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“Just keep in mind: the more we value things outside our control, the less control we have.”
— Epictetus



RESUMO

A extração offshore de petróleo é um processo complexo sendo necessários diversos instrumen-
tos para controlar a produção nos poços. Dentre vários, o sensor Permanent Downhole Gauge
(PDG), localizado dentro da coluna de produção, é utilizado para aferir a pressão e temperatura
do poço de petróleo. Este sensor é submetido à condições extremas de operação, resultando em
uma vida útil curta. A troca ou manutenção deste sensor é raramente feita pois o mesmo é de
difícil acesso e exige que a produção seja paralisada. Assim, objetivando superar o problema
de produção sem os dados do sensor PDG, o uso de Soft Sensors (SSs) surge como uma alter-
nativa. Os SS são modelos matemáticos capazes de estimar uma variável de algum processo
por meio de outras variáveis como entrada. Neste projeto é proposto o uso da metodologia de
identificação de sistemas (i.e., i. Testes dinâmicos, coleta de dados; ii. Escolha da representação
matemática do modelo; iii. Seleção de estruturas para o modelo; iv. Estimação de parâmetros;
e v. Validação do modelo.) com o fito de modelar um SS a fim de estimar a saída de um sensor
PDG, mas não se limitando a esta aplicação, a qual é utilizada como motivação. Na etapa ii.
da metodologia, a representação polinomial Nonlinear Autoregressive with Exogenous Inputs
(NARX) foi escolhida. Para a etapa iii. é proposta uma abordagem multi-objetiva, por meio do
algoritmo evolucionário Multi-Gene Genetic Programming (MGGP), para realizar a tarefa de
seleção de estruturas dos modelos NARX. Três objetivos são minimizados, sendo eles: i. erro
de predição um passo à frente (regime dinâmico), ii. erro em regime estático (é utilizada uma
abordagem que reduz o custo computacional), e iii. o número de regressores do modelo. Na
etapa iv. é proposta a estimação de parâmetros por meio dos mínimos quadrados ponderados,
que utiliza informação do regime dinâmico e estático (informação auxiliar). Por fim, os mode-
los encontrados nos conjuntos Pareto-ótimos são validados (etapa v.) em simulação livre (em
ambos os regimes) e um critério de decisão para selecionar o modelo mais adequado é aplicado.
A fim de validar a metodologia proposta, três experimentos são feitos. O primeiro utiliza um
banco de dados de um sistema estocástico, em que diversas comparações de abordagens são
feitas (e.g., número de objetivos na função custo). Como resultado, é visto que a metodologia
consegue encontrar os regressores e estimar os parâmetros do modelo corretamente, com um
custo computacional menor que outras abordagens. Já o segundo experimento aplica a metodo-
logia em um sistema de bombeamento hidráulico. O modelo encontrado se mostra competitivo
em regime estático e dinâmico, além de ser parcimonioso. Enfim, a mesma metodologia é apli-
cada ao banco de dados do processo petroquímico, que possui como saída a pressão do PDG. O
algoritmo proposto consegue selecionar um modelo, que possui um comportamento satisfatório
em regime dinâmico quando comparado com outros trabalhos, com doze regressores e doze
parâmetros. Isso demonstra que o MGGP multi-objetivo, utilizando informações auxiliares, é
uma boa ferramenta para seleção de estruturas e estimação de parâmetros para modelos NARX.

Palavras-chave: Soft Sensor. Petróleo. Modelos NARMAX/NARX. Identificação de Sistemas.
Seleção de Estrutura. Estimação de Parâmetros. MGGP.



ABSTRACT

Offshore oil extraction is a complex process, requiring several instruments to control the pro-
duction in the wells. Among several, the Permanent Downhole Gauge (PDG) sensor, located
inside the production column, is used to measure the pressure and temperature of the oil well.
This sensor is subjected to extreme operating conditions, resulting in short service life. The
replacement or maintenance of this sensor is rarely done as it is difficult to access and requi-
res production to be stopped. Thus, aiming to overcome the production problem without PDG
sensor data, the use of Soft Sensors (SSs) appears as an alternative. SS are mathematical mo-
dels capable of estimating a process variable through other variables as input. In this project,
it is proposed the use of the methodology of systems identification (i.e., i. Dynamic tests, data
collection; ii. Choice of the mathematical representation of the model; iii. Selection of struc-
tures for the model; iv. Estimation of parameters; and v. Model validation.) to model an SS
in order to estimate the output of a PDG sensor but not limited to this application, which is
used as motivation. In methodology step ii., the Nonlinear Autoregressive with Exogenous In-
puts (NARX) polynomial representation was chosen. For step iii. a multi-objective approach
is proposed, using the evolutionary algorithm Multi-Gene Genetic Programming (MGGP) to
perform the task of structure selection from NARX models. Three objectives are minimized,
namely: i. one-step-ahead prediction error (dynamic regime), ii. steady-state error (an appro-
ach that reduces computational cost is used), and iii. the number of regressors in the model. In
step iv. it is proposed to estimate the parameters through weighted least squares, which uses
information from the dynamic and static regime (auxiliary information). Finally, the models
found in the Pareto-optimal sets are validated (step v.) in free-run simulation (in both regimes),
and a decision criterion to select the most adequate model is applied. In order to validate the
proposed methodology, three experiments are carried out. The first uses a dataset of a stochastic
system, in which several comparisons of approaches are made (e.g., number of objectives in the
cost function). As a result, it is seen that the methodology can find the regressors and estimate
the model parameters correctly, with a lower computational cost than other approaches. The
second experiment applies the methodology in a hydraulic pumping system. The model found
is competitive in the static and dynamic regime, in addition to being parsimonious. Finally, the
same methodology is applied to the petrochemical process dataset, whose output is the PDG
pressure. The proposed algorithm selects a model that has a satisfactory behavior in dynamic
regime compared to other works, with twelve regressors and twelve parameters. This demons-
trates that the multi-objective MGGP, using auxiliary information, is a good tool for selecting
structures and estimating parameters for NARX models.

Keywords: Soft Sensor. Oil. NARMAX/NARX models. Systems Identification. Structure
Selection. Parameter Estimation. MGGP.
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1 INTRODUCTION

1.1 Motivation

The economical interest for oil started at the beginning of the nineteenth century when it

was used for lighting. However, only during the twentieth century, the exploration of petroleum

started to be economically justified due to the gas and diesel motor invention, which created

an enormous demand for it (NETO; COSTA, 2007). After this fact, oil starts to be part of

people’s daily life and is present in almost all production chains as a raw material in industrial

process. Examples of products that show this relevance of oil in society are gasoline, kerosene,

lubricants, asphalt, different types of plastics, silicone, medicines, and many other products.

According to the U. S. ENERGY INFORMATION ADMINISTRATION (2020), in

2019, the total world petroleum production reaches 100.65 million barrels per day (b/d), and the

total world petroleum consumption was 101.04 million barrels per day (b/d), which represents

1% of growth when compared with 2018. Concerning Brazil, in 2019, 2.877 million barrels

per day (b/d) were produced, which represents a 7.4% growth when compared with 2018. This

fact places Brazil as the 10th largest oil producer in the world (AGÊNCIA NACIONAL DO

PETRÓLEO GÁS NATURAL E BIOCOMBUSTÍVEIS, 2020).

In order to produce oil, it is necessary to drill an oil well to access the reservoir rocks

in the subsoil, where the oil is stored. This process can be done inland or in the ocean. When

the oil reservoir is inland the extraction is called onshore. In the opposite direction, when the

process is performed in deep water, i.e., the reservoir is in the ocean, the extraction process

is called offshore. With regard to Brazilian reserves, most are located offshore. Offshore oil

production is a challenging process, since a complex arrangement of instruments, platforms, and

connections are necessary to produce with quality and safety. This arrangement is composed of

Stationary Production Units (SPUs); risers and flowlines; manifolds; a Christmas tree; and the

production column, which is placed between the oil reservoir and the Christmas tree.

Under the production column, close to the reservoir, the permanent downhole gauge

(PDG) sensor is placed. The PDG sensor is used to measure temperature and pressure, which

helps the real-time monitoring and control of the oil well. This sensor is submitted to many

extreme conditions (e.g., salinity, high pressure, etc.) which shorten its life expectancy. There

is a 69% probability of a PDG system surviving 5 years, in other words, 31% of all PDG systems

fail within 5 years in operation (FROTA; DESTRO, 2006). In addition to that, maintenance of
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failed sensors is hard to be performed since the sensor position in the well is not easy to access

and it is necessary to halt production to do this, which means substantial economic losses.

Therefore, replacement rarely occurs in practice even if data is completely missing or corrupted

(DAVIES; AGGREY et al., 2007).

Considering the real need to obtain information about the oil well to control production,

even with the PDG sensor inoperative or damaged, the soft sensors are a good alternative to

hardware sensors. Soft sensors are mathematical models capable of estimating an unmeasured

variable by using information from other process variables (FORTUNA et al., 2007b; KA-

DLEC; GABRYS; STRANDT, 2009). Therefore, they can be used to estimate the PDG output

variable, help in fault detections, and even substitute the sensor in the case of total failure. To

create these sensors, the system identification problem methodology (AGUIRRE, 2015) for grey

and black models may be used. The soft sensors have been applied in many different industrial

processes presenting good results (see e.g., Bhavani et al. (2014), Sujatha et al. (2018), Rizzo

(2010), Radhakrishnan and Mohamed (2000)).

Likewise, the virtual sensors were also applied in the oil industry. Macias, Angelov and

Zhou (2006), for example, applied virtual sensors to quality prediction of crude oil distillation in

a refinery process. Regarding offshore oil extraction, to solve the PDG sensors failure problem,

several works have implemented soft-sensors to estimate downhole pressure (see e.g., Barbosa

et al. (2015), Aguirre et al. (2017), Morais et al. (2019), Apio et al. (2019)). In this context, it

is extremely important to study each stage of the system identification process (i.e., i. dynamic

tests, ii. choice of mathematical representation, iii. model structure determination, iv. parameter

estimation, and v. model validation) to choose the right tools and methods to produce virtual

sensors.

Most problems encountered in real systems, oil extraction included, are non-linear. For

this reason, Nonlinear Autoregressive with Exogenous Inputs (NARX) (LEONTARITIS; BIL-

LINGS, 1985a) models are a flexible tool widely used in the representation of models in systems

identification. When using this type of representation, the two main problems are the selection

of structure (regressors) and estimating parameters for this model. Several classical techniques

are addressed to solve these problems, such as the Forward Regression Orthogonal Estima-

tor (BILLINGS; CHEN; KORENBERG, 1989), based on Error Reduction Ratio (BILLINGS;

CHEN; KORENBERG, 1989), for selecting structures. However, approaches based on these

principles may suffer from problems such as the curse of dimensionality.
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In this sense, several alternative methods have been presented, such as algorithms ba-

sed on the evolutionary process, i.e., evolutionary algorithms (e.g., Genetic Algorithms (GAs)

(GOLDBERG; HOLLAND, 1988; HOLLAND, 1975) and Genetic Programming (GP) (KOZA,

1992)), examples of this type of application are Chen et al. (2007) and Madár, Abonyi and Szei-

fert (2005). More specifically, seeking flexibility when searching for the best regressors for

the models, the Multigene Genetic Programming (MGGP) (HINCHLIFFE et al., 1996; HIN-

CHLIFFE, 2001) has been applied and has shown promising results. In this approach, using

NARX representation, each gene of an individual in the population is a basis function (regres-

sor) represented by a genetic program. This is advantageous because MGGP does not have

a fixed size for the chromosome, only a maximum size fixed by the designer, which reduces

the computational cost. Examples of works that use MGGP in modeling and predictions are

Ghareeb and Saadany (2013), Niazkar and Niazkar (2020), and Riahi-Madvar et al. (2019).

Another point that has been explored to obtain better results during the selection of struc-

tures and parameter estimation is auxiliary information. Auxiliary information is understood as

any missing extra information, for example, the static curve of a system when using its data

in the dynamic regime for modeling. Freitas, Barbosa and Aguirre (2021), and Aguirre et al.

(2004) exploited auxiliary information during modeling. One way to use auxiliary information

during the selection of structures of a NARX model is to implement more than one objective

in the cost function, i.e., a multi-objective approach, where, for example, the first objective is

to minimize the error in the dynamic regime and the second is minimize the error in the static

regime. Hafiz, Swain and Mendes (2020) present a multi-objective framework for structure se-

lection for nonlinear polynomial systems, where several evolutionary algorithms are submitted

to different tests with qualitative and quantitative parameters. It is found that these algorithms

can find suitable structures for nonlinear systems. Other works that use a multi-objective ap-

proach and an evolutionary optimization approach for systems identification are Castro and

Barbosa (2019) and Mota et al. (2020).

In this work, the flexibility of the MGGP is explored with a multi-objective approach

that uses auxiliary information about the static regime in the structure selection and parameter

estimation.
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1.2 Objectives

The general objective of this work is to use the methodology of systems identification

through evolutionary computation techniques to model real systems using auxiliary information

in a multi-objective approach.

The specific objectives consist of:

1. implement virtual sensors in order to estimate the output of a permanent downhole gauge

sensor in an offshore oil extraction process;

2. implement other forms of simulation for the static regime with lower computational cost;

3. implement the use of auxiliary information in structure selection and parameter estima-

tion of NARX models.

1.3 Work Structure

This document is divided into seven Chapters, including this introductory. Chapter 2

provides an overview of the oil extraction process, where system identification techniques can

be applied. Moreover, some techniques and instruments used in the oil extraction process are

detailed. Chapter 3 reviews some fundamentals of System Identification, covering from data

collection to model validation. The chapter subsections are mainly focused on classical model

structure selection and parameter estimation techniques. Chapter 4 introduces basic concepts of

evolutionary algorithms. A methodology to achieve the objectives of this project is displayed in

Chapter 5. In Chapter 6 results of this work are presented and discussed. Finally, in Chapter 7

the final considerations are presented together with future works.
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2 PROCESS DESCRIPTION

2.1 Introduction

Oil and its derivatives have great historical importance on human society. It’s almost

impossible to find one production chain which does not use some form or derivative of oil

as a raw material in its industrial process. Examples of products that show this relevance of

oil in society are gasoline, kerosene, lubricants, asphalt, different types of plastics, silicone,

medicines, and many other products. As a consequence, oil has dominated the world’s energy

consumption since the last century (ZHANG; JI; FAN, 2015).

This chapter provides an overview of the oil extraction process, presenting the field of

knowledge whose techniques of system identification and computational intelligence can be

applied. Moreover, some techniques (e.g., oil lift, gas lift) and instruments (e.g., Christmas tree,

Permanent Downhole Gauge) used in the oil extraction process are detailed.

2.2 Oil Well’s Construction Process

The well’s construction process enabling the extraction of oil has many steps. The first

one is prospection. This has the objective to find a sedimentary basin with the right geologic

situations to contain oil (THOMAS, 2004). This is made by investigating the soil and subsoil

with geological and geophysical methods. The well drilling process begins after all the study is

done, and due to its high cost, all these analyses take an important place in the process.

After finishing the drilling process, the third step, known as well completion, begins.

This step is responsible to equip the well for extraction of oil or gas in a safe and economically

viable way (THOMAS, 2004). Finally, after all these steps, the oil elevation process begins. In

the next subsections, some of these steps will be developed more deeply. Figure 2.1 shows an

overview example of the oil production system resulted after all these steps.

2.2.1 Well Completion

After finishing the drilling process it is necessary to prepare the well for a safe and

economically viable production over its productive life (THOMAS, 2004) and to do this, a set

of techniques called completion, is required.

The completion allows the connection between the hydrocarbons wells and the reser-

voirs (e.g., Stationary Production Unit (SPU), vessels, ships, and platforms). These reservoirs
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Figure 2.1 – An overview of an oil production systemSubsea and Export Pipeline Scope

6

Source: Adapted from Reid (2018)

are responsible for storing, managing, and in some cases, making primary processes of the pro-

duct. They are connected to some instruments under the sea by risers, i.e., suspended pipes, and

flowlines, i.e., pipes arranged on the seabed. These instruments are responsible for controlling

the flow, artificial elevation, data acquisition, and other auxiliary functions (VILLELA, 2004).

Depending on the location of the oil reserves, different types of instruments (e.g., well-

head systems and Christmas trees) are required, which lead to two kinds of subsea production

systems. When the reserves are on land, onshore production, dry completion, also known as

dry tree system, takes place and the wellhead system stays on the surface - this is also a reality

in shallow waters (BAI; BAI, 2018). In this case, the Christmas tree used to control the well

production is simple, easy to maintain and access (VILLELA, 2004).

The second possible situation is to extract oil from reservoirs in deep water, also called

offshore. In this situation it is impossible to have a wellhead on the surface and wet completion

comes about. For this system it is necessary to have a wet Christmas tree, i.e., a more sophisti-

cated submerged tree. Therefore, maintenance and access are a lot more complicated but, on the

other hand, it allows the use of floating production units with greater movements (VILLELA,

2004).

Another way to classify the completion process is by the number of exploited areas.

Using this aspect, it is possible to have simple or multiple exploited areas. The simple one

occurs when just one connection is used between the well and the reservoir. This connection is
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a metal pipe called a production collum, and this type of completion makes it possible to control

and explore just one area of interest (THOMAS, 2004).

On the other hand, the multiple completion process allows the exploration of two or

more areas at the same time. This is compelling because it is possible to use a few number of

wells to exploit the same area when compared to the simple completion. This leads to a more

economical way of production. To look at it from a different angle, the probability of operational

problems increases and it’s harder to apply artificial methods of oil elevation (THOMAS, 2004).

2.2.2 Oil Lift

After making the completion, the oil lift step takes place, which consists of extracting

the oil from the well’s bottom to the surface. To do so it is first necessary to identify if the well

is naturally flowing or not.

When the well is naturally flowing, its pressure sufficient to lift the oil directly to the

surface and there is no need to apply any artificial method or pumps, in other words, it is a

emergent well. On the other hand, when the well’s pressure is not sufficient to naturally extract

oil from the bottom to the surface the well’s type is so-called non-emergent. This is also a reality

to the naturally flowing wells because, over time, their energy decrease, and, for this reason, it

is necessary to apply some artificial lift methods to maintain the production level (THOMAS,

2004). Choosing the artificial lift method for the well is not an easy task, especially if the

production is offshore. The following are the main artificial lift techniques or methods (BAI;

BAI, 2018; THOMAS, 2004):

a) Subsea Boosting;

b) Electrical submersible pumping (ESP);

c) Progressive Cavity Pumps (PCP);

d) Intermittent-flow and Continuous-flow gas lift.

The last one, gas lift, will be more detailed in the next subsection because it is a widely

employed method used for deepwater mature oil wells (JADID; OPSAL; WHITE, 2006).
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2.2.3 The Gas-lift

Gas lift is an artificial lift method widely used in the offshore production environment

(BAI; BAI, 2018). This method consists of using an external source of energy, more precisely

a high-pressure gas, to lift the well fluids (e.g., oil, water) from the bottom to the surface. This

is done by injecting gas into the wellbore, typically between the casing and production tubing

through a valve placed next to the well’s bottom (as shown in Figure 2.2). This process generates

bubbles that are mixed with the produced fluids making them less dense and in return, decreases

the bottomhole pressure (BHP) that forces the well to push oil to the surface (JADID; OPSAL;

WHITE, 2006).

Figure 2.2 – Example of a Gas lift system.

Source: Adapted from Jadid, Opsal and White (2006)

There are two basic types of gas lift systems — continuous flow and intermittent flow

(ELLDAKLI, 2017). For the first technique, so-called continuous flow, gas is continuously
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injected into the production conduit at the maximum depth in the same proportion as the flow

that comes from the reservoir to surface (THOMAS, 2004). For the other technique, intermittent

gas lift is obtained by injecting gas in a discontinuous manner. When the high-pressure gas is

injected below the fluid column, with correct volume and pressure, the oil gushes to the surface.

A disadvantage of this process is the limitation of producing at a high volume rate compared to

continuous flow, the advantage is that there is no need to inject high pressure gas continuously

to produce (ELLDAKLI, 2017).

