
Received January 25, 2022, accepted February 5, 2022, date of publication February 9, 2022, date of current version February 17, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3150728

Differentiable Measures for Speech
Spectral Modeling
MIGUEL ARJONA RAMÍREZ 1, (Senior Member, IEEE), WESLEY BECCARO 1,
DEMÓSTENES ZEGARRA RODRÍGUEZ 2, (Senior Member, IEEE),
AND RENATA LOPES ROSA 2
1Department of Electronic Systems Engineering, Polytechnic School of the University of São Paulo, São Paulo 05508-010, Brazil
2Department of Computer Science, Federal University of Lavras, Lavras 37200-900, Brazil

Corresponding author: Miguel Arjona Ramírez (miguel@lps.usp.br)

This work was supported in part by the Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) under Grant 2018/26455-8 and
Grant 2019/07665-4.

ABSTRACT Autoregressive models for the envelope of speech power spectral densities (PSDs) are
refined by the self-supervised spectral learning machine (S3LM) provided with differentiable spectral
objective functions, including the Itakura-Saito divergence (ISD), the Kullback-Leibler divergence (KLD),
the reverse KLD (RKLD) and the log spectral distortion (LSD), which display more significant results.
However, in order to assess the models more perceptually, a method is proposed based upon perturbations
around perfect reconstruction analysis-synthesis configurations. In the cross-excitation analysis-synthesis
assessment (CEASA) method, the residual signals generated by analysis filters of the spectral models are
injected as excitation into the synthesis filters derived from the same and other models in order to be evaluated
by the perceptual evaluation of speech quality (PESQ) and Itakura divergence (ID), which are averaged
over a set of models obtained using the objective functions mentioned above. The results lead to a superior
performance when the RKLD is used as the loss function for the estimation of the spectral models with the
ISD ranking close behind. The focus of these divergences on the spectral peaks is argued and pointed as
the most important factor for this behavior. Specifically, using the PESQ scores obtained with CEASA, the
RKLD loss is found to improve the performance by 1.0%, 4.0% and 19.3% with respect to the open-loop
analysis, the KLD and the LSDmodels, respectively, while the corresponding improvements for the ISD loss
are 0.1%, 3.0% and 18.2%, and the RKLD models excel the ISD models by 1.0% on average. Even though
the spectral measures alone are not able to unequivocally distinguish the better of the two, CEASA is shown
to have enough sensitivity to distinguish their performances. In summary, the learning machine S3LM fits
models for the short-term spectral envelope of speech and, for the evaluation of its performance under several
differentiable loss functions, the CEASA assessment tool has been developed. In addition, CEASA may be
used for other assessments connected with speech analysis and synthesis.

INDEX TERMS Autoregressive processes, machine learning algorithms, prediction methods, self-
supervised learning, speech analysis, spectral analysis.

I. INTRODUCTION
Models for the envelope of speech spectra [1] are important
for various tasks that require speech analysis, such as speech
coding, speech synthesis, automatic speech recognition and
speech enhancement.

Autoregressive models for speech power spectral den-
sity S(ejω) may be obtained by the application of
the Wiener-Khinchin theorem to get the autocorrelation
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function [2]

R(m) =
1
2π

∫ π

−π

S(ejω)ejωmdω (1)

for m = 0, 1, · · · , p, in order to determine an autoregres-
sive model of order p. This model may be obtained by the
autocorrelation method of linear prediction, proposed by F.
Itakura [3], [4]. The model may be represented by linear pre-
diction coefficients [5] or by other transformed parameters.
For instance, the analysis may require formant estimation and
tracking [2], [6].
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Despite the successful wide use of autoregressive analysis
in speech applications [7], it has some shortcomings such as
inaccuracies in modeling the discrete spectra arising in har-
monic segments of speech [8], [9]. An interesting approach to
harmonic spectral envelope estimation is true-envelope linear
predictive coding (TE-LPC), which is an iterative cepstral
technique based on a band-limited interpolation of the ref-
erence sub-sampled spectral envelope [10]. This work also
proposes a residual spectral peak flatnessmeasure for discrete
spectra.

