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We analyze how a quantum-gravity-induced change in the number of thermal dimensions (through a 
modified dispersion relation) affects the geometry and the thermodynamics of a charged black hole. To 
that end we resort to Kiselev’s solution as the impact such modifications have on the evaporation rate of 
the black hole becomes more clear. As an application, we study the case for which the thermal dimension 
is reduced to two.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

One of the few shared features of different quantum gravity 
scenarios seems to be a modification in the number of dimensions 
of the associated quantum geometries that are expected to emerge 
in the so called ultraviolet (UV) regime, where we no longer can 
appeal to the classical Riemannian picture. Indeed, the notion of 
Hausdorff dimension cannot be applied to a quantum space-time 
[1,2] and a suitable new concept should be introduced. In [3] it 
is argued that the concept of spectral dimension that is usually 
used to deal with this issue (for instance on Causal Dynamical Tri-
angulation [4], Asymptotic Safety [5], Horava-Lifshitz gravity [6], 
Causal-Sets [7], Loop Quantum Gravity [8,9]) presents some inade-
quacies and it is suggested that a new quantity based on thermal 
properties of photons can provide a more physically sensible no-
tion of dimensionality in this regime (see also [10,11] for related 
discussions). This relies on the fact that the Stefan-Boltzmann law 
gives, for a gas of radiation in a space with D dimensions, the re-
lation

ρ ∝ T D+1

between energy density and temperature. Other thermodynamic 
quantities are also sensitive to the spatial number of dimensions 
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and this quantum-gravity induced change of dimensions can have 
a decisive role, in particular, on the thermodynamics of black hole 
solutions in the limit where the full quantum gravity setup is not 
needed but its effects on the propagation of massless particles 
can still be relevant. That seems to be the case, in particular, in 
cases of Lorentz invariance violation (LIV) or Lorentz invariance de-
formation in approaches to the quantum-gravity phenomenology 
for these black-hole systems [12–15], where modified dispersion 
relations (MDRs) are taken as key ingredients in which quantum-
gravity effects are encoded.

In this work we consider a generalized Horava-Lifshitz scenario 
and the corresponding modified thermodynamics for a black hole 
based on the Kiselev’s solution [16]. In particular, we analyze the 
effect of the modified dispersion relation and its related thermal 
dimension on the evaporation rate of the charged (in which case a 
modified equation of state parameter of radiation plays a role) and 
uncharged black holes.

This letter is organized as follows. In section 2 we review some 
basic concepts of Kiselev’s solution that can be used to describe 
a charged black hole. In section 3 we review the proposal of a 
thermal dimension induced by Horava-Lifshitz-inspired MDRs. In 
section 4 we define the relevant thermodynamic quantities that 
will be used and that could also be useful for future investiga-
tions, exhibiting their dependence on the thermal dimension. In 
section 5 we use the aforementioned thermodynamic quantities 
along with the MDR in order to reconstruct the rate of mass loss 
of the charged and uncharged black holes, and discuss its asymp-
totic behavior. Finally, we conclude in section 6

For simplicity, let us assume c = h̄ = kB = 1.
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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2. Kiselev’s solution

In this approach we assume that the black hole is surrounded 
by matter which, after an average process over angles is per-
formed, can be described by the stress-energy tensor

T t
t = T r

r = −ρ(r), (1)

T θ
θ = T φ

φ = 1

2
(3ω + 1)ρ(r), (2)

where the equation of state parameter ω that relates the average 
pressure to the energy density is usually taken as a constant. Con-
sidering a static space-time with spherical symmetry, the metric 
ansatz takes the form

ds2 = A(r)dt2 − dr2

A(r)
− r2(dθ2 + sin2 θ dφ2). (3)

Einstein equations

Gμν = κTμν,

(where κ = 8πG) under some simplifying conditions [16] then 
yield the solution

ρ(r) = C

κ

3ω

r3(ω+1)
, (4)

A(r) = 1 − 2GM

r
+ C

r3ω+1
, (5)

where C is a constant of integration. This approach allows one 
to investigate black holes surrounded by a quintessential fluid in 
many different scenarios (see for instance [17,18] and references 
therein).1 Also notice that considering the averaged equation of 
state parameter ω = 1/3 one can derive the Reissner-Nordström 
metric with electric charge in length units Q = √

C (in this case 
C > 0, since ω > 0).2 This will be important in what follows.

