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Abstract

We analyze the effect of Planck-scale modified radiation equation of state on the Reissner-Nodström-
anti-de Sitter black hole inspired by Kiselev’s ansatz. Deformed thermodynamic quantities are found, phase 
transitions and black holes as heat engines are described for the Carnot and square cycles. Non-trivial 
differences between linear and quadratic Planck-scale corrections are discussed in detail.
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1. Introduction

A consistent quantization of gravitational degrees of freedom has been one of the main quests 
of theoretical physics in the recent decades. Many proposals based on very different approaches 
to this problem have emerged, where each of them is responsible for filling an aspect of this 
general problem. Among some of the most prominent programs we highlight, for instance, loop 
quantum gravity (LQG) [1], causal dynamical triangulation [2], causal sets approach [3], string 
theory [4]. The maturity of the quantum gravity problem and technological advances have led 
the community to propose phenomenological approaches that can capture some of the main 
properties of the proposed solutions of this problem in a bottom-up way, where deformations 
of known concepts and equations of general relativity and quantum mechanics are considered, 
governed by parameters that can become important when quantum gravitational effects appear 
(we refer the reader to the review [5]).

Amongst these phenomenological proposals, some of the main sources of constraints are 
provided by deformations or violations of the Lorentz transformations, induced by the quan-
tum gravity energy scale (supposedly of the order of the Planck energy) [6–8]. In summary, 
the interaction of particles with quantum gravitational degrees of freedom could be described 
kinematically by a modified Hamiltonian or dispersion relation, such that trajectories would be 
modified and symmetries could be deformed. Besides that, a fruitful way of realizing the kine-
matics of the particles endowing corrections in intermediary regime between the full quantum 
gravity theory and special/general relativity consists in describing their motion as if they prop-
agate in a spacetime that depends on properties of individual particles themselves, like the ratio 
between their energy/momentum and Planck energy [9–20], or properties of fluids of particles, 
like the ratio between its energy density and Planck energy [21] or the fluid’s temperature and 
Planck temperature [22].

These phenomenologically-inspired modifications have been demonstrated to be a useful tool 
able to scrutinize the Planckian regime without the need of passing through specific details of 
each quantum gravity proposal, i.e., this approach allows one to derive known Planck-scale cor-
rections to some expressions, for instance, the logarithmic correction of Hawking-Bekenstein 
black hole entropy formula [23,24], to regularize the behavior of a black hole during its final 
stages of existence [25], or to describe cosmological bounces derived from loop quantum cos-
mology [26].

When applying such procedure to the photon gas problem, it has been long known that one 
detects non-trivial modifications of the equation of state parameter [24] proportional to the ratio 
between the temperature of the fluid and Planck temperature. On the other hand, it has been found 
by Kiselev a solution of the general relativity field equations [27] that is able to modify the static 
black hole metric in a way that depends on an averaged equation of state parameter of the fluid 
that surrounds the black hole. In particular, the Reissner-Nordström solution has been shown to 
correspond to the special case in which the average equation of state parameter corresponds to 
that of a photon gas. Planck-scale corrections of the Reissner-Nordström metric induced by the 
above mentioned modified thermodynamics have been recently analyzed by some of the authors 
in [22]. Besides that, the impact of the trans-Planckian regime and the novel notion of thermal 
dimension [28–30] on the evaporation of charged black holes have been studied in [31].

On the other hand, the Reissner-Nordström black hole has proven to be an important tool for 
research in thermodynamical aspects of gravity, when considered along with a negative cosmo-
logical constant. In fact, the extended phase space thermodynamics of the Reissner-Nordström-
anti-de Sitter black hole has been analyzed in recent years from the seminal papers [32,33], and 
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from then it has been explored in a large amount of scenarios [34–41,43,42,44,45], in which the 
main issue under analysis are phase transitions and heat engines [46] induced by the presence 
of the electric charge or some other terms due to different matter contents surrounding the black 
hole, like clouds of strings, quintessence, etc, or alternative theories of gravity [47–66] (see [67]
for a comprehensive review on the subject).

