seu tamanho, do tamanho de seus vizinhos e das distancias desses vizinhos. A medida que as
arvores mudam de tamanho, seu crescimento continuo é influenciado pelos incrementos de
tamanho que eles e seus vizinhos ja fizeram (SCHNEIDER et al., 2006; VATRAZ et al., 2016)

Nesse sentido, a competicdo atua como um fator decisivo quanto as taxas de crescimento
e consequentemente, na produtividade florestal (SABATIA; BURKHART, 2012;
SCHNEIDER et al., 2006). Em nivel de arvores individuais, usualmente a competi¢cdo ocasiona
a reducéo do crescimento em termos de didmetro, diminuigdo ou estagnacdo do comprimento
da copa e aumenta a probabilidade de mortalidade (WEISKITTEL et al., 2011). Logo, a mesma
deve ser quantificada com maior confiabilidade, uma vez que sdo requeridas para a elaboragédo
de modelos de crescimento e producdo (CONTRERAS; AFFLECK; CHUNG, 2011). Esta
quantificacdo consiste em um desafio continuo na area florestal. Para isto, sdo utilizados o0s
indices de competicdo que consistem em formulagcdes matematicas com o intuito de expressar
0 quanto cada arvore é afetada por seus vizinhos. Os indices variam desde formulagdes simples,
expressando a posicao hierarquica da arvore dentro do povoamento ou parcela, até indices mais
complexos que consideram o tamanho, a distancia e o nimero de vizinhos locais (BURKHART;
TOME, 2012).

Na tentativa de retratar a competicao de forma apropriada séo exploradas uma variedade
de indices de competi¢do, cuja maioria estd concentrada em processos acima do solo
(KUEHNE; WEISKITTEL; WASKIEWICZ, 2019). Os mais difundidos na literatura séo
classificados como: indices dependentes da distancia que requerem as coordenadas espaciais
de cada arvore e a definicdo de vizinhanca para estabelecer as arvores da vizinhanga que
competem com a arvore-objeto e os indices independentes da distancia que ndo exigem as
coordenadas espaciais das arvores. Além desses, tem-se 0s semi-independentes da distancia que
surgiram a posteriori, sendo similares aos indices independentes, mas que sdo computados,
considerando-se parcelas circulares ao redor da arvore-objeto (BURKHART; TOME, 2012;
POMMERENING; MEADOR, 2018; STAGE; LEDERMANN, 2008).

Numerosos estudos abordam de maneira comparativa a eficiéncia entre os diferentes

tipos de indices. A exemplo destes estudos, podem ser citados: Ledermann, (2010), Castro et
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al. (2014), Lambrecht et al. (2019) e Kuehne, Weiskittel e Waskiewicz (2019). Porém, o
desempenho dos indices varia conforme o tipo e as condi¢Bes da floresta, ndo havendo
unanimidade de um indice superior aos demais (CONTRERAS; AFFLECK; CHUNG, 2011),
sendo assim, estes devem ser analisados sob condicdes especificas de modo a designar sua
aplicabilidade (HUI et al., 2018). Diante disso, alguns estudos também tém sido voltados para
a melhoria ou a criacdo de novos indices, como Pedersen et al. (2013) que propds indices a
partir de métricas de varredura a laser, Hui et al. (2018) que formulou o indice baseado em
estrutura espacial (Structure-based Competition Index, SCI) e Boeck et al. (2014) que utilizou
indices fundamentados na competicdo por luz. Outra abordagem da competi¢cdo com caréater
inovador foi introduzida por meio dos estudos de Nakagawa, Yokozawa e Hara (2016) e
Mongus et al. (2018), que utilizaram métricas de redes complexas para investigar a interacéo
entre as arvores. Por se tratar de uma técnica inovadora no campo das ciéncias florestais,
dedicou-se a préxima seccdo (seccdo 2.3 Redes complexas) para explicacdo de conceitos
basicos sobre o assunto, que sdo fundamentais para melhor compreensao do artigo 2.

No entanto, ainda restam muitas oportunidades de melhoria, que podem solucionar,
inclusive, as limitacdes dos indices/métricas na incorporagdo de conceitos de competicdo como:
a competicdo entre arvores da mesma espécie (intraespecifica), entre arvores de diferentes
espécies (interespecifica) (MALEKI; KIVISTE; KORJUS, 2015), quando todas as arvores
recebem a mesma quantidade de recursos, independentemente de seus tamanhos (simétrica) ou
guando as arvores de maior tamanho tem uma parcela desproporcional de grande parte dos
recursos em detrimento das menores (assimétrica) (PRETZSCH; BIBER, 2010). A analise de
ambos 0s conceitos de competicdo, foram abordados no estudo de (RiO; CONDES;
PRETZSCH, 2014) que destacou como sendo uma ferramenta Util para explorar as interacdes
entre espécies.

Desta forma, um Gnico indice/métrica de competi¢do ndo consegue sintetizar todos 0s
componentes da competicdo, uma vez que a mesma é compreendida como um pProcesso
continuo, complexo e altamente dindmico, tanto espacial quanto temporalmente
(WEISKITTEL et al., 2011). Isto posto, esfor¢os tém sido direcionados com base no uso do
sensoriamento remoto para avaliar o comportamento da competi¢do, como o estudo de Téo et
al. (2015) que realizou a espacializacdo do estresse competitivo em uma Floresta Ombrofila
Mista.
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2.3 Redes complexas

Historicamente, o estudo das redes iniciou com o desenvolvimento do ramo da
matematica discreta, conhecido como teoria dos grafos. O nascimento dessa teoria € atribuido
ao matematico suico Leonhard Euler por ter solucionado, em 1736, o problema das sete pontes
de Konigsberg que cruzavam o rio Pregel, conectando duas ilhas. O problema consistia em
encontrar uma viagem de ida e volta que atravessasse apenas uma Unica vez cada uma das sete
pontes da cidade. Euler estudou o problema utilizando uma abstracdo matematica denominada
de grafo, em que cada parte da cidade era representada por meio de pontos (vertices/nds) e as
pontes da cidade eram as ligacOes (arestas) que conectavam esses pontos. Ele demonstrou que
ndo existia solucdo para o problema. A falta de solucéo foi relacionada ao nimero impar de
conexdes (ligacdes) dos vertices, assim com estes vértices sé seria possivel iniciar ou terminar
0 caminho, sendo necessario passar mais de uma vez por uma mesma ligacdo (FIGURA 1)
(BOCCALETTI et al., 2006; SILVA; ZHAO, 2016; NEWMAN, 2003).

Figura 1- O centro da cidade de Konigsberg (a), 0 mapa esquematico do problema das pontes
de Konigsberg (b) e sua representacio na forma de grafo (c)®.

! Figura retirada de <http://macsmundi.blogspot.com/2010/09/grafosredes.html>.

Nesse sentido, uma rede é definida como qualquer sistema passivel de representacéo
matematica abstrata na forma de um grafo (FIGURA 2), em que o0s nos (vértices) identificam
os elementos do sistema e a presenca de uma relacdo ou interacdo entre os elementos sdo
representadas por um conjunto de ligacdes (arestas) (BARRAT; BARTHELEMY;
VESPIGNANI, 2008).
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Figura 2 - Representacdo de uma pequena rede com oito nés e dez arestas.

Fonte: Newman (2003).

Um grafo G é considerado ndo direcionado quando estabelecido por um par de conjuntos
G =(V, E), em que V é um conjunto ndo vazio de elementos, denominados de vértices ou nés,
e E é um conjunto de pares ndo ordenados de diferentes nos, denominados de arestas ou links.
Diferente deste, em um grafo direcionado (digrafo), o conjunto E € constituido de pares
ordenados de diferentes nds que sdo chamadas arestas direcionadas, cuja a natureza dirigida das
arestas é representada por meio de uma seta, que indica a direcdo de cada aresta. Desta forma,
em um grafo ndo direcionado, a presenca de uma aresta entre 0s nds i e j conecta 0s mesmos
em ambas as direcBes. Entretanto, a presenca de uma aresta i e j em um grafo direcionado nao
implica necessariamente a presenca da aresta inversa entre j e i (BARRAT; BARTHELEMY;
VESPIGNANI, 2008). A aresta (i, j) une os nds i e j, que sdo referidos como adjacentes ou
vizinhos (LATORA; NICOSIA; RUSSO, 2017).

A representacdo matematica de um grafo é determinada com base na matriz de
adjacéncia A:{aij} por meio da Equacdo 1. Esta matriz possui dimensdo N x N, em que N

consiste no namero total de nds do grafo.
1, se(i,j) sdo vizinhos e A

@)

caso contrario,0 se(i, j) ¢ A

Sendo assim, os grafos ndo direcionados sdo expressos por uma matriz de adjacéncia

simeétrica (&; = a;;). Porém, para os grafos direcionados, esta matriz ndo € simeétrica (FIGURA

3) (BARRAT; BARTHELEMY; VESPIGNANI, 2008).
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Figura 3 - Diferenciacdo entre o grafo ndo direcionado e direcionado com sua matriz de
adjacéncia.

Grafo néo

direcionado 0123 0
olo1 11 1 2
11101 1
2(1 10
31110 3

0
|0123
00100 1 2
11101 1
20101
3lo110 3

0

e 0123
0{0 101 1 2
110000
20100
30110 3

Fonte: Barrat, Barthelemy e Vespignani (2008).

Os grafos também sdo definidos como ndo ponderados, assumindo uma natureza
binaria, em que é estipulada a presenca ou auséncia de arestas entre 0s n6s. No entanto, diante
da ampla heterogeneidade na capacidade e na intensidade das conexdes em varias redes reais,
0s sistemas podem ser melhor descritos em termos de grafos ponderados. Nestes grafos, cada
aresta esta associada a um peso (valor) numérico real positivo, que representa a intensidade da
conexdo (BOCCALETTI et al., 2006; LATORA; NICOSIA; RUSSO, 2017). Sua matriz de

adjacéncia consiste em uma matriz quadrada com dimensao N x N, a qual é constituida por um

conjunto de pesos W = {Wl, Wy, W .Wk} . Assim, W; corresponde ao peso (valor) da aresta que
conecta o no i ao no j, em contrapartida W;; = 0 quando os nds i e j ndo estiverem conectados.

Também vale ressaltar que W; =0 Vi.

Em geral, a representacdo da estrutura de interesse como uma rede é parte do processo
de investigagdo em redes complexas, que também envolve uma andlise das caracteristicas
topoldgicas da representacdo obtida, produzida em termos de um conjunto de medidas
informativas. As medidas de rede sdo compreendidas como um recurso direto ou subsidiario
em muitas investigacdes de rede, potencialmente utilizadas para representar, caracterizar,
classificar e modelar sistemas complexos compostos por elementos de interacdo. Diante disto,
nos ultimos anos, as pesquisas em redes complexas tém ganhado relevancia, sendo aplicada em

diversas areas como biologia, economia, linguistica, medicina, ciéncias sociais, tecnologia e
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transporte, o que lhe conferiu um carater multidisciplinar (COSTA ET AL., 2007; COSTA;
RODRIGUES; CRISTINO, 2008).

Existem uma variedade de métricas que podem ser utilizadas para a caracterizagdo
topoldgica das redes. A exemplo de algumas medidas basicas podem ser citadas: o grau do no
que é determinado pelo nimero de arestas conectadas ao nd, o coeficiente de agrupamento
(Clustering coefficient) que mede a presenca de ciclos de ordem 3 (tridngulos), o tamanho do
caminho que consiste no numero de arestas em um caminho que conecta os vértices i e j, com
destagque para o menor caminho entre os vértices i e j, que é definido como 0 menor nimero de
ligagOes existentes entre i e j (COSTA etal., 2007), centralidade de intermediacao (Betweenness
centrality), centralidade de autovetor (Eigenvector centrality) e PageRank (LIAO et al., 2017).
Tais medidas estdo relacionadas com a analise disposta no artigo 2, secdo 2.2.1, onde serdo
detalhadas. Estas concentram-se em medidas de analise individual do n6, sendo sua importancia

definida com base na caracteristica a ser avaliada.

2.4 Random Forest

O Random Forest (RF), foi introduzido por Breiman (2001), como uma melhoria em
relacdo a arvore de decisdo, por meio do uso de um comité ou "ensemble” de arvores de decisao,
portanto “floresta”, que foram descorrelacionadas de modo a proporcionar a reducdo da
variancia e consequentemente, um aumento do desempenho preditivo (CHENG et al., 2019;
JAMES et al., 2013).

O funcionamento do RF consiste na combinacdo de arvores de decisdo, em que cada
arvore é construida com base em um vetor aleatério amostrado de forma independente em
relacdo aos outros vetores, porém com a mesma distribuicdo para todas as arvores da floresta.
Este vetor refere-se as amostras dentro da bolsa (do inglés, in bag) que constituem 2/3 do
conjunto de dados original utilizadas para o treinamento de cada arvore de decisdo. O 1/3 dos
dados remanescentes consistem nas amostras fora da bolsa (do inglés, out-of-bag — OOB) que
compde o0 conjunto teste, utilizado como técnica de validacdo-cruzada interna do RF (AURET;
ALDRICH, 2012; BELGIU; DRAGU, 2016; BREIMAN, 2001).

As arvores de decisdo sdo cultivadas por meio de divisdes no conjunto de dados, em que
cada divisdo é realizada a partir da selecdo aleatdria de um subconjunto de variaveis preditoras

(M) menor que o namero total de variaveis disponiveis (P). Assim, sdo geradas arvores

distintas e a agregacéo das predi¢cdes das mesmas € realizada para obter a predicéo final, que é
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resultante da média (para regressdo) ou do voto majoritario (para classificacdo) (BREIMAN,
2001; AURET; ALDRICH, 2012; BELGIU; DRAGU, 2016).

O ajuste do RF demanda a definicdo de trés parametros, sendo estes: 0 numero de
arvores a serem cultivadas (ntree) com base na quantidade de amostras bootstrap oriundas do
conjunto de dados original, o nimero de preditores m a ser selecionado aleatoriamente para
divisdo de cada nd da arvore (mtry) e 0 nimero minimo de observagdes nos nos terminais de
cada arvore (nodesize) (LAHSSINI et al., 2015).

A popularidade do RF como uma ferramenta excepcional na resolucéo de problemas de
regressdo e classificacdo nas mais diversas areas cientificas, pode ser atribuida a facilidade de
ajuste de seus parametros, o alto desempenho preditivo, o ranqueamento das variaveis conforme
suas medidas de importancia e sua capacidade de lidar com valores faltantes, ruidos e alta
dimensdo de dados (AURET; ALDRICH, 2012; HAPFELMEIER; ULM, 2014; JANITZA et
al., 2016; Ll et al., 2018).

2.5 Algoritmo genético (AG)

O algoritmo genético (AG) tem sido utilizado extensivamente e com éxito na solucao
de problemas de otimizacdo. O mesmo foi introduzido na década de 70 por John Holland e
colaboradores da Universidade de Michigan como uma heuristica inspirada na teoria da
evolugdo darwiniana que tem como principio “a sobrevivéncia do mais apto” (PATTANAIK;
BASU; DASH, 2018) por meio dos mecanismos de sele¢do natural, heranca e variabilidade
(HONDA, 2018). Portanto, seu método de busca pela solucdo ideal é realizado com base na
simulacgdo dos mecanismos supracitados (ZHI; LIU, 2019). Logo, o funcionamento do AG pode
ser descrito conforme o fluxograma disposto na Figura 4.
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Figura 4 - Fluxograma das etapas de funcionamento do Algoritmo genético simples.

Inicio —— Codificagdo
|

Populacao inicial

-
v

Avaliagao
|
Selecao
|
Crossover
|
Mutagao

|

nio Atingiu o sim
critério de — Fim
parada?

Fonte: Adaptado de Abdulhamed, Tawfeek e Keshk (2018).

Inicialmente, é necessario codificar uma solucdo candidata adequada ao problema, por
meio de uma representa¢do cromossémica. O cromossomo (individuo) consiste em um vetor
de comprimento definido, cuja codificacdo mais usual € de natureza binéria, ou seja, cada gene
assume o valor 0 ou 1 que determina as informacdes de cada individuo (ABDULHAMED,;
TAWFEEK; KESHK, 2018).

A partir da codificacdo, sdo gerados individuos de forma aleatéria que constituem na
populacdo inicial. Cada individuo é submetido a avaliacdo, em que seu desempenho é
mensurado por meio de uma funcéo objetivo, denominada de fitness (aptiddo) (PATTANAIK;
BASU; DASH, 2018). Desta forma, os individuos sdo comparados buscando, dentro da
populacdo corrente, aqueles que sdo mais aptos para participar da formacdo de novos
individuos. Esta operacdo é definida como selecdo, podendo ser realizada por meio de métodos
distintos como: torneio ou roleta. A selecdo por torneio é comumente utilizada devido a sua
eficiéncia e simplicidade na implementacdo de problemas de maximizagdo ou minimizagao
(MIASAKI; ROMERO, 2007).

Posterior a selecdo dos individuos, é aplicado o operador genético crossover que visa a
geragédo de melhores individuos. Para isto, sdo escolhidos um par de individuos (pais) que tem
seus genes alternados de modo a produzir dois individuos diferentes. Em seguida, é aplicado

outro operador, denominado de mutacdo que permite escapar de 6timos locais, uma vez que a
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geragdo de um novo individuo é conduzida a partir da alteracdo, de modo aleatorio, de valores
de um ou mais genes em um individuo. Em geral, adota-se uma probabilidade de mutagéo
pequena, diferente da probabilidade de crossover (cruzamento) que € proxima de 1
(ABDULHAMED; TAWFEEK; KESHK, 2018; METAWA; HASSAN; ELHOSENY, 2017).
Estas sdo consideradas estratégias com a finalidade de diversificar a populagdo, bem como
melhorar o fitness dos individuos da nova populacdo (CERRADA et al., 2015). O procedimento
é repetido desde a etapa de avaliacdo até a mutacgdo, finalizando somente quando o critério de
parada € satisfeito. Este pode ser estabelecido como um ndmero méaximo de iteracdes
(MIASAKI; ROMERO, 2007).

2.6 Selecdo de variaveis

O aumento exponencial na quantidade de dados disponiveis tem configurado um desafio
para extracdo de conhecimento, sendo substancial uma etapa de pré-processamento de dados
em problemas de regresséo e classificacdo. A selecdo de atributos (feature selection) consiste
no pré-processamento com base na reducao da dimensionalidade dos dados, sendo definido um
subconjunto de atributos relevantes a partir de um conjunto original. Esta etapa visa a remogéo
de atributos irrelevantes, redundantes e ruidos que podem conduzir a uma baixa
interpretabilidade e  desempenho do  modelo (MASOUDI-SOBHANZADEH,
MOTIEGHADER; MASOUDI-NEJAD, 2019; MIAO; NIU, 2016).