When projecting a gas lift system there are two important criteria: gas lift volume and

gas lift pressure. The first one is responsible to control the production level of the oil well,

the higher the gas lift volume increase, the more production increase. However, the production

level has a limit, which varies depending on the well’s structure (BAI; BAI, 2018). As can be

seen in Figure 2.3, when the oil production rate reaches point B, a saturation threshold starts to

decrease despite the rise of gas lift volume. The second criterion, gas lift pressure, influences

the system operating pressure and the well’s equipment specification, because of that it needs

to be carefully determined (BAI; BAI, 2018).

Figure 2.3 – Ratio between oil-production rate and lift gas injection rate.
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Source: Adapted from Jadid, Opsal and White (2006)
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To manage all the gas consumed by in the gas lift system, a choke valve, localized on

the surface, is used. Moreover, a set of sensors is employed to feed and control the system (e.g.,

permanent downhole gauge).

2.3 Production System

The production system pipe is divided into two categories: production string and produc-

tion pipelines. The production string is a pipe made of steel with a small diameter responsible

for carrying the oil from the well’s bottom to the surface, in the case of onshore production. On

the other hand, in offshore production, the string leads the oil to the wet Christmas tree level,

and after reaching this level the oil is conducted by the production pipelines to the surface, i.e.,

stand-alone facility (VILLELA, 2004). Figure 2.4 shows an example of the production string.

The second category, production pipelines, is responsible for transporting the liquid

(e.g., oil, gas, etc.) from the well’s head to the stand-alone facility, i.e., reservoir (VILLELA,

2004). This category has two subcategories: risers and subsea flowlines.

The production risers are the suspended part of the production system pipe, they reside

between the host facility and the seabed. This part of the system is critical for a submerged

production, because they are exposed to a large number of mechanical efforts as the sea current,

waves, and host facility movements — to deal with these problems they can be flexible or rigid

(VILLELA, 2004; BAI; BAI, 2018).

The second subcategory, subsea flowlines, are pipelines arranged on the seabed, used

to make the connection between the wellhead and surface facility. They can make connections

with manifolds to receive the production of multiple wells at the same time and redirect to the

host facility (BAI; BAI, 2018). All the parts described above can be seen in Figure 2.5.

2.4 Instrumentation

In the previous subsections a group of equipment used in oil production was mentioned

— some of them will be detailed in the next subsections to give a more complete understanding

of the whole process.
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Figure 2.4 – Detailed example of the production string.

Source: Wan (2011)

2.4.1 Christmas Tree

The “Christmas tree”, or just “tree”, is an important tool and consist of valves, pipes,

fittings, and connection assemblies responsible for controlling the production flow or injection

in the well (VILLELA, 2004). Depending on location of oil field, offshore or onshore, the type

of the tree can be dry or wet.

The dry Christmas tree, so-called Conventional Christmas tree, is used on the surface

and is made of a set of gate valves (generally four or five arranged in a crucifix type pattern),

which can be manual and/or actuated (hydraulic or even pneumatic) (THOMAS, 2004). The

five valves mentioned above can be seen in Figure 2.6. There are two master valves, the lower

ones, responsible for direct control of the well’s fluids flow rising to the surface; one production
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Figure 2.5 – Example of production risers and subsea flowlines on the ocean.

Source: Adapted from ArcelorMittal (2019)

wing valve, the right hand one, responsible for controling the flow of hydrocarbons to the re-

servoirs facilities; one kill wing valve, the left hand one, used for fluid injection (e.g., corrosion

inhibitors, methanol); one swab valve, at the top, responsible for, when opened, allows well

interventions (e.g., wireline, coiled tubing, down tools) (AMERICAN PETROLEUM INSTI-

TUTE, 2010).

The other possible “tree” is the wet Christmas tree, so-called subsea Christmas tree, as

its name suggests, the equipment is placed on the seabed and like the conventional Christmas

tree is made of a set of gate valves plus a set of flow lines and a control system connected into

the host facility (THOMAS, 2004). The tree valve’s arrangement can define if the tree is vertical

or horizontal — in the vertical type, all the valves are arranged vertically and, as expected, in

the horizontal type all the valves are organized horizontally. The horizontal subsea tree is more
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Figure 2.6 – A Conventional Christmas tree with its detailed valves.

Source: Adapted from Nor et al. (2019)

work-friendly due to the external position of the valves in relation to the center of the wellbore.

Figure 2.7 shows a horizontal and a vertical Christmas tree.

Figure 2.7 – a) A Horizontal Christmas Tree; b) A Vertical Christmas Tree.

Source: a) Adapted from OneSubsea (2020); b) Adapted from OneSubsea (2018)

Both types of a tree have a common set of valves, and they are: one or two production

master valves, depending on the tree type; the annulus master valve, responsible for closing or
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opening the annulus bore; the production wing valve; the swab valve and annulus access/swab

valve; the annulus wing valve; the crossover valve, responsible for allowing flow between the

annulus and production tree paths, when opened (BAI; BAI, 2018). In Table 2.1, the most

notable differences between the subsea horizontal and vertical tree can be seen (KHALIFEH;

SAASEN, 2020):

Table 2.1 – Notable differences between the subsea horizontal tree and subsea vertical tree.

Vertical Christmas Tree Horizontal Christmas Tree
Master and swab valves in bore No valves in the vertical bore of the well
Tubing hanger orients via wellhead Tubing hanger orients directly from tree
Tubing hanger seals normally isolated
from well fluid

The tubing hanger seals are continuously exposed to well
fluids

External tree cap run after tree landed/-
tested

An internal tree cap is used as a secondary pressure barrier
above the tubing hanger, two crown plugs are installed by
wireline unit

Source: Adapted from Khalifeh and Saasen (2020)

Also, the subsea trees have a lot of sensors (e.g., Pressure Transmitter (PT), Tempe-

rature Transmitter (TT), Combined Pressure Temperature Transmitter (PTT), permanent dow-

nhole gauge (PDG), etc.) capable to measure the temperature, pressure, flow, noise, and other

variables. All these sensors integrated by cables, connectors, and terminators are connected

to the control panel at the well surface/host facility. This group of sensors provides a great

quantity of data which makes the well a “smart well” allowing automatic adjustments and/or be

controlled remotely by operators, without intervention using rigs or coiled tubing (CARVAJAL;

MAUCEC; CULLICK, 2017). In this scenario, the permanent downhole gauge is considered as

good equipment with tools to optimize production and give a much longer life to the oil field.

2.4.2 Permanent Downhole Gauge

The real-time monitoring system, called permanent downhole gauge (PDG), is respon-

sible for measuring the temperature and pressure of the oil well. This system is installed at

the bottom hole, close to the host facility/reservoir. All these data collected by the PDG, in

real-time, are analyzed by the engineers to make the operational adjustments that guarantee the

well’s efficient production according to the ongoing changes at the time (FROTA; DESTRO,

2006). Many PDG systems have other types of sensors like flow rate, phase flow rate, phase

fraction, resistivity (OUYANG; KIKANI et al., 2002). Figure 2.8 shows a schematic of a PDG.
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The data that comes from the PDG system has a wide range of application and uses in

industry, including (OUYANG; KIKANI et al., 2002):

a) reduce ambiguity and uncertainties in the interpretation;

b) detect the changes in reservoir properties, such as compaction;

c) monitor skin, permeability, pressure drawdown over time;

d) evaluate the performance of excitation or well workover jobs;

e) evaluate completion performance;

f) identify well problems quickly;

g) identify reservoir connectivity;

h) detect drainage area change;

i) evaluate operational efficiency;

j) improve the flow back time of new wells;

k) obtain Initial Build-up Data;

l) assist reservoir simulation and history matching.

The PDG systems suffer intense wear and according to Frota and Destro (2006), which

analyzed 952 PDG systems installed between 1987 and 1998, there is a 69% probability of a

PDG system surviving 5 years, in other words, 30% of all PDG systems fail before 5 years of

operation. This fact leads to another problem: replacing the damaged system. This process of

replacement or maintenance of the system’s sensors is very difficult and, some times, impos-

sible to perform due to the sensor’s location in the well. When it is possible to carry out this

procedure, the consequence is the stoppage of oil production, which leads to a great economic

loss (BARBOSA et al., 2015).

As can be seen, the PDG system is very important for the process of management and

optimization of oil production, however, it has a relatively short useful life and can suffer several

failures during its operation. Due to the aforementioned problems, soft-sensors, and systems

identification appear as interesting alternatives to increase the reliability of the sensor data and,

when a permanent loss of the system occurs, replace it completely to keep the oil well operating.
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Figure 2.8 – A schematic of the PDG Systems.
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• Monitor skin, permeability and pressure draw down over 
time. 

• Evaluate the performance of stimulation or workovers. 
• Evaluate completion performance. 
• Identify well problems quickly. 
• Identify reservoir connectivity. 
• Detect drainage area change. 
• Evaluate operational efficiency. 
• Improve flow back time of new wells. 
• Obtain Initial Build-up Data. 
• Assist reservoir simulation and history matching. 
According to Gisbergen and Vandeweijer3, these systems 
comprise the installation of a sensing element in an electronic 
gauge which measures the pressure and temperature in the 
tubing, at the bottom hole (PDG). The gauge is mounted in a 
mandrel, which forms part of the tubing string. The topside of 
the gauge is formed by the cable head. Here, the gauge is 
connected to the electrical cable that runs along the tubing, 
including gas lift mandrels and a downhole safety valve, to the 
tubing hanger. The cable is supported by protectors at each 
tubing joint. From the Wet Christmas Tree (WCT), these 
systems are connected to the production platform via 
umbilical, in the case of a satellite well, or connected via 
manifold using umbilical to the production platform. 
The PDG systems general technical specifications are: 
• Capacity: 10,000 PSI / 150 o C. 
• Resolution: 0.1 PSI / 0.05 o C. 
• Sensor: quartz crystal. 
• Transmission: digital and analogical. 
Figure 1 shows a schematic, a macro view of these systems. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Reliability Assessment 
Reliability is the key for all these systems. Also, according to 
Gisbergen and Vandeweijer3 and to Veneruso et al4, the 
petroleum industry has set a high reliability target: 90% 
probability to survive 5 years for monitoring systems and a 
90% probability to survive 10 years for actuators even though 
development and application is in its infancy. But, this study 
observed, in practice, considering only PDG systems installed 
in the period 1993 – 1998, that the operators have reached the 
value of a 5-year survival probability of 69%, including both 
onshore (land) and offshore (platform and sub sea 
installations). It should be noted that this study included 952 
PDG systems that were installed in the period between 
January 1987 and August 1998. 
Also, according to Gisbergen and Vandeweijer3, when the 
available sub sea installations are being evaluated, it can be 
demonstrated that the survival reliability for the sub sea PDG 
systems is significantly less and averages only 61% for a 3-
year survival reliability and averages 54% for a 5-year 
survival reliability. 
 
Data collection 
For this research, real field data were gathered from 223 PDG 
systems installed from 01/01/1995 until 12/31/2005, when 
they were censored. These data were collected on site, which 
means that several technical visits were undertaken on all the 
production units. Later on, the data were cross checked to 
avoid any mistakes and also to turn raw data into information 
decision. Frota and Destro5 pointed out that the homogeneity 
of the historical operation data is very important to the 
conclusions validity. For this reason, the uniformity of the data 
was preserved reconciling the knowledge of the statistical 
techniques with the experience in well engineering. Another 
aspect considered in this work was the “cleaning” of the data. 
This was done because the data in their gross form include 
several details and imprecision that need to be discriminated. 
The pursuit of the research without this consideration could 
lead to imprecise analysis, inducing to mistaken conclusions. 
 
Adopted considerations  
For the data analysis, it was assumed the independence 
between the failure mechanism and the way the data were 
censored. This means that the PDG systems that survive until 
a determined time it , should not have their prognostics 

changed if they suffer a censoring at it . Statistically, this is 
equivalent to the concept of arbitrary censoring. 
In the case of systems that have suffered intervention and then 
came back to normal operation, their performances were 
considered as if they were like new systems. Besides, the 
failure of one of the system components implies in the failure 
of the whole system. Enlarging this consideration, a low 
performance, in some cases, does not represent a failure itself. 
Only the total interruption of the system operation due to the 
failure of one of its vital components, that demands an 
intervention, is considered a failure itself. 
In the other cases, the lifetime data is considered as censored, 
that is, the system stopped working for other reasons except 
the failure of any vital component for the full operation of the 
system. As an example, it can be mentioned the cases of pull 

Figure 1 – A schematic, a macro view of the PDG Systems  

Source: Frota and Destro (2006)
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3 SYSTEM IDENTIFICATION

3.1 Introduction

One of the greatest challenges of humankind, in the scientific scope, has been to un-

derstand the physical behavior of the processes observed in nature in order to obtain analogous

systems. By analogous systems, it is understood as a system capable of mimicing static and

dynamic behaviors of an observed phenomenon, and also predict its future behaviors. This ana-

logous system can have a mathematical representation and it is called a mathematical model

(AGUIRRE; RODRIGUES; JÁCOME, 1998).

To obtain these mathematical models several mathematical modeling techniques can be

used. One of these techniques is called white-box modeling. It demands a deep knowledge

of the system behavior (maximum a priori information) because it’s based on first principles,

i.e., the model is obtained from mathematical relations that describe physical phenomena (e.g.,

Bernoulli’s equation, Newton equation, etc.). Unfortunately, in most practical situations all the

knowledge, information, and time necessary are not available to apply this technique and deve-

lop the model from the equations that govern the physical process (AGUIRRE, 2015). Systems

Identification appears as an alternative procedure that satisfactorily handles these limitations.

The system identification area differs from classical mathematical modeling techniques

because it doesn’t need, or hardly need, a priori information from the process. It is possible

to obtain a mathematical model, which completely or partially explains the static and dynamic

behavior of the system by just using the input data and its corresponding output data. As a

consequence of this, these methods receive the name black-box modeling. The disadvantage of

this approach is the lack of physical meaning of the models obtained and, sometimes, the great

numbers of parameters.

Another way to obtain these models is located in between black-box modeling and

white-box modeling, it is called grey-box modeling. In this approach, some a priori knowledge

of the process is used to determine the model, but a significant part of its parameters are still

estimated through observed data, i.e., the input and output data of the process obtained experi-

mentally. This approach is also known as semi-physical modeling (FORSSELL; LINDSKOG,

1997).

All these models obtained with mathematical modeling and system identification techni-

ques can be linear or nonlinear. In the linear category, transfer function and time-series models
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predominate (ZHANG, 2010). Although the linear systems are simplistic, they can’t mimic all

the dynamic and static regimes behaviors (e.g., chaos, bifurcations, etc.) of many real processes

and practical situations. In this scenario, nonlinear models are better adapted as they manage to

represent various operating ranges in static and dynamic regimes. This characteristic together

with the rise of computational power and computational intelligence create new approaches to

system identification.

One of these approaches is to see the system identification problem as an optimiza-

tion problem, this can be made when the appropriate system representation (e.g., Nonlinear

Auto-Regressive MovingAverage with eXogenous inputs — NARMAX, Hammerstein, Neu-

ral Network) is already defined. The optimization problem can be mono-objective and multi-

objective. A multi-objective problem can be defined as (NEPOMUCENO; TAKAHASHI;

AGUIRRE, 2007):

 θ̂ = arg min
θ

J(θ)

sub ject to : θ ∈ Rn,
(3.1)

with the objective-functions J(θ) = [J1(θ) · · · Jm(θ)]
T
, where J(·) : Rn 7→ Rm. As said in

Barbosa et al. (2011), the objective-functions should be conflicting, i.e., a trade-off between the

objectives ought exists and, instead of arriving at one solution, reach a set of solutions. As said

in Nepomuceno, Takahashi and Aguirre (2007), in the solution set there is no unique model that

together minimizes all the objectives in an optimal way. However, there is the Pareto-optimal

set, which is comprised of the non-dominated solutions. The Pareto-optimal set, Θ, is defined

as:

Θ = {θ̂ ∈ Rn : ∄θ ∈ Rn|J(θ)≤ J(θ̂),J(θ) ̸= J(θ̂)} (3.2)

These optimization processes can be done by a large number of computational intelli-

gence algorithms, e.g., NSGA-II (DEB et al., 2000), SPEA-II (ZITZLER; LAUMANNS; THI-

ELE, 2001), to mention a few. After performing an optimization and obtaining the optimal-

Pareto boundary, the next stage is to define one of the solutions (models) of the boundary as

most suitable for the application (decision stage). This choice is closely correlated with the pro-

blem addressed and the designer’s judgment. However, in Nepomuceno, Takahashi and Aguirre

(2007), a quantitative alternative is presented, which is to use the validation data, which was not

used in the modeling stage, to check the generalization capacity of the Pareto optimal models

and choose the most suitable one.
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Besides that, during the optimization process, some Prediction Error Minimization algo-

rithms (PEM), which are based on the Error Reduction Ratio (ERR) criteria, or some Simulation

Error Reduction algorithms (SEM), which, in turn, are based on Simulation Error Reduction Ra-

tio (SRR) criteria, can be used to simulate the models’ regimes and calculate the errors to find

the best regressors for the structure of the polynomials. On the one hand, the first approach,

ERR, when applied in non-perfect data (e.g., noisy, oversampled, slow input signal, etc.), can

result in models with incorrect or redundant terms and be unstable — this approach is often

considered a local search technique (FALSONE; PIRODDI; PRANDINI, 2015); on the other

hand, they are widely used and fast. The second approach, SRR, can be applied to non-perfect

data leading to more compact and sturdy models, but with a high computational cost.

That said, the system identification problem can be divided into five main steps (AGUIRRE,

2015). This procedure is used to identify both linear and nonlinear systems, with some diffe-

rences in each step of the procedure (AGUIRRE; RODRIGUES; JÁCOME, 1998). In general

terms, the five main steps of an identification problem are composed by (AGUIRRE, 2015):

1. data collection, pre-processing and dynamic tests;

2. choice of mathematical model representation;

3. model’s structure determination;

4. parameters estimation;

5. model validation.

The following subsections provide an outline of the steps used to solve a system identifi-

cation problem. All the steps can vary and be presented differently depending on the constraints,

nonlinearities or complexity of the model required to solve the problem at hand. Other applica-

tions, examples, and indepth discussions about these steps can be found in Aguirre (2015).

3.2 System Identification Steps

3.2.1 Data collection, pre-processing and dynamic tests

According to Aguirre (2015) this system identification step has three fundamental as-

pects: i. where to stimulate the plant; ii. find the best kind of signal to obtain data that better

represents the dynamics of the system and iii. how to sample this data.
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In order to examine the behavior of the system, it is necessary to stimulate the whole

range of interest frequencies with signals to observe its dynamic and static regime characteristics

through direct measurements of output data or by examining the state variables — this process

is applicable for non-autonomous systems. Another important aspect of these input signals

is their spectral power, which is responsible for the excitation of nonlinearities present in the

system. Dynamic and static characteristics that are not stimulated will not appear in the data

and, as a consequence, they will not be identified (AGUIRRE, 2015).

In the case of linear systems, the pseudo-random binary sequence (PRBS) is commonly

used as the input signal on the identification process. On the other hand, for the nonlinear

systems, the random signals are regularly used as input signals, although, in some cases, the

PRBSs are also used to identify some models in narrow operating ranges (LEONTARITIS;

BILLINGS, 1987a).

Lastly, as most real systems are continuous-time processes, the step of sampling signals

takes an important role to discretize the continuous variable and generate the data for identifi-

cation. To do this, the continuous signal is observed periodically to get the samples, the time

between each observation is called the sampling interval or sampling period, TS. This TS needs

to be precisely defined in order to not lose the characteristics of the original signal, which can

be oversampled or undersampled.

The signal is oversampled when the sampling period is very small and, as a consequence,

causes numerical instability and high computational effort due to poor conditioning of the re-

gressor matrix (BILLINGS; AGUIRRE, 1995). On the other hand, when the sampling period is

too big, the undersampled problem occurs resulting in a misrepresentation of the real dynamics

of the system.

Another important issue is to decide which data are relevant to the identification process

and which are not. This question increases in importance due to the large quantity of data availa-

ble for some problems, as a consequence of internet and real-time sensor developments, making

the manual data selection process hard or even impossible to be handled and also lead to a high

computational cost when estimation algorithms are used. In this scenario, many approaches

and techniques (e.g., big data, machine learning, statistical techniques, etc.) were developed to

assist the process of selecting good data, i.e., data with relevant information about the system.