Therefore, a natural question is imposed: what is the effect of quantum corrections induced 
by departures of the classical equation of state parameter of the radiation fluid ω = 1/3 in the 
scenario of black holes in the extended phase space that includes a negative cosmological con-
stant, i.e., how are affected the thermodynamic quantities, phase transitions and efficiency of this 
system operating as a heat engine? Answering these questions is the main goal of this paper.

In this paper, we explore the non-trivial effect of pressure induced by a negative cosmological 
constant on the thermodynamics of the Planck-scale modified Reissner-Nordström-anti-de Sitter 
spacetime. In section 2, we revisit Kiselev’s solution of a black hole surrounded by matter con-
tent with an average equation of state parameter. In section 3, we calculate modifications in the 
equation of state parameter induced by Planck-scale modified dispersion relation. In section, 4, 
we derive the thermodynamic quantities in the extended phase space assuming the results of the 
previous sections and a negative cosmological constant. In section 5, we describe the impact of 
the quantum gravity parameter on phase transitions. In section 6, we calculate the effect of the 
Planck scale parameter on the efficiency of the black hole system when working as a heat engine. 
We draw our final remarks in section 7.

We assume c = h̄ = kB = 1, for simplicity, and metric signature (+ − −−).

2. Kiselev’s solution

The solution of general relativity’s field equations describing a static, spherically symmetric 
black hole surrounded by an average quintessence fluid was found in the seminal paper [27] by 
Kiselev, in which the metric and stress energy-tensor of the surrounding matter is given by

ds2 = A(r)dt2 − dr2

A(r)
− r2d�2 , (1)

T t
t = T r

r = −ρ(r) , (2)

T θ
θ = T φ

φ = 1

2
(3ω + 1)ρ(r) , (3)

where A(r) is a function of the radial coordinate r , ρ(r) is the energy density distribution and 
ω is an equation of state parameter that relates the average pressure and energy density. This 
procedure allows us to effectively capture the physical properties of the surrounding fluid and 
will be of great usefulness for our purposes.

From Einstein’s field equations,

Gμν = κTμν , (4)

we are able to find the shape of the energy-density profile ρ(r) and the metric function A(r):

ρ(r) = c

κ

3w

r3(w+1)
, (5)

A(r) = 1 − 2GM + c
. (6)
r r3w+1
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From equations above, one can recognize a generalization of the Schwarzschild metric, whose 
new contribution is null when the surrounding energy density is absent (c = 0) and depends on 
the average equation of state parameter ω, that labels different fluids that surround the black hole. 
This solution obeys an additivity condition such that different fluids can, in principle, contribute 
to the stress-energy tensor, which reflects in contributions to the metric as 

∑
n(rn/r)3ωn+1. From 

this approach it is possible to reconstruct the Reissner-Nordström-anti-de Sitter spacetime from 
contributions of a negative cosmological constant with equation of state parameter ω1 = −1, and 
a radiation fluid, which in principle presents an equation of state parameter ω2 = 1/3. This gives

A(r) = 1 − 2GM

r
− 	

3
r2 +

(
Q

r

)2

. (7)

As we will see in the following sections, the presence of corrections in the radiation equa-
tion of state parameter due to Planck scale effects, ω ≈ 1/3 + O(TP ), (where TP is the Planck 
temperature) will allow us to derive non-trivial corrections to the extended phase space thermo-
dynamics.

3. Planck-scale-deformed equation of state parameter

In this section, we will revisit the problem of the photon gas by calculating its internal en-
ergy and pressure from the occupation number of states with given momenta and the partition 
function of this bosonic system. As we shall see, Planck-scale corrections shall modify the re-
lation between momenta and energy, which will lead to a deformation of the equation of state 
parameter.