The shortcoming of straightforward autoregressive
analysis of harmonic speech segments and other reasons
motivate the improvement of autoregressive spectral estima-
tion by means of machine learning methods. For instance,
Cui et al. [9] show that adaptive changes performed by a deep
neural network (DNN) to the spectra to be analyzed improve
the quality of supervised spectral models.

Also, models for speech spectral envelopes play a signif-
icant role in speech synthesis, where a major problem is the
oversmoothing of the reconstructed spectral envelopes [11].
In order to ameliorate this effect, restricted Boltzmann
machines and deep belief networks have been proposed for
modeling spectral envelopes [12]. It is also important to note
that spectral envelope features can be efficiently detected by
means of unsupervised methods [6].

Spectral envelopes may alternatively be obtained by means
of cepstral coefficients as in this application of machine
learning to speech emotion recognition [13]. In addition, mel
frequency cepstral coefficients (MFCCs) are also reported to
be used in emotional speech synthesis [14].

In the performance evaluation of diverse speech solutions
or applications [15], speech quality assessment methods are
widely adopted. For instance, in [16], a complex spectral
mapping based onDNN is proposed, and its results were eval-
uated using the algorithm described in ITU-TRec. P.862 [17],
[18], mostly known as PESQ. Another speech quality metric
is the Virtual Speech Quality Objective Listener, known as
ViSQOL [19], that uses spectral and temporal parameters to
determine a listening quality objective (LQO) score using the
5-point quality scale. In connection with these applications,
we propose an analysis-synthesis assessment method for the
spectral models which is more suitable to evaluate their per-
formance in action.

In this context, this work intends to improve the open-
loop analytical (OLA) model using a machine learning algo-
rithm in conjunction with several differentiable loss functions
that are applied to the reference and reconstructed power
spectral densities. The differentiable losses implemented in
the S3LM architecture and used in the experimental tests
were the ISD [3], [20], the KLD, the reverse KLD, and
the LSD. For each loss function, S3LM produces a distinc-
tive spectral envelope model. The cross-excitation analysis-
synthesis assessment (CEASA) was used to jointly assess the
fidelity of the spectral envelopemodels considered in the tests
by means of the synthesized speech signals obtained from
the parameters associated to each model. In summary, each

spectral model is used as two filters, namely, an analysis filter
and a synthesis filter, which are associated in cascade. Fur-
ther, the input to the synthesis filter is alternatively provided
by the output of the analysis filter of the corresponding model
and also by each of the other models whereas the reference
signal is input to the analysis filter. Finally, in order to per-
form a better quality analysis, the synthesized signal is com-
pared with the reference signal using both the PESQ and the
ID [20], [21] algorithms. This procedure is carried out for all
combinations of analysis and synthesis filters for all spectral
model pairs generated with different losses for the spectrum
of the same reference signal. In addition, two different win-
dow sizes for the speech signal are used to obtain spectral
models that, beyond allowing one to analyze the impact of
window length on the spectral fittingmeasures for the spectral
models, also underlines the need for a nonspectral assess-
ment tool such as CEASA. This independent assessment is
necessary because CEASA tends to amplify the distinction
between different models and also dismisses seeming static
spectral fit improvements brought about by window length
change, which turn out to be illusory.

Nowadays, different solutions based on both signal pro-
cessing methods and machine learning algorithms are
applied in several research areas [22], [23]. In the present
work, we use signal processing techniques such as autore-
gressive models, prediction and perfect reconstruction in
analysis-synthesis systemswhich are integratedwithmachine
learning structures to come up with tied spectral weighting
layers (TSWLs). These techniques are used both in the pro-
posed learning machine for the layers and the losses and in
the CEASAdiagnostic tool which includes analysis-synthesis
techniques based on perfect reconstruction.