A good example of these techniques, applied to oil well data, was developed by Ribeiro and

Aguirre (2015) where the rank of a regressive matrix of Autoregressive (AR) models, created
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based on the dataset, was used as an indicator of “signal activity” together with the measure of

the correlation between the input and output of the data window to create automatic routines

capable of finding the best transients data in the dataset adequated for the system identification

problem.

Another good application is performed in Singh, Pani and Mohanta (2019), where five

dataset design algorithms were applied to three different types of benchmark datasets to create

new datasets and use them to identify soft-sensors. After that, the accuracy results are compared

with results obtained from other soft-sensors modeled with the benchmark datasets. All datasets

are related to the petroleum refinery process. The five algorithms applied to create the datasets

were: the Kennard-Stone (KS) algorithm (KENNARD; STONE, 1969), the DUPLEX algorithm

(SNEE, 1977), the Sample set Partitioning based on joint x–y distances algorithm (SPXY)

(GALVAO et al., 2005), the error based SPXY algorithm (SPXYE) (GAO et al., 2019), and

the kernel-based algorithm SPXY (k-SPXY) (GANI; LIMAM, 2016). The first four algorithms

use the Euclidean distance as a metric to select the samples to generate the dataset.

The KS and the DUPLEX algorithms are quite similar, although they have differences in

methodology. The DUPLEX generates the test dataset simultaneously with the training dataset

unlike the KS, which generates the test dataset with the remaining sample values not used

in the creation of the training dataset. The SPXY is similar to the KS algorithm but before

following the same steps, it takes into account the statistics of the independent variable x and the

dependent variable y for selection of samples in the training set (SINGH; PANI; MOHANTA,

2019), computing the dxy distance for every pair of samples. Another similar algorithm is the

SPXYE which is an extension of the SPXY. This algorithm generates an error vector of the

preliminary calculation (the dxy values) and computes the de which is added to the dxy metric

forming the dxye distance — the value that will be used in the SPXY steps. Lastly, k-SPXY is

the same algorithm as the SPXY, but instead of computing the Euclidean, the kernel distance is

computed (SINGH; PANI; MOHANTA, 2019).

3.2.2 Mathematical model representation

There are several ways to define and represent a mathematical model. One of these

definitions split the models into two groups: autonomous and non-autonomous. A model is

called autonomous if it does not explicitly contain general input signals (AGUIRRE, 2015).

On the other hand, models that have at least one general input are called non-autonomous.
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This type of model describes the output data given an input excitation. Another common way

to classify the models is related to time, i.e., continuous and discrete. According to Aguirre

(2015) the continuous dynamic models are described by differential equations that represent the

continuous evolution of the system through time and the discrete dynamic models are described

using the difference equation to represent specific moments in time.

Another important thing to know concerning mathematical representation is whether the

system is linear or non-linear. A model is linear if the input-output relation satisfies the superpo-

sition property. The superposition property is a combination of another two properties, i.e., the

additivity and homogeneity. The additivity property says that if an input x1 implies the output

y1, (x1 → y1), and another input x2 implies the output y2, (x2 → y2), so when these two inputs

where working together on the system, the total output will be y1 + y2. The second propriety,

homogeneity, says that for a real or imaginary arbitrary number k, if the input increases k times,

the output will also increase k times. So the superposition property is k1x1+k2x2 → k1y1+k2y2.

Thus, the output of a linear system to a combined input can be described as the sum of the out-

puts for simpler inputs.

Examples of linear representation include transfer functions, space state representations,

and polynomial models (e.g., autoregressive model - AR, autoregressive with exogenous inputs

model - ARX, autoregressive moving average with exogenous inputs model - ARMAX, etc.)

(AGUIRRE, 2015). In practice, most of the real problems are non-linear and the approach

based on linear systems is inadequate because they do not present important aspects of the

process (POPE; RAYNER, 1994). The nonlinear models appear as a solution that can handle

many of these real situation problems and represents complex dynamical regimes with good

accuracy.

Examples of nonlinear representation include Artificial Neural Networks - ANN (HAY-

KIN, 2007), which are inspired by the functioning of the human brain, where artificial neurons,

connected in a network, are able to learn and generalize. Another representation model is the

radial basis functions networks (BROOMHEAD; LOWE, 1988), which is basically an ANN

with a radial basis function as the activation function.

Volterra series (VOLTERRA, 1930; BILLINGS, 1980) is another nonlinear mathema-

tical model representation. The Volterra series is an extension of the Taylor series that has

memory capacity. It’s also possible to have models based on interconnected blocks, such as

the Hammerstein model and the Wiener model (WIENER, 1958; WIGREN, 1993; AGUIRRE,
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2015; COELHO, 2002). Both models are composed of a dynamic linear model G(q) in cascade

with a static nonlinear function f (·). The difference between these two models is where the

nonlinear static takes place. For Hammerstein’s model, it precedes the linear dynamic model

while in Wiener’s model it succeeds.

Last but not least, there are rational and polynomial functions (CHEN; BILLINGS,

1989; JOHANSEN; FOSS, 1992; ZHU; BILLINGS, 1993; LEONTARITIS; BILLINGS, 1985a;

LEONTARITIS; BILLINGS, 1985b). In this field, the Nonlinear Auto-Regressive with eXo-

genous inputs - NARX and its extension, the Nonlinear Auto-Regressive Moving Average with

eXogenous inputs - NARMAX, are a general representation for a wide range of non-linear

systems. The NARX model can be defined as:

y(k) = F [y(k−1), · · ·,y(k−ny),u(k− τd), · · ·,u(k−nu)], (3.3)

where u(k− i) and y(k− j) represent, respectively, the measured input and output of the system

at k− i and k− j sampling times. The ny, nu and τd are the highest delay in y, in u and the

dead time, respectively. It’s possible to compute the number of model’s regressors as ε =

ny +nu − τd +1.

As indicated previously, the NARMAX model is an extension of the NARX model, but

with added moving average noise terms to avoid the polarization of the parameters. The NAR-

MAX model can be defined as (LEONTARITIS; BILLINGS, 1985a; LEONTARITIS; BIL-

LINGS, 1985b; CHEN; BILLINGS, 1989; AGUIRRE, 2015; ZHU; BILLINGS, 1993):

y(k) = F l[y(k−1), · · ·,y(k−ny),u(k− τd), · · ·,u(k−nu),e(k−1), · · ·,e(k−ne)]+ e(k), (3.4)

where e(k) indicates the effects that can’t be well represented by F l[·]. F l[·] is any polynomial

function with a degree of nonlinearity l ∈ N. The functions y(t), u(t) and e(t) represents the

output, input and system noise, respectively. The ny, nu, ne and τd are the highest delay in y,

in u, in e and the dead time, respectively. The deterministic part, i.e., noise-free part of the

Equation 3.4 can be expanded as the sum of terms with degrees of nonlinearity varying in the

range 1 ⩽ m ⩽ l. Thus, each term of degree m may contain a factor of degree p of type y(k−τi)

and a factor of degree (m− p) of type u(k− τi) being multiplied by a parameter represented

by cp,m(τ1, ...,τp+m). The model can be described as (JONES; BILLINGS, 1989; AGUIRRE,

2015):
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y(k) =
l

∑
m=0

l−m

∑
p=0

ny,nu

∑
τ1,τm

cp,m(τ1, · · ·,τp+m)
p

∏
j=1

y(k− τ j)×
m

∏
i=1

u(k− τp+i)+ e(k), (3.5)

whereas

ny,nu

∑
τ1,τm

≡
ny

∑
τ1=1

· · ·
ny

∑
τp=1

nu

∑
τp+1=τd

· · ·
nu

∑
τp+m=τd

, (3.6)

and the superior limit will be ny if the summation is referred to the factors of type y(k− τi), or

u(k− τi) for the nu factors.

3.2.3 Model’s structure determination

After choosing the mathematical model representation it’s necessary to determine the

model structure. This step is decisive to achieve good results in identification problems. In

linear models, the possible number of regressors increases linearly with the model order. In this

case, the structure selection step is basically to choose the number of poles and zeros as well as

determine the pure time delay (AGUIRRE, 2015).

On the other hand, for the nonlinear polynomial models, i.e., the NARMAX models,

which are the main focus of this work, the possible number of regressors increases proportio-

nally to the non-linearity degree and the maximum delays (i.e., l, ny, nx and ne), which results in

an exponential increase in the number of candidate model structures (the curse of dimensiona-

lity) when compared to linear models (FALSONE; PIRODDI; PRANDINI, 2015). The number

of candidate terms (nterms), with τd = 0, for a model can be determined as follows:

nterms = M+1, (3.7)

where

M =
l

∑
i=1

ni,

ni =
ni−1(ny +nu + i−1)

i
,

n0 = 1.

(3.8)

As discussed in Aguirre and Billings (1995b), another problem that can occur during

the process of structure selection is the overparametrization, i.e., chose an excessive number of
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regressors for the model. This can lead to complex models that tend to be unstable, induce ghost

bifurcations, and have spurious dynamical regimes. Many approaches were already proposed

to find the regressors of NARX and NARMAX models (KORENBERG et al., 1988; LEONTA-

RITIS; BILLINGS, 1987; BILLINGS; CHEN; KORENBERG, 1989; AGUIRRE; BILLINGS,

1995a; MAO; BILLINGS, 1997; PALUMBO; PIRODDI, 2001; WEI; BILLINGS, 2008; PI-

RODDI, 2008; CASTRO; BARBOSA, 2019; HAFIZ; SWAIN; MENDES, 2020). Among the

many approaches mentioned, it is worth mentioning some that used computational intelligence

algorithms, more precisely evolutionary algorithms, to optimize the selection of the best re-

gressors for NARX/NARMAX models. For example, in Castro and Barbosa (2019), a Multi-

objective Genetic Algorithm was used in two approaches. The first one, used the prediction

error minimization, as the first optimization objective, and the reduction of the number of se-

lected regressors as the second objective. The second approach used the free-run simulation

error minimization, as the first optimization objective, and also the reduction of the number of

selected regressors as the second. Another work that can be mentioned is Hafiz, Swain and

Mendes (2020), where a comparison was made between three Multi-Objective Evolutionary

Algorithms (MOEAs), they being NSGA-II, SPEA-II, and MOEA/D. These algorithms were

used to propose a multi-objective framework for structure selection of nonlinear systems which

are represented by polynomial NARX models. In both works, it was demonstrated that the

multi-objective optimization approach with evolutionary algorithms for structure selection is

promising and versatile.

In the next subsections, methods for model structure selection like the Error Reduction

Ratio (ERR) criterion and the Simulation Error Reduction Ratio (SRR) criterion will be briefly

presented. Some information criteria, like the Akaike criterion, will be briefly explained. Fi-

nally, in Subsection 3.2.3.4, the structure selection problem as a multi-objective optimization

approach will be investigated.

3.2.3.1 Error Reduction Ratio (ERR) Criterion

The Error Reduction Ratio (ERR) (BILLINGS; CHEN; KORENBERG, 1989) is a well

known and used criterion to select the independent variables, i.e., the regressors, for a model

through one-step-ahead predictions. This criterion evaluates the reduction in the variance of

the residuals ξ (k), that occurs when a new term is included in the model, and can be normali-
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zed with respect to the total variance of the output signal. To define the ERR, the NARMAX

(Equation 3.4) models will be considered as follows (AGUIRRE, 2015):

y(k) = ψ
T (k−1)θ̂ +ξ (k)

=
nθ

∑
i=1

θ̂iψi(k−1)+ξ (k)
(3.9)

where nθ is the number of parameters. The auxiliary model, i.e., the model represented on an

orthogonal basis is defined as:

y(k) =
nθ

∑
i=1

ĝiwi(k−1)+ξ (k) (3.10)

where ĝi are the estimated parameters and wi, the orthogonal regressors on the data. It is interes-

ting to note in Equation 3.10 that when nθ = 0 (zero regressors) the output signal y(k) is equal

to the prediction error. The Error Reduction Ratio due to the inclusion of the i-th regressor in

the model is defined as (CHEN; BILLINGS; LUO, 1989):

[ERR1]i =
ĝ2

i ⟨wi,wi⟩
⟨y,y⟩

(3.11)

where the ⟨·⟩ operator represents the internal product of two vectors and the ERR indicates the

variance part of the output explained by the inclusion of a new term in the model. One criterion

that can be used is to include the regressors with the highest ERR values among a normally large

set of candidate regressors (AGUIRRE, 2015). The ERR criterion has some extensions, like the

ERR2 (ALVES; CORRÊA; AGUIRRE, 2012), that uses the two-step-ahead predictions in order

to detect unwanted terms. As mentioned in the introduction of this chapter, the identification

algorithms based on the Error Reduction Ratio as optimization criterion are called prediction

error minimization (PEM) algorithms.

A well known PEM algorithm is the Forward Regression Orthogonal Estimator (FROE)

(BILLINGS; CHEN; KORENBERG, 1989). In Piroddi and Spinelli (2003), the limitations of

FROE with regard to the structure selection problem were discussed. It has been shown that

algorithms based on ERR only result in sub-optimal models. In addition, they may find incor-

rect and redundant models when subjected to certain noise and input signals. Another point

mentioned is the high probability that models generated by the ERR criterion be extremely

inaccurate and unstable when submitted to the free-run simulation process. As a solution to

these problems, it’s suggested changing the ERR criterion in the FROE algorithm for the simu-
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lation error reduction ratio (SRR) that is more precise and robust with respect to the excitation

characteristics of the identification data. The SRR criterion will be briefly explained in the next

subsection.

3.2.3.2 Simulation Error Reduction Ratio (SRR) Criterion

In Piroddi and Spinelli (2003), the simulation error reduction ratio (SRR) criterion was

proposed to overcome the difficulties of the algorithms based on the ERR criterion. Unlike

the ERR, which uses one-step-ahead prediction, the SRR criterion is based on free-run simula-

tion. This criterion is defined by the reduction of the mean square simulation error (MSSE), as

follows (PIRODDI; SPINELLI, 2003):

[SRR] j =
MSSE(Mi)−MSSE(Mi+1)

1
N ∑

N
t=1 y2(k)

(3.12)

where Mi is the model obtained at the i-th iteration and Mi+1 is the candidate model at the

subsequent iteration, with the inclusion of the j-th regressor. As can be noted, the SRR crite-

rion is based on the simulation error reduction, algorithms with this characteristic are known

as simulation error minimization (SEM) algorithms. These algorithms generally obtain com-

pact and robust models that can be effective in non-ideal identification conditions. Conversely,

the SRR based algorithms require a significant computational effort and are not viable for the

identification of chaotic systems, owing to the extreme sensitivity of their behavior to initial

conditions (PIRODDI; SPINELLI, 2003).

Piroddi and Spinelli (2003) also proposed the simulation error minimization with pru-

ning (SEMP) algorithm. This algorithm deals with the problem of changing the real importance

of terms that occurs during the process of building the model. The SEMP algorithm presents

good results for this problem when implementing the pruning procedure in terms that do not

contribute significantly to the quality of the model during its execution.

3.2.3.3 Information Criteria

As described in the Sections 3.2.3.2 and 3.2.3.1, the methods and criteria exposed, i.e.,

the ERR criterion and SRR criterion, are good in ranking candidate regressors terms hierarchi-

cally, but it’s still necessary to choose the number of regressors for the final model. This task

also needs to handle the bias-variance trade-off, i.e., if a large number of regressors are cho-
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sen the model can overfit the data and model the noise, which leads to high variance. On the

other hand, if a small number of regressors were chosen the model will not generalize the data

(underfitting) and will have a high bias. To deal with this task many information criteria were

proposed, for example, the Final Prediction Error (FPE) criterion (AKAIKE, 1970), the Akaike

Information Criterion (AIC) (AKAIKE, 1974), and the Minimum Description Length (MDL)

criterion (RISSANEN, 1989).

According to the Akaike Information Criterion, the ideal number of terms in a model

should minimize the following function (AKAIKE, 1974):

AIC(nθ ) = N ln(Var[ξ (nθ )])+2nθ , (3.13)

where N corresponds to the number of samples, Var[ξ (nθ )], the variance of residue ξ (nθ ), i.e.,

the variance of one-step forward prediction error, and nθ , the number of terms in the model.

Equation 3.13 can be divided into two parts. The first one, N ln(Var[ξ (nθ )]), is responsible

to measure the reduction in the variance of the residue resulting from the inclusion of a term.

This reduction happens because when a term is added, the model’s degrees of freedom increase

and a better adjustment is made to the data that decreases the variance Var[ξ (nθ )] and, as a

consequence, decreases the first part of the equation. Although this decreasing effect has a

threshold when no matter the number of terms added the effect on AIC will be insignificant.

The second part, 2nθ , will penalize the inclusion of terms in the model when more terms are

added the higher the value of AIC will be. Due to the overall minimization goal, if the cost of

adding a term for the second part of the equation is high than the reduction in the first part of

the equation this term shouldn’t be included in the model. When the AIC reaches a threshold or

shows a “knee”, its execution is terminated (AGUIRRE, 2015).

It is important to note that, as Akaike Information Criterion is fundamentally statistical,

it can’t be said that the model with the number of terms selected by the AIC is valid (AGUIRRE,

2015; AGUIRRE; BILLINGS, 1994). Nepomuceno et al. (2002) argued that the results of the

AIC criterion can be seen as an indicator in the search for the ideal number of regressors in the

model.

Other types of methods, criteria, techniques, and approaches can be used to select and

define the number of regressors for a model. One example is the recent use of Evolutionary

Algorithms (EA), especially the MOEAs, to select the regressors (see, e.g., Hafiz, Swain and

Mendes (2020), Castro and Barbosa (2019), Barbosa et al. (2011)).
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3.2.3.4 Multi-objective Optimization for Structure Detection

As presented in this chapter introduction (Chapter 3), an identification problem can be

interpreted as a multi-objective optimization problem. In face of that, finding the number of

regressors of a model, i.e., the structure selection step, is an important issue in system identi-

fication, especially for non-linear systems (BARBOSA; TAKAHASHI; AGUIRRE, 2015). As

discussed in Hafiz, Swain and Mendes (2020), in this stage, it’s important to search for a model

with a parsimonious structure and good predictive performance, which is essentially contradic-

tory. This contradiction is due to the bias-variance dilemma, in other words, an excessively

compact model (low number of regressors) may not be able to replicate the behavior of the

real system (underfitting) and present a high bias output, on the other hand, a model with many

regressors can memorize the identification data and not generalize to unknown samples. The-

refore, the process of finding optimized models for these objectives (structure selection) is, in

essence, a multi-objective problem (HAFIZ; SWAIN; MENDES, 2020). This approach is not a

new concept but is still an open field.

That said, solving the structure selection problem with a multi-objective approach has

some advantages, for instance, it is possible to use dynamic and static data together during the

optimization process. This can be seen in Martins, Nepomuceno and Barroso (2013), where an

extension of the ERR, the Multi-objective Error Reduction Ratio (MERR), is proposed to solve

the structure detection problem for polynomial NARX models. With this extension, it’s possible

to use the dynamics of prediction error along with affine information (e.g., fixed points, static

curve) to get nondominated solutions of the Pareto set.

Another multi-objective approach to solve the structure detection problem is using com-

putational intelligence algorithms (in their multi-objective versions). Among several, the algo-

rithms based on Charles Darwin’s evolutionary theory (DARWIN, 1859), the Multi-Objective

Evolutionary Algorithms (MOEAs), have stood out. For example, in Zakaria et al. (2012), the

Non-dominated Sorting Genetic Algorithm II (NSGA-II), proposed by Deb et al. (2000), was

used to select the structure and define a parsimonious model. In the optimization task, two

objectives ware used, minimize the number of regressors and the prediction error. Real and

simulated data were used in the process and, in the end, the resulting models were compared

with the model resulting from a single-objective genetic algorithm. The results show a better

performance for the NSGA-II approach. Likewise, in Hafiz, Swain and Mendes (2020), a multi-

objective framework for structure selection to polynomial NARX models was proposed. This
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framework is composed of three well-known MOEAs (i.e., NSGA-II, SPEA-II, and MOEA/D)

that were submitted to a rigorous statistical analysis via performance sweet spots (i.e., the high

performance region (control map) of the algorithm results formed by the feasible settings of

control parameters (mutation and crossover probability, and selection pressure)) in the parame-

ter space obtaining robust results for the regressors selection task. Other works that follow a

similar approach are Ferariu and Patelli (2009) and Rodriguez-Vazquez, Fonseca and Fleming

(2004).