3. Thermal dimension

We consider a class of generalized Horava-Lifshitz scenarios 
for which the momentum-space representation of the deformed 
d’Alembertian reads

	γtγx(E, p) = E2 − p2 + �
2γt
t E2(1+γt) − �

2γx
x p2(1+γx), (6)

where E is the energy of the particle probing the space-time, p is 
the norm of the spatial part of its 4-momentum, γt and γx are di-
mensionless parameters, �t and �x are parameters with dimension 
of length (usually assumed to be of the order of the Planck length).

In order to analyze the thermal dimension we start with the 
partition function

log Q γtγx = − 2V

(2π)3

∫
dEd3 p

[
δ(	γtγx)
(E)2E log

(
1 − e−βE

)]
.

(7)

Here β is related to the Boltzmann constant kB and temperature 
via β = 1

kB T , and the delta function δ(	γtγx ) ensures that the on-
shell relation 	γtγx = 0 is obeyed.

1 Note that the definition of quintessence in Kiselev’s original paper is somewhat 
different from the notion we commonly see in the literature given that the stress-
energy tensor in this solution is not a perfect fluid. See [19] for a clarification on 
this issue.

2 In SI units we have Q 2 = q2G/4πε0c4, where q is the electric charge of the 
black hole. In this paper, we refer to Q as the electric charge, for simplicity.
2

From the above expression one obtains the energy density and 
pressure respectively as

ργtγx = − 1

V

∂

∂β
log Q γtγx , pγtγx = 1

β

∂

∂V
log Q γtγx . (8)

The trans-Planckian (UV/high temperature) energy density and 
equation of state parameter are found to be

ργtγx ∝ T dT
γtγx , (9)

ωγtγx = 1

dT
γtγx

− 1
, (10)

where the thermal dimension reads [3]

dT
γtγx

= 1 + 3
1 + γt

1 + γx
. (11)

These calculations are performed in the context of a flat space-
time. They can be considered a good approximation in our analysis 
for the black hole solution as long as the wavelengths associated 
to the thermal photons remain small compared to the scale of cur-
vature for the geometry in (3). This is exactly the case in the UV 
regime.

4. Thermodynamic quantities in the trans-Planckian regime

From Sec. 2, we see that it is possible to reproduce the 
Reissner-Nordström metric by assuming ω = 1/3, and by setting 
C = Q 2, where Q is the black hole’s electric charge with dimen-
sion of length.

However, if the surrounding radiation fluid obeys a modified 
dispersion relation, i.e., if we are in a regime in which Planck-scale 
corrections are relevant, we should consider the induced modifi-
cations on the equation of state parameter ω. In general, ω will 
be temperature-dependent, a subject that was recently explored 
by the authors in independent investigations [20,21] at the per-
turbative level (see also [15] for one of the first analyses of this 
topic at the perturbative level). In this letter, we explore the trans-
Planckian regime and the effect of the induced thermal dimension 
(in particular dimensional reduction) on the thermal evolution of 
black holes.3

Therefore, following the same notation of previous investiga-
tions, in order to keep the length dimension of the charge, we 
define C = Q 3ω+1, which along with Eq. (10), gives us the fol-
lowing metric function in the trans-Planckian regime:

A(r) = 1 − 2GM

r
+

(
Q

r

)(d+2)/(d−1)

. (12)

The Hawking temperature is also dimension-dependent and reads

T H,d = − 1

4π
lim

r→r+

√
− grr

gtt

1

gtt

d

dr
gtt

= 1

4π

[
1

r+
− 3

d − 1

1

r+

(
Q

r+

)(d+2)/(d−1)
]

, (13)

where r+ is the outer horizon radius, which is defined as the 
larger root of the equation A(r) = 0. The related entropy can be 
calculated from the identification of the black hole mass with the 
internal energy:

S =
∫

1

T H,d

dM

dr+
dr+ = πr2+

G
. (14)

3 From now on, we shall adopt the following notation ωγtγx

.= ω and dT
γ γ

.= d.

t x
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Notice that it only depends on the thermal dimension in an in-
direct way by means of the horizon radius that reads differently 
depending on the dispersion relation, whereas it is still propor-
tional to the area of the event horizon.

We define the electric potential as

�d = ∂M

∂ Q

∣∣∣∣∣
S

= d + 2

2(d − 1)G

( π

G S

)3/2(d−1)

Q 3/(d−1), (15)

which, of course, reduces to the usual 1/r+ dependence when d =
4 or ω = 1/3.

In this way, the first law of black hole thermodynamics gains a 
thermal dimension dependence as

δMd = T H,dδS + �dδQ . (16)

5. Black hole evaporation

In Sec. 4, we relied on the fact that a modified dispersion rela-
tion is expected to deform the Stefan-Boltzmann law in the trans-
Planckian regime due to modifications on the relation between the 
energy density of the radiation fluid and its temperature. There-
fore, a natural investigation that also deserves to be conducted 
concerns the effect that the thermal dimension has on the black 
hole evaporation rate.