It is noted that the CEASA assessment tool is intended to be
used with rather high quality spectral models since it should
cause its analysis-synthesis system to operate around the per-
fect reconstruction condition. Further, under these conditions,
PESQ-LQO is a trustworthy quality score, whose results are
also corroborated with those given by the VisQOL metric.

Addressing the issues raised above, this article presents the
proposed S3LM in Section II, the most important measures
for speech spectral analysis in Section III, the spectral mea-
sures used as loss functions and the comparison of the spectral
models they lead to in Section IV and the description of the
CEASAmethod along with the results of its application to the
speech spectral models in SectionV. Finally, themajor results
in this article are connected in conclusion in Section VI.

II. THE SELF-SUPERVISED SPECTRAL LEARNING
MACHINE
As previously stated, we propose a learning machine that
inputs a spectrogram as a sequence of one-sided log
PSDs with K samples up to the Nyquist frequency for an
Fs = 16 kHz sampling rate.

The network architecture of the proposed S3LM is com-
posed by three tied spectral weighting layers (TSWLs),
as shown in Fig. 1, with tied weight vector w0 and tied bias
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vector b0, both the size K of the PSDs, which are extended
over the spectrogram for each training epoch.

The S3LM architecture performs spectral pre-processing
using the TSWLs. The structure consists of artificial neurons
applied to each spectral component. Rather than fully con-
nected networks, the proposed model has a singly connected
architecture with two hidden layers and the weights shared
between the layers. This structure concentrates attention on
each spectral bin for closer convergence up to the same
number of epochs while, at the same time, the strategy also
brings about a reduction in the number of parameters and
training time.

We will represent a single log PSD as

PL(k) = 10 log10 S
(
exp

(
j2π

k
2(K − 1)

))
(2)

for k = 0, 1, · · · ,K − 1, which forward propagates through
the first three layers as

h0 = φ (w0 ◦ PL + b0)
h1 = φ (w0 ◦ h0 + b0)
h2 = φ (w0 ◦ h1 + b0) , (3)

where φ(·) is the rectified linear unit (ReLU) activation
function, ◦ represents the Hadamard or elementwise prod-
uct, and h0, h1, and h2 are the outputs of each weighting
layer.

So the modified log PSD is h2, resulting in the modified
PSD obtained as

P2(k) = 10h2(k)/10 (4)

for k = 0, 1, · · · ,K − 1. And now the modified autocor-
relation function is obtained by using the Wiener-Khinchin
theorem [24] as

R(m) = P2(0)+ 2
K−2∑
k=1

P2(k) cos
(

2π
2(K − 1)

km
)

+P2(K − 1) cos (πm) (5)

for m = 0, 1, . . . , p. From these autocorrelation coefficients
a prediction analysis is performed, leading to the prediction
coefficient vector

a =
[
1 a1 · · · ap

]T
. (6)

For a general prediction coefficient vector α, the square pre-
diction error is

εα = αTRα, (7)

whereR is the (p+ 1)× (p+ 1) Toeplitz reference augmented
autocorrelation matrix whose entries are given by (5). For the
special prediction coefficient vector α = a, the minimum
prediction error achieved is

εmin = aTRa

= aT r, (8)

where r =
[
R(0) R(1) · · · R(p)

]T
.

After linear prediction analysis, the reconstructed PSD [4]
is obtained as

P̃2(k) =
εmin∣∣∣∣∣1+

p∑
`=1

a` exp
(
−j

2π
2(K − 1)

k`
)∣∣∣∣∣

2 (9)

for k = 0, 1, · · · ,K − 1 or, alternatively, by

P̃2(k) =
εmin

p∑
m=−p

Raa(m) exp
(
j

2π
2(K − 1)

km
) (10)

for k = 0, 1, · · · ,K − 1, where the autocorrelation function
of the linear prediction vector is

Raa(m) =
p∑

`=−p

a`a`+m, (11)

where a` = 0 for ` < 0 or ` > p and ao = 1. Equation (9) is
arguably simpler than Eq. (10) for gradient backpropagation.