3.2.4 Parameters estimation

After defining the mathematical representation and selecting the regressors to the model,

the next step is the parameter estimation. It is necessary to estimate the model parameters for

each regressor selected in the previous step. For this purpose, the identification data (i.e., the

data collected during experiments with the real plant) or a dataset obtained through simulation

are separated to be used. Another part of this dataset is assigned to be used in the validation

step, better discussed in Section 3.2.5.

The majority of the algorithms employed to estimate the parameters in polynomial mo-

dels are based on the Least Squares estimator (LS) (LEGENDRE, 1805; GAUSS, 1963). The

Ordinary Least Squares and one of its extensions, the Extended Least Squares, will be exposed

in the Subsection 3.2.4.1 and Subsection 3.2.4.3, respectively. Finally, in Subsection 3.2.4.4, the

parameter estimation problem as a multi-objective optimization approach will be investigated.

3.2.4.1 Ordinary Least Squares

The Ordinary Least Squares is widely used to compute the model parameters to NARX

polynomials. Therefore, Equation 3.3, which represent a NARX model, is rewritten as follows

(AGUIRRE, 2015):

y(k) = ψ
T (k−1)θ̂ +ξ (k)

= ŷ(k)+ξ (k),
(3.14)

where k indicates the considered time step, θ̂ represents the estimated vector of parameters,

ψT (k−1) corresponds to the vector of regressors, which can contain observations up to (k−1)

and, ξ (k) is the computed model error when trying to explain y(k), the output, as ψT (k−1)θ̂ .

Note that this symbol (ˆ), above the variables, indicates estimated values.
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Applying the Equation 3.14 for all samples in a dataset and writing the result in a matrix

form:

y = Ψθ̂ +ξ , (3.15)

where ξ = [ξ1 ξ2 · · · ξN ]
N is the error vector generated by the attempt of explaining y by Ψθ̂ ,

where N is the number of samples, and Ψ represents the regressors matrix. Isolating the vector

of residues ξ , the Equation 3.15 can be written as:

ξ = y−Ψθ̂ . (3.16)

To solve Equation 3.16 it is necessary to find a group of parameters θ̂ that satisfies

it. During this process, it would be interesting to reduce the residues ξ value and obtain a

more precise result, therefore, the sum of squares of errors, i.e., the loss function, is defined as

(AGUIRRE, 2015):

JLS =
N

∑
i=1

ξ (i)2 = ξ
T

ξ = ∥ξ∥2 . (3.17)

Substituting Equation 3.16 in Equation 3.17, the Ordinary Least Squares estimator, θ̂LS,

that minimizes the loss function JLS, can be proven to be:

θ̂LS = [ΨT
Ψ]−1

Ψ
T y. (3.18)

An important issue is that this estimator can only be applied to linear-in-the parameters

models. In some situations, like output noise, the LS estimator results in polarized estimates.

To overcome this problem, the Extended Least Squares (ELS) can be used, this estimator will

be explained in Section 3.2.4.3.

3.2.4.2 Weighted Least Squares

In many practical situations where the ordinary least squares estimator is applied, it may

be necessary to weigh different samples from a dataset differently (e.g., sampling windows that

better represent one operation point than others). Therefore, to represent this need, Equation

3.17 is rewritten and named Weighted Least Squares (WLS), as follows (AGUIRRE, 2015):

JWLS =
N

∑
i=1

ξ (i)wiξ (i) = ξ
TWξ , (3.19)
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where W ∈ RN×N is a diagonal matrix whose elements are the weights wi, i.e., W =

diag{w1 w2 · · · wN}. Substituting Equation 3.16 in Equation 3.19, the Weighted Least Squares

estimator, θ̂WLS, that minimizes the loss function JWLS, can be proven to be:

θ̂WLS = [ΨTWΨ]−1
Ψ

TWy. (3.20)

It is essential to mention that the WLS described by Equation 3.20 is also valid for the

case where W is not diagonal.

3.2.4.3 Extended Least Squares

As mentioned earlier in Section 3.2.4.1, the Least Squares estimator can result in pola-

rized model parameters. In other words, the model regressors are correlated with the regression

error, and if the LS is used to estimate the parameters vector they will be polarized (AGUIRRE,

2015). As a solution to this problem, the Extended Least Squares (ELS) takes place. Conside-

ring the parametric model to be used in the regression as (AGUIRRE, 2015):

y(k) = ψ
T (k−1)θ + e(k), (3.21)

where ψT (k − 1) is the regressor vector taken up to (k − 1), θ is the parameter vector and

e(k) = cν(k− 1)+ν(k) is the regression equation errors, where ν(k) is a white noise — e(k)

shouldn’t be understood as the measured or observed noise. Applying Equation 3.21 in a dataset

of size N the matrix form is given by:

y = Ψθ + e, (3.22)

where the regressors matrix is:

Ψ =


ψ(k−1)

ψ(k−2)
...

ψ(k−N)

 (3.23)

To model the white noise and fix the polarization problem it’s necessary to extend the

regressors matrix Ψ adding the ν(k−1) terms. The extended regressor matrix is given by:
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Ψ
∗ =



... ν(k−1)

... ν(k)

Ψ
... ν(k+1)
...

...
... ν(k+N −2


(3.24)

whereas y∗ = y, e∗ = [ν(k) · · · ν(k+N −1)]T , and θ ∗ = [θ T ... c]T . It’s important to note that,

because e∗(k) is a “white” noise variable, e∗ is not correlated with Ψ∗. Unfortunately, the ν(k)

values are unknown and its is necessary to estimate the extended parameters vector. To solve

this problem of finding ν(k) and estimate the parameters Ψ∗ to get the complete solution, the

following interactive proceeding is necessary (AGUIRRE, 2015):

1. from Equation 3.22, like LS, compute θ̂LS = [ΨT Ψ]−1ΨT y;

2. compute the residues vector ξ1 = y−Ψθ̂LS;

3. do i = 2 (where i indicate the actual interaction);

4. with ξi−1 create the extended regressors matrix, Ψ∗
i , and estimate θ ∗

ELSi
=

[Ψ∗
i

T
Ψ∗

i ]
−1Ψ∗

i
T y;

5. compute the residues vector ξi = y−Ψ∗
i θ ∗

ELSi
;

6. do i = i+1 and return to step 4. Repeat until converging.

Besides the ELS, there are many other LS derived algorithms, for example, the Genera-

lized least squares, the Total least squares, and the Constrained least squares.

3.2.4.4 Multi-objective Optimization for Parameter Estimation

Once the model structure is correctly defined it is necessary to estimate the parameters

of each model regressor. As aforementioned, applying a multi-objective optimization to solve

the identification problem allows the use of auxiliary information, i.e., information apart from

the set of dynamical data (e.g., fixed points, static function, and static gain), which can improve

the prediction accuracy of the resulting models.

In Nepomuceno et al. (2003), a parameter estimation approach for NARX models was

proposed, in two steps, using a bi-objective optimization and a posteriori decision scheme. The
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two objectives were times series fitting error and fixed-point fitting error. The first step is to

find the non-dominated set of solutions, and the second is to find the final model applying some

decision criterion. An extension of this methodology was proposed in Nepomuceno, Takahashi

and Aguirre (2007), where more affine information was aggregated in the cost function turning

it into a multi-objective problem. They also presented a non-iterative form to estimate the

parameters of a multi-objective problem using the least squares. Other works that also use the

multi-objective approach are Barroso, Takahashi and Aguirre (2007) and Barbosa, Takahashi

and Aguirre (2015).

A different approach for multi-objective parameter estimation was proposed in Aguirre,

Barbosa and Braga (2010). In this work, an iterative solution with genetic algorithms (GA) to

solve the optimization problem was applied. The use of GA is interesting because this approach

rarely gets stuck in local minima. Especially in the mentioned work, this is important because

different from the ones mentioned in the last paragraph, the simulation error was used as one of

the objectives and this renders a nonconvex optimization problem with many potential minima

— the other objective used was the prediction error. These two objectives were also used,

separately, as a one-objective problem in order to compare the use of the two objectives alone

and together. The result shows that, in general, using the simulation error is preferable to

prediction error for parameter estimation. Another work that uses an evolutionary approach in

multi-objective problems for system identification is Rodriguez-Vazquez and Fleming (1998).

3.2.5 Model Validation

The model validation is the last step of the identification problem. This step is performed

when the final model is complete, i.e., structure defined and all model parameters estimated.

To validate a model means that it will be checked if it can represent all interested dynamic

characteristics of the real system, i.e., test the model’s capacity of generalization.

In Aguirre (2015), it is emphasized that the samples of a dataset used in the identification

process (e.g., parameter estimation, structure selection, etc.) shouldn’t be used in the validation

because it will lead to biased results. Therefore, it’s important to have two distinct datasets, the

training dataset, to model the new system, and the validating dataset, to check if the model is

valid. This split can be done in many different ways. The simplest way is to split the original

dataset randomly in the two sets. For instance, in a dataset with one hundred samples, the first

seventy points are addressed to the training set and the last thirty ones to the validation set. The
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problem of this approach is that precious dynamic information of the system can be addressed

just for the validating dataset and will not be modeled in the identification process leading to

a weak model generalization. This problem can be overcome by the Cross-validation (MOS-

TELLER; TUKEY, 1968; STONE, 1974) technique, which is briefly explained in Subsection

3.2.5.1.

It is clear that it is the set of validation data that should be used to assess the accuracy

of the final model. There are several metrics and criteria to perform this step, the right one will

depend on the specific necessities that motivate the creation of the model. A widely used way

to validate models is through simulation.

There are two main types of simulation, the free-run simulation and the one-step-ahead

prediction, already mentioned in other sections. In the free-run simulation, the model starts

with the data from the validation set and is indefinitely simulated receiving as feedback, to

estimate the next step, only the past predictions made by the model itself. On the other hand,

the one-step-ahead prediction also starts with validation data but during the simulation it doesn’t

estimate the next steps based on its own predictions, the model also queries the validation data

to make the next step prediction. As a direct consequence, in Aguirre (2015), it’s demonstrated

that the one-step-ahead prediction is not a good method to test the generalization capacity of

the final model.

In order to evaluate the performance and quality of the simulation results, a metric is

necessary. The mean squared error (MSE) is well known and widely used to do that, and can

be expressed by:

MSE =
1
N

N

∑
k=1

(y(k)− ŷ(k))2, (3.25)

where N is the number of data points, y(k) is the observed data, and ŷ(k) is the result of the

model simulation, i.e., the prediction. Another widely used metric is the root mean squared

error (RMSE) which is defined as:

RMSE =

√√√√ 1
N

N

∑
k=1

(y(k)− ŷ(k))2, (3.26)

where N is the number of data points, ŷ(k) is the result of the model simulation and y(k) is the

observed data. The lower the value of MSE and RMSE, the greater the model’s ability to adjust
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to the data. Another important analysis is that a well-fitted model has similar values of MSE

and RMSE for the training and validating data.

There is another type of validation, the static validation. In this validation, the ability of

a model to recover the static characteristic of the system is checked. The static characteristic is

the relation between the system output and the input in a steady state. As discussed in Aguirre

(2015), the use of static characteristics of nonlinear models in its validation is not a common

proceeding. However, static validation was applied in some works (see, e.g., Coelho (2002),

Corrêa (2001)).

3.2.5.1 Cross-validation

The cross-validation (ALLEN, 1974; STONE, 1977; STONE, 1974), also known as

rotation estimation, is a group of techniques used in validation tasks in order to estimate how

the results of an identified model generalize a dataset. It is largely used to estimate how accurate

a model will perform with unseen data (DONATE et al., 2011).

The main idea of the cross-validation is the dataset partitioning into complementary sub-

sets. One of the subsets is addressed to perform the identification process (identification/train

data) and the remaining subsets to validate the model. The number of subsets can vary depen-

ding on the partitioning methodology (e.g., holdout, the k-fold, leave-one-out). The k-fold, for

example, split the dataset into k complementary subsets, with the same length, and address one

as the validation set, and the k−1 remaining subsets as the training dataset (identification data).

This process is repeated k times, and the total accuracy for the model is computed by taking the

average error of the k models’ output estimates over validating data, as follows:

kFCVk =
1
k

k

∑
i=1

MSEi. (3.27)

where k is the number of folds, and MSEi is the mean squared error, presented in Section 3.2.5,

for a fold i. If the k value is correctly chosen, the kFCV k result will be a reliable measure of

the identified model capacity over unseen data. Other cross-validation techniques are discussed

and presented in Breiman and Spector (1992) and Kohavi (1995).
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3.2.6 Soft Sensor

The identification methodology, explained in the last section, can be applied in many

different areas to solve a wide range of problems. One tool derived from this is the soft sensors.

This term is a combination of two words, “software” and “sensor”. The word “software” is

derived from the fact that the soft sensors are usually implemented as computer programs,

and the word “sensor” is because they have almost the same behavior as hardware sensors

(KADLEC; GABRYS; STRANDT, 2009).

The soft sensors (SSs) (FORTUNA et al., 2007b; KADLEC; GABRYS; STRANDT,

2009), also known as virtual sensors, are inferential mathematical models capable to provide an

estimation for an unmeasured variable on the basis of a set of other measured variables from

different processes. This estimated variable can be hard to measure due to many different si-

tuations like technological reasons (e.g., there is no equipment in the market with the desired

requirements) and high investment needed (e.g., the equipment can be expensive) (KADLEC;

GABRYS; STRANDT, 2009), which make the SS an important mechanism in practical situati-

ons.

As mentioned in Fortuna et al. (2007b), the soft sensors have a lot of attractiveness, for

example:

1. they are a low-cost alternative to expensive equipment and hardware devices;

2. they can make the hardware measures more reliable due to their parallel work capacity,

they can also help to detect equipment faults;

3. it’s simple to implement them in existing hardware;

4. they solve time delay problems due to their real-time data estimation capacity, which

also helps to improve the control strategies.

According to Kadlec, Gabrys and Strandt (2009), there are three different classes of soft

sensors: Model-driven, Data-driven, and hybrids.

The Model-driven soft sensors are usually implemented based on First Principle Models

(FPM) (PRASAD et al., 2002). Therefore, they are based on a physicochemical background of

the processes and use these equations to calculate the value of the desired variables (KADLEC;

GABRYS; STRANDT, 2009). The specialists’ knowledge and experience of the process are

also used during the modeling process. Due to these characteristics, this category of SS is also
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known as white-box models and phenomenological models (FORTUNA et al., 2007b). The

models resulting from this approach have a high computational cost and, as a consequence,

real-time implementation can be a problem (LIN et al., 2007). Another problem of the resulting

models is correlated with the fact that they were modeled based o ideal situations, with no

disturbance and failures, which is not common in real situations.

The second class of SS is the data-driven models. These models are entirely based

on empirical observation of the process, i.e., no a priori knowledge is used in the modeling

process, due to this they are also known as black-box models (KADLEC; GABRYS, 2009).

Due to the fact that only measured data is used to model this soft sensor, they are more likely

to describe the true conditions of the process, when compared with the model-driven. With the

increase in the instrumentalization of plants, the volume of data generated, analyzed, and stored

increased, thus, the applicability of data-driven virtual sensors was facilitated and became a

viable alternative to solve the model-driven limitations (LIN et al., 2007). The identification

methodology to implement a data-driven soft sensor is summarized in Figure 3.1. It’s important

to note that they are the same steps of a regular identification problem, which were explained in

this section (Section 3).

Lastly, there are hybrid soft sensors. This category of soft sensors is a combination of

model-driven and data-driven approaches, because of that, they are also known as grey-box

models. A common illustration of this method is the use of a data-driven approach to model

some fractions for a model-driven soft sensor (KADLEC; GABRYS, 2009).

Soft sensors are applied in a wide range of different industrial processes. There are

examples of use in chemical plants (GRAZIANI; XIBILIA, 2018), power plants (BHAVANI et

al., 2014; SUJATHA et al., 2018), nuclear plants (RIZZO, 2010), pollution monitoring (FOR-

TUNA et al., 2006), grinding plants (CASALI et al., 1998), steel industry (RADHAKRISH-

NAN; MOHAMED, 2000), food industry (OSORIO et al., 2008), and many others areas.

There are also applications in the oil and gas fields, which are the focus of this work,

such as product quality monitoring in refineries (FORTUNA et al., 2007a; FORTUNA; GRA-

ZIANI; XIBILIA, 2005; FORTUNA et al., 2005; GRAZIANI; XIBILIA, 2019; PANI; AMIN;

MOHANTA, 2016; ROVERSO, 2009). Talking specifically about monitoring of downhole

pressure in oil wells, Barbosa et al. (2015) implemented a data-driven soft sensor to estimate

the downhole pressure using committee machines composed by finite impulse response neural

networks. With the same purpose, Aguirre et al. (2017) implemented data-driven and hybrid
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Figure 3.1 – Soft sensor identification procedure diagram.
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Source: Adapted from Fortuna et al. (2007b)

soft sensors using NARMAX and neural as models representation. In Antonelo, Camponogara

and Foss (2017), soft sensors were implemented using Recurrent Neural Networks to solve the

same problem. Other works trying to solve the same problem with soft sensors are (DAVIES;

AGGREY et al., 2007; TEIXEIRA et al., 2012; TEIXEIRA et al., 2014; SUI et al., 2011;

MORAIS et al., 2019).

As can be noted in the last paragraph the hybrid and data-driven soft sensors can be

implemented with different tools that range from statistical approaches to computational in-

telligence algorithms (KADLEC; GABRYS; STRANDT, 2009). Examples of tools that can

implement soft sensors are Principal Component Analysis (JOLLIFFE, 1986; LIN et al., 2007),

Partial Least Squares (WOLD et al., 1987; NOMIKOS; MACGREGOR, 1995), Support Vector

Machines (VAPNIK, 1998; FENG; SHEN; SHAO, 2003), Support Vector Regression (SMOLA;

SCHÖLKOPF, 2004; DESAI et al., 2006; VAPNIK; GOLOWICH; SMOLA, 1996), Neural

Networks (BISHOP et al., 1995; DEVOGELAERE et al., 2002; WANG et al., 2006; SU; FAN;
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SCHLUP, 1998), and Non-Linear Principal Component Analysis (DONG; MCAVOY, 1996;

DONG; MCAVOY; CHANG, 1995).
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4 EVOLUTIONARY ALGORITHMS

Within the field of Computational Intelligence (CI), Evolutionary Algorithms (EAs) are

positioned as a subclass of Evolutionary Computing (EC). More specifically, EAs are stochastic

search algorithms inspired by Charles Darwin’s theory of natural evolution and can be used as

a tool to solve a large number of real problems and demands (VIKHAR, 2016).

Although there are several ways to implement Darwin’s concepts, basically all of them

have in common the concept of simulation of the evolutionary process, i. e., given a population

of individuals, in the same environment and with limited resources, the competition for these

resources implies the natural selection of the fittest (more adapted) individuals. As described by

Charles, this evolution and competition are performed through several processes of biological

evolution, such as recombination (crossing over) and mutation. When represented computatio-

nally, these processes are called genetic operators (LINDEN, 2008a; LINDEN, 2008b). Some

of these processes will be briefly expanded and exemplified in the next section.

EAs can also be understood as optimization algorithms, which can be single-objective or

multi-objective (as defined in 3.1) (e.g., Multi-Objective Evolutionary Algorithms (MOEAs)),

and, therefore, have a loss function that can be maximized or minimized and indicates which

are the best solutions to the problem. Making a parallel between evolutionary concepts and op-

timization problems, individuals of a particular population are the possible candidate solutions

to the problem. Each individual’s aptitude indicates the quality of each solution and is obtained

by applying the loss function to each individual — for a minimization problem, the lower the

value the individual receives, the better it is, to maximize the opposite is valid.

It is important to emphasize that several steps in the evolutionary process of an EA

are stochastic and probabilistic. For this reason, the results obtained are generally difficult

to replicate — furthermore, the result found by the algorithm is not necessarily the optimal

solution (EIBEN; SMITH et al., 2003; LINDEN, 2008a). The basic scheme of an evolutionary

algorithm can be seen in Algorithm 1.