Na literatura sdo difundidas diferentes abordagens de selecdo de atributos que variam
desde métodos classicos a algoritmos de Machine learning. No tocante aos métodos classicos
tem-se 0 stepwise que seleciona as variaveis independentes a serem incorporadas em um
modelo de regressédo. Esta selecdo consiste em um processo iterativo por meio da adigéo (passo
forward) ou remocéo (passo backward) de varidveis com base no critério de selecdo adotado.
Os critérios mais usuais sdo o teste F, coeficiente de correlacdo linear multipla, erro quadratico
total e critério de informacéo de Akaike (ALVES; LOTUFO; LOPES, 2013). A exemplo de
estudos florestais, Li et al. (2014) evidenciaram que a aplicacdo do stepwise na selecdo de
atributos para a construcdo de modelos de regressdo OLS (Ordinary least squares) e GAM
(Generalized additive model) favoreceram a acuracia das estimativas de biomassa e carbono
em uma floresta mista. A regressdo PLS (Partial least squares) € uma analise multivariada
fundamentada na transformacéo das variaveis de processo x e de produto y em um ndmero

reduzido de combinacGes lineares, sendo uma opcéao plausivel em face de sua capacidade de
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lidar com grande quantidade de variaveis correlacionadas e ruido (ZIMMER; ANZANELLO,
2014). A sua aplicacdo tem-se estendido no meio florestal com éxito na predicdo de atributos
florestais, como a altura média de Lorey a partir de dados LiDAR (LIU et al., 2018) e a biomassa
acima do solo a partir de dados LiDAR e hiperespectrais (LAURIN et al., 2014). Uma
abordagem popularmente difundida é o método de regressdao denominado de Lasso (Least
absolute shrinkage and selection operator) que minimiza a soma dos quadrados dos residuos
por meio da penalizagdo L; aos coeficientes do modelo (KUKREJA; LOFBERG; BRENNER,
2006). Este procedimento induz a reducdo dos coeficientes, em que alguns coeficientes
assumem o valor zero podendo ser removidos do modelo juntamente com os coeficientes
negativos. Desta forma, séo realizadas simultaneamente a regularizacdo dos coeficientes e a
selecdo de atributos (GHOSH et al., 2021; YAN; YAO, 2015). Kankare et al. (2013) obtiveram
maior acuracia das estimativas de biomassa em nivel de arvore individual a partir de dados ALS
(Airbone laser scanning) com sele¢do de atributos via Lasso comparado aos modelos classicos
baseados em didmetro e altura derivados de ALS.

A selecdo de atributos € compreendida como um problema de otimiza¢do combinatoria
face a inviabilidade de testar todas as solucGes possiveis. Neste sentido, maiores avangos nas
técnicas de selecdo envolvem o uso de meta-heuristicas na otimizagao do processo de busca por
um subconjunto de atributos. Os algoritmos evolucionarios baseados em populacdo sao capazes
de encontrar boas solugdes sem a necessidade de explorar todo o espaco de busca. A exemplo
desses tem-se o algoritmo genético (Genetic algorithm — GA), o algoritmo de otimizacéo por
coldnia de formigas (Ant Colony Optimization — ACO) e por enxame de particulas (Particle
Swarm Optmization — PSO) (HONG et al., 2018; VIEIRA et al., 2012; YANG; OLAFSSON,
2006). Estes algoritmos sdo utilizados como métodos wrapper, cujas solugcdes sdo avaliadas em
termos de acuréacia com base no desempenho de um preditor como o0 Random Forest, maquina
de vetor de suporte e redes neurais artificiais (HONG et al., 2018; PATEL; GIRI, 2016).
Estudos tém comprovado ganhos em termos de acurécia e interpretabilidade na modelagem da
susceptibilidade a incéndios florestais (HONG et al., 2018), altura de arvores (MIRANDA et
al., 2022) e estoque de carbono organico no solo (WANG et al., 2018).
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3 CONSIDERACOES GERAIS

A inteligéncia artificial tem sido aplicada em diversos problemas florestais, constituindo
uma ferramenta importante no fornecimento de informacgdes assertivas para um adequado
manejo e planejamento florestal. Dentre suas diversas aplicacOes, a tarefa de selecdo de
atributos permeia um campo multidisciplinar com éxito na extracao de conhecimento dos dados
favorecendo a obtencdo de modelos simplificados com boa capacidade preditiva e explicativa.
Portanto, a selecdo de atributos surge como uma abordagem potencial a ser explorada, face a
sua incipiéncia na modelagem florestal. Esse contexto impulsiona o deslocamento de um
panorama puramente estatistico fundamentado em acuracia para a integracdo da propriedade
interpretativa aos modelos em termos bioldgicos e ecoldgicos. Tal interpretabilidade advém da
tentativa de explicar os efeitos subjacentes ao subconjunto de varidveis otimizado. A relevancia
da interpretabilidade dos modelos concernentes a produtividade da colheita florestal (Artigo 1)
e ao crescimento em nivel de arvores individuais (Artigo 2) é atribuida a sua atuacdo decisiva

na confiabilidade, agilidade e suporte as tomadas de decisdo pelos gestores florestais.



30

REFERENCIAS

ABDULHAMED, A. A.; TAWFEEK, M. A.; KESHK, A. E. A genetic algorithm for service
flow management with budget constraint in heterogeneous computing. Future Computing
and Informatics Journal, New Cairo, v. 3, n. 2, p. 341-347, 2018.

ALVES, M. F.; LOTUFO, A. D. P.; LOPES, M. L. M. Sele¢do de variaveis stepwise
aplicadas em redes neurais artificiais para previsdo de demanda de cargas elétricas.
Proceeding Series of the Brazilian Society of Applied and Computational Mathematics,
Sdo Carlos, v. 1, n. 1, p. 1-6, 2013.

ASHRAF, I. M. et al. Integrating biophysical controls in forest growth and yield predictions
with artificial intelligence technology. Canadian Journal of Forest Research, Ottawa, v. 43,
p. 1162-1171, 2013.

ASHRAF, M. I. et al. A novel modelling approach for predicting forest growth and yield
under climate change. PLoS ONE, San Francisco, v. 10, n. 7, p. 1-18, 2015.

AURET, L.; ALDRICH, C. Interpretation of nonlinear relationships between process
variables by use of random forests. Minerals Engineering, Falmouth, v. 35, p. 27-42, 2012.

BARRAT, A.; BARTHELEMY, M.; VESPIGNANI, A. Dynamical Processes on Complex
Networks. Cambridge: Cambridge University Press, 2008.

BELGIU, M.; DRAGU, L. Random forest in remote sensing: A review of applications and
future directions. ISPRS Journal of Photogrammetry and Remote Sensing, Amsterdam, v.
114, p. 24-31, 2016.

BISPO, P. da C. et al. Woody aboveground biomass mapping of the brazilian savanna with a
multi-sensor and machine learning approach. Remote Sensing, Basel, v. 12, n. 2685, p. 1-22,
2020.

BOCCALETTI, S. et al. Complex networks: Structure and dynamics. Physics Reports,
Amsterdam, v. 424, n. 4-5, p. 175-308, 2006.

BOECK, A. et al. Predicting tree mortality for European beech in southern Germany using
spatially explicit competition indices. Forest Science, Bethesda, v. 60, n. 4, p. 613-622,
2014.

BRACKENRIDGE, R. E. et al. Improving Subsurface Characterisation with ‘Big Data’
Mining and Machine Learning. Energies, Basel, v. 15, n. 1070, p. 1-23, 2022.

BREIMAN, L. Random Forests. Machine learning, Dordrecht, v. 45, p. 5-32, 2001.

BURKHART, H. E.; TOME, M. Modeling forest trees and stands. Dordrecht: Springer



31
Science & Business Media, 2012.

CAl, J. et al. Feature selection in machine learning: A new perspective. Neurocomputing,
Amsterdam, v. 300, p. 70-79, 2018.

CASTRO, R. V. O. et al. Competition indices in individual tree level in a Semideciduous
Montana forest. Silva Lusitana, Oeiras, v. 22, n. 1, p. 43-66, 2014.

CERRADA, M. et al. Multi-stage feature selection by using genetic algorithms for fault
diagnosis in gearboxes based on vibration signal. Sensors, Basel, v. 15, n. 9, p. 23903-23926,
2015.

CHANDRASHEKAR, G.; SAHIN, F. A survey on feature selection methods. Computers
and Electrical Engineering, United Kingdom, v. 40, p. 16-28, 2014.

CHENG, L. et al. Applying a random forest method approach to model travel mode choice
behavior. Travel Behaviour and Society, Netherlands, v. 14, p. 1-10, 2019.

CONTRERAS, M. A.; AFFLECK, D.; CHUNG, W. Evaluating tree competition indices as
predictors of basal area increment in western Montana forests. Forest Ecology and
Management, Amsterdam, v. 262, n. 11, p. 1939-1949, 2011.

CORTE, A. P. D. et al. Forest inventory with high-density UAV-Lidar: Machine learning
approaches for predicting individual tree attributes. Computers and Electronics in
Agriculture, Oxford, v. 179, p. 105815, 2020.

COSTA, L. D. F. et al. Characterization of complex networks: A survey of measurements.
Advances in Physics, Abingdon, v. 56, n. 1, p. 167-242, 2007.

COSTA, L. daF.; RODRIGUES, F. A.; CRISTINO, A. S. Complex networks: The key to
systems biology. Genetics and Molecular Biology, Ribeiréo Preto, v. 31, n. 3, p. 591-601,
2008.

DING, Y. et al. Intraspecific trait variation and neighborhood competition drive community
dynamics in an old-growth spruce forest in northwest China. Science of the Total
Environment, Amsterdam, v. 678, p. 525-532, 2019.

ERIKSSON, M.; LINDROQS, O. Productivity of harvesters and forwarders in CTL
operations in northern Sweden based on large follow-up datasets. International Journal of
Forest Engineering, Philadelphia, v. 25, n. 3, p. 179-200, 2 set. 2014.

FENG, Y.; AUDY, J. F. Forestry 4.0: A framework for the forest supply chain toward
Industry 4.0. Gestéo e Producgéo, S&o Carlos, v. 27, n. 4, p. 1-21, 2020.

GHAFFARIYAN, M. R.; BROWN, M. Selecting the efficient harvesting method using
multiple-criteria analysis: A case study in south-west Western Australia. Journal of Forest
Science, Prague, v. 59, n. 12, p. 479-486, 2013.



32

GHOSH, P. et al. Efficient prediction of cardiovascular disease using machine learning
algorithms with relief and lasso feature selection techniques. IEEE Access, Piscataway, v. 9,
p. 19304-19326, 2021.

GONCALVES, S. B. et al. Machine learning techniques to estimate mechanised forest cutting
productivity. Southern Forests - A Journal of Forest Science, Grahamstown, Latest
Articles, p. 1-8, 2022. doi: 10.2989/20702620.2021.1994342

HAMIDI, S. K. et al. Analysis of plot-level volume increment models developed from
machine learning methods applied to an uneven-aged mixed forest. Annals of Forest
Science, Les Ulis, v. 78, n. 4, p. 1-16, 2021.

HAPFELMEIER, A.; ULM, K. Variable selection by Random Forests using data with
missing values. Computational Statistics & Data Analysis, Amsterdam, v. 80, p. 129-139,
2014.

HIESL, P.; BENJAMIN, J. G. Applicability of international harvesting equipment
productivity studies in Maine, USA: A literature review. Forests, Basel, v. 4, n. 4, p. 898—
921, 2013.

HONDA, M. Application of genetic algorithms to modelings of fusion plasma physics.
Computer Physics Communications, Amsterdam, v. 231, p. 94-106, 2018.

HONG, H. et al. Applying genetic algorithms to set the optimal combination of forest fire
related variables and model forest fire susceptibility based on data mining models. The case of
Dayu County, China. Science of the Total Environment, Amsterdam, v. 630, p. 1044-1056,
2018.

HUI, G. et al. A novel approach for assessing the neighborhood competition in two different
aged forests. Forest Ecology and Management, Amsterdam, v. 422, p. 49-58, 2018.

JAMES, G. et al. An Introduction to Statistical Learning. New York, NY: Springer New
York, 2013.

JANITZA, S.; TUTZ, G.; BOULESTEIX, A. L. Random forest for ordinal responses:
Prediction and variable selection. Computational Statistics & Data Analysis, Amsterdam, v.
96, p. 57-73, 2016.

JIANG, S. et al. Modified genetic algorithm-based feature selection combined with pre-
trained deep neural network for demand forecasting in outpatient department. Expert
Systems with Applications, Oxford, v. 82, p. 216-230, 2017.

JIANG, X. et al. Interspecific variation in growth responses to tree size, competition and
climate of western Canadian boreal mixed forests. Science of the Total Environment,
Amsterdam, v. 631-632, p. 1070-1078, 2018.

KANKARE, V. et al. Single tree biomass modelling using airborne laser scanning. ISPRS
Journal of Photogrammetry and Remote Sensing, Amsterdam, v. 85, p. 66—73, 2013.



33

KHALID, S.; KHALIL, T.; NASREEN, S. A survey of feature selection and feature
extraction techniques in machine learning. Science and Information Conference, London, v.
2014, p.27-29, 2014

KUEHNE, C.; WEISKITTEL, A. R.; WASKIEWICZ, J. Comparing performance of
contrasting distance-independent and distance-dependent competition metrics in predicting
individual tree diameter increment and survival within structurally-heterogeneous, mixed-
species forests of Northeastern United States. Forest Ecology and Management,
Amsterdam, v. 433, p. 205-216, 2019.

KUKREJA, S. L.; LOFBERG, J.; BRENNER, M. J. A Least Absolute Shrinkage and
Selection Operator (Lasso) for Nonlinear System Identification. IFAC Proceedings
Volumes, Newcastle, v. 39, n. 1, p. 814-819, 2006.

LACERDA, T. H. S. et al. Feature selection by genetic algorithm in nonlinear taper model.
Canadian Journal of Forest Research, Ottawa, Just-IN version, 2022.

LAHSSINI, S. et al. Predicting Cork Oak Suitability in Madmora Forest Using Random
Forest Algorithm. Journal of Geographic Information System, [s.l.], v. 07, p. 202-210,
2015.

LAMBRECHT, F. R. et al. Competi¢do em floresta natural de araucéria na regido noroeste do
Rio Grande do Sul-Brasil. Scientia Forestalis, Piracicaba, v. 47, n. 121, p. 131-138, 2019.

LATORA, V.; NICOSIA, V.; RUSSO, G. Complex networks: Principles, Methods and
Applications. Cambridge: Cambridge University Press, 2017.

LAURIN, G. V. et al. Above ground biomass estimation in an African tropical forest with
lidar and hyperspectral data. ISPRS Journal of Photogrammetry and Remote Sensing,
Amsterdam, v. 89, p. 49-58, 2014.

LEDERMANN, T. Evaluating the performance of semi-distance-independent competition
indices in predicting the basal area growth of individual trees. Canadian Journal of Forest
Research, Ottawa, v. 40, p. 796-805, 2010.

LEVERS, C. et al. Drivers of forest harvesting intensity patterns in Europe. Forest Ecology
and Management, Amsterdam, v. 315, p. 160-172, 2014.

LI, J. et al. Feature Selection: A Data Perspective. ACM Computing Surveys, New York, v.
50, n. 6, p. 1-45, 30 nov. 2018.

LI, M. et al. Forest biomass and carbon stock quantification using airborne LIDAR data: A
case study over Huntington wildlife forest in the Adirondack Park. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing, Piscataway, v. 7, n. 7, p.
3143-3156, 2014.

LI, Y. et al. Random forest regression for online capacity estimation of lithium-ion batteries.
Applied Energy, Oxford, v. 232, p. 197-210, 2018.



34

LIAQO, H. et al. Ranking in evolving complex networks. Physics Reports, Amsterdam, v.
689, p. 1-54, 2017.

LISKI, E. et al. Modeling the productivity of mechanized CTL harvesting with statistical
machine learning methods. International Journal of Forest Engineering, Philadelphia, v.
31, n. 3, p. 253-262, 2020.

LIU, K. et al. Estimating forest structural attributes using UAV-LIDAR data in Ginkgo
plantations. ISPRS Journal of Photogrammetry and Remote Sensing, Amsterdam, v. 146,
p. 465-482, 2018.

LIU, Z. et al. Application of machine-learning methods in forest ecology: Recent progress and
future challenges. Environmental Reviews, Ottawa, v. 26, n. 4, p. 339-350, 2018.

MALEKI, K.; KIVISTE, A.; KORJUS, H. Analysis of individual tree competition effect on
diameter growth of silver birch in Estonia. Forest Systems, Madrid, v. 24, n. 2, p. 1-13,
2015.

MASOUDI-SOBHANZADEH, Y.; MOTIEGHADER, H.; MASOUDI-NEJAD, A.
FeatureSelect: A software for feature selection based on machine learning approaches. BMC
Bioinformatics, London, v. 20, n. 170, p. 1-17, 2019.

METAWA, N.; HASSAN, M. K.; ELHOSENY, M. Genetic algorithm based model for
optimizing bank lending decisions. Expert Systems with Applications, Oxford, v. 80, p. 75—
82, 2017.

MIAO, J.; NIU, L. A Survey on Feature Selection. Procedia Computer Science, Amsterdam,
v. 91, p. 919-926, 2016.

MIASAKI, C. T.; ROMERO, R. Um algoritmo genético especializado aplicado ao
planejamento da expanséo do sistema de transmissdo com alocagao de dispositivos de
compensacao série. Revista SBA - Controle & Automacao, Campinas, v. 18, n. 2, p. 210—
222, 2007.

MIRANDA, E. N. et al. Variable selection for estimating individual tree height using genetic
algorithm and random forest. Forest Ecology and Management, Amsterdam, v. 504, p.
119828, 2022.

MONGUS, D. et al. Predictive analytics of tree growth based on complex networks of tree
competition. Forest Ecology and Management, Amsterdam, v. 425, p. 164-176, 2018.

MURTHY, Y. V. S.; KOOLAGUDI, S. G. Classification of vocal and non-vocal segments in
audio clips using genetic algorithm based feature selection (GAFS). Expert Systems with
Applications, Oxford, v. 106, p. 77-91, 2018.

NAKAGAWA, Y.; YOKOZAWA, M.; HARA, T. Complex network analysis reveals novel
essential properties of competition among individuals in an even-aged plant population.
Ecological Complexity, Amsterdam, v. 26, p. 95-116, 2016.



35

NEWMAN, M. E. J. The Structure and Function of Complex Networks. SIAM Review,
Philadelphia, v. 45, n. 2, p. 167-256, 2003.

NUNES, M. H.; GORGENS, E. B. Artificial Intelligence Procedures for Tree Taper
Estimation within a Complex Vegetation Mosaic in Brazil. PLoS ONE, San Francisco, v. 11,
n. 5, p. 1-16, 2016.

OHEIMB, G. VON et al. Individual-tree radial growth in a subtropical broad-leaved forest:
The role of local neighbourhood competition. Forest Ecology and Management,
Amsterdam, v. 261, p. 499-507, 2011.

