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Abstract

One of the key features in regression models consists in selecting appropriate characteristics
that explain the behavior of the response variable, in which stepwise-based procedures occupy a
prominent position. In this paper we performed several simulation studies to investigate whether
a specific stepwise-based approach, namely Strategy A, properly selects authentic variables into
the generalized additive models for location, scale and shape framework, considering Gaussian,
zero inflated Poisson and Weibull distributions. Continuous (with linear and nonlinear relation-
ships) and categorical explanatory variables are considered and they are selected through some
goodness-of-fit statistics. Overall, we conclude that the Strategy A greatly performed.

Keywords backward; forward; model selection; smoothing

1 Introduction
In the past decades, statistical regression models have been greatly improved with the develop-
ment of extremely sophisticated models in order to deal with an increasing amount of complex
datasets. Back in the days, Sir Francis Galton introduced the concept of regression toward the
mean with his experiments on the size of the seeds of successive generations of sweet peas
(Stanton, 2001). Since then, some well-known extensions based on the same concept were devel-
oped, such as the generalized linear models (Nelder and Wedderburn, 1972) and the generalized
additive models (Hastie and Tibshirani, 1990).

However, depending on the complexity of the data in study, we may have to consider more
flexible models that are able to explain not only the mean of the response (target) variable
distribution, but in fact all of its parameters, i.e. a beyond mean regression model (Kneib,
2013). In this sense, the generalized additive models for location, scale and shape (GAMLSS)
(Rigby and Stasinopoulos, 2005) seem to be a great alternative.

The GAMLSS framework involves a distribution for the response variable (that does not
necessarily belong to the exponential family) (Rigby et al., 2019) and may involve parametric
linear and/or nonparametric smoothing terms when modelling any or all of the parameters of
the distribution as functions of the explanatory variables (Stasinopoulos et al., 2018). Within
GAMLSS, any distribution parameter can be modeled as a function of explanatory variables
and hence different regression structures might be selected for each of them. Alternative ap-
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proaches, including criterion-based, regularization and dimension-reduction validation methods
are discussed in Stasinopoulos et al. (2017) and available in gamlss package (Stasinopoulos and
Rigby, 2007) in R software (R Core Team, 2020).

The main used method to select the explanatory variables in each of the regression structures
in the GAMLSS framework is a stepwise-based procedure performed in each of distribution
parameters called Strategy A (Stasinopoulos et al., 2017). Recent examples of its application
can be seen in Ayuso et al. (2020), Righetto et al. (2019), De Bastiani et al. (2018), Ramires
et al. (2018), Leroy et al. (2016), among others. Nonetheless, no formal studies regarding this
methodology are presented in the literature apart from two quite simple and specific studies:
considering one predictor only (Voncken et al., 2019) and in a specific distribution on the unit
interval (Nakamura et al., 2019). Hence, the aim of this paper is to study the behavior of
the Strategy A procedure within the gamlss package and validate it through a set of simulation
studies, considering different response variable distributions (Gaussian, zero inflated Poisson and
Weibull), structures (linear and nonlinear relationships between a parameter and explanatory
variables) and sample sizes. It is noteworthy that these distributions were considered since they
are commonly applied in a wide range of problems. Nonetheless, more complex distributions,
characteristics and behaviors might be considered in future papers.

This paper is organized as follows. In Section 2, we present the GAMLSS framework and the
adopted strategy regarding model selection. All simulation studies are presented in Section 3.
Finally, Section 4 ends the paper with some concluding remarks.

2 GAMLSS Framework
Consider Y a univariate response variable which follows a specific distribution D(y; θ), where θ

is its vector of parameters (e.g. for a four parameter distribution θ = (μ, σ , ν, τ )�). Mathemat-
ically, a GAMLSS can be written as

gk(θ k) = Xkβk +
Jk∑

j=1

sjk(xjk), k = 1, . . . , p, (1)

where gk(θ k) is a link function usually determined by the range of θ k (for further details, please
check De Bastiani et al., 2018; Stasinopoulos and Rigby, 2007), Xk is a design matrix, βk is the
parameter vector associated to Xk and each sjk function is a smooth nonparametric function
(e.g. a P-spline. See Eilers and Marx, 1996; Eilers et al., 2015) of an explanatory variable xjk.
If, for k = 1, . . . , p, Jk = 0, i.e. if no smooth functions are fitted in model (1), then we have the
fully parametric GAMLSS given by

gk(θ k) = Xkβk. (2)

In order to estimate βk and also the parameters associated to the second term (say γ jk)
in model (1), we shall fix the smoothing hyperparameters λ and maximize the penalized log-
likelihood function. An example for a four-parameter distribution model is given by

lp =
n∑

i=1

log f (yi;μi, σi, νi, τi) − 1

2

4∑

k=1

Jk∑

j=1

λjkγ
�
jkP jkγ jk, (3)

where P jk is a symmetric matrix that may depend on a vector of smoothing parameters
(Stasinopoulos and Rigby, 2007). The smoothing hyperparameters λ can be estimated through
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the penalized quasi likelihood method (Lee et al., 2006) and is implemented in the pb() function
in the gamlss package (for further details, please check Rigby and Stasinopoulos, 2014). If the
fully parametric GAMLSS is being considered, then we only have to maximize the first term
in (3).