Then, the log reconstructed PSD is obtained as

h̃2(k) = 10 log10 P̃2(k) (12)

for k = 0, 1, · · · ,K − 1 and either the PSD or the log PSD,
h̃2, may be used for computing the loss function according to
the arguments of this function.

The model is implemented using the deep learning frame-
work PyTorch. The weights w0 of S3LM are initialized to all
ones while its biases b0 are all initialized from samples of
a zero-mean Gaussian distribution with a standard deviation
σ = 1×10−4 and they are optimized by a stochastic gradient
descent algorithm with a learning rate `r = 1× 10−4. Good
convergence has been observed after 80 epochs.

The model was experimented using the TIMIT Acoustic-
Phonetic Continuous Speech Corpus dataset [25]. TIMIT has
6300 utterances (10 sentences spoken by each of 630 speak-
ers) separated in 16 bit-wav files with a sampling rate of
16 kHz. The speakers are distributed across 8 different dialect
regions. The utterances in dialect regions 1 through 4 of
the test set of TIMIT dataset were selected for modeling
K -sample one-sided log PSDs by self-supervised methods
with K = 1025.

We used a workstation computer with 16 GB of RAM,
an Intel R© Xeon R© E-2146G CPU at 3.50 GHz with 6 cores,
and a single NVIDIA GPU card with 4 GB. Training and
testing are simultaneous since S3LM is self-supervised.

III. MEASURES FOR SPECTRAL ANALYSIS
Based on square prediction errors, an important measure for
comparing autoregressive models is Itakura divergence (ID).
For the reference autoregressive vector a and the estimated
vector ã, Itakura divergence [20], [21] is given by

DI(a, ã) =
ε̃a

εmin

=
ãT R̃a
aTRa

. (13)
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FIGURE 1. Architecture of the proposed self-supervised spectral learning machine (S3LM).

This definition, originally called ‘‘likelihood ratio’’ by
Itakura [21], makes it clear that the minimum possible value
for ID is unity, corresponding to the minimum square pre-
diction error condition, therefore coinciding with the result
for open-loop linear prediction analysis. On the other hand,
it does not have any inherent upper bound, even though a
practical value of 1.4 has been mentioned as the frontier
beyond which synthetic speech quality is too low to be use-
ful [26].

However, in order to be used as a loss function in com-
paring PSDs, the Itakura-Saito divergence (ISD) is more
straightforward than ID and it is defined by [3], [20]

DIS(P,Q) =
1
fNy

∫ fNy

0

[
P(f )
Q(f )

− log
P(f )
Q(f )

− 1
]
df ,

(14)

where P(f ) is the reference PSD, Q(f ) is the distorted or
reconstructed PSD and fNy is Nyquist frequency. For sampled
PSDs, the ISD is given by

DIS(P,Q) =
1
K

K−1∑
k=0

[
P(k)
Q(k)

− log
P(k)
Q(k)

− 1
]
. (15)

In Section II, where the proposed S3LM was described,
we have reference PSD as P2 and reconstructed PSD as P̃2.

A more general spectral distortion measure which is not
conceived for measuring autoregressive spectral fit in partic-
ular is the log-spectral distortion (LSD), which is expressed
in dB as

DLS(P,Q) =

√
1
fNy

∫ fNy

0

[
10 log10

P(f )
Q(f )

]2
df . (16)

Notwithstanding their different constitutions, it is inter-
esting to observe that both the square error and the ISD
are instances of Bregman divergences [27], which also
holds as a class member the generalized Kullback-Leibler

divergence (GKLD), defined by

DGKL(p || q) =
1
K

(
K−1∑
k=0

p(k) log
p(k)
q(k)

−

K−1∑
k=0

p(k)+
K−1∑
k=0

q(k)

)
. (17)