As already mentioned, there are several approaches and ways to implement an evolutio-

nary algorithm, all similar within Darwinian concepts, but differing in some details as the form

of representation of the individual (e.g., binary, tree, etc.) — which is interesting because a form

of representation can be better adapted to a specific type of problem. Among the best-known ap-

proaches are Genetic Algorithms (GAs) (GOLDBERG; HOLLAND, 1988; HOLLAND, 1975),

Evolutionary Strategies (ESs) (RECHENBERG, 1965; RECHENBERG, 1978), Evolutionary
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Algorithm 1 AN EVOLUTIONARY ALGORITHM
1: pop = initial population ▷ Random candidate solutions
2: evaluate each candidate (pop)
3: while it doesn’t satisfy stop condition do ▷ Stop condition can be by time, evaluation, etc.
4: popnew = parents selection (pop)
5: apply recombination (popnew)
6: apply mutation in (popnew)
7: evaluate each new candidate in (popnew)
8: select the new generation in (pop, popnew)
9: end while

Source: Adapted from Eiben, Smith et al. (2003) and Linden (2008a)

Programming (EP) (FOGEL, 1962), and Genetic Programming (GP) (KOZA, 1992; KOZA,

1994). Many of these solutions are used to solve system identification problems, such as deter-

mining the regressors of a NARMAX model or estimating a set of parameters for regressors in

a NARX model.

An example of EAs in system identification is Aguirre, Barbosa and Braga (2010), who

implemented a GA to determine the parameters of a NARX/NARMAX model. It was applied

using both a single-objective and a multi-objective approach with real representation. Each lo-

cus in a gene represented a parameter to be estimated by the algorithm. In another example, Li

and Jeon (1993), a GA was used to detect which regressors were most significant for a NAR-

MAX model to avoid overparameterization. Individuals were represented in a binary form in

which the number 1 indicated the presence of a possible regressor addressed in that position and

the presence of the number 0 the opposite. Other works that used GAs in system identification

are Chen et al. (2007) and Barbosa et al. (2011).

In addition to genetic algorithms, other EA approaches have been successfully applied

to solve identification problems. This is the case with Genetic Programming. For example,

in Rodriguez-Vazquez, Fonseca and Fleming (2004), a multi-objective approach using GP was

proposed to find NARX polynomials with at least two criteria (predictive accuracy and comple-

xity) and seven requirements (e.g., model degree, model lag, among others). It was found that

the multi-objective approach in conjunction with genetic programming achieves good results

for determining regressors in a system. Another work in which GP was used, with good results

in systems identification, also in the problem of defining the structure of NARX models, was in

Madár, Abonyi and Szeifert (2005). In this work, it was proposed to use LS/ERR together with

the GP approach, removing the regressors with low ERR value (less significant), to improve the

performance of the models.
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The GP evolutionary approach and its expansion, the Multi-Gene Genetic Programming

(MGGP), will be better presented in the following sections.

4.1 Genetic Programming

Genetic Programming (GP) (KOZA, 1992; KOZA, 1994) is an approach to evolutionary

algorithms systematized and developed by John R. Koza in 1992. In this approach, individuals

(candidate solutions) can be computer programs, arithmetic expressions, or formulas capable of

solving a computational problem. In an iterative way (generations), GP evolves the population

of individuals, applying genetic operators (e.g., crossover (sexual recombination), mutation,

reproduction) to obtain, on average, a new generation of computer programs better able to solve

the problem. Like other EAs (e.g., Genetic Algorithms), each individual’s fitness is determined

by evaluating the candidate using a loss function (VIKHAR, 2016).

GP is also understood as an extension of Genetic Algorithms in which the individuals of

the population do not have a fixed structure of characters in a string, but, as already mentioned

above, are computer programs that are dynamically built during the evolution of the population

(KOZA; POLI, 2005) — a feature that gives more flexibility to this approach.

4.1.1 Genetic Programming Representation

As aforementioned, it is not usual in Genetic Programming to have a fixed representation

of characters in a string. However, generally tree-based encoding is used, which by organizing

its elements hierarchically, can synthesize mathematical functions, logical formulas, programs,

to mention some possibilities. In this type of representation, it is necessary to define the syntax

of the trees. This is done by defining the function set and terminal set. The function set is

composed of arithmetic functions (+,−,∗,/,min,max, ...), also called nodes. There are two

types of nodes, the root, from which the entire tree derives, and the internal ones, which give

rise to the various branches of the tree. The elements of the terminal set, on the other hand,

are known as leaves and can be variables and constants. In Figure 4.1, it is possible to see the

function f (x1,x2) = x1 ∗ x2 − (x2/4) encoded in the tree representation.

4.1.2 Genetic Programming Selection

According to Koza and Poli (2005), tournament selection and fitness-proportionate se-

lection are the most used methods to select individuals in a population to create offspring and
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Figure 4.1 – Tree representation. The function f (x1,x2) = x1∗x2−(x2/4) encoded in tree representation.
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Source: Author (2022)

apply genetic operators. In the tournament selection method, some individuals are selected

randomly from the population, a comparison is made between their aptitudes, and the best in-

dividual is then selected to be a parent. The fitness-proportionate selection method follows the

same non-greedy selection principle, i.e., both individuals, inferior and superior in fitness, can

be selected — which is essential for the non-premature convergence of the algorithm, that is, to

maintain a diverse population during execution.

4.1.3 Genetic Programming Recombination Operators

Similar to other EA approaches (e.g., GA), in Genetic Programming, recombination

to generate offspring is done by exchanging genetic material between selected parents in the

population. According to Eiben, Smith et al. (2003), the subtree crossover is the most common

form of recombination implemented in GPs. In this operator, two individuals are randomly

selected from the population and, in each one, a node is randomly chosen. Then, subtrees

created from the selected nodes in each of the parents are swapped between them, generating

offsprings. An example of the genetic recombination operator is illustrated in Figure 4.2.

4.1.4 Genetic Programming Mutation Operators

Unlike other EA approaches (e.g., GA), it is not common sense to use the mutation

operator in Genetic Programming. In Koza (1992), it is indicated to use only the recombination

operator (0% mutation rate), which is considered sufficient, as it acts as a macro mutation and

strongly modifies the individual. However, other works indicate that using mutation (Banzhaf

et al. (1998) indicate 5% mutation rate) together with recombination can lead to better results

(EIBEN; SMITH et al., 2003).
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Figure 4.2 – GP subtree crossover operator. The parent individuals (x1 ∗x2)∗ (x2+4) and (x1/x2)− (10)
exchange subtrees and generate two offspring: (x1 ∗ x2)∗ (10) and (x1/x2)− (x2 +4).
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Source: Author (2022)

When used, the most common mutation operator is the subtree mutation. In this opera-

tor, a tree node is chosen randomly; thus, all branches and leaves below this node (including the

chosen node) are replaced by another tree generated randomly (exactly like the initial popula-

tion of the GP). An example of mutation is shown in Figure 4.3. The initial (x1 ∗ x2)∗ (x2 +4)

tree has its (x2 + 4) branch replaced by the (x1 ∗ x2) ∗ (10) random tree, generating the new

(x1 ∗ x2)∗ (x1 ∗ x2)∗ (10) tree.

4.2 Multi-Gene Genetic Programming

Multi-Gene Genetic Programming (MGGP) (HINCHLIFFE, 2001; HINCHLIFFE;

WILLIS, 2003) was introduced by Hinchliffe et al. (1996) and is considered an extension of

the standard version of Genetic Programming. Unlike GP, in which each individual (program)

in the population is formed by only a single tree, in MGGP, an individual is formed by a weigh-

ted linear combination of a number of GP trees. Using the concepts of EA, an individual MGGP

can be considered a chromosome, in which its genes are GP individuals (also called gene-trees).

This concept can be expressed mathematically, as well as used in system identification, as the

weighted sum of the outputs of a number of functions (basis functions) of the model inputs, as

follows (HINCHLIFFE; WILLIS, 2003):
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Figure 4.3 – GP subtree mutation operator. The initial (x1 ∗ x2) ∗ (x2 + 4) tree has its (x2 + 4) branch
replaced by the (x1 ∗ x2) ∗ (10) random tree, generating the new (x1 ∗ x2) ∗ (x1 ∗ x2) ∗ (10)
tree.
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Source: Author (2022)

g(ϕ,Θ) =
m

∑
i=1

θigi(ϕ), (4.1)

where m is the number of basis functions, the gi(ϕ) represents individual functions (genes/GP

individuals), and the θi are model parameters. An example of a generic MGGP individual is

illustrated in Figure 4.4.

As mentioned by Orove, Osegi and Eke (2015), the number of regressors, types of basis

functions, and the structure of the trees that make up the individual evolve automatically during

the execution of the algorithm — the individual is limited only by the restrictions defined by the

designer (e.g., the maximum number of basis functions, maximum tree depth). This feature is

interesting because it gives more flexibility and adaptability during the algorithm’s execution,

which does not happen with other classic modeling techniques in which the final model is

restricted by definitions elaborated before running the algorithm (e.g., types of basis functions)

(HINCHLIFFE, 2001).
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Figure 4.4 – Generic MGGP individual. The MGGP individual is formed by a weighted linear combina-
tion of GP trees.
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Another difference between MGGP and GP is in the genetic recombination operators.

The two most common are high-level crossover and low-level crossover. The first performs an

exchange of entire genes (basis functions/individuals GP) between individuals in a similar way

to the one-point crossover GAs recombination operator, i.e., a position on the parent chromo-

some is chosen at random (the position can differ between the parents) by dividing it in two

and then exchanging the resulting parts between them (this process is illustrated in Figure 4.5).

Finally, the low-level crossover exchanges genetic material between genes (the gene sub-trees)

of each parent, i.e., a gene is chosen randomly in each parent, and then the exchange of material

between these GP individuals is carried out using the subtree crossover operator, just as it is

done in the Genetic Programming approach (this process is illustrated in Figure 4.6).

Figure 4.5 – MGGP High-Level Crossover.
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Figure 4.6 – MGGP Low-Level Crossover.
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4.3 Multi-Gene Genetic Programming in System Identification

Like other EA approaches, MGGP has also been applied to system identification pro-

blems. For example, in Ghareeb and Saadany (2013), MGGP was used to create a prediction

model (Short Term Load Forecasting (STLF) problem) for power system operation of an Egyp-

tian electrical network. The dataset used consists of 39 weeks and included the maximum and

minimum temperature of the day and the corresponding current peak load. In order to verify the

accuracy of the model found by MGGP, the same dataset was applied to the Radial Basis Func-

tion (RBF) network and the standard Genetic Programming. The results found demonstrate

superiority in the prediction accuracy of the MGGP model.

Another work that developed models through MGGP to perform forecasts is presented

in Niazkar and Niazkar (2020). In this study, MGGP models were found to perform trend

predictions of COVID-19 cases in seven different countries (i.e., China, Korea, Japan, Italy,

Singapore, Iran, and the USA). Moreover, the cases estimated by the proposed models were

acceptably close to the actual observed values, which indicates that models developed by MGGP

lead to promising results. In Mehr and Kahya (2017), a Pareto-optimal Moving Average MGGP

approach was proposed to perform predictions of daily streamflow. The results were compared

with standalone GP, MGGP, and conventional Multivariate Linear Regression (MLR), which

was found superior to all of these in both prediction accuracy and parsimoniousness.

In Castro and Barbosa (2020), an MGGP/ERR hybridization was introduced to select

structures (regressors) for NARMAX models. The back-shift operator, q−1, presented in Hin-

chliffe and Willis (2003), was used to determine the delay variables. Three datasets were used,

two test systems with short-term dependencies and a real dataset related to a hydraulic pump.
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The models obtained by MGGP/ERR were compared with those obtained by the LS/ERR ap-

proach as a reference. The LS/ERR algorithm obtained better results than the MGGP/ERR al-

gorithm in selecting structures for systems with short-term dependencies. As for the hydraulic

pump dataset, the MGGP/ERR approach was superior, and it was possible to use higher degrees

of non-linearity — which would demand a much higher computational cost, even unfeasible if

the LS/ERR approach were used.
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5 MATERIALS AND METHODS

5.1 Proposed Algorithm

This dissertation proposes a multi-objective MGGP approach to identifying non-linear

systems, specifically in modeling soft sensors for the replacement of PDGs in the deepwater

oil extraction industry. A toolbox developed by Castro (2021) is used to implement the MGGP

approach. In addition to the classic genetic operators (presented in Section 4.2), the toolbox pre-

sents two other mutation operators: high-level mutation and low-level mutation - both inspired

by two recombination operators previously presented (i.e., high-level crossover and low-level

crossover).

The first, high-level mutation, randomly selects a gene from the individual and replaces

it with a new one. The second, low-level mutation, acts within the individual’s MGGP gene,

exchanging a subtree for a new randomly generated subtree, precisely like the GP subtree mu-

tation operator (presented in Subsection 4.1.4). Another relevant point is that, following the

guidelines presented for GP in Poli, Langdon and McPhee (2008), an individual in which the

recombination operator is applied cannot also experience the mutation operator. The parameters

to configure and run the MGGP toolbox are:

• population size (popSize): defines the population size of individuals that the algorithm

will use;

• crossover probability (CXPB): defines the probability that a pair of MGGP individuals

crossover through one of the recombination genetic operators;

• mutation probability (MT PB): defines the probability of an individual being mutated

through one of the mutation operators, if it has not participated in any recombination

operation;

• maximum GP height (maxHeight): limits the maximum size of the GP tree in relation to

its height;

• maximum number of MGGP terms (maxTerms): limits the maximum number of regres-

sors an MGGP individual can have;

• elite size (elite): sets the percentage of individuals from the previous generation’s popu-

lation that can remain in the next generation;
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• number of variables (numberO fVariables): defines the number of total variables that the

algorithm will process (inputs and outputs). It is important to emphasize that the tool-

box only works with single-input single-output (SISO) and multiple-input single-output

(MISO) models;

• maximum delay (maxDelay): defines the maximum value that the back-shift operator

(q−1,q−2, ...,q−i) can apply to the model’s regressors. This operator is responsible for

automatically determining the lag in the models;

• functions set: by default the toolbox has only the multiplication function in the primitive

set of functions used as nodes in GP individuals. However, it is possible to add other

functions to the set (e.g., division, exponentiation, etc.).

The proposed MGGP execution routine is similar to other EA approaches. It starts with

a random population of individuals that is evaluated. Once this is done, the generational natural

evolution process starts (in a loop) as follows:

1. Using natural selection by tournament, parents are selected;

2. Each pair receives a random recombination probability. If smaller than CXPB, the cros-

sover happens;

3. Individuals that did not undergo recombination receive a random probability of muta-

tion. If smaller than MTPB, the mutation happens;

4. The new individuals are then evaluated;

5. The elitism operator is applied to select the best offspring plus the elite of the previous

generation.

Upon reaching the pre-established number of generations, the execution is completed,

and, as it is a multi-objective problem, a Pareto-optimal is generated. Then, the Pareto indivi-

duals are validated, and a decision criterion is applied to choose the most appropriate MGGP

model for the problem (the decision criteria is described in Subsection 5.2.3). In the diagram

illustrated in Figure 5.1, the algorithm flowchart is presented.

It is essential to highlight that for the multi-objective approach of MGGP (MGGPMO)

present in the toolbox, the genetic operators, the individual representation structure, the concept
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of evolution and evaluation of the standard MGGP algorithm are implemented on the Non-

dominated Sorting Genetic Algorithm II (NSGA-II) (DEB et al., 2000; DEB et al., 2002) fra-

mework of the Distributed Evolutionary Algorithms in Python (DEAP) library. In this way, the

concepts of Pareto dominance and crowding distance are used to select the parents for genetic

operators application and select the individuals for the next generation; a brief explanation of

these processes is presented in Subsection 5.3.

Finally, it is essential to emphasize that MGGP models use NARX polynomial (in a tree

approach) representation and the programming language used in the implementation is Python.

5.2 Individuals Evaluation

This MGGP proposal differs from the standard approach in step 4, described in Section

5.1, i.e., during the evaluation of new individuals. Seeking to overcome the expected difficulty

of datasets obtained from historical data not being sufficiently informative about different points

of operation of the system, which is the case in the present work, the auxiliary information is

used during the modeling process (grey-box modeling). Auxiliary information is any missing

information (e.g., symmetry properties of the system (CHEN et al., 2008), static nonlinearity

(AGUIRRE; ALVES; CORRÊA, 2007), etc.) not represented in the dynamic dataset used du-

ring the modeling process (FREITAS; BARBOSA; AGUIRRE, 2021). This work used static

regime data (steady-state data) as auxiliary information.

In order to implement the use of auxiliary information in MGGP, a multi-objective ap-

proach was necessary, as already mentioned briefly. Thus, the evaluation function minimized by

MGGP has three objectives, namely i. minimize the error in the dynamic regime, ii. minimize

the error in the static regime and iii. minimize the number of regressors in the MGGP model.

For the first objective, the models are simulated using the one-step-ahead prediction. For the

second objective, the simulation is performed using the approach presented in Freitas, Barbosa

and Aguirre (2021) (in Subsection 5.2.1 the concept is presented). In both cases, the RMSE

is calculated between the value found by the simulations and the real value coming from the

dataset.

Another relevant point for evaluating the individual is parameter estimation. This step

takes place before simulating the models for later RMSE calculation. In this algorithm, the

parameters of the models are calculated using weighted least squares (the concept is presented in

Subsection 3.2.4.2). This approach is advantageous because it allows weighting the importance
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Figure 5.1 – Algorithm flowchart.
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of dynamic data and static data in estimating model parameters. In this work, this weighting

is done by a λ variable that varies from 0 to 1, with steps of 0.1, where 0 indicates the lack

of static regime data in the estimation of the parameters using WLS and 1 the lack of dynamic

regime data.
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During the algorithm’s execution, each candidate for the final MGGP model, formed by

a structure of regressors, has its parameters estimated eleven times, one for each λ value. In

this way, eleven models are generated for the same structure of regressors. These eleven models

are evaluated in dynamic and static regimes, immediately eliminating unstable models. Among

the remaining models, the Euclidean distance concept is used (the way this concept is used

is better explained in Subsection 5.2.2) to select the best model, and the other are discarded.

The only remaining model is returned to the MGGP population, with its evaluation for the

three objectives. This same process is repeated for all individuals in the population, during the

evaluation step, at each generation of the algorithm. This process is also presented visually in

Figure 5.2 for better understanding.

Figure 5.2 – Individual evaluation process.

MGGP model
without

evaluation

Parameter estimation
using WLS (λ = 0)

Parameter estimation
using WLS (λ = 0.1)

Parameter estimation
using WLS (λ = 0.2)

Parameter estimation
using WLS (λ = 0.9)

Parameter estimation
using WLS (λ = 1)

Simulate MGGP Model Candidate

(λ = 0) (in dynamic and static regime)

Simulate MGGP Model Candidate

(λ = 0.1) (in dynamic and static regime)

Simulate MGGP Model Candidate

(λ = 0.2) (in dynamic and static regime)

Simulate MGGP Model Candidate

(λ = 0.9) (in dynamic and static regime)

Simulate MGGP Model Candidate

(λ = 1) (in dynamic and static regime)

Is the model
stable?

Is the model
stable?

Is the model
stable?

Is the model
stable?

Is the model
stable?

Delete
model

Yes

No

Select the MGGP
model with the

smallest Euclidean
distance from the

utopian point (only
one model). The

remaining models
are deleted.


Yes MGGP model
evaluated


Calculate RMSE in
dynamic regime (X

coordinate) and static
regime (Y coordinate)
forming a point (X,Y).

Delete
model

Yes
Calculate RMSE in
dynamic regime (X

coordinate) and static
regime (Y coordinate)
forming a point (X,Y).

Calculate RMSE in
dynamic regime (X

coordinate) and static
regime (Y coordinate)
forming a point (X,Y).

No

Source: Author (2022)

Finally, as already mentioned, the algorithm’s execution ends when the number of pre-

defined generations is reached. Then, all the resulting Pareto-optimal models are validated

through free-run simulation, both in dynamic and static regimes. In the case of the dynamic

regime, the dynamic validation dataset, Zv, is used. For the static regime, the same dataset used

for training, Zs, is used; however, as already mentioned, the free-run simulation is used in the

validation. Once this is done, the decision criteria (presented in Subsection 5.2.3) is used to

choose the most appropriate final MGGP model.