Further, for survival data, which is characterized by censored data, the response variable
of n-independent observations is defined by yi = min{log(ti), log(ci)}, where ti and ci repre-
sent the times of failure or censure, respectively. Let δi = 1 and δi = 0 the indicator variable
for uncensored and censored observations, respectively. Considering non-informative censoring,
i.e., lifetimes and censoring times independent, we maximize (3) replacing its first term by
n∑

i=1
[δi log f (yi;μi, σi, νi, τi) + (1 − δi) log[1 − F(yi;μi, σi, νi, τi)]].

The numerical maximization of (3) can be achieved in the gamlss (or gamlss.cens for survival
data) package in R using a generalization of the Cole and Green (CG) algorithm (Cole and Green,
1992), the Rigby and Stasinopoulos (RS) algorithm (Rigby and Stasinopoulos, 2005) or even
through a combination of both. Both methods are well described in Rigby and Stasinopoulos
(2005), Stasinopoulos and Rigby (2007) and Stasinopoulos et al. (2017), in which the main
difference is that RS algorithm does not use the cross derivatives of the log-likelihood. In this
paper we are using only the RS algorithm (default in gamlss package) which is generally more
stable and, in most cases, faster than CG (Stasinopoulos et al., 2017).

2.1 Selecting Explanatory Variables

According to (Stasinopoulos et al., 2017), there are currently 13 different functions (methods)
in the gamlss package that may assist us to select different subsets of explanatory variables for
each of the parameters of a given response variable distribution (boosting is a different approach
from these techniques and is discussed in Mayr et al., 2012; Hofner et al., 2016).

As mentioned in Section 1, the most used methodology to select covariates in GAMLSS is
the Strategy A, a stepwise-based procedure, that can be accessed in the gamlss package through
the stepGAICAll.A() function. For a four parameter distribution (i.e. θ = (μ, σ , ν, τ )�), the
steps of this approach are described in Nakamura et al. (2017) and Stasinopoulos et al. (2017)
as follow:
1. Use a forward selection procedure to select an appropriate model for μ, with σ , ν and τ

fitted as constants.
2. Given the model for μ obtained in step 1 and for ν and τ fitted as constants, use a forward

selection procedure to select an appropriate model for σ .
3. Given the models for μ and σ obtained in steps 1 and 2 respectively and with τ fitted as

constant, use a forward selection procedure to select an appropriate model for ν.
4. Given the models for μ, σ and ν obtained in steps 1, 2 and 3 respectively, use a forward

selection procedure to select an appropriate model for τ .
5. Given the models for μ, σ and τ obtained in steps 1, 2 and 4 respectively, use a backward

selection procedure to select appropriate model for ν,
6. Given the models for μ, ν and τ obtained in steps 1, 5 and 4 respectively, use a backward

selection procedure to select appropriate model for σ .
7. Given the models for σ , ν and τ obtained in steps 6, 5 and 4 respectively, use a backward

selection procedure to select an appropriate model for μ and then stop.
By the end of these steps, the final model may contain different subsets of covariates for

μ, σ , ν and τ . The criterion used to add (or remove) a variable in each regression structure
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is based on the generalized Akaike information criterion (GAIC; Voudouris et al., 2012), which
is given by GAIC(κ) = −2l̂(θ) + κ × df , where l̂(θ) is the fitted log-likelihood (3), κ is the
degree of penalty and df are the effective degrees of freedom of the fitted model. If κ = 2 or
κ = log(n), GAIC reduces to the Akaike information criterion (AIC; Akaike, 1974) and Bayesian
information criterion (BIC; Schwarz, 1978), respectively.

Looking specifically to the GAIC definition, we may note that the selection of a given
variable will depend on how much such variable increases the log-likelihood function l̂(θ) (con-
sequently, decreasing the GAIC(κ) value), weighted by the increasing on the number of degrees
of freedom.

In this paper we will consider both AIC and BIC criteria in order to select the best fit-
ted models. Furthermore, we will also consider in our simulation studies a third penalty which
is given by the average of AIC and BIC penalties, i.e., κ = [2 + log(n)]/2, denoted here as
GAICav. This additional penalty is considered here since, as described in Hossain et al. (2016),
AIC and BIC can lead to overfitting (undersmoothing) and underfitting (oversmoothing), re-
spectively.

3 Simulation Studies
In this section we perform all simulation studies regarding the performance of the Strategy
A approach to select explanatory variables for different regression structures in the GAMLSS
framework. Three different response types that claim varied distributions with particular charac-
teristics will be considered here (for further details regarding each of these distributions, please
check Rigby et al., 2019):
• Continuous response: Gaussian distribution, i.e. Y ∼ N(μ, σ), where −∞ < y < ∞, −∞ <

μ < ∞ is the mean and σ > 0 the standard deviation parameter;
• Zero inflated discrete response: zero inflated Poisson (ZIP) distribution, i.e. Y ∼ ZIP (μ, σ ),

where y = {0, 1, . . .}, μ > 0 is the mean of the Poisson component and 0 < σ < 1 is the
exactly probability of Y = 0;

• Censored response: Weibull distribution, i.e. Y ∼ Wei(μ, σ ), where Y > 0, μ > 0 is the mean
and σ > 0 represents a scale parameter.