When one can decouple the thermal and athermal components 
of the black hole evaporation rate, the thermal contribution be-
haves according to the Stefan-Boltzmann law and the charge loss 
is governed by the Schwinger process:

dM

dt
= −π2

15
ασ T 4 + Q

r+
dQ

dt
, (17)

where α is a constant related to the number of species of massless 
particles being emitted (since it is of order one, we shall set it to 1
for simplicity) and σ is the cross section of the black hole [22]. In 
this section, we shall discard the charge loss, since a deeper anal-
ysis of the impact of MDRs on the Schwinger effect would need to 
be carried out and it goes beyond the scope of this letter, therefore 
we only consider the Stefan-Boltzmann law contribution.

Now, our goal is to analyze the first term on the right hand side 
of Eq. (17) in the light of our MDR and its possible effects on the 
energy density and on the trajectories of massless particles in the 
black hole spacetime.

From the usual calculations of black body radiation with energy 
density ρ [23], the energy emitted by an infinitesimal element of 
area da in the time interval dt occupies a 2-dimensional hemi-
sphere with radius dr centered about da in a direction θ and reads

dU T = ρ(T )dr da cos θ. (18)

We are setting the geometrical dimension of the spacetime to four 
(therefore we have the usual four-dimensional area and solid an-
gle), and the thermal dimension manifests itself in the functional 
form of ρ(T ). From the above expression we see a further correc-
tion that should be considered: the MDR shall alter the relation 
between the time dt elapsed when the radiation travels a distance 
dr. From the MDR (6), we can derive the group velocity of the elec-
tromagnetic radiation and use it to substitute dr → ∂ E/∂ p|	=0 dt
in (18).

To continue this calculation, we shall choose a specific disper-
sion relation in order to relate these quantities. For simplicity, let 
us consider �t = 0 in (6), such that we shall keep corrections only 
due to powers of momentum implying that

dr → p + (1 + γx)�x p2γx+1

dt, (19)

E

3

which can be further simplified when we express the momentum 
in terms of the energy, p = p(E).

Thus, we can integrate (18) in order the find

dU T

dt
∝ ρ(T )

p(E) + (1 + γx)�x p(E)2γx+1

E
a, (20)

where a is the total area of the emitting surface, i.e., the geomet-
rical optics cross section of the black body (which is not the event 
horizon) that is determined by the impact parameter of the metric.

Since we are assuming a dispersion relation that is modified 
by a term proportional to the spatial momentum, in order to ab-
sorb the effect of the MDR not only on the equation of state but 
also on the trajectories of the fluid particles, we should consider a 
modification of the equation of motion of free particles along the 
equatorial plane. As the MDR reads E2 − p2 − �

2γx
x p2(1+γx) = 0, in 

order to derive a manageable expression and still capture essential 
properties of Planck-scale corrections, we assume a curved MDR 
of the form p2

0 − p2
r − r2φ̇2 − �

2γx
x p2(1+γx)

r = 0, where p2
0

.= A(r)ṫ2, 
p2

r
.= A(r)−1ṙ2 are the squared time and radial components of the 

4-momenta in this black hole metric (and “dot” means derivative 
with respect to an affine parameter λ). In this way, our proposed 
ansatz for the trajectories of photons in this curved spacetime 
reads

A(r)ṫ 2 − A(r)−1ṙ 2 − �
2γx
x A(r)−1−γx ṙ 2(1+γx) − r2φ̇ 2 = 0, (21)

where A(r) is given by (3). Some quantities remain the same as 
if we were considering the trajectory of a massless particle obey-
ing an undeformed dispersion relation, like the constraint obeyed 
by constant radii and the position of maxima of the potential of 
these world lines. In this way, we can define the classic impact 
parameter as usual (see Box 4.1 of Ref. [24]):

bc = J

E∞
= r3/2

min√
rmin − 2GM + Q (Q /rmin)1+γx

, (22)

where J
.= r2φ̇ and E∞

.= A(r)ṫ are the conserved angular mo-
mentum and energy, and rmin is the radius of closest approach 
of massless particles, which is the critical point of the potential 
V (r) = A(r)( J/r)2.