OU, Q.; LEI, X.; SHEN, C. Individual tree diameter growth models of Larch-Spruce-Fir
mixed forests based on machine learning algorithms. Forests, Basel, v. 10, n. 187, p. 1-20,
2019.

PATEL, R. K.; GIRI, V. K. Feature selection and classification of mechanical fault of an
induction motor using random forest classifier. Perspectives in Science, [s.1.], v. 8, p. 334—
337, 2016.

PATTANAIK, J. K.; BASU, M.; DASH, D. P. Improved real coded genetic algorithm for
dynamic economic dispatch. Journal of Electrical Systems and Information Technology,
United Kingdom, v. 5, p. 349-362, 2018.

PEDERSEN, R. @. et al. On the evaluation of competition indices - The problem of
overlapping samples. Forest Ecology and Management, Amsterdam, v. 310, p. 120-133,
2013.

POMMERENING, A.: SANCHEZ MEADOR, A. J. Tamm review: Tree interactions between
myth and reality. Forest Ecology and Management, Amsterdam, v. 424, p. 164-176, set.
2018.

PRETZSCH, H. Forest Dynamics, Growth and Yield. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2009.

PRETZSCH, H.; BIBER, P. Size-symmetric versus size-asymmetric competition and growth
partitioning among trees in forest stands along an ecological gradient in central Europe.
Canadian Journal of Forest Research, Ottawa, V. 40, p. 370-384, 2010.

RIO, M. del; CONDES, S.; PRETZSCH, H. Analyzing size-symmetric vs. size-asymmetric
and intra- vs. inter-specific competition in beech (Fagus sylvatica L.) mixed stands. Forest
Ecology and Management, Amsterdam, v. 325, p. 90-98, 2014.

ROSSIT, D. A. et al. A Big Data approach to forestry harvesting productivity. Computers
and Electronics in Agriculture, Oxford, v. 161, p. 29-52, 2019.

SABATIA, C. O.; BURKHART, H. E. Competition among loblolly pine trees: Does genetic
variability of the trees in a stand matter? Forest Ecology and Management, Amsterdam, v.
263, p. 122-130, 2012.



36

SAFARI, A. et al. A comparative assessment of multi-temporal Landsat 8 and machine
learning algorithms for estimating aboveground carbon stock in coppice oak forests.
International Journal of Remote Sensing, Abingdon, v. 38, n. 22, p. 6407-6432, 2017.

SCHNEIDER, M. K.; LAW, R.; ILLIAN, J. B. Quantification of neighbourhood-dependent
plant growth by Bayesian hierarchical modelling. Journal of Ecology, Malden, v. 94, n. 2, p.
310-321, 2006.

SHAOQ, Y.; LUNETTA, R. S. Comparison of support vector machine, neural network, and
CART algorithms for the land-cover classification using limited training data points. ISPRS
Journal of Photogrammetry and Remote Sensing, Amsterdam, v. 70, p. 78-87, 2012.

SILVA, J. P. M. et al. Prognosis of forest production using machine learning techniques.
Information Processing in Agriculture, Beijing, in press, 2021. doi:
https://doi.org/10.1016/j.inpa.2021.09.004

SILVA, T. C; ZHAO, L. Machine Learning in Complex Networks. Cham: Springer
International Publishing, 2016.

SILVEIRA, E. M. O. et al. Object-based random forest modelling of aboveground forest
biomass outperforms a pixel-based approach in a heterogeneous and mountain tropical
environment. International Journal of Applied Earth Observation and Geoinformation,
Amsterdam, v. 78, p. 175-188, 20109.

SOMAN, H.; KIZHA, A. R.; ROTH, B. E. Impacts of silvicultural prescriptions and
implementation of best management practices on timber harvesting costs. International
Journal of Forest Engineering, Philadelphia, v. 30, n. 1, p. 14-25, 2019.

STAGE, A. R.; LEDERMANN, T. Effects of competitor spacing in a new class of individual-
tree indices of competition: semi-distance-independent indices computed for Bitterlich versus
fixed-area plots. Canadian Journal of Forest Research, Ottawa, v. 38, n. 4, p. 890-898,
2008.

TAVARES JUNIOR, I. da S. et al. Machine learning: Modeling increment in diameter of
individual trees on Atlantic Forest fragments. Ecological Indicators, Amsterdam, v. 117, p.
106685, out. 2020.

TEO, S. J.; FILHO, A. F.; LINGNAU, C. Analise espacial do estresse competitivo,
incremento diamétrico e estrutura de uma floresta ombrofila mista, Irati, PR. Floresta,
Curitiba, v. 45, n. 4, p. 681-694, 2015.

VATRAZ, S.; ALDER, D.; SILVA, J. N. M. indices de competico dependentes da distancia
do estrato arb6reo na Amazonia brasileira. Revista Espacios, Caracas, v. 37, n. 27, p. 1-12,
2016.

VIEIRA, G. C. et al. Prognoses of diameter and height of trees of eucalyptus using artificial
intelligence. Science of the Total Environment, Amsterdam, v. 619-620, p. 1473-1481,
2018.



37

VIEIRA, S. M. et al. Metaheuristics for feature selection: application to sepsis outcome
prediction. IEEE World Congress on Computational Intelligence, Brisbane, p. 1-8, 2012.

WANG, B. et al. Estimating soil organic carbon stocks using different modelling techniques
in the semi-arid rangelands of eastern Australia. Ecological Indicators, Amsterdam, v. 88, p.
425-438, 2018.

WEISKITTEL, A. R. et al. Forest Growth and Yield Modeling. Chichester, UK: John
Wiley & Sons, Ltd, 2011.

XUE, B. et al. A Survey on Evolutionary Computation Approaches to Feature Selection.
IEEE Transactions on Evolutionary Computation, Piscataway, v. 20, n. 4, p. 606—626,
2016.

YAN, Z.; YAO, Y. Variable selection method for fault isolation using least absolute
shrinkage and selection operator (LASSO). Chemometrics and Intelligent Laboratory
Systems, Amsterdam, v. 146, p. 136-146, 2015.

YANG, J.; OLAFSSON, S. Optimization-based feature selection with adaptive instance
sampling. Computers & Operations Research, Oxford, v. 33, n. 11, p. 3088-3106, 2006.

ZHI, H.; LIU, S. Face recognition based on genetic algorithm. Journal of Visual
Communication and Image Representation, San Diego, v. 58, p. 495-502, 20109.

ZIMMER, J.; ANZANELLO, M. J. Um novo método para selecdo de variaveis preditivas
com base em indices de importancia. Production, Porto Alegre, v. 24, n. 1, p. 84-93, 2014.

ZOU, W. et al. A Survey of Big Data Analytics for Smart Forestry. IEEE Access,
Piscataway, v. 7, p. 46621-46636, 2019.



38

SEGUNDA PARTE - ARTIGOS

ARTIGO 1 — A comparative approach of methods to estimate machine productivity in
wood cutting

Isdira Leite e Lopes®*, Lais Almeida Araujo?, Evandro Nunes Miranda?® Thomaz Aurelio

Bastos?, Lucas Rezende Gomide?, Gustavo Pereira Castro®.

4Federal University of Lavras, Department of Forest Sciences, Lavras, Minas Gerais, Brazil,

bFederal University of Parana, Department of Forest Sciences, Curitiba, Parana, Brazil.

*Corresponding author: isairaleite2010@gmail.com

Status de publicacédo: Artigo publicado na revista International Journal of Forest
Engineering em 14 de julho de 2021.



39

Abstract

Forest harvesting planning requires careful analysis of the variables that influence machine
productivity. This information is crucial for better decision-making. Thus, we aimed to compare
models for predicting the excavator-based grapple saw productivity in wood cutting with
variables from environmental data, forest inventory, and operator records. We applied Stepwise
linear regression, Random Forest (RF), and Artificial Neural Networks (ANN) to estimate
machine productivity (mp). Hybrid methods were also designed to perform the feature selection
procedure. A Genetic algorithm (GA) was combined with RF (GA-RF), and ANN (GA-ANN).
These methods were assessed according to error metrics and accuracy. Although the order of
the variables’ importance changed based on these methods, the operator's experience was the
main factor in the mp behavior, regardless of the model. The work shift impacted the machine
productivity, but not as significantly as the operator's experience. The mean individual tree
volume and precipitation also made a considerable contribution to the mp estimates of the GA-
RF and GA-ANN models, respectively. Our findings indicate that the RF and GA-RF methods
perform best and with high accuracy to estimate mp. Furthermore, we highlight that GA-RF

performed a robust selection of the variables that really influenced the mp behavior.

Keywords: Machine learning; forest harvesting; feature selection; forest management; genetic

algorithm.
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Introduction

Global changes in forest industry have forced forest managers to find better models to
reduce investment risks. Improvements in current trends have affected our perception, and new
technologies are being designed to support the decision-making process. The forest industry
has been investing in big data technologies to model and integrate their entire process into a
better economy and sustainable principles. Parallel to the development of machines, the
accuracy of field information or its prediction has a high aggregate value and is attracting
investment. However, greater statistical and computational efforts are desirable to guarantee an
accurate plan of the wood supply chain. This may be a useful outcome for the demand of the
wood supply market (She, Chung and Kim, 2018; Tolan and Visser, 2015), and for the control
of forest harvesting, which has critical operations with high investment costs (Soman, Kizha
and Roth, 2019). Nevertheless, harvest organization and control process face technical and
socio-economic challenges without reliable field information or predictions. Machine
productivity modeling plays a key role in this process, being a complex task since it has several
variables (species, tree size, terrain surface, site conditions, management objectives, machines
performance, and operator experience) that affect its behavior (Hiesl and Benjamin, 2013;
Silayo and Migunga, 2014).

Today, advances in the acquisition of data at a reasonable cost and high precision make
a significant contribution to any area of scientific knowledge (She, Chung, and Kim 2018), and,
as a result, there is a great deal of information available to correlate with our researches. Hence,
the modeling process requires an optimal method to deal with large or multidimensional sets of
variables (Strandgard, Mitchell and Acuna, 2016). The advantage of using powerful models is
to enable greater accuracy in guessing unknown or extreme values (Rossit et al., 2019) and
highlighting new patterns of variables that can be used to explain events (Hong et al., 2018).
Currently, the modeling of several forest management problems using machine learning
methods has been increasingly applied. It means that these methods have been achieving high
performance. Most studies have highlighted them as promising models to work with a huge
range of variables (Ou, Lei and Shen, 2019), such as in tree diameter growth (Vieira et al.,
2018), volumetric prediction (Dantas et al., 2020), aboveground biomass (Silva et al., 2019),
carbon stock (Safari et al., 2017), and tropical selective log mapping (Hethcoat et al., 2019).

Acrtificial neural networks (ANN) and Random Forest (RF) have been widely applied
machine learning methods over the last decades. Usually, they denote a robust and unbiased

method with high accuracy (Rossit et al., 2019; Xing et al., 2019), working with any set of
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variable types (Freitas et al., 2020). Nevertheless, the variables heterogeneity is a problem when
modeling any complex system, as it causes the risk of inaccurate prediction (Rossit et al., 2019).
The choice of non-parametric learning methods may overcome this problem when a high
performance is required (Das, Das and Ghosh, 2017). First, the accuracy should be improved
using any feature selection technique to reduce the complexity of a task. This step decreases
the number of irrelevant and redundant variables (Hong et al., 2018). Apolloni, Leguizamén,
and Alba (2016) define strategies to reduce the database size and dimensions. They present
three methods (filter, wrapper, embedded) with high potential use, but finally suggest the
wrapper method since, it presents excellent results. However, it requires high computational
effort, as it must perform interactions between variables several times with different subsets
(Mafarja and Mirjalili 2018; Ghosh et al. 2020). On the other hand, the meta-heuristics use for
searching deeply for an optimal set of variables may accelerate the final convergence of this
response, giving a high performance (Hong et al. 2018; Rossit et al. 2019). Hence, combining
these algorithms with machine learning methods may reduce the prediction errors. This may be
particularly important to model complex systems as observed in machine productivity
performing forest harvesting tasks. Conversely, the robustness of the variable selection method
is still an open problem. Thus, efforts must be made to fill this gap in forest science. The study
aimed to compare modeling strategies of an excavator-based grapple saw’s productivity in
wood cutting with several variable types. The study investigates the most suitable procedure,
taking into account the linear regression model, machine learning methods, and hybrid
algorithms using the genetic algorithm to perform feature selection. Furthermore, it is also
timely to reflect on the influence of variables on predicting machine productivity through the
performance of the proposed methods. Therefore, this study was addressed to answer the
following research questions: a) Which modeling strategies have the best predictive

performance? and b) What are the variables that most influence machine productivity?

Materials and methods

Experiment description

The experiment data was acquired over the instruction period (February to
October/2018) considering 11 machine operators and the full tree harvest system. The training
process has a learning curve of forest harvest operators with a sigmoidal model shape (Purfurst

2010). This process has a substantial performance of training by taking into account three
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learning levels (beginner, medium, and professional). The learning rate decreases at the last
stage, which validates the professional skills (Malinen, Taskinen and Tolppa, 2018). Operators
with high scores may reach the production target of the company (Lopes and Pagnussat 2017).
They are trained in operating Doosan DX300LL Hydraulic Excavators with 267 hp and 1800
rpm. These machines have a Rotobec grapple saw bar (157 cm or 62 inches), grapple area (1
m?), and are previously set for the company’s length pattern (7.2 m). Two metrics were
calculated to describe the machine performance. Machine productivity (mp) is the amount of
volume (mq) harvested per hour (h). These values are associated with the total volume (forest
inventory) and the effective hours worked by an operator in the field. Moreover, the machine
utilization rate percentage (mur) reflects the efficiency of the operator training, which is defined

by the scheduled machine hours (smh) and the productive machine hours (pmbh).

Database structure

The step before processing consists of structuring the database. This procedure aimed
to explore the variables since their influence on the machine productivity behavior is a key issue
to analyze. The company has 183,515 ha of Eucalyptus spp trees managed for cellulose pulp
production. The study covers 65 forest stands, available for harvest. They are spatially located
around 24°13°19” S and 50°32°33” W in Parana state, Brazil. According to the K&ppen climate
classification, the local is Cfa/Cfb, which consists of a humid subtropical transition to an
oceanic climate. The annual mean temperature in the coldest month is below 18°C, and the
hottest month above 22°C (Alvares et al., 2013). The quantitative variables were obtained from
the forest inventory (stand age and mean individual tree volume), weather stations in the field
(precipitation, maximum and minimum temperatures), and machine variables defined
previously (Table 1). The qualitative variables were Eucalyptus species/hybrid (E. dunnii, E.
grandis, E. saligna, E. paniculata, and E. grandis x E. urophylla), 2 soil classes (inceptisol and
red latosol), 3 classes of soil texture (clayey, very clayey, and sandy-loam) and 2 work shifts
(6:00 a.m. to 4:00 p.m. and 4:00 p.m. to 1:37 a.m.). The final database has 297 observations
and we randomly divided them into two independent sets (80% - adjust/train, 20% - validation)

to assess the tested methods.
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Table 1. Descriptive values of the studied variables for the analysis (n=297).
Variables limits

Variables Mean (£ Sd) Min. Max. Units CV (%)
mp 97.96+30.0 38.20 183.60 m?2 hour? 30.62
exp 113.65+63.5 0.00 242.00 days 55.90

a 8.36+2.6 6.00 15.00 years 30.82
eh 5.85+2.0 1.00 9.00 hours 34.83
Vv 0.39+0.1 0.23 0.80 m3 28.48
tmax 22.84+4.0 13.26 31.15 °C 17.61
tmin 14.29+3.9 3.93 22.44 °C 27.11
pp 2.57+6.6 0.00 43.60 mm 257.60
mur 63.1+22.2 10.4 100 % 35.3

Where: Sd: standard deviation values, mp: machine productivity, exp: operator experience, a: stand age, eh:
effective hours, v: mean individual tree volume, tmin: minimum temperature, tmax: maximum temperature, pp:
precipitation, mur: machine utilization rate, Min.: the minimum value of the variable, Mean: the mean value of the
variable, Max: the maximum value of the variable, CV: coefficient of variation as a percentage (%), and n=sample
size.

Methods for predicting the machine productivity

Once in possession of the database, Pearson's correlation was used as an indicator of the
ability of the independent variables to explain the response variable. This descriptive analysis
considers only the linear association between two variables. Therefore, regression methods
were applied to examine the power of the interaction of independent variables in predicting the
response variable. The procedure used was based on the evaluation of five methodological

approaches for predicting machine productivity, and is described below.

Stepwise

Multiple linear regression (MLR) is recognized as a relevant statistical method to
explain the relationship between the predictive and response variables (Ciulla and D’ Amico,
2019). However, there are several variables available that can be empirically suggested as
inputs to the linear model in our study. Hence, we applied the stepwise building model to
formulate a new optimized version. This technique is an iterative procedure adding (forward
step) or removing (backward step) variables according to the selection criteria (Alves, Lotufo
and Lopes, 2013). We used both steps under the Akaike Information Criterion (AIC) metric for
model selection and final convergence. Meanwhile, the F statistic evaluates the contribution of
each independent variable selected in the model. Further, we checked the multicollinearity
applying the Variance Inflation Factor (VIF) and eliminating variables with values superior to
10. All analysis was performed under the “car” package (Fox and Weisberg, 2020), Im, and
step functions available in the R software (R CORE TEAM, 2018) were used.
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Random Forest (RF)

The Random Forest algorithm is a non-parametric estimation technique based on a
decision trees ensemble (Breiman 2001). Generally, this ensemble reduces the variance and
increases the predictive performance (Figure 1). The algorithm sets that each tree structure
relies on a random vector of variables. This vector refers to the samples in the bag, in which the
trees are built using a bootstrap sample different from the original data set. This sample consists
of 2/3 of the original data set used for training each decision tree. The remaining data consists
of out-of-bag samples (OOB) that compose the test set. Further, it is also used for internal cross-
validation (Auret and Aldrich, 2012; Breiman, 2001). In training, the decision trees are grown
through divisions in the data set. Each division is performed based on the random selection of
a subset of predictor variables (m) less than the total number of available variables. This
procedure leads to the building of several trees with different results. Then, these trees are
combined to predict the response variable, which is calculated by the average of their results
(Ahmed et al., 2015; Auret and Aldrich, 2012; Breiman, 2001). The learning method has initial
parameters to define the algorithm rules and they may affect the performance. Usually, these
parameters are set under preliminary tests to fit the model, and we used 500 trees (ntrees), 2
chosen attributes (mtry), and the observation number of nodes equal to 4 (nodesize). The
performance of the algorithm was established based on 50 repetitions to obtain the best model
with the lowest mean square error (mse). We used the randomForest package (Liaw and Wiener,
2018) in R software (R CORE TEAM, 2018).