In fact, we can describe a special class of isotropic modified dispersion relations of particles 
with mass m by relying on deformation functions f (E/EQG) and g(E/EQG) as follows

m2 = E2f 2(E/EQG) − p2g2(E/EQG) , (8)

where p is the particle’s momentum, E is its energy and EQG is the quantum gravity energy 
scale, typically assumed to be of the order of the Planck energy EP ≈ 1.22 × 1019 GeV.

These Planck-scale deformations are known to induce deformations in the behavior of vari-
ous gases with several applications from black hole physics to cosmology [71,70,68,69,31,72], 
where the nontrivial rule for counting states within a given energy/momentum interval leads to 
interesting phenomena, like inflation without an inflaton field and dimensional reduction due to 
quantum gravity at the trans-Planckian regime.

The number of states with momentum between p and p + dp contained in a volume V is 
given by [73]

N(p)dp = V

(2π)3 4πp2dp , (9)

and the relation between the momentum and the energy is given by the deformed expression (8)
when m = 0. Assuming the degeneracy due to the two polarizations of the photons, from Eq. (8)
a straightforward calculation implies that [22,71]

2N(p)dp
.= 2Ñ(E)dE = 2

V

π2

(
f

g

)3 (
1 + E

f ′

f
− E

g′

g

)
E2dE , (10)

where prime (′) denotes differentiation with respect to the energy.
4
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As usual, the equation of state parameter can be found from the average of the energy density 
and the pressure, for which the Bose-Einstein statistical distribution remains unmodified [68]:

ω(T ) = P

ρ
= −T

∫
ln[1 − e−E/T ]Ñ(E)dE∫

E
exp[E/T ]−1 Ñ(E)dE

, (11)

where T is the fluid’s temperature. For an undeformed dispersion relation, each of these inte-
grals are proportional to the 4-th power of the temperature, which furnish an equation of state 
parameter given by the constant value of 1/3, which corresponds to the usual value associated to 
a radiation fluid.

We assume a MDR of the form (8), for instance, one that has been considered in several 
phenomenological scenarios of quantum gravity (as a way how to capture a upper limit on the 
energy of fundamental particles when ξ < 0 [18–20]):

f = 1 , g =
√

1 + ξ

(
E

EP

)n

, (12)

where ξ is a dimensionless real parameter that labels different phenomenological proposals, 
and n is a natural number that describes the leading order correction proportional to the ratio 
(E/EP )n. In this paper, we are considering the first and second order cases, i.e., n = 1 and 
n = 2, since these are the orders of magnitude that have been mostly prominent for observational 
constraints [7,74], for simplicity. As we shall see, this difference will be enough to produce 
significantly distinctive scenarios.

By following the above procedure and considering only the first term in a Taylor perturbation 
around E/EP in Eq. (11), we find a temperature-dependent equation of state parameter:

ωn(T ) ≈ 1

3
+ αn

(
T

TP

)n

, (13)

where TP is the Planck temperature, α1 = ξ 60ζ(5)/π4 and α2 = ξ 40π2/63 are dimensionless 
parameters that we shall allow to vary in our analysis, and ζ(x) is Riemann zeta function, which 
are typically expected in first order perturbations of the dispersion relation [22]. Now we proceed 
to applications in the Reissner-Nordström-anti-de Sitter spacetime.

4. Extended phase space thermodynamics

The individual interaction of high energetic photons with a quantum spacetime could be ef-
fectively described by the kinematics induced by a modified dispersion relation, in such a way 
that when extended to a collection of particles like a fluid, manifests as a temperature-dependent 
equation of state parameter. Such temperature is the one assigned to this high energetic radiation 
fluid. Now, if we suppose that such high energetic particles surround a static, spherically sym-
metric configuration, in a similar way to the one described in section 2, we shall expect Planck 
scale deformations of Kiselev’s approach to the Reissner-Nordström-anti-de Sitter spacetime.