However, we should notice that bc is not the physical impact 
parameter, since its definition assumes the usual dispersion re-
lation in order to replace the momentum by the energy E∞ . In 
fact, the square of the impact parameter is fundamentally given by 
J 2/p2, which for our purposes can be cast in a more appropri-

ate form from the MDR E2∞ = p2
[

1 + �
2γx
x p2γx

]
. This observation 

leads us to derive the following correction:

b2
γx

= b2
c

[
1 + �

2γx
x p(E∞)2γx

]
, (23)

where, as said before, bc = J/E∞ is the classic impact parameter. 
This leads to an energy-dependent parameter, meaning that higher 
energetic photons probe larger surfaces defined by the impact pa-
rameter.

In order to derive a deformed evaporation rate for the black 
hole, we can assume a common ansatz used in investigations of 
modified dispersion relations or generalized uncertainty principles 
in the thermodynamics of black holes [25] consisting in identi-
fying the characteristic energy of the emitted photons with the 
temperature of the Hawking radiation. Therefore, identifying the 
internal energy of the black hole with its mass, we state the fol-
lowing deformed Stefan-Boltzmann law of black hole evaporation 
in the trans-Planckian regime
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Fig. 1. M ′(t) as a function of �P M when d = 4, �x = 0. Blue (solid) curve corre-
sponds to the charged case (Q /LP = 0.1), and black (dashed) curve describes the 
Schwarzschild case.

Fig. 2. M ′(t) as a function of �P M when d = 2 and �x = LP. Orange (solid) curve 
corresponds to the charged case (Q /LP = 0.076), blue (dotted) curve corresponds 
to Q /LP = 0.072 and green (dash-dotted) curve describes the Schwarzschild case.

dMd

dt
∝ −b2

c ·

·
[

1 + �
2γx
x p(T )2γx

][
p(T ) + �

2γx
x (1 + γx)p(T )2γx+1

]
T 3/(1+γx).

(24)

The first term in square brackets comes from the correction to the 
impact parameter given by Eq. (23), while the second one comes 
from the correction of the black body radiation law from Eq. (19). 
When γx = 0 = �x (which implies that p(T ) ∝ T ), we recover the 
usual law dM/dt ∝ T 4. We stress that since these expressions are 
formulated in the high-energy regime by resorting to Eqs. (9) and 
(11), it is essential to perform this procedure in order to regain the 
undeformed case.

To illustrate this method we shall study the case of dimensional 
reduction, which is reported in several approaches to the quantum 
gravity problem (see, for instance [26] and references therein). To 
simulate this effect, we consider γx = 2 (furnishing thermal di-
mension 2 at the Planck scale). For simplicity, let us assume the 
parameter �x as equal to the Planck length LP = √

G .
Picking the real root of the momentum in the on-shell relation, 

we replace the energy by the temperature, which can then be writ-
ten as function of the mass M and the charge Q using Eq. (13) and 
the outer horizon r+ = r+(M, Q ) that is found from the solution 
of A(r+) = 0. Thus, we are able to depict the behavior of the evap-
oration rate of the black hole as a function of its mass (for fixed 
values of the charge) in Figs. 1 and 2 in units of Planck length.
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The blue (solid) curve of Fig. 1 describes the usual Reissner-
rdström case when d = 4, where we verify that the absolute 
ue of dM(t)/dt increases as the mass decreases in a way that is 
ilar to the Schwarzschild case (black, dotted curve). However, 

ce we are not considering the loss of massive charged particles, 
 Reissner-Nordström black hole cannot lose mass indefinitely, so 

must reach the extremal case where the temperature vanishes. 
erefore, we have a critical value for the mass where the curve 
ns up until it reaches dM(t f )/dt = 0 when M = Q /G , while in 
 uncharged case the decay continues until it reaches the catas-
phic evaporation where the rate of mass loss diverges.
Considering now the effect of dimensional reduction (d = 2) in 
. 2 (green, dash-dotted curve), since the MDR does not alter the 
ution of the uncharged black hole in Eq. (12) and consequently 
 temperature as function of M and Q (implicitly determined by 
in Eq. (13)), the corrections that we introduce in the Stefan-

ltzmann law (relating M ′(t) and T ) are not enough to cause a 
alitative modification on the shape of the mass loss rate.4

On the other hand, the curve of the dimensionally reduced 
issner-Nordström evaporation rate behaves like the 4D case for 
 charges (see the blue-dotted curve of Fig. 2), but gets signif-

ntly modified when considering higher charges by presenting a 
vex nature, i.e., always going upwards, without mimicking the 

charged case for high masses (orange, solid line). This property 
a clear signature of dimensional reduction in the charged case 
e to the modification that ω induces on the metric. It is found 
merically that this transition to the convex behavior happens at 
xed value of charge Q /LP ≈ 0.075.
In fact, when d = 4, the quantity M ′(t) as a function of M
sents the following critical point

4)c =
√

19 + 3
√

2

14

Q

G
, (25)

ich means that the undeformed case always has a critical mass 
 any non-zero charge.
Also notice that the scale of mass loss rate is six orders of mag-
ude higher in the dimensionally reduced case when compared 
the usual one. This is due to the specific form of the function 
T ) in the Planckian temperature scale.