InMachine Learning, it is usual to employ probability den-
sity functions (PDFs) or probability mass functions (PMFs).
First, we observe that PSDs are nonnegative and, while log
PSDs may take on negative values, they may be raised to
0 dB by subtracting the minimum value from the whole log-
spectrum. Second, if we normalize the log PSDs so that
they sum to unity, then the GKLD reduces to the KLD, the
Kullback-Leibler divergence. The possibility of processing
PSDs just as PDFs for KLD measures and modeling has
already been pointed out by [28]. The KLD from PDF q to
PDF p is defined as

DKL(p || q) =
∫
RD

p(x) log
p(x)
q(x)

dx, (18)

as long as Sp ⊆ Sq, where Sp and Sq are, respectively, the
supports for theD-variate PDFs p e q, avoiding the occurrence
of infinities [14] for points where q(x) = 0 and p(x) > 0
in (18). For PMFs, the KLD from q to p is computed as

DKL(p || q) =
K−1∑
k=0

p(k) log
p(k)
q(k)

, (19)

which represents the direct KLD as long as p is a data PMF
and q is a latent variable PMF. By keeping their roles while
exchanging the positions of p and q in the argument of the
divergence function, we obtain the reverse KLD (RKLD) as

DKL(q || p) =
K−1∑
k=0

q(k) log
q(k)
p(k)

. (20)
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IV. DIFFERENTIABLE LOSS COMPARISONS
The open loop analytical (OLA) analysis based on the auto-
correlation method is used as a baseline for assessing the
refinements brought about by the learning methods. Its objec-
tive function is a square prediction error, which is a square
distance in polynomial space provided with a time-varying
inner product defined by the short-term autocorrelation
function [8].

The differentiable losses that have been applied to the
reference and reconstructed power spectral densities (PSDs)
are the Itakura-Saito divergence (ISD), the Kullback-Leibler
divergence (KLD), the reverse KLD (RKLD) and the log
spectral distortion (LSD). Most of these measures are also
used for assessing the reconstructed PSDs, including in addi-
tion Jeffrey’s divergence (JD) [20], which provides a balance
between the KLD and the RKLD as a measurement tool.

It is interesting to observe that it can be demonstrated that
the minimization of the ISD with respect to the prediction
coefficients is equivalent to the minimization of the square
prediction error in polynomial space [4]. However, it may be
argued that the path leading to the minimummay be different
in an iterative approach.

Differentiable signal processingmethods havemade it pos-
sible to perform the short-time Fourier transform (STFT)with
variable hop size windows [29]. This research has lead us
to discover some interesting spectral fitting differences that
depend on STFT window length.

All our PSDs have been obtained using sequences of 50%
overlapping sine windows.

The performance of the various methods for female speak-
ers and 20 ms long windows are shown in Table 1, where
quality improvements (QI) are positive for a result greater
than the OLA baseline when it is a quality or similarity mea-
sure and are also positive for a result smaller than the OLA
baseline when it is about a divergence or distortion measure.
More precisely, the quality improvement for measure M is
computed as

QI(M ) = ± (M (PM,Pref)−M (POLA,Pref)) , (21)

where the plus sign is selected ifM is a quality measure while
the minus sign is selected ifM is a divergence measure, PM is
the PSD for the model obtained withM as objective function,
POLA is the PSD for the model obtained by the open-loop
analysis and Pref is the reference power spectral density.
The utterances in dialect regions 1 through 4 of the test

set of TIMIT speech corpus [25] were selected for modeling
K -sample one-sided log PSDs by self-supervised methods
with K = 1025.

Using the self-supervised learning machine several mea-
sures are used as objective function alternatively as shown
in Table 1 for female speakers and long windows in its left-
most column and the measures appearing as headers for the
next columns are alternative measures for the comparisons
between the PSDs obtained and the corresponding reference
PSDs. Also, the same is shown for male talkers and long
windows in Table 2, for female speakers and short windows in

Table 3 and for male speakers and short windows in Table 4.
However, short windows have been used only in a preliminary
way for a couple of utterances.