This approach allows to propose an effective way to describe a spacetime endowed with these 
properties that resembles a known approach called “rainbow gravity” [9]. In that case, the propa-
gation of individual particles on a curved spacetime could be described by a metric that depends 
on the energy/momentum of the particles itself. More recent versions of this idea are realized 
by Finsler [10–13] and Hamilton geometries [15]. Here, we propose that the spacetime probed 
5
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by a fluid of massless particles could be described in a temperature-dependent way gμν(T /TP ), 
whose realization can be done by the Kiselev approach.

In fact, we realize this idea by having a black hole spacetime of mass M surrounded by a 
negative cosmological constant 	 and a radiation fluid defining a deformed Reissner-Nordström-
anti-de Sitter black hole of charge Q:

A(r) = 1 − 2GM

r
− 	

3
r2 +

(
Q

r

)3ω(T )+1

, (14)

that depends on the ratio T/TP induced by the equation of state parameter (11). The main differ-
ence of this approach in comparison to the previous ones consists in the fact that we are inducing 
Planck scale correction in geometry through the matter sector of the gravitational field equations, 
instead of accommodating the kinematics of particles in a certain non-Riemannian spacetime.

In order to connect with black hole thermodynamics, we realize that the photons emitted via 
Hawking radiation present energies of the order of the black hole’s temperature E ∼ T [18,25]. 
For this reason, we analyze a stable scenario in which the temperature of the radiation that sur-
rounds the black hole is of the order of the Hawking temperature as well. This is a common ansatz 
assumed in energy-dependent metric approaches [18] and also for quantum-gravity-induced gen-
eralized uncertainty principles [25]. This allows us to find the Hawking temperature as a function 
of the outer horizon radius r+ (solution of A(r+) = 0):

TH (r+) = 1

4π

∂

∂r
A(r+) = 1

4π

[
1

r+
+ 8πPr+ − 3ω(T )

r+

(
Q

r+

)3ω(T )+1
]

, (15)

where we have, in fact, the temperature implicitly defined, since we are making T = TH and 
the pressure is identified from the cosmological constant, as usual in the extended phase space 
thermodynamics [67], as

P = − 	

8π
. (16)

Concretely, from the dispersion relations used in the previous section, we use Eq. (13) in 
Eq. (15), replacing ω → ωn, and expanding in powers of the inverse of the Planck temperature, 
to find

T = T ◦ − αn

(
T ◦

TP

)n
Q2

V ◦

[
1 + ln

(
Q

r+

)]
, (17)

where V ◦ = 4πr3+/3 is the Euclidean, undeformed volume and

T ◦ = 1

4π

[
1

r+
+ 8πPr+ − Q2

r3+

]
(18)

is the undeformed temperature of the Reissner-Nordström-anti-de Sitter black hole.
This ansatz for the temperature modifies the thermodynamics of the black hole as we shall 

see. In fact, the mass M , that plays the role of enthalpy of this thermodynamic system, is defined 
by:

GM(r+,P ,Q) = r+ + Q2

+ 4π
Pr3+ + 3αnQ

2 (
T ◦(r+,Q,P )

)n

ln

(
Q

)
, (19)
2 2r+ 3 2r+ TP r+

6
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where T ◦ = T ◦(r+, Q, P) is assumed as a function of the horizon radius, charge and pressure 
according to (18).

We describe the variation of the black hole’s mass due to variations of the horizon radius r+, 
pressure P and electric charge Q as usual

dM = ∂M

∂r+

∣∣∣∣∣
P,Q

δr+ + ∂M

∂Q

∣∣∣∣∣
r+,P

δQ + ∂M

∂P

∣∣∣∣∣
r+,Q

δP . (20)

We also define the entropy, as usual, for static black holes from variation of the enthalpy with 
respect to the horizon radius as follows:

dS
.= 1

T

∂M

∂r+

∣∣∣∣∣
P,Q

dr+ . (21)

This leads to the following expression for the linear correction (n = 1) after integration:

S1 = πr2+
G

+ 3α1

2
√

2GTP

Q

r+

{
3
√

2Q

[
ln

(
Q

r+

)
− 1

]
(22)

−2r+
√

a + 1 ln

(
Q

r+

)
tanh−1

(
4r+

√
πP√

a − 1

)
+ 2r+

√
a − 1 ln

(
Q

r+

)
tan−1

(
4r+

√
πP√

a + 1

)

−2r+
√

a + 1χ2

(
4r+

√
πP√

a − 1

)
+2r+

√
a − 1Ti2

(
4r+

√
πP√

a + 1

)}
,

where α1 = ξ60ζ(5)/π4, a = √
1 + 32πPQ2 > 1, and the terms χν(z) = 1

2 [Liν(z) − Liν(−z)]
and Ti2(z) = 1

2i
[Li2(iz) − Li2(−iz)] are called Legendre’s chi function and inverse tangent in-

tegral function, respectively, and are defined in terms of the polylogarithm function Liν(z) =∑∞
k=1 zk/kν . This expression reduces to the one found in [22] when P → 0.
This entropy S1 presents the peculiar property of assuming complex values for a non-null 

pressure P > 0. The concept of complex entropy has been recently studied in the literature [75–
77] and it is suggested that its imaginary part describes the entropy transferred to the background, 
which would mean that such black hole is an unstable system [75]. This dissipation is driven by 
the pressure term given by the negative cosmological constant, i.e., when P → 0, we recover a 
real valued entropy and stable system as considered in [22]. The conservation of energy described 
by the first law of thermodynamics needs to involve also the energy lost due to the pressure term. 
This information is already included in the nature of the entropy. As we shall see, this is a property 
that shall not be present when we assume quadratic terms as the leading order corrections.

In fact, for n = 2, we have the following entropy after integrating Eq. (21):

S2 = πr2+
G

− 3α2

64πGT 2
P

Q2

r4+

{
4r2+ − 3Q2

+4

[
3Q2 − 2r2+ + 16πP r4+ ln

(
Q

r+

)]
ln

(
Q

r+

)}
, (23)

where α2 = ξ40π2/63. This is a real-valued quantity that reduces to the case studied in [22] when 
P → 0. In these two cases, we see logarithmic corrections to the entropy, whose Planck-scale 
contributions vanish when Q → 0.
7
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The electric potential for n = 1 and n = 2 reads:

�n
.= ∂M

∂Q

∣∣∣∣∣
r+,P

= Q

Gr+
+ 3αnQ

2r+
(T ◦)n−1

GT n
P

[
T ◦ + ln

(
Q

r+

)(
2T ◦ − nQ2

2πr3+

)]
, (24)

thus also presenting logarithmic corrections and, as usual, T ◦ is a function of r+, Q and P , and 
αn are given by the quantities below Eq. (13).

Besides that, a notion that is common in this so called black hole chemistry approach is the 
existence of a thermodynamic volume, which is read from the first law of thermodynamics and 
not necessarily is given by the Euclidean volume for cases beyond general relativity (for further 
discussions on this topic, we refer the reader to the review [67]). In our case, the thermodynamic 
volume also gains logarithmic correction as

V
.= ∂M

∂P

∣∣∣∣∣
r+,Q

= 4πr3+
3G

+ 3nαnQ
2

GT n
P

(
T ◦)n−1

ln

(
Q

r+

)
. (25)

5. Critical behavior

Endowed with these quantities, we can study how quantum corrections affect phase transitions 
due to the electric charge. As a first step, we need to establish an equation of state for the pressure, 
which can be straightforwardly calculated from Eqs. (17) and (18):

P = T

2r+
− 1

8πr2+
+ Q2

8πr4+
+ 3αnQ

2

8πr4+

(
T

TP

)n [
1 + ln

(
Q

r+

)]
. (26)