5.2.1 Approach by Freitas, Barbosa and Aguirre (2021) for static data

When trying to use auxiliary information about the static regime, together with the dy-

namic data of a system, free-run simulation is often used to minimize the error (e.g., MSE,

RMSE, etc.) in the static regime. The cost function, Js, that is commonly used is as follows:
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Js =

√
1
N

N

∑
i=1

(yi(k)− ŷi(k))2, (5.1)

where ŷi(k) corresponds to the free-run simulation for each operating point (model fixed points),

N is the number of operating points in the dataset (number of samples in Zs), and y(k) the real

value of the operating point coming from the dataset. It is possible to see that when computing

ŷi(k), it is necessary to find the fixed points of the model, which is usually a high computational

cost task. Seeking to overcome this, Freitas, Barbosa and Aguirre (2021) sought a way in

which the fixed points of the model do not need to be explicitly calculated computationally or

analytically. This is done by minimizing the following cost function (FREITAS; BARBOSA;

AGUIRRE, 2021):

Ĵs =

√√√√ 1
Ns

Ns

∑
i=1

(ȳi −F
(
ψ̄i, θ̂

)
), (5.2)

where the hat over Js indicates that 5.2 is an approximation of 5.1. ȳi can be seen as “tar-

get value” coming from the static data, i.e., the operating points in static regime, ψ̄i =

[1 ȳi · · · ȳi ūi · · · ūi] ∈ R1+ny+nu and ūi the corresponding input for each output ȳi. It needs

to be noted that F
(
ψ̄i, θ̂

)
is simply the one-step-ahead prediction of the model (FREITAS;

BARBOSA; AGUIRRE, 2021).

Freitas, Barbosa and Aguirre (2021) claim that both 5.1 and 5.2, computed over Zs, for

each input ūi, have global minima Js = Ĵs = 0 at the model fixed points ȳi, j = 1,· · · , Ns. Proof for

this lemma and more information can be found in (FREITAS; BARBOSA; AGUIRRE, 2021).

5.2.2 Euclidean distance model selection

Following the flow of the MGGP algorithm, within the individual evaluation stage, right

after estimating the parameters (for eleven different λ values), the models are simulated in

dynamic and static regimes (unstable models are discarded), as it is possible to observe in

Figure 5.2. The output values obtained for both regimes are then compared with the real values

from the dataset, and the RMSE is calculated for the dynamic regime and the static regime.

To determine which model, among the others, is the best, the Euclidean distance is used.

For this concept to be employed, each model is represented by a point with two coordinates

Pi =(RMSEA,RMSEB), where RMSEA is the RMSE in the model’s dynamic regime and RMSEB

is the RMSE in the model’s static regime. Once this is done, L2 normalization is applied to the
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set of points representing the models to avoid distortions in the results caused by very discrepant

error values.

After that, the utopian point (U = (A,B)) is defined. This point is formed by the smallest

normalized value of RMSE in the static regime (A) and the smallest normalized value of RMSE

in the dynamic regime (B) existing among the remaining stable MGGP models. These values

will always be very close to zero due to normalization, which makes sense because the algorithm

is doing a minimization (seeking the smallest possible value for the objectives, i.e., zero). With

the utopian point defined, the Euclidean distance between it and each of the existing points,

eleven at the most, is calculated. The Euclidean distance, in two dimensions, is defined as

follows:

d(U,Pi) =
√

(A−RMSEAi)
2 +(B−RMSEBi)

2, (5.3)

where i represents the individual point P (can range from 1 to 11) and d(U,Pi) is the Euclidean

distance between point U and point Pi.

The model whose point has the smallest Euclidean distance is chosen because it has

RMSE values, in both regimes, closer to zero, i.e., closer to the desired result – the other models

are deleted. Two highlights are essential. The first is that this process is carried out for each

population individual (once per generation). Second, the evaluations (RMSE values and the

number of terms) that the chosen MGGP model returns together with itself (regressors and

parameters) to the population are the original non-normalized values.

5.2.3 Decision criteria

After finishing the execution of the multi-objective MGGP algorithm, all the models

found and arranged in the Pareto-optimum are submitted to free-run simulation in dynamic and

static conditions. It is worth noting that, just as it is done during the algorithm’s execution, all

models have their parameters estimated eleven times (one for each λ value); however, diffe-

rently, all resulting models are stored in Pareto, regardless of the result of the simulation. For

example, if at the end of the algorithm execution the Pareto has 100 MGGP models, after the

simulation, the Pareto will be composed of 1100 MGGP models, i.e., there will be models with

precisely the same regressor structure but with different parameter values, which makes them

different models.
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That said, the simulation results are then compared, through the RMSE, with the real

data. The error values encountered are then analyzed in order to choose the final MGGP model,

as follows:

1. All unstable models in the dynamic regime, in the static regime or in both are excluded

from Pareto;

2. All models are ranked with respect to their dynamic RMSE, from lowest value to

highest;

3. The model with the smallest dynamic regime RMSE is chosen as the final MGGP model.

5.3 Parent selection and next-generation individuals selection

As already mentioned, the MGGPMO algorithm presented is built on the NSGA-II fra-

mework. It uses the concepts presented by Deb et al. (2002) of crowding distance and non-

dominated ranking when selecting parents to apply the MGGP genetic operators and when

selecting individuals for a new generation.

Therefore, following the diagram presented in Figure 5.1, after creating the initial popu-

lation and evaluating each individual, an initial Pareto set is created. The next step is to select

individuals (parents) to apply genetic operators and generate offspring. To this end, NSGA-II

performs two calculations for each individual in the population.

The first is the degree of non-dominance of each individual in the Pareto set. In which

individuals are classified according to the frontier they belong to. The first frontier (F1), the

optimal frontier, is composed of individuals that any other individual does not dominate; they

receive zero as degree (the lower the degree, the better the model). The individuals of the second

frontier (F2) are the individuals dominated only by the individuals of the F1 and receive one as

degree; this same process continues until all individuals are addressed in a frontier and have

their degree of non-dominance. For more information on how the degree of non-dominance is

calculated, see Deb et al. (2002). Figure 5.3 illustrates and exemplifies the concept of bounda-

ries described.

The second value calculated for each individual is the crowding distance dc. This calcu-

lation is done using the average distance of the two adjacent solutions (known as cuboid, shown

in Figure 5.4) to the individual in which dc is being computed. For a two-objective optimization,

the calculation of dc is done as follows:
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Figure 5.3 – Non-dominated sorting.
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dc =
f s+1
1 − f s−1

1
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1 − f min

1
+

f s−1
2 − f s+1

2
f max
2 − f min

2
(5.4)

where s is the individual on which dc is being calculated, s+1 and s−1 are the two individuals

adjacent to s, f (s+1)
1 is the fitness of the first objective of the individual s+ 1, f (s−1)

1 is the

fitness of the first objective of the individual s− 1, f max
1 is the highest fitness found for the

first objective in the population and f min
1 is the lowest fitness found for the first objective in the

population. f (s+1)
2 , f (s−1)

2 , f max
2 , and f min

2 are, respectively, the same values already mentioned

but calculated for the second optimization objective.

Figure 5.4 – Calculation of the crowding distance dc.
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With these two values calculated for all individuals, the tournament selection operator

called crowded-comparison is applied. In this method, two individuals are randomly selected

from the population, and their non-dominance degree values are compared; the individual with

the lowest value is chosen to be one of the parents. If the two individuals are on the same

frontier, i.e., having the same non-dominance value, the value of dc is compared, the individual

with the highest value is chosen. The same procedure is performed once more to select one

more parent. With all pairs of parents formed, the algorithm follows and applies the MGGP

genetic operators, as shown in the diagram in Figure 5.1.

Another point of the proposed algorithm in which the degree of non-dominance and

crowding distance are used is in the application of elitism at the end of a generation to select

which offspring and individuals from the previous generation will be the “survivors” for the

next. This is done as follows. First, the individuals are ranked by the degree of non-dominance,

the individuals with the lowest degree are selected for the next generation, if the F1 is not

formed by the necessary amount of individuals to form the population, the individuals of the F2

are selected, this process continues until to exceed the number of individuals in the population

defined by the user. The individuals from the last frontier added to the population are then

ranked by their value of dc until reaching the number of individuals needed to complete the

population, the individuals left over the limit, and from frontiers Fi not added to the population

are eliminated. The described process is illustrated in Figure 5.5.

Figure 5.5 – Selection of individuals for new generation.
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6 A GREY-BOX MULTI-OBJECTIVE MGGP APPROACH

In this chapter, the algorithm proposed in Chapter 5 is applied to three different datasets,

one dataset with simulated data and two datasets with real problem data. The simulated dataset

is used to validate the methodology and justify the approach’s choices made. Comparisons are

made, such as different ways to calculate the utopian point in the Euclidean distance selection

approach, comparison of model parameter estimation between LS, WLS, and ELS, comparison

between minimization with two and three objectives, among other analyses.

The second dataset, the hydraulic pump dataset, is used to verify the generalization and

efficiency of the methodology in real problems beyond oil and deepwater extraction. Finally,

the methodology is applied to the deepwater oil well dataset, which is the motivational problem

of this work. Each of these problems, with their respective dataset, are better explained in the

following sections. It is also presented which toolbox parameters were used to carry out each

of the experiments, and, finally, the results are presented, compared, and discussed.

6.1 The Piroddi and Spinelli (2003) model

To validate the proposed algorithm, a dataset with simulated data (described in the fol-

lowing Subsection 6.1.1) was used. This is interesting because it allows to know precisely if

the MGGP algorithm finds the correct regressors for a model and if the parameters are being

estimated correctly. Therefore, several experiments were carried out (presented in the following

subsections), some already briefly mentioned, namely: different ways to calculate the utopian

point in the Euclidean distance selection approach, comparison of model parameter estimation

between LS, WLS, and ELS, comparison between minimization with two and three objectives,

comparison between Freitas, Barbosa and Aguirre (2021) approach (FBA prediction) and free-

run simulation for static data, comparison of the execution time of the proposed algorithm using

the FBA prediction and using free-run simulation, finally, an analysis of the efficiency of the

proposed methodology in correctly finding the regressors of the original model is presented.

6.1.1 Dataset

In Piroddi and Spinelli (2003) the following model was presented:
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w(k) = 0.75w(k−2)+0.25u(k−1)−0.2w(k−2)u(k−1),

y(k) = w(k)+ e(k),
(6.1)

where u ∈ R is the input, w ∈ R the noiseless output, y ∈ R the output with the noise e(k) ∼

WGN(0,0.1σw), where WGN stands for the White Gaussian Noise.

Performing simulations with 6.1, three datasets were generated: dynamical training da-

taset, Zd , validation dataset, Zv, and static dataset, Zs. As in Freitas, Barbosa and Aguirre

(2021), the Zd was obtained using u ∼ WGN(−0.02,0.04) and had 100 samples (Nd = 100).

On the other hand, the Zv has 2000 samples (Nv = 2000), with no noise in the output (e = 0).

Finally, the Zs were obtained analytically and have 50 samples (Ns = 50) with values equally

spaced within range u ∈ [−1,3] and with zero mean noise and standard deviation σ = 0.02 in

the output. It is essential to mention that the Zv data were generated over a broader operating

range than the one used for Zd to verify the generalizability of the obtained models.

6.1.2 Results and discussion

In the next subsections the results already mentioned in the introduction of Section 6.1

are presented and discussed.

6.1.2.1 Euclidean distance model selection approach

As presented in Chapter 5, the proposed methodology estimates the parameters using

weighted least squares, which creates the need to select the best model among the eleven avai-

lable models (the number of models may be smaller, as explained in Subsection 5.2.2). For this

purpose, the Euclidean distance between the points, which represent the models, and a U point

is used. Three different ways of defining the U point were tested, namely: the U point being the

mean value between the analyzed points, the U point being the median among those analyzed,

and, finally, point U being the utopian value among the points (the last approach is explained

in Subsection 5.2.2). Three objectives were used as a cost function: i. minimize the error in

the dynamic regime, ii. minimize the error in the static regime and iii. minimize the number of

regressors in the MGGP model.

The parameters used in the MGGP toolbox to identify the system were the same for the

three approaches mentioned above, differing only in the way of defining the U point, namely:

popSize = 100;
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CXPB = 0.9;

MTPB = 0.1;

n_gen = 250;

maxHeight = 5;

maxTerms = 20;

elite = 10;

maxDelay = 3 (q1,q2,q3);

numberOfVariables = 2;

primitive function: multiplication function.

The results of these experiments consist of the mean RMSE value and its respective

standard deviation of each of the three objectives for each of the three approaches. To obtain

these results, the algorithm was run thirty times for each approach, and, in this way, ninety

Pareto-optimal were generated. Then, all stable models of these Pareto-optimal were submitted

to free-run simulation in static and dynamic regimes, and their respective RMSE was calculated.

The decision criterion (presented in Subsection 5.2.3) is used in each Pareto-optimal selecting

the best model, so thirty models are selected for each approach; it is on the RMSE values of

these models that the final result is calculated. The results for each of the approaches are shown

in Table 6.1 together, for comparison purposes, with the RMSE values of Model 6.1 submitted

to free-run simulation.

Table 6.1 – Error results (RMSE) in free-run simulation for dynamic (Zv) and static (Zs) regime. Mean
and standard deviation for thirty runs of each approach.

Approach RMSE (dynamic regime) RMSE (static regime) # number of regressors
Utopian point 0.0619 ± 0.0220 0.4007 ± 0.6799 5.1333 ± 1.7269

Median 0.0817 ± 0.0198 0.3439 ± 0.4401 6.7333 ± 2.7921
Mean 0.0741 ± 0.0200 0.3378 ± 0.2493 6.6667 ± 2.3570

Model 6.1 1.2873×10−15 0.2069 3

Source: Author (2022)

As shown in Table 6.1, the selection approach by Euclidean distance using the utopian

point is the one with the smallest error in the dynamic regime, and it is also the one with the

closest mean number of regressors to Model 6.1. On the other hand, the Utopian Point approach

has the highest static regime error among the proposals, with the Mean approach being better

in this scenario. It is also possible to observe that both the Mean approach and the Median

approach have an average value of the number of regressors farther from the real value (three
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regressors), in addition to having a higher standard deviation value, which also demonstrates

that the larger number of regressors did not contribute to a better dynamic regime behavior in

this scenario.

In order to also compare the quality of the Pareto-optimal found by each of the ap-

proaches, the Hypervolume (HV) indicator (ZITZLER; THIELE, 1998) was used, one of the

most applied quality indicators for multi-objective problems (LI; YAO, 2019). It calculates the

volume of all rectangular bands up to a given reference point. Therefore, hypervolume is an

indicator of maximization, i.e., the greater the hypervolume value found for an algorithm, the

better the convergence and diversity of its result (for more information on the Hypervolume

indicator, see Guerreiro, Fonseca and Paquete (2020)).

In this work, for this dataset, before applying the HV indicator, it was considered that

all models found that have RMSE greater than five in static or dynamic regimes are considered

unstable. After that, all RMSE values and the number of regressors from all ninety Pareto-

optimal were normalized between zero and one. Thus, the reference point selected for the HV

indicator was (1,1,1) for the three approaches. Therefore, the HV indicator was applied to

each of the thirty Pareto-optimal of each approach, and then the mean and standard deviation

between the thirty results of each approach were taken – these results are shown in Table 6.2.

Table 6.2 – Result of the HV indicator for the three approaches (mean, median and utopian point). Mean
and standard deviation for thirty runs of each approach.

Approach Hypervolume indicator
Utopian point 0.9113 ± 0.0087

Median 0.8857 ± 0.0201
Mean 0.8876 ± 0.0134

Source: Author (2022)

It is possible to observe in Table 6.2 that, in absolute values, the selection approach

through the Euclidean distance using the utopian point obtains better Pareto-optimal results. In

order to confirm this statement, the result presented in Table 6.2 was also analyzed using the

One-way ANOVA variance analysis, at a level of 5% (0.05) significance, and then tested with

the post hoc Tukey test. The results of both tests are shown in Table 6.3.

Analyzing Table 6.3, it is possible to see that the p-value is 4.9021× 10−10, i.e., less

than 0.05, so it is possible to reject the null hypothesis (“there is no difference between the

results in Table 6.2”). Observing the results of Tukey’s post hoc analysis, it is possible to see

that there is no statistically significant difference between the results of the Mean and Median
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Table 6.3 – One-way ANOVA analysis and post hoc Tukey test for the results in Table 6.2

One-way ANOVA f -value p-value
- 27.7038 4.9021×10−10

post hoc Tukey Null hypothesis: Is the performance between the algo-
rithms different?

Mean and Median - No
Mean and Utopian point - Yes
Median and Utopian point - Yes

Source: Author (2022)

approaches (the null hypothesis “Is the performance between the algorithms different?” is

rejected), however, there is a statistically significant difference between them and the utopian

point approach. In this way, as already mentioned, the HV indicator is a maximization indicator,

and, as the result value of the utopian point approach is greater than the result of the other two

approaches, it is possible to say that, indeed, use this approach, on average, results on better

models.

6.1.2.2 Different approaches to parameter estimation

In order to verify whether the use of auxiliary information in parameter estimation is

relevant to obtain better models by the proposed methodology, the MGGP algorithm was run

with the same parameters as in Subsection 6.1.2.1, together with selection by the Euclidean

distance with the utopian point and also using the same three objectives. However, three diffe-

rent parameter estimation forms were tested: i. least squares, ii. extended least squares and iii.

weighted least squares. The last tested approach, WLS, uses auxiliary information, as described

in the proposed methodology (Section 5.2), which weights the data relevance in dynamic and

static regimes by the variable λ , as also done in Freitas, Barbosa and Aguirre (2021).

As in Subsection 6.1.2.1, for each of the approaches, the algorithm was run thirty times,

generating a total of ninety Pareto-optimal that were subjected to free-run simulation, in the

static and dynamic regime, and obtained their respective RMSE calculated for each regime, the

mean and standard deviations were taken for each approach. These results are presented in

Table 6.4, together, for comparison purposes, with the RMSE values for Model 6.1, which was

also submitted to free-run simulation.

Analyzing Table 6.4, it is possible to see that the three approaches obtained similar

RMSE results in the dynamic regime, however, the approach that uses WLS in the parameter
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Table 6.4 – Error results (RMSE) in free-run simulation for dynamic and static regime. Mean and stan-
dard deviation for thirty runs of each parameter estimation approach.

Approach Dynamic regime Static regime # of regressors λ value
WLS 0.0619 ± 0.0220 0.4007 ± 0.6799 5.1333 ± 1.7269 0.09 ± 0.03
ELS 0.0614 ± 0.0387 0.4408 ± 0.5174 8.9667 ± 3.4008 -
LS 0.0696 ± 0.0722 0.4357 ± 0.4484 8.0333 ± 3.0274 -

Model 6.1 1.2873×10−15 0.2069 3 -

Source: Author (2022)

estimation obtained results approximately 10% better in the static regime than the other two

approaches, however, this gain is not statistically significant when taking into account the stan-

dard deviations of each result. Another point that the approach that uses weighted least squares

stands out is the average number of regressors in the models found, being 1.74 times smaller

than the ELS approach and 1.56 times smaller than the LS, being closer to the real value of three

regressors. Finally, another data presented is the average λ value of the Paretos’ stable models

encountered, showing that a good balance between the data from the two regimes is 90% for

dynamic data and 10% for static data.

As in Subsection 6.1.2.1, the HV indicator was used to verify which parameter esti-

mation approach obtains, on average, the best Pareto sets - the results are displayed in Table

6.5. As it is possible to observe, in absolute terms, the approach WLS, which uses the auxili-

ary information to aid parameter estimation, is the best. In order to confirm this observation,

the ANOVA variance analysis was also performed, with a 5% (0.05) significance level, together

with the post hoc Tukey test (the results are shown in Table 6.6). As the p-value (2.4137×10−5)

is less than 0.05, the null hypothesis (“there is no difference between the results presented in

Table 6.5.”) is rejected. Observing the results of Tukey’s post hoc test, it is possible to see

that there is a statistically significant difference between the WLS approach and the other two

approaches (LS and ELS). Furthermore, as the mean value of the HV indicator of the WLS

approach is the highest, it is possible to state that this approach is the best to perform parameter

estimation in this case.