By observing the results in the abovementioned tables it
stands out that ISD is the only objective function that can
make the learning machine improve the quality under the
ISD measure, which is arguably the most significant measure
for speech PSD envelopes. The ISD objective function also
brings about quality improvement that can be seen by the
LSDmeasure. On the other hand, the KLD objective function,
which is widely used in Machine Learning, can consistently
improve quality as measured by both the KLD and the JD and
even, in most cases, its quality improvement is also seen by
the LSD, particularly in Tables 1 and 2, but fails in Table 4.

The RKLD objective function may cause quality improve-
ments to be detected by the KLD, the JD and the LSD
measures in Table 1, even exceeding the quality improvement
of the KLD as seen by itself in Tables 1 and 2, but it may also
fail to have any quality improvement seen by any of those
three measures as happens in Table 3. A similar behavior is
displayed by the LSD objective function, which is able to
cause quality improvements detectable by the KLD, the JD
and the LSD measures in Table 1 and Table 2 but quality
improvements fail to be seen by the KLD and the JD in
Table 3. But a final analysis about these apparent shortcom-
ings of the RKLD should be postponed till a more complete
performance assessment is disclosed in Section V.
Further, the good performance of the RKLD is only par-

tially offset by its not so good performance as measured by
the ISD even if it is still the best performing loss as seen
by the ISD in the set of losses that includes also the KLD
and the LSD.

Finally, the LSD models behave in a rather contradictory
manner, being the worst as measured by the ISD measure
but beating the models obtained with the other losses by the
greatest margin in several instances.

As a final overall observation, absolute scores are seen to
improve for short spectral estimation windows when com-
pared with long windows and particularly so when measured
by the ISD measure. The improvement is also significant
when measured by the LSD except when the same LSD is
used as a loss function as well for male speaker. In this case,
when the LSD is used as the loss function, the KLD and the
JD also fail to notice any improvement.

V. ASSESSMENT RESULTS
In order to assess the fidelity of the spectral envelope model
in more neutral conditions, the cross-excitation analysis-
synthesis assessment (CEASA) was used, which is depicted
in Fig. 2 for the simple case involving two models, where two
prediction vectors a1 and a2 are input fromS3LMor any other
modeling system for that matter. In its turn, CEASA uses the
prediction vectors to come up with the analysis filters

A1(z) =
p∑
i=0

a1iz−i (22)
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TABLE 1. Average measures for speech obtained from spectral models generated by methods based on five loss functions for female speakers and
quality improvements (QI) over OLA. Spectra are obtained for 20 ms long windows.

TABLE 2. Average measures for speech obtained from spectral models generated by methods based on five loss functions for male speakers and quality
improvements (QI) over OLA. Spectra are obtained for 20 ms long windows.

TABLE 3. Average measures for speech obtained from spectral models generated by methods based on five loss functions for female speakers and
quality improvements (QI) over OLA. Spectra are obtained for 7.25 ms long windows.

TABLE 4. Average measures for speech obtained from spectral models generated by methods based on five loss functions for male speakers and quality
improvements (QI) over OLA. Spectra are obtained for 7.25 ms long windows.

and

A2(z) =
p∑
i=0

a2iz−i, (23)

where p is the order of the models and the synthesis filters are
obtained as H1(z) = 1/A1(z) and H2(z) = 1/A2(z).
For a given speech signal s(n) and a spectral model, the

speech signal is injected into the corresponding analysis filter
whose output is its residual signal, either e1(n) or e2(n), which
is injected into both synthesis filters. As a result, differ-
ent synthesized signals are obtained that are represented by
s11(n), s12(n), s21(n), and s22(n). These synthesized signals,
which provide a realization of their corresponding spectral
models, are assessed by the PESQ algorithm, which provides
a mean opinion score listening quality objective (MOS-LQO)
measure [17], [18], and the Itakura divergence (ID) [20], [21].

Both measures are represented by the block named Meas(·)
depicted in Fig. 2. By using each spectral model in turn for
the analysis filter, two sets of measures are obtained for each
synthesis filter and the mean value of each set of values is
ascribed to the spectral model of the corresponding synthesis
filter.