Figure 1. Flowchart of the Random forest structure.
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Artificial Neural Networks (ANN)

The ANN is inspired by the human brain learning process by linking the input/output
data and correlating them (Zhao et al., 2019). The artificial neuron is the basic unit of
information processing (Eq. 1), which represents the dendrites of the natural neuron (Tavares
Junior et al., 2020). In the hidden layer, each input x;j is weighted by a respective synaptic weight
Wy, configuring m synapses. The bias (bx) is understood as a synaptic weight with fixed input.
Subsequently, the sum of each input multiplied by its respective weight occurs, resulting in a
linear combination of the inputs together with the bias. The activation function (f(x)) transforms
these values to define the range of the artificial neurons in the output layer (Y) (Haykin, 2009).
The modeling process starts with the pre-treatment of the data to deal with continuous and
categorical variables. The categorical variables are transformed into a binary coding {0,1}. As

for the continuous variables, these are normalized {0-1} taking into account the Max-Min
procedure, in which V., is the normalized value of the data set and V is the original value of

the data set. (EQ. 2).

Y = f[iwijj+bk) 1)

_ o v- min(v)
max (v)—min(v)

)

new

After the initial procedures, the modeling of machine productivity was performed using
networks with Multilayer Perceptron (MLP) architecture (Figure 2). This structure consisted of
one input layer or more hidden layers that receive and process the data. Previously, we tested
the ANNSs configurations for high performance with the lowest mse. The parameters set are: a)
the number of neurons in the hidden layer (4), b) the activation function in the hidden (logistic)
and output layer (linear) and c) learning algorithm (Resilient Propagation — Rprop +). Resilient
Propagation is the most widely used algorithm for function approximation problems in forest
science (Freitas et al., 2020). Finally, the 50 ANNs were trained under the previous
configuration until the stopping criterion (100,000 iterations) was reached. The neural network
was implemented using the neuralnet package (Fritsch et al., 2019) in R software (R CORE
TEAM, 2018).
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Figure 2. Flowchart of Artificial neural network structure.
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Genetic algorithm for feature selection in Random Forest (GA-RF) and Artificial Neural
Network (GA-ANN)

Variable selection is a challenging task that seeks to optimize models with a minimal
number of variables. This procedure is trivial when building models under statistical rules.
However, we are suggesting a new approach to figure out only those variables that best explain
the machine productivity. This strategy aims to remove redundant and weak variables that are
not correlated with the dependent variable. A deep search of the combinatorial problem is
necessary to solve this task. Instead of testing all possible combinations, we applied the genetic
algorithm (GA) to find a fast and approximate solution in the machine learning methods. This
algorithm selects a set of variables for the Random Forest (GA-RF) and artificial neural network
(GA-ANN) over the generations. The GA is inspired by Darwinian evolution theory with the
principles of the survival of individuals (Pattanaik, Basu and Dash, 2018), and also natural
selection mechanisms (Honda, 2018). The major part of the meta-heuristics has to define a set
of parameters or rules to solve a constrained or unconstrained problem. Thus, we first carried
out tuning tests to reach the best parameterization: a) population size (100); b) generations (10);
c) crossover (50%); d) mutation rate (10%); and e) selection operator (tournament).

The individual has a randomized vector with a fixed size (hnumber of variables) and
variable position (gene). The algorithm operates the search procedure over this string structure.

The gene has a binary code {0, 1} that selects {1} or not {0} the variable for the next stage.
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Hence, a set of enabling features is the input of RF or ANN algorithms to model the machine
productivity. It is worth mentioning that we applied the same RF and ANN configuration as
described earlier (see the Random Forest and Artificial Neural Networks sections for details).
The fitness function evaluates the solution performance to guide the search procedure. In
contrast to other studies, we denote this function as a multi-objective form that includes
minimization of the number of variables used and the error. Instead of only focusing on the
error, the number of variables may inflate the application of the final model. A key resource for
balancing between these two factors is a normalized scale with 0-1 values (Eg. 3). The first
component of the equation relates to the error, which has a maximum utopic value found for all
the variables selected. This hypothetic function behavior works properly as a maximum value
in the worst case of training. The second part is the ratio between the number of selected
variables (n) and the total number available (N).

fitness = (& + 1) 3)

max(mse) N

Variable selection performance and methods assessment

Due to a wide range of investigated models under the genetic algorithm, we have only
highlighted the best structure found to evaluate the performance (RMSE - root mean squared
error and B — bias). Currently, these two metrics (Equations 4 and 5) validate most modeling
studies in the literature. Residual plots and histograms were also applied as a complementary

statistical analysis. These plots were based on percentage error (%) (Eg. 6), in which Y; is the

measured value of Mp in the i observation, Y. is the predicted value of the i observation and

N is the total number of observations. Moreover, we summarized the correlation coefficient,
standard deviation, and the root of the mean square error in Taylor's diagram (Taylor, 2001).
This graph displays the measure distance of the method's performance relying on the prediction

and real values (Yaseen et al., 2018).
(4)

()
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(4
Error (%) :TIOO (6)

Two independent procedures were taken into account to evaluate the importance of each
selected variable. The Increment in Mean Square Error (%IncMSE) was used only for the
Random Forest algorithm, in which high values suggest the importance gradient tendency
(Miao et al., 2018). Thus, each predictor variable belonging to the out-of-bag (OOB) sample
set has its values exchanged. Meanwhile, the values of the other variables remain fixed. The
increase in mse is computed when the disturbance in a significant variable reduces the
predictive capacity of the model. Finally, we applied the Garson algorithm to measure the
relative importance of each variable based on the extracted weights of the ANN (Olden and
Jackson, 2002). For this, we used the NeuralNetTools package (Beck, 2018) in R software (R
CORE TEAM, 2018).

Results

The real data used in the current study is crucial to support the training process of
machine operators to achieve high productivity, as we noticed an average rate increase of 37.5%
in productivity from the intermediate period of operator training. As expected, task repetition
led to moderate linear operator improvement, demonstrated by a positive correlation with an
average of 0.55. There are several variables with a positive correlation with machine
productivity (Figure 3). Nevertheless, the advantages of operator skills over environmental and
forest inventory variables are highlighted initially due to the higher correlation values. The
impact of operator experience on the machine productivity is clear when analyzed specifically
by work shift. Although productivity was higher in the first shift, a strong linear association
between these variables was 36% higher in the second shift than in the first. This fact denotes
a greater dependence on well-trained operators in the second shift to achieve good productivity.
The second level of correlation importance is a mix of these two last classes of variables. In
addition, the forest stand age is inversely proportional to our investigated variable. Our data
points to greater machine productivity in younger stands, with an average difference of 23%
compared to older stands. Null correlations were found for variables related to effective hours
of work and precipitation. Thus, we can assume that these two variables have no significant

linear impact on machine productivity performance under our study condition.
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Figure 3. Indicators of the association between independent variables and machine productivity.
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Predictor variables

Where: CS: climate and soil variables, FI: variables from Forest Inventory, OP: variables related to the operator,
a: stand age, a_root: square root of stand age, a_sq: second power of stand age, pp: precipitation, pp_root: square
root of precipitation, pp_sq: second power of precipitation, eh: effective hours, eh_root: square root of effective
hours, eh_sq: second power of effective hours, v: mean individual tree volume, v_root: square root of mean
individual tree volume, v_sq: second power of mean individual tree volume, exp: operator experience, exp_root:
square root of operator experience, exp_sq: second power of operator experience, tmin: minimum temperature,
tmin_root: square root of minimum temperature, tmin_sg: second power of minimum temperature, tmax:
maximum temperature, tmax_root: square root of maximum temperature and, tmax_sq: second power of maximum
temperature.

The predictor variables' importance and their order change according to the method. For
instance, the stepwise model has only two significant variables (Eqg. 7). They explain 93% of
the machine productivity variation in the training data. All the predictors were significant at the
0.1% level. The feature selection processes cope with multi-dimensional problems to boost the
model accuracy. This procedure reduced the range of variables for RF (80%) and ANN (72%).
The selected variables are not similar in each of the other tested methods, which denotes the
algorithms' divergences in the modeling procedure. Moreover, the genetic algorithm defined an
optimal set of variables for RF that were associated with the forest inventory (species, stand
age, and volume), work shift, and operator experience. On the other hand, the environmental
variables (soil texture, temperature (max and min), and precipitation), work shift, operator
experience, and effective hours were selected for the ANN. As observed, both GA-ANN and
GA-RF took advantage of the effect of operator-related variables. Nevertheless, species, stand
age, and volume only had an influence in GA-RF, since GA-ANN opted for soil texture,
temperature, and precipitation. The inferior precision of GA-ANN may be associated with the

lower correlation of these selected input variables to explain the machine productivity. For
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instance, the experiment analysis was realized under dry weather conditions in the study region

which affected the final results.

mp = 0.0013* exp’+30.80* Jeh @)

In addition, the machine learning methods under the genetic algorithm amplify and
increase the importance of the variables in the RF (v - 20.68%, exp - 29.09%, sp - 378.54%, a
- 25,35%, and ws - 506.15%) and ANN model (pp - 28.43%, t - 348.07%, exp - 165.38%, eh -
30%, tmin - 39.65%, ws - 208.69, and tmax - 22,22%). It is noteworthy that GA-ANN did s not
show a clear trend in the selection of variables. This approach omitted the variables that
contributed most to ANN (FI variables). On the other hand, GA-RF optimized the set of
variables, enhancing the importance of those that contributed most to the RF (FI and OP
variables) and consequently removing the irrelevant ones in its prediction procedure. Most of
the variables showed similar behavior in the RF and GA-RF methods, despite the different
contribution levels of the variables to the machine productivity. Remarkably, both the RF and
GA-RF models indicated that operator experience (exp) was by far the most important variable
affecting machine productivity. Although this variable does not occupy the most prominent
position for the other models, it still has a decisive role in predicting machine productivity. This
fact emphasizes the relevance of the operator's training level in the efficiency of the operation.
The work shift also influenced the machine productivity, but less than the operator's experience.
As expected, the remaining variables (Figure 4) tended to contribute part of the model variation

at lower levels of importance.

Figure 4. Analysis of the predictor variable importance.
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Where: CS: climate and soil variables, FI: variables from Forest Inventory, OP: variables related to the operator,
sp: specie, ws: work shift, t: soil texture, c: soil class, a: stand age, pp: precipitation, eh: effective hours, v: mean
individual tree volume, exp: operator experience, tmin: minimum temperature and tmax: maximum temperature.
The measure of the variables' importance is intrinsic to each algorithm, being in percentage unit (%) for models
based on artificial neural networks and in the error increment (IncMSE%) for models based on random forest.

Modeling machine productivity is not a simple task, as we found from testing various
methods that achieved different results. Although the Stepwise model resulted in similar
prediction error trends in the training/validation datasets, we do not recommend it due to the
high RMSE values (Table 2). In contrast, the ANN has the best predictive performance on the
same dataset, nevertheless proved deficient in terms of validation. This fact reflects the
overfitting problem that has been intrinsic to this procedure. Both RF and GA-RF are indicated
as suitable to model our dependent variable as they provided the most precise and stable of
errors tendency. There was also a reduction in the error values under the feature selection
procedure of the variables. Thus, the accuracy of the mp estimates for the validation data was
improved over RMSE by 21% for ANN and 0.4% for RF after using the hybrid methods (GA-
ANN, and GA-RF). In terms of computational time demands, the genetic algorithm inflated the
time consumption (RF - 39.47 s and ANN - 446.47 s) by significant values compared with their

standard forms.
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Table 2. Adjustment statistics for the training and validation data, the number of variables, and
selected variables using the Stepwise, RF, GA-RF, ANN, and GA-ANN method.
Methods Dataset RMSE RMSE (%) Bias N Selected variables Time (sec)

Training 27,28 27,75 2,28
Stepwise 2 exp_sq* +eh_root* 0,02
Validation 27,02 27,94 2,93
Training 12,8 13,02 -0,06
RF 25 All variables 0,53
Validation 23,99 24,72 -1,51
Training 14,68 14,93 -0,05 WS +sp+a_ sq+
GA-RF 5 40,0
Validation 23,89 24,72 -1,65 V_sq + exp_root
Training 8,08 8,21 0,36
ANN 25 All variables 13,97
Validation 39,26 40,61 -20,53
Training 22,83 2322  -16,83 t+ws+eh+
GA-ANN 7 eh_root + tmax + pp 460,44
Validation 31,04 32,11 -10,53

+ tmin + exp_sq

Where: RF: random forest; GA-RF: Genetic Algorithm and Random Forest; ANN: Artificial Neural Network;
GA-ANN: Genetic Algorithm and Artificial Neural Network; N: number of selected variables; sp: specie, ws: work
shift, t: soil texture, a_sq: stand age, pp: precipitation, eh: effective hours, eh_root: square root of effective hours,
v_sq: second power of mean individual tree volume, exp_root: square root of operator experience, exp_sg: second
power of operator experience, tmin: minimum temperature, and tmax: maximum temperature; * Significant at
99.9% of probability and VIF less than 5.

The residuals plot suggests a complementary analysis to check the tendencies of the
prediction (Figure 5). We observed a slightly biased prediction of the ANN and GA-ANN
methods mainly for the validation data set. The stepwise model also had problems in predicting
extreme values. However, RF and GA-RF present good error tendencies concentrating them
within £ 50% of the y-axis for both the tested data sets. Taylor's diagram also corroborates the
previous analysis by showing the striking differences in the methods' performance in a single
plot (Figure 6). Regardless of the data set type, RF and GA-RF perform better than other

models.
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Figure 5. Residuals plots analysis of modeling methods (RF: random forest; GA-RF: Genetic
Algorithm and Random Forest; ANN: Artificial Neural Network; GA-ANN: Genetic Algorithm
and Avrtificial Neural Network; and Stepwise), and datasets.
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Figure 6. Taylor diagrams of machine productivity modeling methods (RF: Random forest;
GA-RF: Genetic Algorithm and Random Forest; ANN: Artificial Neural Network; GA-ANN:
Genetic Algorithm and Artificial Neural Network; and Stepwise), and datasets.
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The modern forestry industry is highly dependent on machines to meet wood supply
demand (Purfurst, 2010). Therefore, information about a machine’s productivity to guide its
proper allocation at the stands can ensure high performance and low risk to operations.
However, the reliability of the machine productivity is subject to a series of variables that, if
well understood, can support good decision-making. An advantage of our study relies on the
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heterogeneity of the database, with several variable types (weather conditions, soil, forest
inventory, and machine operator) that affect machine productivity performance. Knowledge of
the effect of these variables may help explain a truly representative part of the variation in
machine productivity. In our study, the mean productivity of the excavator-based grapple saw
was 97.96 m3 h' (with 30.62% of variation). This value was 22% higher than the maximum
performance (76.57 m3 h') reported by Lopes et al. (2008) for a stand with a volume of 300 m3
hal. Even so, both results have the same tendency as those found in Rocha et al. (2009), since
their limits were 58 — 118 m? h’. Several factors inflate this variation range, most of them
associated with environmental conditions (Liski et al., 2020), log length (Spinelli et al., 2021),
forest yield (Lopes et al., 2008), and the different levels of operator training, which was one of
the conditioning factors of our study.

One key challenge for decision-makers is to comprehend which variables most influence
the machine's productivity. The importance of each variable differed between the modeling
strategies tested in this study. Nevertheless, our findings highlighted a set of variables that
contributed strongly to predicting machine productivity based on the models with the greatest
accuracy (RF and GA-RF). Previous studies by Liski et al. (2020) and Rossit et al. (2019)
corroborate our findings, as they proved the efficiency of tree-based algorithms in predicting
the productivity of cut-to-length (CTL) forest harvesting systems. They also identified that the
operator had a significant influence on machine productivity. A similar tendency was obtained
in the current study, since operator experience was among the highest contributing variables in
the models, even though the results varied for each model. Liski et al. (2020) also confirm that
the influence of the operator depends on the modeling approach. Recent research also suggests
that machine operators play an essential role in the efficiency of tasks (Dvorak et al. 2019) and
their modeling (Liski et al. 2020). Purfurst and Erler (2011) evaluated the effect of machine
operator training, and found a high level of productivity for those with a higher training rate.
There is a consensus on the importance of operator skills to increase efficiency, and how
motivated they are daily. Besides the incentives, a recurrent training program may also avoid
risks and delays (Cho et al., 2019), mainly when the operator performance results in a lower
machine utilization rate, as presented in our study. Other performance-related factors include
living conditions (quantity and quality of sleep), working environment conditions (available
light, air quality, vibration, and noise inside the cabin), and shift arrangements (Malinen,
Taskinen and Tolppa, 2018). Concerning shifts, productivity is strongly associated with how
long time the work takes at the operation. In fact, operator exhaustion is always associated with

long shifts and unplanned timetables. According to Passicot and Murphy (2013), the efficiency
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of harvesters (41%) and processors (61%) reduces after 18 hours of continuous working time.
As the shift lengths were similar in the current study for the first and second shifts, the main
difference in productivity can be assigned to the time of day (Murphy, Marshall and Dick,
2014). We observed a drop in both machine productivity (on average 6%) and the machine
utilization rate (on average 10%) on the night shift. In fact, operators working at night face
challenges in performing tasks due to reduced alertness and availability of light, thereby
decreasing their productivity. Factors such as dim lighting, shadowing, and glare lead to
reduced visibility, and affect log-making and machine-positioning accuracy (Nicholls, Bren and
Humphreys, 2004).

The forest stand structure usually influences the harvest, skid/drag, forward (Hiesl and
Benjamin, 2013), and processors operations (Passicot and Murphy, 2013). As our results
showed, the mean tree volume was also an important factor affecting the productivity of the
excavator-based grapple saw. This result is parallel to the finding by Strandgard, Mitchell, and
Acuna (2016). They clarified that the mean tree volume was the most significant independent
variable (79%) when modeling the harvester productivity for eucalyptus plantations in
Australia. The relationship between these variables is characterized as directly proportional
since the harvester productivity increases as the tree volume increases (Norihiro et al., 2018).
Another effect is that heavier (big) trees result in more mechanical problems and a greater
decline in productivity than small trees. The last point is especially the case when the operator
is working under conditions of physical and mental fatigue (Passicot and Murphy, 2013).

In the present study, the benefit of the interaction between tree size and stand age in
machine productivity modeling is evident. In the models that produced the best estimates, these
variables were among the most important. The stand age and management regimes are also
factors that limited the performance due to the tree size and barriers to the machine transit in
mechanical thinning operations (Mederski et al., 2016). Generally, lower machine productivity
is achieved for younger stands on poor sites. On the other hand, species characteristics such as
shape, tree health, percentage of bark, and size of branches may also impact the machine
productivity (Olivera et al. 2016; Rossit et al. 2019). Passicot and Murphy (2013) found greater
productivity impacts from harvesters operating with stands of E. globulus than stands of E.
nitens. We noted a substantial trend of the impact of these variables and their interactions
working in Eucalyptus spp. plantations. This statement is supported by the good estimates of
productivity in most of the models tested with the data available for our study.