In order to compare the result obtained using the WLS for parameter estimation with

other works in the literature, the best model under the static regime, the best model under the

dynamic regime, and the model in which the approach was able to perfectly find the three

regressors of Model 6.1, here called the Perfect Model (with their respective λ ), were selected

among the thirty Pareto sets. These models are compared with two Freitas, Barbosa and Aguirre
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Table 6.5 – Result of the HV indicator for the three approaches (WLS, ELS and LS). Mean and standard
deviation for thirty runs of each parameter estimation approach.

Approach Hypervolume indicator
WLS 0.9113 ± 0.0087
ELS 0.8618 ± 0.0515
LS 0.8483 ± 0.0741

Source: Author (2022)

Table 6.6 – One-way ANOVA analysis and post hoc Tukey test for the results in Table 6.5

One-way ANOVA f -value p-value
- 12.0436 2.4137×10−5

post hoc Tukey Null hypothesis: Is the performance between the algo-
rithms different?

ELS and LS - No
ELS and WLS - Yes
LS and WLS - Yes

Source: Author (2022)

(2021) results, the former uses the Constrained least squares (CLS) for parameter estimation,

and the latter uses the weighted least squares (WLS). The structure used in Freitas, Barbosa and

Aguirre (2021) work has five regressors and was obtained using the same approach as Mendes

and Billings (2001). All RMSE values for the cited models are shown in Table 6.7.

Table 6.7 – Comparison between models. Error results (RMSE) in free-run simulation for dynamic and
static regime, number of regressors and lambda λ value.

Model Dynamic regime Static regime # of regressors λ value
Perfect Model . 0.0568 0.2020 3 0.1
Best in Static 0.0508 0.1973 5 0.1
Best in Dynamic 0.0265 0.2002 8 0.1
WLS by Freitas, Barbosa
and Aguirre (2021)

0.0557 0.2027 5 0.1

CLS by Freitas, Barbosa
and Aguirre (2021)

≫ 102 - 5 -

Model 6.1 1.2873×10−15 0.2069 3 -

Source: Author (2022)

Analyzing the results in Table 6.7, it is possible to see that the Best in Dynamic model

actually has the best result for the dynamic regime, but at the cost of having eight regressors,

i.e., five regressors more than the correct one. The Best in Static model, on the other hand,

is only slightly better than the Perfect Model and the Best in Dynamic model for the static
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regime, and for that, it has five regressors, i.e., two more than correct, besides having an RMSE

in the dynamic regime two times worst when compared to the Best in Dynamic model and

approximately equal to the Perfect Model. The WLS by Freitas, Barbosa and Aguirre (2021)

model has an RMSE in dynamic and static regime equivalent to the Perfect Model and the

Best in Static model. Interestingly, it shows that using static data to search for regressors leads

to equivalent results in a static regime, even when compared with models that used auxiliary

information to estimate parameters. The CLS by Freitas, Barbosa and Aguirre (2021) model,

on the other hand, has a lower performance when compared to all others in the dynamic regime,

in addition to having two more regressors than the correct one. Another interesting point that

can be observed is the value of lambda λ as 0.1 for all models that used the approach proposed

in this work as well as for the models found by Freitas, Barbosa and Aguirre (2021), which

reaffirms that the proportion of 90% for dynamic data and 10% for static data is truly favorable

for better results with this dataset.

Finally, the parameters found for the Perfect Model using WLS are presented in Table

6.8 together with the original parameters of Model 6.1 used to generate the dataset. It is possible

to notice that the values found are very close to the correct ones, which demonstrates again that

it is advantageous to use the WLS and auxiliary information to estimate parameters. Part of

the free-run simulation of Perfect Model and Model 6.1 over validation dataset Zv is shown in

Figure 6.1.

Table 6.8 – Parameter values from the Perfect Model, estimated using WLS, and from Model 6.1.

Model θ1 θ2 θ3
Perfect Model 0.78 0.24 -0.17
Model 6.1 0.75 0.25 -0.20

Source: Author (2022)

6.1.2.3 Number of objectives in the individual’s evaluation

The approach proposed in Chapter 5 has three objectives, namely: i. minimize the

error in the dynamic regime, ii. minimize the error in the static regime and iii. minimize

the number of regressors in the MGGP model. In order to compare the performance of the

methodology, three tests were performed. In the first test, the methodology was implemented

with a single objective, which is i. minimize the error in the dynamic regime. The second

test implemented the multi-objective methodology with two objectives, namely i. minimize the
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Figure 6.1 – Free-run simulation over validation dataset Zv, where system (presented in 6.1) output y is
the black line and Perfect Model the red line.
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error in the dynamic regime and ii. minimize the error in the static regime. Finally, in the

third test, the three objectives were applied. The average results of RMSE, in dynamic and

static regime, and the number of regressors found for each of the three tests are presented in

Table 6.9. It is important to note that, as done in Subsection 6.1.2.1, for each of the tests the

algorithm was executed thirty times, later all models of Pareto sets were submitted to free-run

simulation and their RMSE values were calculated. The Model 6.1 is also presented in the table

for reference purposes.

Table 6.9 – Error results (RMSE) in free-run simulation for dynamic and static regime. Mean and stan-
dard deviation for thirty runs of each approach (one, two and three objectives).

# of objectives Dynamic regime Static regime # of regressors λ value
1 0.2863 ± 0.1839 1.1538 ± 0.7799 13.4286 ± 2.5555 0.4428 ± 0.3774
2 0.1484 ± 0.1332 0.8538 ± 0.9702 8.4333 ± 3.1057 0.1967 ± 0.2892
3 0.0619 ± 0.0221 0.4007 ± 0.6799 5.1333 ± 1.7269 0.0900 ± 0.03

Model 6.1 1.2873×10−15 0.2069 3 -

Source: Author (2022)

When analyzing Table 6.9, it is possible to see that the average performance of the mo-

dels found improves strongly with the increase in the number of objectives used during training.

For example, the RMSE value in the dynamic regime with three objectives is approximately

78.5% lower than the result using only one objective and approximately 58% lower than the
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result with two objectives. This same behavior is also observed for the RMSE value in the static

regime, in which the three-objective approach had a result approximately 65% lower than that

found with only one objective and approximately 53% lower than the result found with two

objectives.

Another interesting point in Table 6.9 is the lambda λ value of each of the approaches.

Comparing the single-objective approach with the two-objective approach, which includes mi-

nimizing the error in the static regime, it is remarkable that this, more than improving the

behavior in the static regime, reduces, on average, approximately 55.6% the value of lambda,

which demonstrates that the approach with only one objective gives greater importance to the

data in the static regime, trying to compensate the absence of the objective related to the static

regime in the search for regressors. With the addition of the third objective, the importance

given to steady-state data during parameter estimation is reduced again by approximately 54%,

without any harm to the other objectives, on the contrary, performance improves in general.

Finally, it is possible to observe that the number of regressors is also positively impacted with

the use of auxiliary information (second objective) in the search for terms of the MGGP model,

reducing the average number of regressors of the models found by 37%. The use of the third

objective, as expected, also makes the models found by the algorithm more parsimonious, with

the number of regressors on average being 39% lower when compared to the approach that uses

two objectives and, even with a smaller number of regressors, it has, on average, better behavior

in both regimes. Therefore, it is possible to affirm that the addition of two objectives during the

training gives the algorithm a more effective search for regressors, in addition to finding more

parsimonious MGGP models with better performance in both regimes.

Finally, as done in Subsection 6.1.2.1, in order to assess the quality of Pareto sets found

with two and three objectives, the HV indicator was applied. It is important to emphasize that

the approach with only one objective does not naturally generate a Pareto, and for this reason

this approach is not in the comparison. The results of the HV indicator are shown in Table 6.10.

Table 6.10 – Result of the two-dimensional HV indicator for two and three objectives.

# of objectives Hypervolume indicator
2 0.8783 ± 0.1173
3 0.9482 ± 0.0048

Source: Author (2022)
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Looking at Table 6.10, it is possible to see the superiority of the approach that uses

three objectives in relation to two objectives, being 1.08 times greater than its value of the

HV indicator. Therefore, it is possible to affirm that using three objectives implies finding, on

average, Pareto sets with more parsimonious models, in addition to better behavior in dynamic

and static regimes, when compared to the other two approaches. It is important to note that for

the HV indicator of the three-objective approach, the third objective, minimizing the number of

regressors, was not used in the calculation to make a fair comparison with Pareto found by the

two-objective approach (two dimensions vs. two dimensions).

6.1.2.4 Approaches to model simulation in the static regime

In order to verify the efficiency of finding good models when using the approach pro-

posed by Freitas, Barbosa and Aguirre (2021) to simulate the static regime, it is necessary to

compare it with the more traditional way used, the free-run simulation. Thus, the methodology

proposed in this work was implemented, using the same parameters for the MGGP algorithm

of Subsection 6.1.2.1, with the same three objectives, using WLS for parameter estimation and

selection by Euclidean distance with the utopian point. However, for the second objective of

the cost function, RMSE in the static regime, the two forms of the simulation were tested, i.e.,

free-run simulation and the simulation proposed by Freitas, Barbosa and Aguirre (2021).

As in Subsection 6.1.2.1, for the approach that used the form of simulation proposed

by Freitas, Barbosa and Aguirre (2021), the algorithm was executed thirty times, generating

a total of thirty Pareto-optimal sets, which were validated through free-run simulation in the

dynamic and static regime. With these results, the RMSE was calculated for each regime, and

the mean and standard deviation were taken for this approach. For the approach that uses free-

run simulation, the same process with the same parameters was also performed, however, the

MGGP algorithm was executed only once. This was done because the computational cost for

this approach is far higher than the computational cost of the first approach. The execution

times1 of each approach are shown in Table 6.11.

Analyzing Table 6.11, it is possible to see that the computational cost, i.e., the execution

time for the Free-run approach, is approximately nine times the execution time of the approach

presented by Freitas, Barbosa and Aguirre (2021), which is very relevant since, for a dataset

1 All algorithms in this work ran on a computer with the following specifications: Intel® Xeon® CPU
@ 2.20GHz, 13GB RAM and 185GB Disk Memory
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Table 6.11 – Execution time, in hours, for the Freitas, Barbosa and Aguirre (2021) approach and for the
free-run simulation approach.

Approach Execution time (hours:minutes:seconds)
Simulation proposed by Frei-
tas, Barbosa and Aguirre
(2021)

01:07:39 ± 00:20:07

Free-run simulation 09:23:06

Source: Author (2022)

with a larger number of samples, the use of the second approach may become unfeasible. In

order to verify if the models found with the simulation approach proposed here (for static data)

can obtain results similar to those obtained by the models of the traditional approach (free-run

simulation), the best model found for the dynamic regime, and the best model found for the

static regime of each of the approaches was selected. It is extremely important to point out that

this comparison does not aim to verify which approach is better, since the free-run simulation

is at a disadvantage as it was executed only once, while the other one was executed thirty times.

Therefore, the comparison between the approaches is just a reference to verify that the approach

with the lowest computational cost is able to find models with similar behavior (in both regimes)

to the other approach, allowing its use as a form of simulation for the second objective. These

results are shown in Table 6.12.

Table 6.12 – Error results (RMSE) in free-run simulation for dynamic and static regime for the Best in
Static and Best in Dynamic using the Freitas, Barbosa and Aguirre (2021) approach and for
the Best in Static and Best in Dynamic using the Free-run simulation approach.

Approach Dynamic regime Static regime # of regressors λ value
Best in Static

(Freitas, Barbosa
and Aguirre

(2021)) .

0.0508 0.1973 5 0.1

Best in Dynamic
(Freitas, Barbosa
and Aguirre
(2021))

0.0265 0.2002 8 0.1

Best in Static
(free-run)

0.0915 0.1953 7 0.8

Best in Dynamic
(free-run)

0.0288 0.1971 6 0.6

Perfect Model 0.0568 0.2020 3 0.1
Model 6.1 1.2873×10−15 0.2069 3 -

Source: Author (2022)
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Observing Table 6.12, it is possible to see that the Best in Static model, which uses the

Freitas, Barbosa and Aguirre (2021) approach, has RMSE in static regime equivalent to the

Best in Static model found by the Free-run approach and, at the same time, having an RMSE

for the dynamic regime almost 50% smaller even having two fewer regressors. On the other

hand, the Best in Dynamics model, obtained through the Freitas, Barbosa and Aguirre (2021)

approach, has RMSE for the static and dynamic regime equivalent to the Best in Dynamics

model found through the Free-run approach, but the first approach has two more regressors.

These observations corroborate that the approach presented by Freitas, Barbosa and Aguirre

(2021) achieves similar results to the traditional approach, in addition to having a much lower

computational cost. Another relevant information is that both approaches were able to find a

model with only the three correct regressors (they found the Perfect Model) and have results for

the static regime equivalent to Model 6.1, which was used to generate all data.

Finally, as done in Subsection 6.1.2.1, in order to compare the quality of the Pareto

sets found using the proposed methodology compared to the approach that uses the free-run

simulation, the HV indicator was applied. However, as was done for the RMSE analysis, a

comparison was made using the best and the worst Pareto set found, using the proposed metho-

dology, among the thirty available and the Pareto set obtained through the approach that uses

the free-run simulation for the second objective of the cost function. These results are available

in Table 6.13. For information purposes, the mean value, together with its standard deviation,

of the HV indicator for the thirty Pareto sets found is also in the same table.

It is important to emphasize again that the results in Table 6.13 also do not demonstrate

the superiority of any of the approaches since, as already mentioned, the approach that uses

free-run simulation is at a disadvantage. In this way, the results serve only as a reference that

the proposed approach in this work can fulfill its role of including information about the static

curve in the objectives during the search for regressors and finding competitive models and

Paretos.

Through the results presented in Table 6.13, it is possible to observe that the approach

proposed in this work is competitive with the free-run simulation approach since the second

approach has a higher value of the HV indicator by approximately 1% when compared to the

results for the best Pareto set, the same is valid for the average Pareto value found. However,

when the comparison is made with the worst Pareto set found, among the thirty available, the
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Table 6.13 – Result of the HV indicator for the Freitas, Barbosa and Aguirre (2021) approach (Average
of the thirty Pareto sets, Best Pareto set and Worst Pareto set) and for the free-run approach.

Approach Hypervolume indicator
Average of the thirty Pareto sets 0.9113 ± 0.0087

Best Pareto set 0.9198
Worst Pareto set 0.8872

free-run Approach 0.9289

Source: Author (2022)

HV indicator of the free-run approach is approximately only 4.7% higher, which still maintains

the proposed approach competitive.

6.1.2.5 Statistical analysis of chosen regressors

In order to verify the efficiency of the methodology proposed in this work in finding

models with the correct regressors, a survey was carried out as follows: i. the thirty Paretos

found for this methodology were simulated, in the dynamic and static regime, and had their

respective RMSE calculated, ii. the decision criterion presented in Subsection 5.2.3 was applied

to each of the thirty Pareto sets, selecting a total of thirty models, iii. for each of the selected

models, it was verified which regressors it has, iv. the data from all models were consolidated,

and a bar graph was constructed to visualize the results. Figure 6.2 presents the bar graph with

the result of the described process.

Analyzing the graph presented in Figure 6.2, it is possible to observe that the methodo-

logy proposed in this work is efficient in finding the correct regressors for the models since the

three most present regressors in the models, i.e., u[k− 1], y[k− 2] and u[k− 1]y[k− 2], are the

correct regressors of the Model 6.1. More specifically, regressor u[k− 1] appears in 100% of

the selected models, the regressor y[k− 2] in 97% (29 out of 30) of the selected models, and

the regressor u[k−1]y[k−2] appears in 47% (14 out of 30) of the models selected by decision

criterion. This demonstrates that most models found by the algorithm have the correct regres-

sors, even in conjunction with other spurious regressors. Another interesting point that can be

concluded is that if the correct regressors of some system being modeled are not known, the

proposed algorithm, if feasible, can be executed multiple times and, through its results, it will

be possible to verify which are the most present regressors in the models, the tendency is that

the most likely to appear are the correct regressors for the system.
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Figure 6.2 – Number of times the regressor is present in the chosen model in the Pareto sets.
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6.2 The Hydraulic Pumping System

The hydraulic pump system used to generate the data in this section comprises two

centrifugal pumps that feed a hydraulic turbine. These two centrifugal pumps are coupled to

7.5 kW induction motors and variable speed drive systems; the physical plant is shown in Figure

6.3. It is important to emphasize that the piezoelectric pressure transmitter has an uncertainty of

±0.175 mlc (meter of liquid column) (BARBOSA et al., 2011). In the following subsections,

the dataset used is explained, the parameters used in the MGGP algorithm are given, and, finally,

the final results are presented and discussed.

Figure 6.3 – Water pumping system.
BARBOSA et al.: BLACK AND GRAY-BOX IDENTIFICATION OF A HYDRAULIC PUMPING SYSTEM 399

Fig. 1. Water pumping system.

flow increases. Therefore, in realistic testing plants, pressure
must be controlled over a wide range of operating conditions.
Mathematical models are desired to simulate and to design
the closed-loop control of the real pumping system, where the
models output is the system pressure and the models input is
the pumps reference speed.

The hydraulic plant described in this section is composed by
two centrifugal pumps that feed a hydraulic turbine. The hy-
draulic plant should be seen by the turbine as a water head. The
static and dynamic data used in this brief were measured from
this plant, composed by two centrifugal pumps coupled to in-
duction motors of 7.5 kW and variable speed drive systems (see
Fig. 1). The pumps can be operated alone, in parallel or in a se-
ries configuration, always at the same speed. In this work, the
pumps were set in a parallel configuration working at the same
instantaneous speed with a Francis turbine as load [5].

The modelling data presented in this work were collected
from a data acquisition system. The piezoresistive pressure
transmitter error is 0.175 mlc (meter of liquid column).

A. Static Behavior of the System

The static curve of the system was measured by: 1) setting the
turbine distributor blade to 50% and 2) maintaining the pumps
speed fixed at the chosen values—the speed references of both
pumps were maintained the same during this procedure. After
transients died out, the output pressure was recorded for each
reference speed.

During this test, the pumps speed was varied from 750 to
1650 r/min. The static curve is shown in Fig. 2 as well as the
second-order polynomial approximation

(1)

with ,
and where is the pressure in the output pipe and is the
steady-state pump speed. This static curve will be useful during
the gray-box modelling and will also be used to evaluate the
identified models.

Fig. 2. Static curve of the hydraulic pumping system, where ��� is the mea-
sured data and the drawn curve is the second order polynomial approximation
(1).

B. Dynamical Data

One important task that has to be developed during the iden-
tification process is the input signal selection as it can influence
not only parameter estimation, but also structure selection in the
case of nonlinear systems [6].

Since the presence of a “variable time-constant” in the
pumping system dynamics was verified in an earlier work [5],
the input signal was chosen to excite the system at different
operating points using different step sizes. The sampling time

50 ms was selected according to the criterion defined
in [7]. Examples of input-output data are shown in Fig. 3. In
this work 3200 data points from the dynamical data set
were used for model identification and were used for
validation.

III. BACKGROUND

A. NARMAX Models

The NARMAX model [8] can be represented by

(2)

where , and are the maximum lags considered for the
output , input , and noise , respectively, is the
delay and is a nonlinear function with nonlinearity degree

.
The deterministic part of a polynomial NARMAX model

(i.e., a NARX model) can be expanded as the summation of
terms with degrees of nonlinearity in the range .
Each th order term can contain a th order factor in
and a th order factor in and is multiplied by
a coefficient as follows:

(3)

Source: Barbosa et al. (2011)

6.2.1 Dataset

This dataset was taken from the Artificial Intelligence and Automation Research Group

(AIA) website and was first used in Barbosa et al. (2011). It has, as input, the pump speed refe-

rence, measured in revolutions per minute (rpm), and as output, the system pressure, expressed

in meter of liquid column (mlc). The dataset has two types of information about the system,

i.e., data referring to dynamic and static regime behavior.

The dynamic part of the data was obtained through an excitation signal, with variable

amplitude, applied to the system’s input – allowing different pump operating points to be rea-

ched. N = 4000 samples were generated for the dynamic dataset, where N = 3200 are used in

the system modeling and N = 800 in its validation. Figure 6.4a presents the data used during

the modeling of the system and Figure 6.4b shows the validation data.
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Figure 6.4 – Dynamic data for (a) modeling and (b) validation.