We find the critical quantities (rc, Tc, Pc) by solving the following system of equations

∂P

∂r+

∣∣∣∣∣
T ,Q

= 0 = ∂2P

∂r2+

∣∣∣∣∣
T ,Q

, (27)

where Pc
.= P(r+ = rc, T = Tc). This gives the following solution:

Tc =
√

6

18πQ
− αn

An T n
P

[5 − ln(36)] , (28)

rc = √
6Q + αn

Bn T n
P

[19 − ln(46656)] , (29)

Pc = 1

96πQ2 − αn

Cn T n
P

[8 − ln(216)] , (30)

where n = (1, 2), and we have An = (144π2Q2, 432
√

6π3Q3), Bn = (24π, 72
√

6π2Q), Cn =
(576

√
6π2Q3, 10368π3Q4). The quantities between square brackets in the above equations are 

positive.
From these expressions, we immediately verify the role of the Planck scale in increasing or re-

ducing the critical temperature depending on the sign of the dimensionless parameter αn, which 
on the other hand, is proportional to the parameter ξ that is present in the modified dispersion 
relation (12). Regardless of the order of the first Planck-scale correction n, we see that negative 
values of ξ are responsible for the phenomenology of investigating an upper threshold in the 
energy of fundamental particles, which from this approach is reflecting in a raising of the criti-
cal temperature. Besides that, ξ < 0 describes the subluminal propagation of massless particles, 
8
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Fig. 1. Pressure versus horizon radius for n = 1 and Q = 0.03 at constant temperature, Tc(α1 = 0) = √
6/18πQ. We 

assumed natural units in which TP = 1. Here it can be seen the induction of criticality by the parameter α1. (For inter-
pretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 2. Pressure versus horizon radius for n = 2 and Q = 0.03 at constant temperature, Tc(α1 = 0) = √
6/18πQ. We 

assumed natural units in which TP = 1. Here it can be seen the induction of criticality by the parameter α2.

i.e., UV photons are propagating with a speed v < 1. So, we can conclude that the critical tem-
perature, from which phase transition can occur, is raised if we have Planck-scale subluminal 
propagation. The opposite behavior occurs for superluminal propagation ξ > 0. 

This behavior can be seen in Figs. 1 and 2, where we depicted the pressure as a function 
of the outer horizon for some values of the quantum gravity parameter αn, assuming the critical 
temperature Tc(αn = 0). The blue (solid) curve corresponds to the critical isotherm when αn = 0, 
i.e., it corresponds to a portrayal of the equation of state (26) for T = Tc(αn = 0) (where we 
assumed constant charge). The green (dotted) curve is a depiction of the deformed equation of 
state parameter (26) for αn < 0 (subluminal propagation), but assuming the undeformed critical 
temperature Tc(αn = 0). Since Tc(αn = 0) < Tc(αn < 0), this means that such deformed isotherm 
lies within the region in the P − r+ diagram that presents phase transitions, which corresponds 
to temperatures below the critical one for each case. In contrast, the orange (dashed) isotherm 
corresponds to the case αn > 0 (superluminal propagation). Now, it can be seen that Tc(αn =
9
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0) > Tc(αn > 0), which means that this deformed depicted isotherm lies above the critical curve 
for the superluminal case, thus not manifesting phase transitions.

From the previous considerations, one realizes that the observation or absence of phase tran-
sitions in regions of the phase space in which they should be presented can be a manifestation of 
Planck scale effects, which implies that quantum gravity parameters can be inductors or compli-
cators of phase transitions in Reissner-Nordström-anti-de Sitter black holes.

6. Black hole as heat engine

Thermodynamics was born as a theoretical tool to study the efficiency of heat engines. A nec-
essary component that a thermodynamic system needs to have in order to be analyzed under this 
perspective is a work term in its conservation of energy equation (first law of thermodynamics). 
Since the black hole system developed in this paper presents such term due to the identification 
of the cosmological constant with pressure, it is natural to wonder how this system would behave 
under a thermodynamic cycle, and what would be its efficiency. This approach, was initially an-
alyzed as a holographic heat engine [46] due to the presence of an anti-de Sitter term, that is also 
a common ingredient of holographic scenarios due to the AdS/CFT conjecture.