Currently, computational advances have been applied in many companies with significant

returns. They are also investing in acquiring a variety of field data and storing it for further
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analysis. This technology is a reality that makes achieving high efficiency accessible to the
modern industry. However, the challenges of modeling procedures by hand with high-
dimensional data or non-linear patterns reduce the final accuracy. Eriksson and Lindroos (2014)
point out that the search for acceptable accuracy is fundamental to the control and planning of
harvesting operations, as outlined in our study objectives. Insights from machine learning
techniques in forest harvesting science have been applied to solve many of the issues debated
by researchers and practitioners. These issues include mapping the forest stand susceptibility to
damage during harvest (Shabani, Pourghasemi and Blaschke, 2020), the establishment of the
optimal operation mode for handling chainsaws to reduce the emission of pollutants into the
atmosphere (Dimou et al., 2018), and predicting the productivity of harvesting systems (Liski
et al., 2020). In alignment with the latter issue, machine productivity modeling has been a hard
task, regardless of the method. In general, machine learning methods have several advantages
over MLR regression, due to the use of qualitative variables, the data type, non-linearity (Were
et al., 2015), noise problems, and outliers (Auret and Aldrich, 2012). In the current study, we
find the best Stepwise model regression by selecting only two obvious variables (operator
experience and effective hours). Although this technique has achieved good accuracy (Fujiwara
et al., 2009) with a limited set of variables, it has proved to be inferior to machine learning
methods when training models from a reduced data set. The machine learning techniques and
hybrid methods (HM) under the genetic algorithm differ slightly from the regression analysis.
Thus, the accuracy analysis was critical to define the best strategy, in which the ANN obtained
the lowest errors in the training data. Nevertheless, the overfitting was pretty evident when
checking the difference in RMSE (%) between the training and validation set (32.4%). This
model behavior leads to a low generalization capacity, and it consequently cannot be applied
reliably to other data sets (Mohammadi et al., 2019). On the other hand, the RF has an internal
validation mechanism with less susceptibility to overfitting (Breiman, 2001), as observed in our
results. It can be inferred that RF provided a high quality estimate to predict the machine's
productivity without the previous feature selection. The feature selection procedure using the
genetic algorithm simplified the model but provided little additional gain to the predictive
accuracy of the RF. This may occur because the ideal set of variables is not decided by machine
learning methods (Jadhav, He and Jenkins, 2018). The larger the number of predictor variables
(more than 25 attributes), the genetic algorithm should improve the efficiency of machine
learning methods when dealing with large sets of variables. On the other hand, it requires more
computational effort. We could have done some variable transformations to reach at least 50

variables and tested the simplification power of the model with greater gain in precision.
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However, we may extend this assumption for other further works. Concerning ANN, we do not
suggest its use within a genetic algorithm, taking into account studies with similar data sets. In
contrast, Murthy and Koolagudi (2018) applied GA-ANN and GA-RF with a high success rate
for accuracy (>90%), which differs from our study and application instances.

Our findings highlight the relevance of including the genetic algorithm, especially for a
large number of variables, as reported by Fassnacht et al. (2014) and Li et al. (2016). In this
sense, we do not detect that a database reduction makes a significant contribution. This fact is
attributed to our database already containing a small number of available variables. Regardless
of the final accuracy, in forest harvesting, studies focusing on the comparison/implementation
of several modeling strategies have been increasing. In contrast, a direct comparison of our
results with those taken from other researchers, such as Rossit et al. (2019) and Liski et al.
(2020), is hard to conduct. The reason is the differences in the models utilized, the data sources,
the set of predictor variables, and the machines evaluated. Furthermore, they did not implement
an automatic feature selection approach, which still reflects a gap in recent studies in this field
of science. Thus, this novelty is one of the main contributions proposed in this study using the
GA implementation. Remarkably, the GA-RF method provides a strong model simplification
with 5 selected variables, the collection of which demands less operational effort in the field.
Therefore, the selection of predictor variables is a credible strategy for estimating machine
productivity. At this point, our results indicate a promising choice to extract relevant variables
from a dataset. Furthermore, this methodology may be replicated for other machine studies,
adding also a wide range of variables (wood log details, equipment consumption, spatial and
surface information, extreme environmental conditions, and forest variables).

As stated by Liski et al. (2020), as the harvesting database continues to increase, new
machine learning methods will be needed to make accurate predictions. A common strategy is
to build competing machine learning models based on the same (continuously updated)
streaming data, all of them being shared and saved on a website or a cloud platform. In terms
of applicability, the modeling approach employed in our research can also be useful to feed
systems with more accurate machine productivity. Therefore, machine productivity associated
with more information would assist in scheduling activities in accordance with the stand age,
tree size, human factors and weather conditions. This information can be in high demand in
future applications as it serves as an input to improve the operational planning and costs of

harvest activities.
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Conclusion

Forest machinery operates under a range of variables that must be considered by
decision-makers when planning harvesting operations. This study proposed an approach to
analyze the impact of weather conditions, forest inventory data, and operator records in
excavator-based grapple saw productivity. In this context, we highlight operator experience as
the main component for estimating the excavator-based grapple saw productivity. The work
shift had an impact on the machine productivity, but not as significantly as the operator's
experience. A key role in machine productivity was also played by the stand characteristics
(mean individual tree volume and stand age). Also, we found that moving from a background
of using only statistical linear regression to applying RF and GA-RF as modeling techniques
enabled considerable predictive improvements. Here, we highlighted the ability of the genetic
algorithm in conjunction with machine learning techniques (hybrid methods), and especially
GA-RF, to perform a robust selection of the variables that truly affect the machine productivity.
Thus, the outcomes of the current research, integrating forest harvesting and machine learning
techniques, provide valuable findings for science and companies, as they can be the inputs to

an operational planning model in future applications.
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ABSTRACT

Several methods have been applied to measure the inter-tree competition over decades in forest
science. Mathematical approaches are often proposed to explain the growth increment taking
into account the neighborhood of trees. The interaction between them denotes a network
structure with a tradeoff for each individual in the ecological system, described by topological
metrics. This information may support the tree’s growth modeling for better accuracy at the
individual level in consistency with the ecological process. In this sense, our main objective
was to compare the performance of classical indices with complex network metrics. They were
compared in terms of similarity by Cluster analysis and Pearson’s correlation with periodic
annual diameter increment (PAlg). The experimental area is the semideciduous seasonal
montane forest in Brazil. Due to the high diversity of the tropical forest, we selected two species
(Xylopia brasiliensis and Copaifera langsdorffii) to be the subject trees of our research during
the period of 2010-2017.because they are naturally dominant with the highest importance value
indices (%IV1) in our area. Before modeling, the Bitterlich procedure was simulated (BAF=4)
to figure out tree competitors using their geographic coordinates (X, y). Further, the PAly was
modeled under four strategies assisted by the Genetic algorithm and Random Forest method.
The strategies encompassed trees variables (diameter at breast height — dbh, basal area, and
geographic coordinates), competition indices (distance-dependent, distance-independent and
semi-independent), and topological metrics related to complex networks. We assess modeling
performance based on error metrics analysis, ranked according to a scale unit. Regardless of
the species, both methods have similar importance to explain the PAlg. However, our findings
suggest the use of distance-independent indices and topological metrics for X. brasiliensis and
C. langsdorffii, respectively. Our results revealed the applicability of complex networks to
measure effectively the inter-tree competition and their effects on the individual-tree diameter
growth. For this reason, we hope that our findings encourage the progress of this
interdisciplinary tool in generating insights into the field of Forest Sciences.

Keywords: Competition indices. Tropical forest. Random Forest. Genetic Algorithm.
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1 INTRODUCTION

Tropical forests have been extensively studied for conservation and sustainable
management uses. They have a complex structure which denotes a high composition and
interactions between a range of species (AAKALA et al., 2013). These forests have a major
diversity of trees and fauna with high levels of endemism subject to extinction in the actual
condition (REZENDE et al., 2018). This global hotspot of biodiversity (MYERS et al., 2000)
is at serious risk of deforestation due to land-use changes (REZENDE et al., 2018). These
ongoing changes in microenvironmental conditions shape the forest structure into ecological
groups. In this sense, the responses of trees growth are constrained by available resources and
species demands (ABDO et al., 2016). Recent studies have investigated a set of dominant
factors that drives their relations with the trees' development pattern (ALBUQUERQUE et al.,
2019; GONZAGA et al., 2017; SILVA; SOUZA; VITORIA, 2021). In this sense, the tree
growth function may support decision-making for forest restoration programs or economic
plantation (SCOLFORO et al., 2017). Nevertheless, tropical forest growth modeling is not a
trivial task due to its structural heterogeneity, temporal and spatial dynamics (FIEN et al., 2019).
The tree growth rate is driven by several factors such as light assimilation (TANG; DUBAY AH,
2019), water availability (CAMPOE et al., 2016), silvicultural interventions (AVILA et al.,
2017), age (OUYANG et al., 2019), topography, soil nutrients (SCHOLTEN et al., 2017), tree
size, and neighborhood competition (ZHANG et al., 2016). According to Cruz et al. (2020), the
annual growth increments are strongly regulated by the weather condition, soil water,
photoperiod, and temperature at higher latitudes and altitudes. Nevertheless, the inter-tree
competition has a significant effect on their accessibility to available resources (SOARES et
al., 2017). Hence, the forest dynamics are influenced by the local neighborhood competition
(OHEIMB et al., 2011). It is well-known that the high intensity of competition leads to a
decrease in growth and recruitment rates and an increase in the mortality rate (AVILA et al.,
2017; CAILLERET et al., 2016). The inter-tree competition acts decisively in the mortality,
recruitment, and growth models (FERNANDEZ-TSCHIEDER; BINKLEY, 2018; SABATIA;
BURKHART, 2012; SCHNEIDER; LAW; ILLIAN, 2006; VANCLAY et al., 2013; ZHANG,;
HUANG; HE, 2015), with the diameter growth being one of the most sensitive variables to its
intensity (OHEIMB et al., 2011).

The inter-tree competition is usually measured by indices with mathematical
assumptions to describe the spatial interactions between trees (AAKALA et al., 2013). They
numerically express the effect of the neighborhood (competitor trees) on a target tree (subject
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tree) (SUN et al., 2018). Most studies involve the classical approach of competition indices
(KUEHNE et al., 2019; OU et al., 2019; TAVARES JUNIOR et al., 2020), which consists of
distance-dependent (IDD), semi-distance-independent (I1SI), and distance-independent indices
(ID1) (LEDERMANN, 2010). These indices only diverge into the criteria and formulas used to
express relations between trees (CASTRO et al., 2014). Although they work appropriately,
these categories are limited by not capturing the effects of local variation or by the need for tree
data not commonly collected in forest inventory (LEDERMANN, 2010). There is no consensus
about the best strategy since their performance depends on the type and conditions of the forest
(CONTRERAS; AFFLECK; CHUNG, 2011; KUEHNE; WEISKITTEL; WASKIEWICZ,
2019). Therefore, the current state of knowledge has advanced by proposing new methods, such
as competition spatialization using Geographic information system (GIS) (TEO; FILHO;
LINGNAU, 2015), indices based on airborne laser scanning (ALS) (PEDERSEN et al., 2013),
spatial structure (HUI et al., 2018), crown area (KUEHNE; WEISKITTEL; WASKIEWICZ,
2019), light interception (BOECK et al., 2014), and complex networks (MONGUS et al., 2018).

Complex network (CN) is an interdisciplinary science applied to a range of fields, such
as statistical physics, computer science, biology and sociology (BOCCALETTI et al., 2006;
MATA, 2020). Its versatility has been allowed investigating livestock (TRIGUERO-OCANA
et al., 2020) and vector-borne diseases (ZHANG, 2020), synchronization in the power grid
(MOTTER et al., 2013), vegetation-atmosphere feedbacks (ZEMP et al., 2017), extreme-
rainfall teleconnections (BOERS et al., 2019), links between fungal community and phosphorus
cycling in mixed forests plantations (PEREIRA et al., 2021). The first researches of applying
CN in Forest Sciences are Nakagawa et al. (2016) and Mongus et al. (2018). These pioneers'
studies had revealed spatial patterns of complex network metrics concerning trees growth and
survival rates. Complex networks are represented by graphs which are composed of of many
componentes - that are called nodes or vertices in the complex network context and the
interactions between them are represented by links or edges (ALBERT; BARABASI, 2002).
Forests are natural systems of tree sets arranged into an ecological network with heterogeneous
interactions. Therefore, they can be described mathematically as a graph linking trees spatially.
Such graphs can support researches in quantifying inter-tree competition with insights into the
ecology and forest management processes in modeling.

The novelty of the current study aggregates CN into a feature selection procedure using
a Genetic algorithm combined with Random Forest (GA-RF). The GA-RF has proven

efficiency in modeling forest attributes in terms of accuracy and variables' importance



69

explaining (HONG et al., 2018; LOPES et al., 2021). Our proposal moved from a background
developing models based only on statistical assumptions to append a valuable contribution to
tree diameter modeling with ecological meaning. Therefore, our study aimed to: 1) investigate
if there is a similarity between all the indices by using a dendrogram; 2) assess if the predictive
performance of CN metrics is at a similar level to classical indices in quantifying inter-tree
competition, and 3) verify if CN metrics incorporation into a predictive tool (GA-RF algorithm)
improves the ecological interpretation of variables' influence on tree diameter increment
modeling. As exposed, the methodology of this study sought to understand the predictor
variables that play a decisive role in the submodel of periodic annual diameter increment
(PAId).

2 MATERIAL AND METHODS

2.1 Site description and tree database

The experimental area covers 5,8 ha of Seasonal Semideciduous Montane Forest located
in 21°13'40"S / 44°57'50"W coordinates at about 930 m above sea level (FIGURE 1 - a). The
soil types are mainly dystrophic Red-Yellow Argisol (PVAd) and eutroferric Red Nitosol
(NVef). The Koppen climate classification is a humid subtropical zone with dry winters and
temperate summers (Cwb). Most of the precipitation (80%) occurs during October - March,
while the dry season extends during April - September (ALVARES et al., 2013). This forest
has a long-term census program measuring the DBH of trees with DBH > S5cm. These trees
were identified botanically by specialists and using aluminum tags. We have chosen only the
period of 2010-2017 for our analysis. Over this interval, the stand varied in density (872-953
trees ha™t) and basal area (20.7-23.3 cm ha ™). The two selected species (Copaifera langsdorffii
and Xylopia brasiliensis) dominate the experimental area, achieving in 2017 the highest
importance value index — 1V1% (22%) and representing 23.4% of all trees. Then, the other 180
species were considered competitor trees. We have applied the Bitterlich method (Basal area
factor — BAF=4) to define the competition buffer of each subject tree (FIGURE 1 - b). Later,
only in 2019, we collected the geographic coordinates of all trees. We matched the spatial
location of trees to their growth data into the validation process of living trees within this period.
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Figure - 1 (a) Study area map, and (b) native species in spatial arrangements of trees over the
Forest Reserve, and the competitor trees selection at Bitterlich method.

a) 44°58"20"W 44°58'15"W 44°58'10"W

Talktand Is.

21°13'40"S

21°13'45"S

o
C. langsdorffii X. brasiliensis ~ Others

Where: STi= subject tree i, Cj= competitor tree j and distjj= the distance between a subject

tree i and its competitor j, L= the maximum distance (L=0.5 DBHi/\/ BAF ) allowed for a
selection of the set of competitors from each subject tree i.

2.2 Inter-tree competition indices

The growth conditions play a decisive role in the allometry of the trees. These conditions
involve a complex set of variables and factors, which denotes an interactive system. Generally,
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a substantial variation in tree allometry is shaped by their plasticity in response to competitive
interactions among them. Thus, it is essential to consider the influence of competitive status as
a modifier of tree allometry, which is quantified in different ways by competition indices (HUI
etal., 2018; RIO et al., 2019). The index predictive performance is subject to the particularities
of the forest structure and composition. Hence, we need to test them under local conditions to
determine their applicability (HUI et al., 2018). In this sense, several indices belonging to the
categories found in the literature were calculated for all living trees corresponding to the two
subject species. However, data were collected for all living trees, regardless of species, as
information on possible competitor trees. To describe tree development, we tested four
strategies. These strategies included the different categories of classic competition indices and

complex network metrics.

2.2.1 Complex network metrics

We propose an inter-tree competition network derived from complex network tools to
analyze the relationship between trees. Under these circumstances, the complex networks
characterize the spatial arrangement of trees. Complex networks (CN) are a promising

technique for describing and modeling ecological structures (COSTA et al., 2008). The CN is
represented mathematically by a graph G = (N, E) defined by a set of nodesN ={n.}, and

edges E :{eij} connecting them. Thereby, a node N; denotes a subject tree, and its interaction
with the competitor (n j) is established into a directed network if nodes i and j are connected.

We also use a diameter-based function ( [max(dbh,, dbhj))’lto weigh the edges between the nodes

i and j (w;). Under this structure, the subject tree is influenced by the size of the largest

individual.

The inter-tree competition was quantified using topological metrics from the graph G
structure. We used the igraph package (CSARDI, 2015) of R software (R CORE TEAM, 2018)
to extract all numerical information. Among several metrics available in the literature, we
selected the most promising ones with biological interpretations. First, we extracted the
simplest topological metric, named node degree, which defines the number of nodes connected

by edges to a given node. N is the total number of nodes, and @;; represents the existence of a

connection between the nodes i and j based on the adjacency matrix A. This means, &; = 1if
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there is a directed connection leaving i and arriving at j, and &; = 0, otherwise. The directed
network allows calculating two components: the number of edges that leave the node i, named

kiOUt (out-degree) (EQUATION 1), and the number of nodes that arrives at the node i, named

k" (in-degree) (EQUATION 2) (LATORA et al., 2017). The sum of these components results

in the total degree of node i (EQUATION 3). The higher the value of this measure, the greater
number of connections of that node (MO; DENG, 2019).

ko =3 a, (1)
j#i

kiin = i aij (2)
j=i

k.= Z kin + kot ©)

Furthermore, the weighted average nearest neighbors’ degree (K,\,':Li) measures the

probability of a given node to connect with nodes that have a degree similar or not with its own
degree. In other words, this means that when nodes with a high degree have a larger probability
to be connected with nodes that also have high degree, the network has a positive correlation
(assortative networks). Otherwise, a negative correlation is presented by the network if most of

the neighbors connected to a high degree nodes have a lower degree (disassortative networks)

(BARRAT et al., 2004; WANG et al., 2017). In weighted networks, the K:ﬁyi (EQUATION 4)

is calculated based on the normalized weight of the connecting edges, Wij/Si , In which §;

(EQUATION 5) is the node strength.

1 N
kr\:\rlni = _zaijwijkj (4)
S =t
N
5= Zaijwij (5)
j=1

We also calculate the Eigenvector centrality (EC) for each node that relies on its
neighbors' degrees (EQUATION 6). It considers an eigenvector of the adjacency matrix A and
a constant ( A ). For instance, a node i with fewer neighbors can have more influence in the
network than a node j with more links, if the neighbors of node i , on average, have more
connections than the neighbors of node j (MOGHADAM et al., 2019).
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N
| :
CE(I):Z;AjiCE(J) (6)
1=
Closeness centrality (CL) is another metric to assess the accessibility of a given node,

where dij is the distance betweeni and j (EQUATION 7). This measure indicates a node
centrality based on its distance from all other nodes (LIU et al., 2016). In this context, we
measured distance between any two nodes according to the number of edges between them
(SUN; WANG; GAO, 2016). For weighted networks, this is measured based on the weights
(values) applied to the edges (AHMED; THOMO, 2017; TSIOTAS; CHARAKOPOQOULOS,
2018). This allows identifying the reach of information from a node to other nodes in the
network (LU et al., 2016).