The basis for the operation of CEASA analysis-synthesis
filter cascade is the perfect reconstruction condition which
prevails when both the analysis filter and the synthesis filter
in the cascade connection are configured with the same pre-
diction vector so that the synthesized signal will coincidewith
the input signal up to a time delay in the absence of numerical
errors.

After investigating the application of different window
lengths in spectral modeling, the divergences were found to
decrease for shorter windows as reported in Section IV. Sowe
have decided to test the modeling algorithms for longer 20 ms
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FIGURE 2. Cross-excitation analysis-synthesis assessment illustrated for
two analysis-synthesis models: (a) Analysis cascaded with self-synthesis
and cross-synthesis. (b) Association of performance scores, I , for measure
Meas(·), and mean calculation for each synthesis filter.

windows over the dialect regions 1 through 4 of the test set
of the TIMIT corpus [25] for female and male speakers while
shorter 7.25 ms windows have been tested only for a couple
of speakers due to their CEASA scores to be reported below.

In Table 5, longer windows are used for the spectral model-
ing of the utterances of female speakers, where ISD displays
a small, however consistent, better performance which can
be checked for the case of shorter windows from female
utterances in Table 8 as well as male utterances in Tables 6
and 9 for longer and shorter windowing.
In order to check the confidence of the results, we have

also assessed them using the ViSQOL measure [19], whose
scores and attendant quality improvements for the machine
learning methods over OLA are reported in Table 7, which,

upon further comparison between methods and ranking of
methods, is consistent with Tables 5 and 6.

However, if we keep to longer windows, the best perform-
ing loss is the RKLD, either assessed by PESQ or ID. This
best performance within this set of losses is hinted by a qual-
itative analysis of the defining equation of the RKLD (20) in
comparison to the defining equation of the KLD (19). As the
weighting coefficients for the RKLD are the reconstructed
masses q(k), when RKLD is used as the loss, q(k) should
converge to small values in regions where the data masses
p(k) are rather small and, by themselves, would increase
the argument of the log function unless q(k) converges to a
comparable small value. This would lead q(k) to placemost of
its probability mass near the peaks of p(k) instead, which is a
good behavior to be valued by the ISDmeasure. An illustrated
discussion of this convergence behavior under the minimiza-
tion of the RKLD may be found in [30], where the equations
for the divergences are the same as the abovementioned ones
but the labels RKLD and KLD are exchanged.

Besides, as a matter of fact, shorter windows are found
by CEASA to lead to lower performance than longer win-
dows, contrary to what happens for pure spectral analysis
in Section IV. This behavior is due to the dynamics of the
synthesis filter in the assessment procedure. Further, it seems
to indicate that shorter windows may be better for some
spectral analysis tasks but longer windows are recommended
for synthesis and related tasks that end up generating a speech
signal.

As a curious outcome, we may find it surprising that the
LSD models, which performed very well for all the measures
but for the ISD, have ranked last in both the PESQ and ID
scores for long windows. This highlights the fact that spectral
envelope models should be better in matching spectral peaks
than overall spectral details and this is captured more clearly
by CEASA assessment than by static spectral measures.

It is noticeable by comparing the scores in Tables 5 and 6
that the spectral envelope models for male speakers fit their
references more closely than those for female speakers. This
behavior can be further checked by contrasting the box plots
in Fig. 3. While modeling the spectral envelopes should not
be affected by the local harmonic structure of the spectrum,
this is valid when the density of harmonics is high enough so
that the spectrum is approximately continuous. The latter is
the condition for a lower pitched speaker, which is usually
the case of a male speaker, which is consistent with the
observation. Nonetheless, by referring again to the two tables
mentioned above, we notice that the performances of the loss
functions are ranked in the same order, irrespective ofwhether
the speakers are female or male.