A heat engine works between two reservoirs of temperature, a hot and a cold one, and heat 
flows between these reservoirs. The overall result of this process is work done by the engine at 
cost at some waste of energy in the form of heat flow to the cold reservoir. This allows one to 
define the efficiency of the machine as

η = W

QH

, (31)

where W is the work done by the system and QH is the amount of heat coming from the hot 
source. The most efficient heat engine is performed following the so called Carnot cycle, con-
structed by two isothermals and two adiabatics. The most important fact about the Carnot cycle 
is that the efficiency of the heat engine depends only on the temperature of the reservoirs, and it 
is given by

ηC = 1 − TC

TH

, (32)

where TC and TH are the temperatures of the cold and hot reservoirs. As can be seen, the effi-
ciency cannot be equal to unity, since a reservoir cannot have zero temperature.

Since we have a well-defined equation of state involving our thermodynamic variables, given 
by equation (17) and (18), the efficiency of the most efficient black hole can be easily obtained. 
If one wants to calculate the efficiency of an arbitrary cycle, then one needs to use, in general, 
Eq. (31).

The efficiency of the Carnot cycle for both orders of perturbation (n = 1 , 2) is depicted
in Figs. 3 and 4 for some values of the quantum gravity deformation parameter. We are al-
lowed to perform this analysis as long as we do not split too much the three efficiencies in 
a way that we would need to move to higher order corrections in each case. One sees a uni-
versal behavior independently on n, in which if UV photons present subluminal propagation 
(αn < 0) the efficiency is raised (green, dotted line), and the opposite behavior occurs for su-
perluminal propagation (αn > 0, orange, dashed line). Therefore, Planck scale corrections can 
improve or worsen the efficiency of the Carnot cycle of the Reissner-Nordström-anti-de Sitter 
black hole.
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Fig. 3. Carnot efficiency versus electric charge for n = 1. Values of the geometrical quantities are rC+ = 1.13, PC = 0.01

and rH+ = 0.78, PH = 0.05. We assumed natural units in which TP = 1.

Fig. 4. Carnot efficiency versus electric charge for n = 2. Values of the geometrical quantities are rC+ = 1.13, PC = 0.01

and rH+ = 0.78, PH = 0.05. We assumed natural units in which TP = 1.

As proposed in the pioneering work [46], we also consider the square circle, depicted in Fig. 5. 
Since the pressure is constant, the work done by the engine is the variation of the enthalpy, which 
is simply the mass of the black hole. This gives us a straightforward formula for the efficiency as 
follows:

ηS = 1 − M3 − M4

M2 − M1
. (33)

For n = 1, this efficiency is depicted in Fig. 6, and one verifies a different qualitative behavior 
in comparison to the Carnot cycle. In this case, the subluminal case (α1 < 0, green, dotted line) 
is still more efficient, and moves away from the undeformed efficiency as the charge grows. 
However, the superluminal case (α1 > 0, orange, dashed line), instead of staying less efficient 
than the undeformed one (but growing with the electric charge) at a certain point manifests an 
inflection towards decreasing the efficiency with the growth of the charge. This behavior was 
not observed in the Carnot cycle, and the point in which not only the superluminal case begins 
11
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Fig. 5. A square cycle in the P − r+ diagram. Points 2 and 4 are those of highest and lowest temperatures, respectively, 
between which the black hole as a heat engine works.

Fig. 6. Square cycle efficiency versus electric charge for n = 1. Values of the geometrical quantities are r2+ = r3+ = 1.13, 
r1+ = r4+ = 0.78 and P1 = P2 = 2, P3 = P4 = 1. We assumed natural units in which TP = 1.

to decrease, but also the subluminal one starts to increase at a more intense way corresponds to 
Q ∼ 1 for our choice of points in phase space.