Cl { i (d; )T ©)

j=L j#i

We also take into account the coreness (CR), which measures the influence of a node
based on its location in the network. Nodes with high coreness are interpreted as the most central
in a network (LU et al., 2016). The value is measured by an iterative process of k-core
decomposition (GAO et al., 2019). This process categorizes the network into hierarchical shells
from the core to the periphery (LIU et al., 2016). Thus, a node i belongs to a shell layer c(i,G)

that consists of the coreness of node i (EQUATION 8).
¢(i,G) =max{k|ieC, (G)] (8)

Another useful metric is the local clustering coefficient (CC) that measures the density
of triangles in a network (NEWMAN, 2003). Triangles as subgraphs of the network provide a

detailed view of the neighborhood interconnection. It means how many neighbors of a node are

connected between them (EQUATION 9). The ki is the number of neighbors of node i (degree

of node i), |¢(T7;)| is the number of real edges between the neighbors of node i and, ki(ki —1)

is the maximum number of possible edges between them (total number of triangles formed by
node i) (GHANBARI; JALILI; YU, 2018; TSIOTAS; CHARAKOPOULOS, 2018).

o(1)
R Y
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The Betweenness centrality (BC) is also an important centrality measure that denotes
the node’s ability to control the flow of the network (EQUATION 10). It works as a bridge
connecting any two nodes through the shortest path that connects them. The higher values

characterize the most central nodes in the network that often participate in the shortest paths

between any pair of nodes (MAGLARAS et al., 2016). The b jh corresponds to the total number

of possible minimum paths between nodes j and h, and bjh(i) represents the number of

minimum paths between them that pass through node i.

sc,= 3, 2nl) (10)

j=h=i jh

Finally, the PageRank (PR) is a Google search engine to classify web pages relevance.
It simulates the users’ behavior when browsing the Web to rank pages (network nodes) and
hyperlinks (edges). The PageRank value of each node is related to the probability that it will be
accessed more often in a random search (EQUATION 11) (HENNI; MEZGHANI; GOUIN-

VALLERAND, 2018). Where c is a constant between 0 and 1, PR(p) is the PageRank value

for node p and, bout(p)is the number of edges coming out of node p.

(1 PR(P) (11)
PR; =(1 C)+Cp§(:i)lbout(p)|

2.2.2 Classical competition indices

In general, classical competition indices incorporate the tree size and geographic
location when required to measure the inter-tree competition. They have a range of strategies
and formulas to express the competition level. Here, we have tested all strategies and indices
often described in literature. We applied six distance-dependent indices to synthetize the
competitive influence of the neighbors’ size and their distance on subject tree. The distance-
independent indices reflect the effect of the entire stand on a subject tree, so we used 11 due to
their ease of obtaining being location-independents. We also computed two semi-distance-
independent indices that capture spatially explicit competition by only considering trees within
the same plot of the subject tree (TABLE 1).



Table 1 - Classical competition indices evaluated in quantifying inter-tree competition.
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Distance-dependent indices (IDD)

Code Author Formula
IDD1 Hegyi (1974) 2. (d;7dily)
j=1
IDD2  Rouvinen and Kuuluvainen (symmetric, 1997) >.d; /L,
j=1
. : : c (dj/ dl)z
IDD3 Rouvinen and Kuuluvainen (asymmetric, 1997) Z I
=L i
N, o d, 1
IDD4 Martin and Ek (1984) 24, ('u +1)
IDD5 Staebler (1951) Yl
j=1
n d_2
IDD6 Moore et al. (1973) Y=
2 di +d;
Distance-independent indices (I1DI)
IDI1 Daniels et al. (1986) (df nj / > d?
j=1
2.(d;/d)
IDI2 Mugasha (1989) =i
n
IDI3 Lorimer (1983) >d,/d,
j=1
IDI4 Looney et al. (2018) >d,
j=1
IDIS Corona and Ferrara (1989) Z(djz/diz)
j=1
ID16 Tomé and Burkhart (1989) d./d,
IDI7 Glover and Hool (1979) diz/d 2
IDI8 Stage (1973) d;/d,
IDI9 Pedersen et al. (2013) d,/d;
IDI10 Stage (1973) SA?SAL
IDI11 Stage (1973) BAL
Semi-distance-independent indices (I1S1)
1SI1 Stage (1973) SA’ [SAY
IS12 Glover and Hool (1979) d’/d?
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Where: di = diameter of the i-th subject tree, measured at 1.30 m — dbh (cm); dj = diameter of
the j-th competitor tree, measured at 1.30 m — dbh (cm); |ij =distance between the subject tree

I and its competitor j (m); N = number of competitor trees; dmax = maximum dbh of the trees in
the sample plot (cm); d = arithmetic mean of dbh for trees in sample plot (cm); dq = quadratic
mean diameter (q) of sample plot (cm); SA = sectional area of the i-th subject tree (m?2); SAq =

sectional area corresponding to the quadratic mean diameter (q) of the boles in sample plot
(m2); BALi =sum of sectional areas of neighbor trees with larger boles than the subject tree i;

SAqn = sectional area corresponding to the quadratic mean diameter (q) of the n competing trees

of the subject tree ; d, = arithmetic mean of the dbh of the n competing trees of the subject tree.

2.2.3 Indices and metrics analysis

We tested the inter-tree competition metrics (complex network metrics and classical
competition indices) to figure out trends of both methods in the growth patterns. The resulting
values might lead to two directions which include similar or distinct gradients between indices
and metrics. The cluster analysis investigated the similarity between the attributes of the
competition metrics by using a dendrogram (LEMENKOVA, 2020) based on Euclidean
distance and Ward's method. This dendrogram verified the similarity of competition metrics
based on their correlation strength with the dependent variable. Additionally, we evaluated the
relation between the dependent variable and competition metrics using Pearson's correlation
coefficient. Even though they cover similar information, we maintain these variables for further
analysis in our tree growth modeling process. This step is justified since all categories of
competition metrics should be tested in accuracy and interpretability terms as inputs of growth

models.

2.3 Tree diameter increment modeling

Several growth models have been applied to model tree diameter increment over
the years. To predict forest development accurately, forest managers are interested in an
improved understanding of how to quantify competition properly and its effects on individual
tree growth (CONTRERAS; AFFLECK; CHUNG, 2011). The inter-tree competition indices

may predict the growth rate, as discussed in many published research. The majority of them
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applied classic competition indices with high accuracy (KUEHNE; WEISKITTEL;
WASKIEWICZ, 2019; MALEKI; KIVISTE; KORJUS, 2015). The novel approach measures
the inter-tree competition in social-ecological behavior. The modeling process involves the
periodic annual diameter increment (PAId) as a dependent variable in our model. Hence, a range
of independent variables was tested such as (i) individual tree level (TL): diameter at breast
height (DBH) (cm), sectional area (SA) (cm?), geographic coordinates (X and Y); (ii) classical
competition indices, and (iii) topological metrics. We also transformed DBH and SA into the
square root and second power as potential predictors. We selected a total of 456 trees (C.
langsdorffii — 154 and X. brasiliensis — 302) within the 2010-2017 period for our four modeling
strategies (S): S1 — distance-dependent indices (DD), S» — distance-independent indices (Dl), S3
— semi-distance-independent indices (SlI), and S4 — topological metrics (TM) from complex
network approach. Besides, all strategies involve initial attributes at the individual tree level
(TL) for each tested species separately. The modeling process considered the use of the Genetic
algorithm (GA) and Random Forest (RF). In this context, we applied a GA to select a set of
variables in the RF training. The GA has a stochastic searching inspired by the biological and
genetic theories for solving several problems (CERRADA et al., 2015). The advantage of the
algorithms’ association (GA-RF) is related to the shrinkage of the problem complexity of the
model (HONG et al., 2018; JADHAV; HE; JENKINS, 2018). Previously, we performance the
algorithms tuning parameters (GA - population size (400); generation (10); tournament
operator, crossover (0.5); mutation (0.1); stop criteria (10 generations); and RF — ntree (1500);
mtry (1); and nodesize (5)) for better performance. The data processing and computational code
were developed in R software, version 3.5.1 (R CORE TEAM, 2018), and randomForest
package (LIAW; WIENER, 2002). As the problem arises at a multi-objective optimization
level, the fitness function (EQUATION 12) denotes a minimum number of variables and high
precision as a desirable goal. The normalized solution assumes the sum of two terms: 1) the
ratio between the OOB error and the maximum value found with all variables, and 2) the ratio
between the number of selected variables (n) and the total (N). Finally, the importance of the
predictor variables was measured based on Increment in Mean Square Error (%IncMSE).
Predictor variables with a high value of %IncMSE are considered the most important. Their
omission implies a reduction in the predictive power of the model in terms of mean square error
— MSE (MIAO et al., 2018).
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. OOB error, n.
fitness; = <t (12)

max(OOB errorj

2.4 Goodness-of-fit metrics for modeling strategies evaluation

The predictive performance of each tested strategy was evaluated according to the
following criteria: R? - Coefficient of determination (EQUATION 13), MSE - mean squared
error (EQUATION 14), RMSE - root mean square error (EQUATION 15), MBE - mean bias

error (EQUATION 16), and MAE - mean absolute error (EQUATION 17). Where y; is the

measured value of PAlg in the i observation and Y, is the predicted value of the i observation

within n observations. We have applied a score ranking procedure to guide the better model
strategy selection due to a set of criteria. These integer values scores range between (1-4) for
better (1) and worst (4) accuracy order. The final index is the overall of all scores reached by
each method. Hence, the lower value is the most accurate strategy (THOMAS et al., 2006).

Later, we verified estimates’ quality using the residual plots and histograms.

m2 =1_%(yi _y) (13)
é(yi _7)2
13 ~ N2
MSE:HZ(yi _Yi) (14)
RMSE = %_Zn:(yi—yi )’ (15)

Z(Yi - 9.)
MBEz'ﬂT (16)

Z|yi - y||
MAE = 1T (17)
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Furthermore, we examined the biologic consistency of tree diameter increment curves
applying the derivate form of Chapman-Richards function (EQUATION 18). This growth
function is well consolidated in forest management field for high precision and biological
interpretation of the parameters. The benchmarking analysis is crucial to validate our strategy.
We used the GA package from R (SCRUCCA, 2021) to optimize the initial parameters of the
Chapman-Richards function and the minpack.Im R package (ELZHOV et al., 2016) within
Levenberg—Marquardt method to fit this function. Where y . diameter growth rate (periodic

annual diameter increment — PAId), gi: function parameters, x: dbh.
' f3-1
y:=/%ﬁgﬁ%eXp(_[%X){l_eXp(_ng)} (18)

3 RESULTS

3.1 Forest structure and inter-tree competition

The studied area had no disturbance or any ecological sustainability risk management
in the evaluated period. We noted a resilience tendency of stand structure due to the diameter
distribution frequencies in the uneven-aged forest type, evidenced by the reverse J-shaped
curve. This stand showed a positive balance between ingrowth (11.12%) and mortality rate
(3.37%), regardless of tree species. In this context, X. brasiliensis obtained a recruitment rate
about three times higher (9.84%) than C. langsdorffii, and a lower mortality rate (1.75%).
Initially, we may affirm that this forest reflects the natural dynamic and structure over years.
The tree studied species had their density changes by a positive population gain with an increase
of X. brasiliensis 8% higher than C. langsdorffii. Nevertheless, morphometric characteristics as
basal area led to a higher dominance of C. langsdorffii with low differences (4.2%) from X.
brasiliensis. As expected, the dominant trees have a higher growth rate them suppressed trees
with an inferior growth pattern over diameter classes for C. langsdorffii versus X. brasiliensis
(FIGURE 2). Although the overall data variance of the growth rate was 26% higher for C.
langsdorffii, growth rate deviation was higher for X. brasiliensis when analyzed at most
diameter classes. However, we have no evidence to enlighten the lower growth rate at

intermediate classes of X. brasiliensis.
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Figure 2 - Mean increment at diameter classes for each studied species.
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The inter-tree competition indices/metrics presented two contrasting tendencies
according to the diameter classes and mathematical formulation. They presented a clear
increase/decrease trend pattern across the diameter classes (TABLE 2). Regardless of the
methods, the increasing trends were more predominant, especially for C. langsdorffii. The set
of distance-dependent indices (IDD) has similar behavior except for IDD1 and IDD4 indices.
Higher values of IDD2 suggest the negative effect of competitor tree size and inverse distance
towards subject trees. Individuals trees of C. langsdorffii (dbh<35cm) are subject to a greater
competitive influence than X. brasiliensis individuals. The IDD5 and IDD6 indices indicate an
increasing competition rate as the classes become larger for both species. Conceptually, the
lower these indices, the greater the competition. Therefore, X. brasiliensis trees suffered less
competitive pressure from competitor trees. The only exception occurred to its individuals
within diameter interval 15-25 cm. In general, we have noted a superior competition capacity
for X. brasiliensis individuals than observed in C. langsdorffii. The semi-distance-independent
indices (ISI) capture this similar tendency with values increasing over diameter classes (Stage
index, 1S12) and sectional area (Glover and Hool index, 1SI11). Considering distance-
independent indices (IDI), the Mugasha index (IDI2) revealed that individuals (dbh>15cm)
have competitors with smaller size. Pedersen index (IDI9) demonstrated the same behavior
according to the quadratic mean diameter of the plot. Looney index (ID14) supports our findings
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by denoting competitive advantages to X. brasiliensis individuals even with their competitors
on average 70% larger (size or number) than C. langsdorffii competitors.

The complex network metrics were useful to quantify the inter-tree competition
mapping the spatial relationship between trees (APPENDIX A). The topological metrics (TM)
point out more spatial patterns for C. langsdorffii over diameter classes than X. brasiliensis.
There are fewer network connections as competitor trees for individuals with dbh> 35 cm in
both species. The same hypothesis was confirmed by the clustering coefficient (CC) since its
values indicated that bigger individuals participate less in the groups' formation than smaller
ones. The coreness (CR) assumes that the pivot trees of the ecological system are those with
25<dbh<45cm, which support the connection of all trees. Dominant trees are spatial distant
from other individuals in the network as defined by the Closeness centrality (CL) metric. The
Eigenvector centrality (EC) reinforces that Copaifera langsdorffii individuals at the inferior
stratum of the forest have neighboring trees with more competitors than dominant trees. The
highest values of the betweenness centrality (BC) suggest more proximity of Xylopia
brasiliensis to other individuals than Copaifera langsdorffii in our system. The PageRank (PR)
metric values expressed that Copaifera langsdorffii trees have a similar probability of
competition at diameter classes. Conversely, higher competition probability was found for
smaller individuals of Xylopia brasiliensis. The studied species showed distinct behavior of

nearest neighbors degree (Krﬁ,‘i) values since their individuals with nearest neighbors more

connected had intermediate (Copaifera langsdorffii) and small size (Xylopia brasiliensis).

Table 2 - Competition metrics/indices average values within the subject species' diameter

classes.
Copaifera langsdorffii Xylopia brasiliensis
Indices/metrics Diameter class center (cm)
10 20 30 40 10 20 30 40 50 60
IDD1 3.50 2.32 221 1.92 2.38 1.64 1.77 1.95 0.92 1.45
IDD2 31.95 50.85 66.35 78.33 28.20 36.18 54.77 84.27 46.02 86.42
IDD3 7.74 212 1.60 1.05 4.36 1.35 1.07 0.84 0.23 0.47
IDD4 1.45 1.57 1.58 1.55 1.28 1.16 1.33 1.55 0.76 1.25
IDD5 5.19 41.65 84.66  203.18 8.32 35.13 95.96 255.88 217.86 474.63
IDD6 2.79 31.93 68.49 174.63 4.94 26.71 80.05 232,71  204.24  438.27
IDI1 0.81 2.48 3.23 5.07 1.16 2.53 4.20 8.72 15.63 11.37
IDI2 1.49 0.62 0.52 0.39 1.25 0.62 0.45 0.31 0.22 0.25
IDI3 3.55 6.40 8.11 10.93 3.69 5.17 7.56 10.54 6.16 12.23
ID14 37.10 143.07 246.86 446.08 47.53 115.01 237.09 460.65 308.21 728.66

IDI5 6.88 5.37 5.75 6.02 6.10 4.26 4.68 4.36 1.79 4.22
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IDI6 0.26 0.56 0.71 0.87 0.32 0.60 0.86 0.96 1.00 1.00
D17 0.63 2.63 4.23 6.61 0.92 2.68 4.86 10.30 13.50 9.46
IDI8 0.64 1.36 1.70 2.13 0.79 1.40 1.87 2.64 2.93 2.55
IDI9 1.75 0.77 0.61 0.48 1.41 0.74 0.55 0.39 0.34 0.39
IDI110 0.31 4.14 10.34 23.81 0.61 4.48 14.08 54.74 73.23 42.07
IDI11 0.69 0.47 0.37 0.18 0.71 0.39 0.17 0.07 0.00 0.00
ISI11 1.23 8.03 12.64 28.91 291 8.37 21.94 85.83 24422 12931
IS12 0.93 3.20 4.46 7.19 1.29 3.26 5.63 11.70 20.63 1541
Kout 2.88 10.90 16.72 29.10 3.48 8.87 17.52 35.75 28.00 48.00
Kin 2.33 2.42 3.26 1.80 2.67 2.18 2.32 1.88 0.00 1.00
K 5.20 13.31 19.98 30.90 6.15 11.05 19.84 37.63 28.00 49.00
cC 0.47 0.21 0.16 0.09 0.37 0.21 0.11 0.08 0.06 0.04
CR 3.37 4.42 5.28 5.00 3.78 4.10 4.68 5.00 4.00 4.00
EC 2E-02  3E-02 3E-02 3.E-03 1E-02 1E-02 3E-03 OE+00 OE+00 OE+00
BC 140.93 184.44 75791 431.20 16852 42559 1292.82 434.88 0.00 39.00
PR 4E-04 3E-04 4E-04 3E-04 5E-04 4E-04 4E-04 3E-04 2E-04  3E-04
Knn 8.64 7.87 9.25 7.80 8.85 7.30 6.82 7.29 431 4.97
CL 4722 10853 215.03 309.97 47.71 103.66 22859  284.92 23490 479.97

Our cluster analysis revealed similar patterns for most of the competition indices/metrics
in both species (FIGURE 3). The threshold point split the set into two groups within a
heterogeneous composition. Our findings define a certain level of similarity between complex
network metrics and classical competition indices. In general, they are sharing the same
information to measure the inter-tree competition. Only CR and IDD4 indices changed their
group for each species. Therefore, our results strongly indicate that complex networks metrics
may be a very useful way as the classical competition indices corroborating with the
information of the relationship between trees. Therefore, they are also appropriate to describe
growth rate and the periodic annual increment of diameter (PAId). In general, the Pearson’s
correlations presented positive values (FIGURE 3). The Stage index (IDI18) showed the greatest
positive correlation for both species, followed by IDI7, IDI6, K for Copaifera langsdorffii
and IDI6, IDI1, 1SI2 for Xylopia brasiliensis. Conversely, the indices of Pedersen (ID19), Stage
—BAL (IDI11), Mugasha (IDI2), and the clustering coefficient (CC) had higher negative values

for both species.