(a)

(b)

The static part of the samples is formed by ten trials that represent different points of

operation of the system. In these trials, the speed applied at the system’s input varies from

750 rpm to 1650 rpm, with a step of 100 rpm between the trials. It is important to emphasize

that during the execution of each test, the pump input value is kept constant so that, after some

time, the system goes into stability (its output no longer has any transient components). There-

fore, the system output pressure was registered for each operating point. Finally, the mapping

between input and output values of the pumping system, in the static regime, are presented in

Table 6.14.

6.2.2 Algorithm parameters

The entire methodology described in Chapter 5 was applied to model the hydraulic pump

system. It is essential to highlight that the three objectives were used, and unlike the generation

number used for the Piroddi system (ngen = 250), for this system ngen = 500 was used, the other

parameters remain the same as those already presented, as follows:
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popSize = 100;

CXPB = 0.9;

MTPB = 0.1;

n_gen = 500;

maxHeight = 5;

maxTerms = 20;

elite = 10;

maxDelay = 3 (q1,q2,q3);

numberOfVariables = 2;

primitive function: multiplication function.

6.2.3 Results and discussion

In this experiment, the MGGP model found by the algorithm proposed in this work to

model the hydraulic pump system was as follows:

yMGGP[k] = θ1u[k−1]u[k−6]y[k−1]+θ2y[k−1]y[k−2]

+θ3u[k−1]+θ4u[k−1]2

+θ5u[k−6]2y[k−1]+θ6y[k−4]

+θ7u[k−1]u[k−2]u[k−3]u[k−5]y[k−2]+θ8u[k−1]y[k−1]2

+θ8u[k−1]y[k−1]2 +θ9y[k−1]+θ10,

(6.2)

The MGGP model 6.2 found has l = 5, ny = 4, nu = 6 and 10 regressors – the entire

algorithm training process took 08:19:40 (hours:minutes:seconds). In order to verify the qua-

Table 6.14 – Static test data.

Speed (rpm) Pressure (mlc)
750 3.92
850 5.18
950 6.58
1050 8.26
1150 9.94
1250 11.90
1350 14.00
1450 16.10
1550 18.48
1650 20.86

Source: Author (2022)
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lity of the MGGP model found, it is compared with other approaches already presented in the

literature. In Barbosa et al. (2011), two models were found, which the structure of the models

was obtained through the LS/ERR and its parameters estimated through the ELS method. The

former, Barbosa (15) model, has l = 2, ny = 6, nu = 6 and 17 regressors; the latter model,

Barbosa (17), has l = 3, ny = 6, nu = 6 and 23 regressors. Another work used was Castro and

Barbosa (2020), where the Castro (11) model was found through an MGGP/ERR hybridiza-

tion. This model has l = 5, ny = 9, nu = 12 and 25 regressors. Finally, another model used

was Mota (7), found by Mota et al. (2020), whose structure was found by a multi-objective

approach through the NSGA-II algorithm, with the same three objectives used in this work, but

the representation of the individual in this approach was binary. This model has l = 2, ny = 6,

nu = 6 and 6 regressors. The RMSE results for all models mentioned are displayed in Table

6.15. The values identified as JS (Ident.), JS (Val.), JSF , and NP are respectively the root mean

square error (RMSE) in a free-run simulation of the dynamic regime, using training data, the

RMSE in a free-run simulation in a dynamic regime, using validation data, the RMSE in a

free-run simulation of the static regime and the number of model terms.

Table 6.15 – Results - JS represents free-run simulation RMSE in dynamic regime (training and valida-
tion), JSF represents RMSE in static regime and NP represents the number of terms in the
model.

Model JS (Ident.) [mlc2] JS (Val.) [mlc2] JSF [mlc2] NP (l,ny,nu) λ

Barbosa (15) 1,6158 1,4546 1,2664 17 (2,6,6) -
Barbosa (17) 1,2288 1,0507 0,2455 23 (3,6,6) -
Castro (11) 1,1049 0,9984 0,3926 25 (5,9,12) -

Mota (7) 1,6334 1,4713 0,0812 6 (2,6,6) -
Model 6.2 1,6041 1.4094 0.4061 10 (5,4,6) 0.2

Comparing Model 6.2 with the Barbosa (15) model, it is clear that they have similar

behavior for dynamic data, regardless of whether the data are validation or training. However,

Model 6.2 behaves in the static regime 3.11 times better than the Barbosa (15) model, even

having seven regressors less. Compared with the Barbosa (17) model, it is possible to see that

Model 6.2 has an inferior behavior in both regimes, but to obtain these results, Barbosa (17)

has more than twice as many regressors as the model found by the methodology proposed here.

Comparing Castro (11) with Model 6.2, it is possible to observe that the former, has a better

behavior in a dynamic regime (both for training data and for validation data) and an equivalent

behavior in a static regime; however, to obtain this result, the Castro and Barbosa (2020)’s

approach has 2.5 times more regressors, i.e., fifteen more regressors.
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Finally, when comparing Model 6.2 with the Mota (7) model, it is noticeable that both

behave equivalently in dynamic regime. However, observing the static regime, it is visible that

the Mota (7) model has a better result than all other approaches, being, specifically, 4.9 times

better than the Model 6.2. However, this model was found by NSGA-II algorithm using the bi-

nary representation, which can be a problem if the possibility of regressors is very large, making

its execution unfeasible in some situations. Based on all that has been exposed, it is possible to

state that the MGGP model found stands out in having a competitive result in a dynamic and

static regime, maintaining a lower number of regressors than most other approaches, i.e., being

more parsimonious.

Figure 6.5 shows the output of Model 6.2, in free-run simulation, using the dynamic

validation dataset, Zv, together with the original output for visual comparison of the results.

Figure 6.5 – Comparison between y output (in black), real validation dynamic data, and Model 6.2 output
in free-run simulation (in dashed red).
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6.3 The deepwater oil well process

After validating the methodology proposed in Chapter 5 with data from a stochastic

model, the Piroddi model, and data from a real problem, the pumping system, this entire process

is applied to perform the modeling of a virtual sensor that aims to provide information on

downhole pressure in an offshore oil extraction process, the final objective of this work. In
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the following subsections, the dataset used is explained, the parameters used in the MGGP

algorithm are given, and, finally, the final results are presented and discussed.

6.3.1 Dataset

This dataset is presented in Abreu (2013), Aguirre et al. (2017), and Freitas, Barbosa and

Aguirre (2021), where it was used to model virtual sensors to overcome the lack of information

caused by the failure of the downhole pressure gauge in an oil well that uses the gas-lift system

in deep water – a problem that causes several economic impacts for the oil extraction industry

(as already mentioned in Chapter 2). The dataset consists of five inputs and one output. The

input variables are the pressure before shut down valve (PT3a), the pressure before production

choke valve (PT3), the temperature before production choke valve (TT3), the pressure before

gas-lift shutdown valve (PT4a), the instantaneous gas-lift flow rate (FT4), and autoregressive

terms (all with lags 1,2 and 3); the output is the downhole pressure (PT1). Figure 6.6 presents a

simplified P&ID diagram of a gas-lift oil well, and Table 6.16 lists the tags of some commonly

measured variables.

The process depicted in Figure 6.6 is summarized as follows. The gas-lift header at

the platform (instruments tagged by 4) injects high-pressure gas through the annulus between

tubing and casing string until it reaches an orifice valve located downstream inside the lower

part of the tubing. This process generates bubbles that, when mixed with the multiphase mixture

(pre-oil, gas, and water), make it less dense, which, together with the sufficiently high pressure

in the reservoir, allows its transport from the bottom of the well to the platform. The Christmas

tree (PT2 and TT2), on the seabed, controls the production flow from the seabed to the platform.

At the platform, the shutdown valve (SDV) is available to interrupt production in case of any

emergency, and the choke production valve regulates the production flow rate at the platform

(TEIXEIRA et al., 2014). The production instruments are tagged by 3.

As in the hydraulic pump dataset, the dynamic part of this dataset was divided into two

parts, one for training (Nd = 5000 samples) and the other for validation (Nv = 95000 samples).

The static data (Ns = 32 samples) were manually selected by analyzing the steady-state regimes

of downhole pressure and obtaining mean values of all input variables. Both data were obtained

using a Plant Information Management System (PIMS), with a sampling time of Ts = 1 m

(AGUIRRE et al., 2017). Finally, Figure 6.7a shows instantaneous gas-lift flow rate (FT4),
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Figure 6.6 – Simplified P&ID diagram of a gas-lifted oil well, where TT refers to temperature transmit-
ters and PT refers to pressure transmitters. The corresponding variables are described in
Table 6.16.
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Source: Adapted from Teixeira et al. (2014).

Table 6.16 – Process variables used to obtain models for the gas-lift oil well. Tags correspond to the
instruments shown in Figure 6.6.

Tag Description Units
PT1 Downhole pressure kgf/s2

TT1 Downhole temperature ◦C
PT2 Wet Christmas tree pressure kgf/s2

TT2 Wet Christmas tree temperature ◦C
PT3a Pressure upstream shutdown valve kgf/cm2

PT3 Pressure upstream production choke valve kgf/cm2

TT3 Temperature upstream production choke valve ◦C
PT4a Pressure upstream gas-lift shutdown valve kgf/cm2

TT4 Temperature upstream gas-lift shutdown valve ◦C
FT4 Instantaneous gas-lift flow rate m3/h
PT4 Pressure downstream gas-lift choke valve kgf/cm2

Source: Adapted from Teixeira et al. (2014) and Aguirre et al. (2017).

u1, and downhole pressure (PT1), y, over the training dataset and Figure 6.7b shows the same

variables for validation dataset.
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6.3.2 Algorithm parameters

The entire methodology described in Chapter 5 was applied to model a soft-sensor for

the downhole pressure (PT1). It is essential to highlight that the three objectives were used,

and unlike the generation number used for the Piroddi system (ngen = 250), for this system

ngen = 500 was used, the other parameters remain the same as those already presented, as

follows:

Figure 6.7 – Instantaneous gas-lift flow rate FT4 (u1) and the downhole pressure PT1 (y) from (a) training
Zd ; and (b) validation Zv datasets.
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popSize = 100;

CXPB = 0.9; MTPB = 0.1;

n_gen = 500;

maxHeight = 5; maxTerms = 20;

elite = 10;

maxDelay = 3 (q1,q2,q3);

numberOfVariables = 6;

primitive function: multiplication function.

6.3.3 Results and discussion

In this experiment, the application of the methodology proposed in this work on the

dataset of the oil extraction process, found the following NARX model:

yMGGP[k] = θ1y[k−4]u2[k−4]2u4[k−4]2 +θ2u5[k−1]u5[k−3]

+θ3u3[k−1]+θ4u5[k−1]

+θ5u4[k−1]+θ6y[k−3]

+θ7y[k−1]u5[k−1]+θ8y[k−1]y[k−9]

+θ9y[k−1]+θ10u5[k−4]+θ11y[k−2]+θ12,

(6.3)

The MGGP model 6.3 found has l = 5, ny = 9, nu = 4 and 12 regressors, the complete

training process of the algorithm took about 23:37:40 (hours:minutes:seconds). In order to

compare the result found, which uses auxiliary information in the estimation of parameters, this

same regressors structure (6.3) had its parameters estimated by least squares, an approach that

only uses data from the dynamic regime (training) and does not use data from the static regime.

This model was then subjected to free-run simulation in both regimes and had their respective

RMSE calculated. The RMSE results for these two models are shown in Table 6.17.

Also, seeking to compare the results with other works, two models obtained by Freitas,

Barbosa and Aguirre (2021) were used. Both models use the following multilayer perceptron

(MLP) structure:
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yMLP(k) = θ0 +
10

∑
i=10

θitanh(θi,0 +θi,1y(k−1)+θi,2y(k−2)+θi,3y(k−3)

+θi,4u1(k−1)+θi,5u1(k−42)+θi,6u1(k−136)

+θi,7u2(k−1)+θi,8u2(k−42)+θi,9u2(k−136)

+θi,10u3(k−1)+θi,11u3(k−5)+θi,12u3(k−22)

+θi,13u4(k−1)+θi,14u4(k−5)+θi,15u4(k−22)

+θi,16u5(k−1)+θi,17u5(k−5)+θi,18u5(k−22)),

(6.4)

that has 10 hidden nodes with activation function tanh(·), and linear function in the output

node. The former (Freitas (1)) model presented by Freitas, Barbosa and Aguirre (2021) had its

parameters estimated using the backpropagation and Levenberg-Marquardt algorithm (black-

box approach). The latter Freitas (2) model had its parameters estimated through the weighted

backpropagation method and the Levenberg-Marquardt algorithm, thus being a gray-box ap-

proach, i.e., it uses information from the static regime in the parameter estimation. The RMSE

results for all models mentioned are also shown in Table 6.17. The values identified as, JS

(Val.), JSF , and NPar are respectively the root mean squared error (RMSE) in a free-run simu-

lation of the dynamic regime, using validation data, the RMSE in a free-run simulation of the

static regime and the number of model parameters.

Table 6.17 – Results - JS represents free-run simulation RMSE in dynamic regime (validation, Zv), JSF

represents RMSE in static regime and NPar represents the number of parameters in the mo-
del.

Model JS (Val.) JSF NPar lambda λ

Model 6.3 WLS 5.3494 3.1042 12 0.7
Model 6.3 LS 5.8521 3.7356 12 -

Freitas (1) 6.7420 - 201 -
Freitas (2) 3.7285 - 201 0.54

Analyzing Table 6.17, it is possible to see that Model 6.3 WLS has an RMSE 20% lower

than the Freitas (1) model in the dynamic regime, even though it has only 12 parameters and is

a polynomial model while Freitas (1) is an MLP structure that is naturally more complex. Com-

paring the Model 6.3 WLS with the Freitas (2) model, which uses auxiliary information in the

estimation of parameters, it is possible to see that its performance is approximately 30% worse,

however, Freitas (2) achieves this result by having 201 parameters while Model 6.3 WLS has

only 12. Another point that can be observed is that the performance in the dynamic regime of
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the Model 6.3 LS is superior to the MLP Freitas (1) model, which demonstrates that the metho-

dology, using its three objectives (including the minimization of the error in static regime),

manages to find suitable structures that, even when their parameters are estimated without au-

xiliary information, present a competitive behavior with models found by other computational

techniques whose parameters were estimated in the same way.

Another point that can be analyzed is that the RMSE value in the dynamic regime of

Model 6.3 WLS is only 9.4% lower than the value found for Model 6.3 LS. In comparison, for

Model Freitas (1) with Freitas (2), the reduction is 44%, demonstrating that auxiliary infor-

mation in the estimation of parameters of the models with the MLP approach is more effective

than for the models with the MGGP approach. This fact may have occurred because the im-

plemented MGGP algorithm did not find regressors with a higher delay value (as present in the

MLP structure used by Freitas, Barbosa and Aguirre (2021), e.g., 22, 42, and 136), a fact that

may imply negligence of some information by the model, leading to worse performance. The

difference of only 9.4% between the approach that uses auxiliary information in the estimation

of parameters and the one that does not can be explained by the use of static data in the objecti-

ves of the algorithm during its execution, a fact that allows finding more regressors adapted for

the static regime in general that, even having its parameters estimated only with dynamic data,

it does not have such a big worsening in its performance for the static regime.

Figure 6.8a graphically presents the output result y (downhole pressure - PT1) of

Model 6.3 WLS and Model 6.3 LS submitted to free-run simulation on the validation dataset

in dynamic regime together with the actual data for comparison purposes. Figure 6.8b shows a

zoom of Figure 6.8a for better visualization and comparison of results. It is possible to notice

that the use of fixed operating points, as auxiliary information, contributed to a more suitable

result for some regions where little dynamic data or exclusively static data (e.g., y ≈ [70,75])

were provided during the algorithm’s execution in search of regressors.

Finally, in order to analyze the result of Model 6.3 WLS in the static regime, it was

subjected to free-run simulation. The model’s output, the downhole pressure (PT1), was plot-

ted with the original static regime data used during the algorithm’s execution (training). This

result is shown in Figure 6.9. As is notable, Model 6.3 WLS presents perfect results for the

stationary (fixed) points in the static regime within the same area in which dynamic data were

provided during training (in the graph represented by dark blue circles). However, the perfor-

mance of Model 6.3 WLS outside the training dynamic data region is not good, which reveals
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Figure 6.8 – a) Free-run simulation over validation dataset Zv for Models 6.3 WLS, 6.3 LS and the real
data for comparison purposes and b) presents a zoom on the simulation for better visualiza-
tion and comparison of the results.
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that the amount of static data provided during the MGGP algorithm search for regressors was

not enough for a good result at all fixed points in the static regime. However, the use of au-

xiliary information, even if in small amounts, as one of the objectives of the cost function and

in the estimation of parameters, allowed the algorithm to find models that have a competitive

behavior in a dynamic regime compared to other works. The static RMSE results of Model
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Freitas (1) and Model Freitas (2) were not compared with the results found because they were

not available.

Figure 6.9 – Free-run simulation on the dataset Zs for Model 6.3 WLS together with the real data of the
fixed operating points for comparison of results. Dynamic training data, Zd , and validation,
Zv, also presented as a reference.
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7 CONCLUSION AND FUTURE WORK

This work addressed the problem of identifying nonlinear systems using a multi-

objective approach based on evolutionary algorithms for the problem of structure selection and

parameter estimation. The problem of PDG failure in oil extraction was used as motivation

to explore this question. Introductory material on the oil extraction process was presented for

contextualization. Introductory material on systems identification and evolutionary algorithms

was also presented, together with the main works in each area related to the theme. The MGGP

paradigm, used for optimization in this work, was briefly expanded within the EA theme.

A multi-objective MGGP algorithm was proposed to solve the problem of selection

of regressors for NARX models with three objectives for minimization, namely: i. the one-

step-ahead prediction error (dynamic regime error), ii. the static error, and iii. the number of

regressors in the model. For the second objective, the simulation approach in the static regime

proposed by Freitas, Barbosa and Aguirre (2021) was used, which has a lower computational

cost when compared to the free-run simulation traditionally used. Furthermore, the weighted

least squares method was applied to use auxiliary information in the estimation of parameters,

together with the dynamic data. Finally, a decision criterion was proposed for choosing the

most appropriate model among those presented in the Pareto set.

The proposed algorithm was initially applied in a stochastic system to validate its ope-

ration. The results show that the use of auxiliary information in the estimation of parameters

through the WLS, when compared with other black-box methods, allows to identify better Pa-

reto sets and, consequently, better models. Another point shown was that the use of three

objectives, including information about the static regime in the search for terms for the model,

also presents significant performance gains for the models found not only in the static regime

but also in the dynamic one. It is also seen that minimizing the number of regressors creates

pressure in the search for more parsimonious models without losing performance in the other

two objectives. In addition to the results already mentioned, it was also shown that the simula-

tion approach presented in Freitas, Barbosa and Aguirre (2021) provides an algorithm training

time approximately nine times smaller and still without losing the performance quality of the

models found.

With the validated methodology, the algorithm was applied to model a hydraulic pum-

ping system with real data. The model found by MGGP proved to be competitive compared
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with other works, having equivalent performance in both regimes (dynamic and static) in many

comparisons, even with a smaller number of regressors (parsimoniousness).

Finally, the proposed MGGP algorithm was applied to the offshore oil extraction data-

set. The algorithm was able to model a competitive virtual sensor with a good performance in

dynamic regime compared to other works even with fewer parameters. The results presented in

this work show that the multi-objective MGGP algorithm, together with auxiliary information

in the selection of structures and parameter estimation, can find models with good performance

in static and dynamic regimes with a reduced number of regressors and parameters in addition

to lower computational cost. Another point is that, for none of the datasets used in this work,

the best result found had λ = 0, which confirms that the use of auxiliary information in the

estimation of parameters contributes, in general, to more adequate models in both regimes.

Future works include the elaboration of more sophisticated decision criteria for the se-

lection of models in Pareto sets, use of the MGGP approach in the estimation of parameters for

model structures, use other forms of auxiliary information (e.g., symmetry properties) in the se-

arch for better regressors and the estimation of parameters, and implement modifications in the

MGGP algorithm in order to allow restrictions in the search for regressors (obtaining regressors

with higher delays more easily) at a lower computational cost.
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