The order of the Planck scale perturbation plays a significant role in the square cycle, as can 
be verified in Fig. 7. In this case, for low charges, we have the same ordering of the previous 
cases, i.e., with the less efficient engine being the superluminal case (α2 > 0, orange, dashed 
line), passing through the undeformed case (α2 = 0, blue, solid line), until the subluminal case 
(α2 < 0, green, dotted line) provides the most efficient heat engine. However, we show here that 
this is not an universal behavior, since, for the geometric values assigned in this cycle (which 
were the same considered in Fig. 6) when the black hole’s electric charge reaches the value 
Q ∼ 2.5, we verify an inversion of the behavior, in which the subluminal case starts to behave in 
a way similar to the superluminal one. The opposite behavior occurs for the superluminal case, in 
which α2 > 0 describes the most efficient way of performing work from the black hole system, 
and α2 < 0 becomes the less efficient one.
12
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Fig. 7. Square cycle efficiency versus electric charge for n = 2. Values of the geometrical quantities are r2+ = r3+ = 1.13, 
r1+ = r4+ = 0.78 and P1 = P2 = 2, P3 = P4 = 1. We assumed natural units in which TP = 1.

7. Final remarks

Endowed with the Kiselev proposal for describing a black hole surrounded by matter fluids, 
which would depend on their equation of state parameters, we propose an effective generalization 
of the Reissner-Nordström-anti-de Sitter black hole spacetime depending on Planck-scale correc-
tions. This approach allows us to analyze the black hole extended phase space thermodynamics 
and its quantum gravity effects.

The introduction of a negative cosmological constant as a pressure term allowed us to derive 
some non-trivial results, like the presence of dissipation and instabilities in the linear regime 
(a property that is absent in the quadratic one), and logarithmic corrections for some the ther-
modynamic quantities, like the black hole’s electric potential, entropy, thermodynamic volume, 
temperature and mass.

The extended phase space thermodynamics of the Reissner-Nordström-anti-de Sitter space-
time is sometimes referred as black hole chemistry, due to the resemblance of its equations of 
state with a Van der Waals gas, which are able to manifest phase transitions. In fact, we analyzed 
the effect of the quantum gravity parameters in the critical behavior of this black hole system as-
suming linear and quadratic Planck scale contributions. Among our findings, we verified that if 
UV photons have subluminal (superluminal) propagation, the critical temperature below which 
phase transitions can occur is raised (lowered). Besides that, critical radius and pressure were 
calculated.

We also analyzed the black hole as a heat engine and found that the efficiency of the Carnot 
cycle presents properties that are common to the linear and quadratic corrections by raising (low-
ering) the efficiency of this engine if UV photons present subluminal (superluminal) propagation. 
However, this is not a universal behavior for all cycles, as we demonstrated using the square cy-
cle in a P − r+ diagram, in which the linear case presents a more drastic splitting in the behavior 
of the efficiency for a given critical value of the electric charge (however still obeying the same 
hierarchy of efficiencies of the Carnot cycle), and the quadratic case presents an inversion in 
the behavior of the efficiency. Therefore, at a given value of the electric charge, the hierarchy 
of efficiencies reverses and the superluminal case becomes dominant over the undeformed and 
subluminal ones, respectively.
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The analyses done in the paper show that Planck scale corrections on the thermodynamics 
of the radiation that works as a source of the Reissner-Nordström-anti-de Sitter black hole can 
present unexpected properties: like pressure-driven dissipation for linear corrections, logarithmic 
contributions in other thermodynamic quantities, not only the entropy, deformations of the phase 
transition regions, and alternating efficiency hierarchies involving subluminal and superluminal 
propagation of UV photons depending on the nature of the Planck-scale corrections (if linear or 
quadratic) and on the considered cycles.
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