83

Figure 3 - Cluster analysis of grouping the set of competition indices/metrics and Pearson's

correlation of periodic annual diameter increment (PAl,) for Copaifera langsdorffii ¥ and
Xylopia brasiliensis ¥ .
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Where: IDI= distance-independent indices, IDD= distance-dependent indices, ISI= semi-
independent-distance indices, TM= topological metrics of network, ISI1= Stage (1973), ISI12=
Glover and Hool (1979), IDI1= Daniels et al. (1986), IDI2= Mugasha (1989), ID13= Lorimer
(1983), IDI4= Looney et al. (2018), IDI5= Corona and Ferrara (1989), IDI6= Tomé and
Burkhart (1989), IDI7= Glover and Hool (1979), IDI8= Stage (1973) based on quadratic mean
diameter, ID19= Pedersen et al. (2013), ID110= Stage (1973) based on sectional area, IDI11=
Stage (1973) based on BAL, IDD1= Hegyi (1974), IDD2= Rouvinen and Kuuluvainen
(symmetric, 1997), IDD3=, Rouvinen and Kuuluvainen (asymmetric, 1997), IDD4= Martin and
Ek (1984), IDD5= Staebler (1951), IDD6= Moore et al. (1973), PR=PageRank, Knn=weighted
average nearest neighbors degree, EC= Eigenvector centrality, Kout= out-degree, Kin= in-
degree, K= total degree of the node, CR= Coreness, CL= Closeness centrality, CC= clustering
coefficient and BC= Betweenness centrality.
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3.2 Individual tree diameter growth modeling performance

Variable selection under Random Forest is boosted after applying a multi-objective
genetic algorithm by finding an optimized number of variables with minimum error. Our
findings highlight that the subset of selected variables changed for each study species due to
the diverse growth pattern of them. Under this circumstance, we reported slight precision
differences for each set of tested variables. This means that all inter-tree competition methods
are suitable to explain the individual tree diameter growth with acceptable limitations (TABLE
3). The species growth rate and spatial interaction of trees drove the better indices/metrics
selection for each species. Therefore, we noted that complex network metrics have superior
advances facing classical indices only for C. langsdorffii and distance independent competition

indices for X. brasiliensis.

Table 3 - Statistics analysis of the periodic annual diameter increment (PAl,) modeling
strategies for Copaifera langsdorffii and Xylopia brasiliensis.

Classical competition indices

Complex networks

‘o Distance-dependent  Distance-independent Semi-distance- .
SP  Statistics (Sl)p (S) P independent (Ss) metrics (Sa)
Training  Validation  Training Validation  Training Validation Training Validation
MSE 0.004 0.008 2 0.005 0.008 * 0.005 0.0083 0.005 0.007*?
o E RMSE 0.065 0.089 2 0.068 0.092 4 0.071 0.0903 0.071 0.086*
% g MBE -0.001 -0.0072 -0.001 -0.007%® -0.001 -0.010% 0.000 -0.0051
g é MAE 0.052 0.0731 0.055 0.080 * 0.057 0.077°3 0.056 0.076 2
Os R? 0.785 0.366 2 0.740 0.3134 0.716 0.364 3 0.730 0.4431
Scores Qb 194 16° 6?
MSE 0.011 0.024? 0.009 0.0231 0.012 0.024°3 0.012 0.027*
© 2 RMSE 0.104 0.154 2 0.092 0.1511 0.110 0.156 3 0.111 0.165*
g§ MBE -0.001  -0.038°3 0.000 -0.038 2 0.001 -0.039*4 0.000 -0.0341
5 ‘s MAE 0.083 0.1302 0.073 0.1221 0.089 0.1333 0.090 0.138*
S R? 0.813 0.449? 0.848 0.4931 0.778 0.4333 0.768 0.301*
Scores 11° 62 16°¢ 17¢

Where: MSE — mean squared error, RMSE — root mean square error, MBE — mean bias error,
MAE — mean absolute error, R? — Coefficient of determination, and scores ™' The sequence
order of numbers and letters defines the ranking scale and the better modeling variable strategy,
respectively.

Given the residual plot analyzes (FIGURE 4), there is a slight tendency to overestimate
the PAI, for C. langsdorffii in all strategies by histogram distribution. It is evident that most of

the strategies showed a normal distribution of residuals for X. brasiliensis. However, we
highlighted that the distance-independent indices use (S2) resulted in a higher concentration of

residuals at lower error classes for this species.
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Figure 4 - Residuals plot with marginal histograms considering the modeling strategies for
Copaifera langsdorffii and Xylopia brasiliensis.
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The variable selection approach carries on the advanced strategy to increase the final
accuracy and avoid noises (FIGURE 5). Generally, the most relevant variables are chosen to
predictions' improvement in a multi-objective form. Our findings achieved an average
variables’ reduction of 83%. The local site may influence the growth rate since the latitude (Y
coordinate) was selected for distance-dependent strategy (Si) in both species. The DBH is
usually a key source of a range of model and biological processes. For C. langsdorffii, beyond
this variable was selected in all modeling strategies, it indirectly incorporated the Moore index
(IDD6) and Stage index (ID18) with a slight difference in importance between S; (distance-
dependent) and S> (distance-independent). However, the topological metrics of network such
as Kout and BC were selected instead of the others resulting in better estimates for this species.
These metrics captured the negative effect of competitors over the subject trees by associating
their spatial distribution and neighborhood density with tree growth. Concerning X. brasiliensis,
the Stage (ID110) and Staebler (IDD5) indices were more relevant than ISI2 and Kin. It means
a superior influence of area occupation and neighborhood radius on the growth pattern.
Nevertheless, we should note that the low performance of semi-distance-independent (Sz) and
topological metrics of Complex Networks (S4) modeling strategies are not conditioned only by
the indices IS12 and Kin but also by the interaction of the entire set of variables.
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Figure 5 - Graphical analysis of the variables selected for Copaifera langsdorffii (u) and Xylopia
brasiliensis (#) models.

Distance-dependent (S1) Distance-independent (Sz)
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Where: Y= geographic coordinate (latitude), SAr= square root of sectional area, SAs= second
power of sectional area, DBHs= square of diameter at breast height, DBH= diameter at breast
height, IDD5= Staebler (1951), IDD6= Moore et al. (1973), IDI8= Stage (1973) based on
quadratic mean diameter, IDI10= Stage (1973) based on sectional area, 1SI1= Stage (1973),
ISI2= Glover and Hool (1979), BC= Betweenness centrality, Kin= in-degree, Kout= out-
degree.

The benchmarking analysis of accuracy and biological consistency suggested a positive
response from the use of complex network metrics (FIGURE 6). Adding these variables, the
graphical results were visually superior than Chapman-Richards function. This model
parameters were significant (p <0.001) for Xylopia brasiliensis (1 = 19.094216, > = 0.057337,
B3 = 2.645241), and only the B3 for Copaifera langsdorffii (81 = 18.57332, > = 0.01952, 3 =
1.75503). The individual tree growth predictions of observed data (validation set) denote a
significant effect of Kin/SAr (Copaifera langsdorffii) and Ko/BC (Xylopia brasiliensis). These
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curves validate the inter-tree competition as additional effects to explain these biological
patterns confirming the variables selected robustness. The competition effects by these complex
network metrics approximated the behavior of these curves more consistently with the natural

distribution and orientation of the growth data than the Chapman-Richards function.

Figure 6 - Individual tree diameter increment predicted by Chapman-Richards function (=) and
Genetic algorithm with Random forest — (GA-RF =) using complex network metrics (S4) in
validation dataset (s).
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4 DISCUSSION

Individual tree growth models depend on competition indices widely used in the
literature. Different competitive abilities, growth rates, and shade tolerance levels lead the
species to develop specific adaptation mechanisms, varying their behavior pattern (KUEHNE
et al., 2020). Defining the competitive abilities of individual trees for natural resources (light,
water, and minerals) has been a constant challenge in the forestry area. It is especially attributed
to the high diversity of a tropical forest. The dimensional characteristics of trees are the result
of factors that conditioned their development in the forest. Then, they cannot be neglected, as
they reflect the growth potential of individuals. Notably, we observed in our study that DBH
and SA were the variables with the greatest effective participation in the growth. In addition to

these variables, crown attributes and competition have been recognized by their association
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with diameter growth (CUNHA et al., 2016). These are considered as modifying factors of
potential growth that allow incorporating the nature of the interactions between trees. Therefore,
it is essential to insert the variables that denote competition in the modeling of individual trees,
as they can improve the prediction of the dimensions and dynamics of tree growth (CARRIJO
et al., 2020). Our results show an evident difference in growth pattern of the species under
study. In average terms of diametric increment, C. langsdorffi showed slower growth. Such
behavior is given to its greater responsiveness to the competition. This can be confirmed by its

higher values of linear association between most categories of indices/metrics of competition
with PAl,, in comparison with X. brasiliensis. For both species, the indices with the greatest

positive and negative linear association were, respectively, Stage index (ID18) and Pedersen
index (IDI19). Although they are structurally different indices, both are commonly formed by
the quadratic mean diameter of the plot. This whole-stand variable, when incorporated into
competition measurements distance-independent, corresponds to the hierarchical position of the
subject tree within the plot (MORENO et al., 2017; SAUD et al., 2016). The same relative
dimension (ratio) used by ID18 was evaluated in the study of Sharma et al. (2019) that observed
the increase in the diameter increment of the species Fagus sylvatica L. with the reduction of
competition, expressed by the increase in the ratio between the DBH and the quadratic mean
diameter.

The variation of the H-D relation over time affects the diameter increment, then, it is
essential to comprehend it as part of forest development. Based on this context, it should be
noted that most individuals of X. brasiliensis are established in the emergent layer of the forest
canopy, as they have plausible growth rates (SCOLFORO et al., 2017). Therefore, these
individuals reach the emergent layer of the canopy more quickly because they invest more in
height to the detriment of the diameter. This behavior can lead to less susceptibility to
competition (SHARMA; BRUNNER, 2017). Additionally, its crowns were formed by sparse
orthotropic branches emerging from the main stem (TERRA et al., 2018), enabling greater
access to light. These factors may explain a lesser dependence of this species, classified as early
secondary, in relation to the interactions with its neighborhood. This is the opposite of what
happens with C. langsdorffii individuals, since this species is classified as late secondary and
climax. Thus, they are subject to greater competition for light and soil depth, as they are still
looking for canopy dominance through investment in height and the formation of symmetrical
crown (COSTA et al., 2012). This context corroborates the study developed by Stadt et al.
(2007) in mature boreal mixed forests that reported poorer fits of competition indices for shade-
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intolerant species than shade-tolerant ones. These authors credited this fact to the frequent
occupation of intolerant surviving trees in dominant positions in the canopy, which
consequently suffered less competitive intensity. On the other hand, as most trees of tolerant
species occur in the sub-canopy, they are subject to a greater variety of competition. Thus,
stratification by competing species or even by ecosite is advisable to improve the model's
performance.

In this sense, our comparative approach of different competition indices/metrics
demonstrated that there is no consensus of the most suitable index/metric to define the inter-
tree competition for all species. This fact is explained since their application becomes
vulnerable due to the local and genetic conditions inherent to the tree (CONTRERAS;
AFFLECK; CHUNG, 2011; SHARMA; BRUNNER, 2017). Therefore, the complex network
emerges as a design that can better represent competition patterns. Our findings suggest that the
network structure dealt with inter-tree competition in a more naturally interpretive way. This
technique provided a slight superiority in addressing the effect of competition on the periodic
annual increment in diameter of C. langsdorffi. Thus, the categories of competition
metrics/indices that showed improvements in obtaining growth estimates for each species were
distance-independent indices and topological metrics, respectively, for X. brasiliensis and C.
langsdorffi. This behavior has been observed by several studies in the literature that have
comparatively addressed categories of indices or even indices belonging to the same category.
As examples of these studies, the following can be cited: Ledermann (2010), Castro et al.
(2014), Maleki et al. (2015), Kuehne et al. (2019) and Curto et al. (2020). In this way, our
findings indicate that the quality of fit of competition indices may be considered species-
specific (FUKUMOTO et al., 2020). Different indices resulted in the best adjustments for the
X. brasiliensis and C. langsdorffii in each modeling strategy. About this latest species, the Stage

index (ID18) and Moore index (IDD6) stood out within their respective categories, distance-
independent and distance-dependent, as the best predictors of PAl, . Both were also reported

by Curto et al. (2020) as the best competition indicators among the different indices tested in
their categories for an overstocked stand of Araucaria angustifolia (Bertol.) Kuntze. In the
study by Tavares Janior et al. (2020) only indices semi-independent of distance were applied
to assess the increment in diameter of individual trees in different fragments of the Atlantic
Forest. These authors observed that there was no superiority of a single index. The variation in

performance of indices in response to fragment type supports this assertion. Our study also
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confirmed that the most appropriate index depends on the type of species, being the Stage index
(ISI1) for the species C. langsdorffii and the Glover and Hool index (I1S12) for X. brasiliensis.
Another relevant result revealed a notable pattern, through the positioning of the strategy
based on distance-dependent indices (S1), as the second-best strategy for both species. This
result is supported by the effect of neighborhood interactions on growth in diameter, which can
confer the efficiency of spatial indices as predictors of growth (MALEKI; KIVISTE; KORJUS,
2015). In this sense, the complex network is also a promising alternative to represent distance
dependence. This allows examining the spatial distribution patterns of individual trees
(MONGUS et al., 2018). The statistical properties of a competition network structure help us
to understand plant population dynamics (NAKAGAWA,; YOKOZAWA; HARA, 2016).
Mongus et al. (2018) related that clusters and betweenness centralities have more influence on
the development of each tree than the parameters commonly used, such as the number of a
tree’s competitors and distances between them. The betweenness centrality was one of the
variables selected as a predictor of the diameter increment in C. langsdorffi. individuals, which
certainly contributed to the greater precision of the S4 strategy. This metric denotes greater
importance for trees with greater participation in the set of competitors of other trees. On the
contrary, the X. brasiliensis diameter increment estimates presented lower precision. It can be
attributed to the choice of the metric, in-degree of the nodes, as the only modifying factor for
potential growth. Therefore, our results reinforced that only the number of competitors for a
certain individual is an insufficient parameter to express the effect of competition on their

pattern of development within a forest.
Modeling the individual tree periodic annual diameter increment ( PAl,) has been an

arduous task due to the interaction of several factors. Both reasons that drive advances in this
matter are: i) the need for more accurate quantification of competition since it is required as an
input in the development of growth and production models at the level of individual trees
(CONTRERAS; AFFLECK; CHUNG, 2011) and ii) the difficulty in modeling the complex and
non-linear nature of individual tree growth (VIEIRA et al., 2018). Therefore, we built in the
current study modeling strategies based on the Random Forest (RF) regression method. This
model stands out for its ability to deal with the non-linear relationship between the predictor
variables and the response variable without statistical assumptions (OU; LEI; SHEN, 2019).
The application of RF has increased due to its efficiency in providing reliable estimates. The
studies by Ou et al. (2019) and Tavares Janior et al. (2020) are examples of this statement.

Additionally, the use of Genetic Algorithm (GA) applied together with the RF, called optimized
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RF, offers the opportunity to generate better results by selecting the optimal combination of
variables (HONG et al., 2018). In this context, the findings of this study showed that the
adequacy of strategies was different for each species. This fact reveals the importance of
selecting an optimized set of competition indices /metrics and variables that enable its assertive
use to improve growth estimates. In this context, it is noteworthy that the machine learning
technique was not sensitive to the local structure of the data. Besides that, these algorithms did
not choose the ideal set of variables (JADHAV; HE; JENKINS, 2018). Thus, the estimates
provided by the RF regression in each modeling strategy may improve or not, as they depend
on the preliminary task of selection of variables carried out through a random search made by
GA. Another way to improve estimates is to explore better the effect of variables that can really
contribute to understanding the response variable. Although the complex networks have not
configured an expressive accuracy gain over to the classical competition indices, their flexible
structure offers an advantage to allow including factors that drive the interaction between trees
in the weighting of connections. Future research can broaden the scope of this study by
incorporating shade tolerance, aspects of soil, climate, water, light and water availability, and
other attributes to compile large data sets as characteristic weights of interactions into the
complex network. This approach allows us the analysis of several scenarios corresponding to
silvicultural treatments (MONGUS et al., 2018). For this reason, this study motivates scientific
progress compared to the existing literature to meet the needs of developing models of growth
and yield at the level of the tree by using more accurate simulations, collaborating with more

assertive decision-making for forest management.

5 CONCLUSION

The tropical forest resilience has high dependence on the diametric structure over years,
and each individual tree has adaptive mechanisms to surpass the negative effects of competition.
In general, tree species also have a wide range of interaction between them, which drives the
diameter growth patterns as observed in X. brasiliensis and C. langsdorffi. The inter-tree
competition impacts in our studied species are heterogeneous at the same ecological site. The
periodic annual increment of tree diameter is highly associated with the neighborhood size,
spatial distribution of competitors’ trees, tree size or their position of the canopy stratum, and
their connections into a network structure. All inter-tree competition indices/metrics categories

are suitable to model our dependent variable. Considering the expansion of concepts'
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formulation, some distance-independent indices and complex network metrics were more
accurate for X. brasiliensis and C. langsdorffii, respectively. Both the complex network metrics,
Kout and BC, added ecological meaning to growth modeling by considering the density of
neighboring' competitors and the proximity of the subject tree to an arrangement of trees under
competition relationship. Even though the Chapman-Richards growth function is highlighted
in forest management, the genetic algorithm/random forest associated with complex network
metrics were superior to describe the individual growth rate of tree diameter. The applied model
provides biologically reasonable estimates of diameter growth within the environmental
conditions of the validation dataset. This finding denotes the applicability of using complex
networks metrics to encompass ecological meaning and growth models’ generalization
improvements. Finally, we hope that our work will encourage the scientific community to apply
complex network theory to describe the relationship between trees with valuable insights for

forest management.

ACKNOWLEDGEMENTS

The authors are especially grateful to the Coordenacédo de Aperfeicoamento de Pessoal
de Nivel Superior (CAPES - Brazil) for the financial support under Finance Code 001, Federal
University of Lavras (UFLA — Brazil) for providing the data, Forest Management Laboratory
(LEMAF — Brazil) for helping in field campaigns. Angélica S. Mata thanks the support from
FAPEMIG (Grant N°. APQ-01294-21) and CNPq (Grant N°. 423185/2018-7).