. Asymptotic behavior

From the preceding section, we analyze the asymptotic behav-
 of the modified Reissner-Nordström and Schwarzschild black 
les and verify some interesting similarities with the undeformed 
es. In fact, the charged case tends to the extremal black hole 
the mass diminishes and approaches M → (16/27)1/4 Q , where 

0. In this limit, we shall regain the usual undeformed be-
ior, since departures from the modified dispersion relation are 
nifest only in a regime of high temperatures of the surrounding 
iation fluid of the black hole. The low temperature regime is 
racterized by presenting the radiation equation of state param-
r ω = 1/3, which is described by adopting �x → 0. Therefore 
uming the above requirements (T → 0 and �x → 0), we shall 

rive the asymptotic behavior

2
c

dM2

dt

∣∣∣∣ ∝ T 4. (26)

Maybe in an alternative scenario, where one considers a different modified dis-
sion relation, for instance, a non-polynomial form or with negative polynomial 
ors, one might derive major differences depending on the phenomenological in-
st.
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On the other hand, for the Schwarzschild metric there is no 
critical mass (where M ′(t) = 0), which means that as the black 
hole mass decreases, the temperature raises indefinitely, suggesting 
a completely different scenario in which the characteristic ener-
gies and momenta involved in the process get higher and higher, 
indicating that we should discard squared momenta terms in com-
parison to those of sixth order in the MDR, i.e., we should have 
E2 ∝ p6. This observation also indicates that one should consider 
just terms proportional to �4

x in Eq. (24). Besides, as we identified 
the characteristic energy of the emitted photons with the Hawking 
temperature, we shall have p ∝ T 1/3. Curiously, this also leads to 
an asymptotic behavior of the form∣∣∣∣ 1

b2
c

dM2

dt

∣∣∣∣
Q =0

∝ T 4, (27)

which implies a restoration of the original behavior of the mass 
loss process in four dimensions, showing an identification between 
infrared and ultraviolet regimes.

6. Concluding remarks

The assumption that photons obey a modified dispersion rela-
tion as consequence of a quantum gravity regime leaves imprints 
on the equation of state parameter of the radiation fluid. In the ul-
traviolet limit, such deformed quantity approaches a constant (in 
general, different from the usual 1/3 value), which allows the in-
troduction of the notion of a thermal dimension that follows from 
a modified Stefan-Boltzmann law. In this paper, we report the in-
fluence that these results have on the metric and on the thermody-
namics of a black hole surrounded by an imperfect radiation fluid 
(for which ω relates the average pressure with the energy density) 
derived from Kiselev’s approach in order to describe a deformed 
Reissner-Nordström spacetime.

As a direct application of these results, we analyzed the evap-
oration rate of the black hole due to the loss of massless particles 
from the point of view of the aforementioned Stefan-Boltzmann 
law and also considering kinematical effects. Thus, we managed to 
study not only the charged, but also the uncharged case when the 
thermal dimension becomes two. Regarding the former, we found 
the usual behavior towards an extremal black hole, but without the 
usual critical mass. Instead, for highly charged black holes we have 
an ever convex curve (recovering the usual qualitative behavior 
only for smaller charges). The uncharged black hole qualitatively 
behaves in a similar way to the undeformed case, independently 
of the thermal dimension. It should be stressed that the scale 
of the evaporation rate of the four and two thermal dimension 
cases differs by six orders of magnitude due to their different re-
lations between the energy density and the temperature, which 
consists in the main motivation of this work. Such observation may 
have important phenomenological consequences and were partly 
explored in a perturbative study when analyzing Planck-scale mod-
ified dispersion relations and generalized uncertainty principles in 
[15], but was not extended to this higher energy regime. We also 
computed the general asymptotic behavior of the dimensionally re-
duced case, indicating a return to the original four-dimensional be-
havior in the final stages of evaporation of the Reissner-Nordström 
and Schwarzschild black holes.

An interesting analysis that should be carried out in the fu-
ture concerns the loss of massive charged particles, which would 
require a more detailed investigation regarding the Schwinger ef-
fect that governs this process. Another exciting exploration regards 
the effect that primordial charged black holes have on dark matter 
[27], a subject that shall be investigated in the future since im-
prints from a quantum gravitational regime may still be present in 
such primordial objects.
5
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