In short, using the PESQ scores obtained with CEASA, the
RKLD loss is found to improve the performance by 1.0%,
4.0% and 19.3% with respect to the open-loop analysis, the
KLD and the LSD models, respectively, while the corre-
sponding improvements for the ISD loss are 0.1%, 3.0%
and 18.2% and the RKLD models excel the ISD models by
1.0% on average. In a different approach to spectral envelope
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TABLE 5. Average PESQ MOS-LQO quality and Itakura distortion from CEASA measures for speech obtained from spectral models generated by methods
based on five loss functions for female speakers. Quality improvements over OLA are also presented. Spectra are obtained for 20 ms long windows.

TABLE 6. Average PESQ MOS-LQO quality and Itakura distortion from CEASA measures for speech obtained from spectral models generated by methods
based on five loss functions for male speakers. Quality improvements over OLA are also presented. Spectra are obtained for 20 ms long windows.

TABLE 7. Average ViSQOL MOS-LQO scores from CEASA setup for speech obtained from spectral models generated by methods based on five loss
functions for female and male speakers. Quality improvements over OLA are also presented. Spectra are obtained for 20 ms long windows.

TABLE 8. Average PESQ MOS-LQO quality and Itakura distortion from CEASA measures for speech obtained from spectral models generated by methods
based on five loss functions for female speakers. Quality improvements over OLA are also presented. Spectra are obtained for 7.25 ms long windows.

TABLE 9. Average PESQ MOS-LQO quality and Itakura distortion from CEASA measures for speech obtained from spectral models generated by methods
based on five loss functions for male speakers. Quality improvements over OLA are also presented. Spectra are obtained for 7.25 ms long windows.

modeling [9], three different supervised deep neural networks
have been proposed, namely, DNNs, DNN and DNN1. The
three deep neural networks have been trained with several
divergences as loss functions and their models have been
evaluated using the same function as the metric. Their best
result is found for the DNN1 with the KLD, where it excels
OLA by 93% measured by the KLD and the improvements
over DNNs and DNN are 40% and 13%, respectively. On the

other hand, when the ISD is used, DNN falls behind OLA by
2% and is also worse than DNNs and DNN by 2% and 1%,
respectively.

As can be observed in the experimental results and
their analysis, the methodology proposed in this work
achieves a significant improvement in the sensitivity of
the assessment of fitting for different spectral envelope
models.
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FIGURE 3. Box plots for the distributions of PESQ scores corresponding to Tables 5 (female speakers) and 6 (male speakers) with boxes extending from
the first quartile below to the third quartile above, including the median line in red and two whiskers reaching out to the minimum and maximum
values.

VI. CONCLUSION
Spectral envelope models for speech signals have relied for
quite some time on linear prediction analysis. This work
proposes a refinement to open-loop analytical (OLA) models
by using machine learning algorithms provided with differ-
entiable losses. Losses that have been proposed previously
in autoregressive analysis are investigated for this task as
well as popular divergences used in machine learning. Since
the results obtained by spectral measures are not conclu-
sive at first as to the most suitable losses, a quality assess-
ment method is proposed based on the fundamental perfect
reconstruction criterion for cascaded analysis-synthesis sys-
tems. Using the original speech signals and the analysis and
synthesis filters defined by the parameters of the spectral
envelope models, all possible analysis-synthesis cascades are
mounted in the proposed cross-excitation analysis-synthesis
assessment (CEASA) method. For the whole set of signals,
the reverse Kullback-Leibler divergence (RKLD) appears to
be the one that more closely matches the PESQ MOS-LQO
scores and the Itakura divergence (ID) estimates. Ranking
close behind, the Itakura-Saito divergence (ISD) comes in
the CEASA assessment. As a by-product of these methods,
shorter analysis windows have been found to lead to better
spectral fitting even though they are not the best for synthesis
and related tasks as indicated by the CEASA assessment
results. Future research should focus on the conception of loss
functions more suitable to the task such as perceptual losses
properly adapted to the structure of the learning machine,
which constrains them to be differentiable with respect to the
weights. Also the measures of merit should be suitable for the
specific tasks in an evolution of the CEASA assessment tool.
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