94

REFERENCES

AAKALA, T. et al. Influence of competition and age on tree growth in structurally complex
old-growth forests in northern Minnesota, USA. Forest Ecology and Management,
Amsterdam, v. 308, p. 128-135, 2013.

ABDO, M. T. V. N. et al. Pioneer tree responses to variation of soil attributes in a tropical
semi-deciduous forest in Brazil. Journal of Sustainable Forestry, Philadelphia, v. 36, n. 2,
p. 134-147, 2016.

AHMED, A.; THOMO, A. Computing source-to-target shortest paths for complex networks
in RDBMS. Journal of Computer and System Sciences, San Diego, v. 89, p. 114-129,
2017.

ALBERT, R.; BARABASI, A. L. Statistical mechanics of complex networks. Reviews of
Modern Physics, College Park, v. 74, n. 1, p. 47-97, 2002.

ALBUQUERQUE, R. P. et al. Tree-ring formation, radial increment and climate—growth
relationship: assessing two potential tree species used in Brazilian Atlantic forest restoration
projects. Trees, New York, v. 33, p. 877-892, 2019.

ALVARES, C. A. et al. Képpen’s climate classification map for Brazil. Meteorologische
Zeitschrift, Stuttgart, v. 22, n. 6, p. 711-728, 2013.

AVILA, A. L. de et al. Recruitment, growth and recovery of commercial tree species over 30
years following logging and thinning in a tropical rain forest. Forest Ecology and
Management, Amsterdam, v. 385, p. 225-235, 2017.

BARRAT, A. et al. The architecture of complex weighted networks. Proceedings of the
National Academy of Sciences, Washington, v. 101, n. 11, p. 3747-3752, 2004.

BOCCALETTI, S. et al. Complex networks: Structure and dynamics. Physics Reports,
Amsterdam, v. 424, n. 4-5, p. 175-308, 2006.

BOECK, A. et al. Predicting tree mortality for European beech in southern Germany using
spatially explicit competition indices. Forest Science, Bethesda, v. 60, n. 4, p. 613-622,
2014.

BOERS, N. et al. Complex networks reveal global pattern of extreme-rainfall teleconnections.
Nature, London, v. 566, n. 7744, p. 373-377, 2019.

CAILLERET, M. et al. A synthesis of radial growth patterns preceding tree mortality. Global
Change Biology, Oxford, v. 23, n. 4, p. 1675-1690, 2016.

CAMPOE, O. C. et al. Meteorological seasonality affecting individual tree growth in forest
plantations in Brazil. Forest Ecology and Management, Amsterdam, v. 380, p. 149-160,
2016.

CARRIJO, J. V. N. et al. The growth and production modeling of individual trees of
Eucalyptus urophylla plantations. Journal of Forestry Research, Harbin, v. 31, n. 5, p.
1663-1672, 2020.



95

CASTRO, R. et al. Competicdo em Nivel de Arvore Individual em uma Floresta Estacional
Semidecidual. Silva Lusitana, Oeiras, v. 22, n. 1, p. 43-66, 2014.

CERRADA, M. et al. Multi-stage feature selection by using genetic algorithms for fault
diagnosis in gearboxes based on vibration signal. Sensors, Basel, v. 15, n. 9, p. 23903-23926,
2015.

CONTRERAS, M. A.; AFFLECK, D.; CHUNG, W. Evaluating tree competition indices as
predictors of basal area increment in western Montana forests. Forest Ecology and
Management, Amsterdam, v. 262, n. 11, p. 1939-1949, 2011.

COSTA, L. daF.; RODRIGUES, F. A.; CRISTINO, A. S. Complex networks: The key to
systems biology. Genetics and Molecular Biology, Ribeiréo Preto, v. 31, n. 3, p. 591-601,
2008.

COSTA, M. do P. et al. Allometry and architecture of Copaifera langsdorffii (Desf.) Kuntze
(fabaceae) in neotropical physiognomies in southeastern Brazil. Ciéncia Florestal, Santa
Maria, v. 22, n. 2, p. 223-240, 2012.

CRUZ, M.; LIEBERMAN, D.; LIEBERMAN, M. Tropical Tree Growth and Longevity:
Validation of Growth Simulation, a Bootstrapping Model. Journal of Sustainable Forestry,
Philadelphia, v. 39, n. 7, p. 674-691, 2020.

CSARDI, G. Package ‘igraph’: Network Analysis and Visualization. Version 1.0.0, p. 1-431,
2015.

CUNHA, T. A. DA; FINGER, C. A. G.; HASENAUER, H. Tree basal area increment models
for Cedrela, Amburana, Copaifera and Swietenia growing in the Amazon rain forests. Forest
Ecology and Management, Amsterdam, v. 365, p. 174-183, 2016.

CURTO, R. D. A. et al. Effectiveness of competition indices for understanding growth in an
overstocked stand. Forest Ecology and Management, Amsterdam, v. 477, p. 118472, 2020.

ELZHOV, T. V et al. Package “minpack.lm”:. R Interface to the Levenberg-Marquardt
Nonlinear Least-Squares Algorithm Found in MINPACK, Plus Support for Bounds. Version
1.2-1, p. 1-14, 2016.

FERNANDEZ-TSCHIEDER, E.; BINKLEY, D. Linking competition with Growth
Dominance and production ecology. Forest Ecology and Management, Amsterdam, v. 414,
p. 99-107, 2018.

FIEN, E. K. P. et al. Drivers of individual tree growth and mortality in an uneven-aged,
mixed-species conifer forest. Forest Ecology and Management, Amsterdam, v. 449, p.
117446, 20109.

FUKUMOTO, K. et al. Evaluation of individual distance-independent diameter growth
models for Japanese cedar (Cryptomeria japonica) trees under multiple thinning treatments.
Forests, Basel, v. 11, n. 344, p. 1-13, 2020.

GAO, L. et al. Coreness variation rule and fast updating algorithm for dynamic networks.
Symmetry, Basel, v. 11, n. 477, p. 1-10, 2019.



96

GHANBARI, R.; JALILI, M.; YU, X. Correlation of cascade failures and centrality measures
in complex networks. Future Generation Computer Systems, Amsterdam, v. 83, p. 390—
400, 2018.

GONZAGA, A. P. D. et al. Brazilian Decidual Tropical Forest enclaves: floristic, structural
and environmental variations. Revista Brasileira de Botanica, S&o Paulo, v. 40, n. 2, p. 417—
426, 2017.

HENNI, K.; MEZGHANI, N.; GOUIN-VALLERAND, C. Unsupervised graph-based feature
selection via subspace and pagerank centrality. Expert Systems with Applications, Oxford,
v. 114, p. 46-53, 2018.

HONG, H. et al. Applying genetic algorithms to set the optimal combination of forest fire
related variables and model forest fire susceptibility based on data mining models. The case of
Dayu County, China. Science of the Total Environment, Amsterdam, v. 630, p. 1044-1056,
2018.

HUI, G. et al. A novel approach for assessing the neighborhood competition in two different
aged forests. Forest Ecology and Management, Amsterdam, v. 422, p. 49-58, 2018.

JADHAYV, S.; HE, H.; JENKINS, K. Information gain directed genetic algorithm wrapper
feature selection for credit rating. Applied Soft Computing, Amsterdam, v. 69, p. 541-553,
2018.

KUEHNE, C. et al. Comparing strategies for representing individual-tree secondary growth in
mixed-species stands in the Acadian Forest region. Forest Ecology and Management,
Amsterdam, v. 459, p. 117823, 2020.

KUEHNE, C.; WEISKITTEL, A. R.; WASKIEWICZ, J. Comparing performance of
contrasting distance-independent and distance-dependent competition metrics in predicting
individual tree diameter increment and survival within structurally-heterogeneous, mixed-
species forests of Northeastern United States. Forest Ecology and Management,
Amsterdam, v. 433, p. 205-216, 2019.

LATORA, V.; NICOSIA, V.; RUSSO, G. Complex networks: Principles, Methods and
Applications. Cambridge: Cambridge University Press, 2017.

LEDERMANN, T. Evaluating the performance of semi-distance-independent competition
indices in predicting the basal area growth of individual trees. Canadian Journal of Forest
Research, Ottawa, v. 40, p. 796-805, 2010.

LEMENKOVA, P. R Libraries {dendextend} and {magrittr} and Clustering Package
scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees. Carpathian Journal
of Electronic and Computer Engineering, Baia Mare, v. 13, n. 1, p. 5-12, 2020.

LIAW, A.; WIENER, M. Classification and Regression by randomForest. R news, Wien, v. 2,
p. 18-22, 2002.

LIU, Y. et al. Identify influential spreaders in complex networks, the role of neighborhood.
Physica A - Statistical Mechanics and its Applications, Amsterdam, v. 452, p. 289-298,
2016.



97

LOPES, I. L. e et al. A comparative approach of methods to estimate machine productivity in
wood cutting. International Journal of Forest Engineering, Philadelphia, v. 33, n.1, p. 43—
55, 2022.

LU, L. et al. The H-index of a network node and its relation to degree and coreness. Nature
Communications, London, v. 7, p. 1-7, 2016.

MAGLARAS, L. A. et al. Social internet of vehicles for smart cities. Journal of Sensor and
Actuator Networks, Basel, v. 5, n. 3, p. 1-22, 2016.

MALEKI, K.; KIVISTE, A.; KORJUS, H. Analysis of individual tree competition effect on
diameter growth of silver birch in Estonia. Forest Systems, Madrid, v. 24, n. 2, p. 1-13,
2015.

MATA, A. S. da. Complex Networks: a Mini-review. Brazilian Journal of Physics, Sdo
Paulo, v. 50, p. 658-672, 2020.

MIAOQ, S. et al. Random Forest Algorithm for the Relationship between Negative Air lons
and Environmental Factors in an Urban Park. Atmosphere, Basel, v. 9, n. 463, p. 1-13, 2018.

MO, H.; DENG, Y. ldentifying node importance based on evidence theory in complex
networks. Physica A: Statistical Mechanics and its Applications, Amsterdam, v. 529, p.
121538, 20109.

MOGHADAM, H. E. et al. Complex networks analysis in Iran stock market: The application
of centrality. Physica A: Statistical Mechanics and its Applications, Amsterdam, v. 531, p.
121800, 20109.

MONGUS, D. et al. Predictive analytics of tree growth based on complex networks of tree
competition. Forest Ecology and Management, Amsterdam, v. 425, p. 164-176, 2018.

MORENGO, P. C. et al. Individual-tree diameter growth models for mixed Nothofagus second
growth forests in southern Chile. Forests, Basel, v. 8, n. 12, p. 1-19, 2017.

MOTTER, A. E. et al. Spontaneous synchrony in power-grid networks. Nature Physics,
London, v. 9, p. 191-197, 2013.

MYERS, N. et al. Biodiversity hotspots for conservation priorities. Nature, London, v. 403,
p. 853-858, 2000.

NAKAGAWA, Y.; YOKOZAWA, M.; HARA, T. Complex network analysis reveals novel
essential properties of competition among individuals in an even-aged plant population.
Ecological Complexity, Amsterdam, v. 26, p. 95-116, 2016.

NEWMAN, M. E. J. The Structure and Function of Complex Networks. SIAM Review,
Philadelphia, v. 45, n. 2, p. 167-256, 2003.

OHEIMB, G. VON et al. Individual-tree radial growth in a subtropical broad-leaved forest:
The role of local neighbourhood competition. Forest Ecology and Management,
Amsterdam, v. 261, n. 3, p. 499-507, 2011.

OU, Q.; LEI, X.; SHEN, C. Individual tree diameter growth models of Larch-Spruce-Fir



98

mixed forests based on machine learning algorithms. Forests, Basel, v. 10, n. 187, p. 1-20,
2019.

OUYANG, S. et al. Effects of stand age, richness and density on productivity in subtropical
forests in China. Journal of Ecology, Malden, v. 107, n. 5, p. 2266-2277, 20109.

PEDERSEN, R. @. et al. On the evaluation of competition indices - The problem of
overlapping samples. Forest Ecology and Management, Amsterdam, v. 310, p. 120-133,
2013.

PEREIRA, A. P. de A. et al. Nitrogen-fixing trees in mixed forest systems regulate the
ecology of fungal community and phosphorus cycling. Science of the Total Environment,
Amsterdam, v. 758, 2021.

R CORE TEAM. R: a language and environment for statistical computing. Vienna: R
Foundation for Statistical Computing, 2018.

REZENDE, C. L. et al. From hotspot to hopespot: An opportunity for the Brazilian Atlantic
Forest. Perspectives in Ecology and Conservation, Oxford, v. 16, n. 4, p. 208-214, 2018.

RIO, M. del et al. Tree allometry variation in response to intra- and inter-specific
competitions. Trees - Structure and Function, New York, v. 33, n. 1, p. 121-138, 2019.

SABATIA, C. O.; BURKHART, H. E. Competition among loblolly pine trees: Does genetic
variability of the trees in a stand matter? Forest Ecology and Management, Amsterdam, v.
263, p. 122-130, 2012.

SAUD, P. et al. Using quadratic mean diameter and relative spacing index to enhance height-
diameter and crown ratio models fitted to longitudinal data. Forestry, Oxford, v. 89, p. 215—
229, 2016.

SCHNEIDER, M. K.; LAW, R.; ILLIAN, J. B. Quantification of neighbourhood-dependent
plant growth by Bayesian hierarchical modelling. Journal of Ecology, Malden, v. 94, n. 2, p.
310-321, 2006.

SCHOLTEN, T. et al. On the combined effect of soil fertility and topography on tree growth
in subtropical forest ecosystems’a study from SE China. Journal of Plant Ecology, Oxford,
v.10,n. 1, p. 111127, 2017.

SCOLFORO, H. F. et al. A new model of tropical tree diameter growth rate and its
application to identify fast-growing native tree species. Forest Ecology and Management,
Amsterdam, v. 400, p. 578-586, 2017.

SCRUCCA, L. Package “GA”: Genetic Algorithms. Version 3.2.2, p. 1-45, 2021.

SHARMA, R. P. et al. Generalized nonlinear mixed-effects individual tree diameter
increment models for beech forests in Slovakia. Forests, Basel, v. 10, n. 451, p. 1-24, 2019.

SHARMA, R. P.; BRUNNER, A. Modeling individual tree height growth of Norway spruce
and Scots pine from national forest inventory data in Norway. Scandinavian Journal of
Forest Research, Oslo, v. 32, n. 6, p. 501-514, 2017.



99

SILVA, J. L. A.; SOUZA, A. F.; VITORIA, A. P. Historical and current environmental
selection on functional traits of trees in the Atlantic Forest biodiversity hotspot. Journal of
Vegetation Science, Malden, v. 32, p. €13049, 2021.

SOARES, A. A. V. et al. Development of stand structural heterogeneity and growth
dominance in thinned Eucalyptus stands in Brazil. Forest Ecology and Management,
Amsterdam, v. 384, p. 339-346, 2017.

STADT, K. J. et al. Evaluation of competition and light estimation indices for predicting
diameter growth in mature boreal mixed forests. Annals of Forest Science, Les Ulis, v. 64, p.
477-490, 2007.

SUN, M.; WANG, Y.; GAO, C. Visibility graph network analysis of natural gas price: The
case of North American market. Physica A - Statistical Mechanics and its Applications,
Amsterdam, v. 462, p. 1-11, 2016.

SUN, S.; CAO, Q. V.; CAO, T. Evaluation of distance-independent competition indices in
predicting tree survival and diameter growth. Canadian Journal of Forest Research,
Ottawa, v. 49, n. 5, p. 440-446, 2018.

TANG, H.; DUBAYAH, R. Erratum: Light-driven growth in Amazon evergreen forests
explained by seasonal variations of vertical canopy structure (Proceedings of the National
Academy of Sciences, v. 114, n.10, p. 2640-2644, 2017). Proceedings of the National
Academy of Sciences of the United States of America, Washington, v. 116, n. 18, p. 9137,
2019.

TAVARES JUNIOR, I. da S. et al. Machine learning: Modeling increment in diameter of
individual trees on Atlantic Forest fragments. Ecological Indicators, Amsterdam, v. 117, p.
106685, 2020.

TEO, S. J.; FILHO, A. F.; LINGNAU, C. Anlise espacial do estresse competitivo,
incremento diamétrico e estrutura de uma floresta ombrofila mista, Irati, PR. Floresta,
Curitiba, v. 45, n. 4, p. 681-694, 2015.

TERRA, M. DE C. N. S. et al. Stemflow in a neotropical forest remnant: vegetative
determinants, spatial distribution and correlation with soil moisture. Trees, New York, v. 32,
p. 323-335, 2018.

THOMAS, C. et al. Pinus taeda. Ciéncia Florestal, Santa Maria, v. 16, n. 3, p. 319-327,
2006.

TRIGUERO-OCANA, R. et al. Dynamic network of interactions in the wildlife-livestock
interface in mediterranean spain: An epidemiological point of view. Pathogens, Basel, v. 9, n.
120, p. 1-16, 2020.

TSIOTAS, D.; CHARAKOPOULOQS, A. Visibility in the topology of complex networks.
Physica A - Statistical Mechanics and its Applications, Amsterdam, v. 505, p. 280-292,
2018.

VANCLAY, J. K. et al. Spatially explicit competition in a mixed planting of Araucaria
cunninghamii and Flindersia brayleyana. Annals of Forest Science, Les Ulis, v. 70, p. 611—



100

619, 2013.

VIEIRA, G. C. et al. Prognoses of diameter and height of trees of eucalyptus using artificial
intelligence. Science of the Total Environment, Amsterdam, v. 619-620, p. 1473-1481,
2018.

WANG, S.; ZHENG, L.; YU, D. The improved degree of urban road traffic network: A case
study of Xiamen, China. Physica A - Statistical Mechanics and its Applications,
Amsterdam, v. 469, p. 256-264, 2017.

ZEMP, D. C. et al. Self-amplified Amazon forest loss due to vegetation-atmosphere
feedbacks. Nature Communications, London, v. 8, p. 1-10, 2017.

ZHANG, J.; HUANG, S.; HE, F. Half-century evidence from western Canada shows forest
dynamics are primarily driven by competition followed by climate. Proceedings of the
National Academy of Sciences, Washington, v. 112, n. 13, p. 4009-4014, 2015.

ZHANG, R. Global dynamic analysis of a model for vector-borne diseases on bipartite
networks. Physica A - Statistical Mechanics and its Applications, Amsterdam, v. 545, p. 1—
16, 2020.

ZHANG, Z. et al. The effect of tree size, neighborhood competition and environment on tree
growth in an old-growth temperate forest. Journal of Plant Ecology, Oxford, v. 10, n. 6, p.
970-980, 2016.



101

APPENDIX A. SUPPLEMENTARY DATA

Appendix A. The representation of the complex network structure with nodes colored according
to each species and their sizes scaled according to the values of the topological metrics.
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2) Out-degree
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4) Nearest neighbors degree
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6) Closeness centrality
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8) Clustering coefficient
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10) PageRank
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