All link functions were chosen based on the range of each parameter (De Bastiani et al., 2018;
Stasinopoulos et al., 2017). When θk is defined in the real support, the identity link function
was used, when θk is positive the logarithm function was adopted and, finally, for θk on the unit
interval, the logit link function was applied. It is noteworthy that in all scenarios we are using
the default initial values in stepGAICAll.A() function in the gamlss package for the response
variable distribution parameter vectors. As stated in Stasinopoulos et al. (2017), although we
must use initial values for the distribution parameter vectors, the estimation algorithm is stable
and fast using simple starting values (e.g. constants) for the parameter vectors. Nonetheless,
users can easily set any different values as needed (Stasinopoulos and Rigby, 2007; Stasinopoulos
et al., 2017).

Based on the three above mentioned distributions, we will consider two different main sce-
narios, one considering a linear structure (the simulated data consider only linear relationships
between covariates and each of the distribution parameters) and one with both linear and non-
linear structures (nonlinear relationships are also considered). The sample sizes are generated
by taking n = 150 and n = 300 and, for each scenario, all results are obtained from 1,000 Monte
Carlo replications.
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In all scenarios, eight different covariates will be used in the model selection process.
• Binary variable: X1 ∼ X2 ∼ X3 ∼ X4 ∼ Bernoulli(0.5)

• Continuous variable: X5 ∼ X6 ∼ X7 ∼ X8 ∼ U(0, 1)

Furthermore, different coefficient values associated to x5 and x6 were considered in μ and
σ structures, respectively, while holding all other coefficients as constants. The same above
mentioned data generation process was conducted.

The variables X4 and X8 will be considered as noise variables, i.e., although they are included
in the model selection procedure, they will not be considered in the data-generating process.
Moreover, different slope values (i.e. coefficient magnitude) are evaluated in the simulation study,
as will be further highlighted. For each replication, the Strategy A method selects the model
parameters, then, at the end of all replications, the percentage of correct/incorrect specification
in each distribution parameter is calculated. A summary of the returned p-values for the selected
variables in each scenario, considering the different used penalties, are displayed in Appendices
A and B. It is noteworthy here that many recent works highlight the danger of using naive
p-values after the model selection stage (Lee et al., 2016), however we are providing these values
only to get a sense regarding the significant parameters.

3.1 Linear Structure

In the scenarios where only linear relationships are allowed, we have a discrete (X3) and a
continuous (X7) variable affecting both μ and σ parameters simultaneously (Table 1). Moreover,
variables X1 and X5 will only be considered in the generating process for μ, and variables X2

and X6 for parameter σ .

Normal Data Let us consider the random variable Y ∼ N(μ, σ). Here we consider the fol-
lowing regression structures for the two parameters of the normal distribution

μ = β01 + β11x1 + β31x3 + β51x5 + β71x7 and
σ = exp[β02 + β22x2 + β32x3 + β62x6 + β72x7],

where the true parameter values in the data-generating processes are

μ = 40 + 5x1 − 3x3 + 2.5x5 − 3x7 and
σ = exp[1.6 + 0.6x2 − 0.35x3 + 0.03x6 − 0.02x7].

Note that this model (when both parameters are affected by explanatory variables) is also known
in the literature as the heteroscedastic normal regression model.

Table 1: Continuous (cont) and discrete authentic variables considered on the data generating
process (linear structure).

Parameter x1 x2 x3 x4 x5 x6 x7 x8

μ discrete discrete cont cont
σ discrete discrete cont cont
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Figure 1: Selection of explanatory variables in the parametric normal heteroscedastic model.
The correct/incorrect specification percentages, for different sample size, using (a) κ = 2 (AIC),
(b) κ = [2 + log(n)]/2 (GAICav) and (c) κ = log(n) (BIC) criteria, and (d) different values for
slope.

Figure 1 displays the percentage of correct/incorrect variables selected for each of the
model parameters through the Strategy A approach, based on the following goodness-of-fit
measures: Panel (a) AIC, Panel (b) GAIC(k = [2 + log(n)]/2) and Panel (c) BIC. Further,
Panel (d) displays the correct selection (using the three criteria) considering different values of
slope.

We may conclude that, when compared to other variables, x5 and x7 presented the worst
results for the mean μ. In its worst scenario (using BIC for n = 150 as can be seen in Panel (c))
the correct selection percentage of their selection were approximately 20% for x5 and 27.5%
for x7. One possible explanation for this, as highlighted at the end of Section 2.1, is that the
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effect of continuous covariates in the log-likelihood function is smaller than the one exerted by a
categorical variable (both with the same range in this example). Moreover, x5 has the smallest
coefficient.

A more serious problem arose when the procedure selected the set of explanatory variables
for the standard deviation parameter σ , where x6 and (especially) x7 were not selected very often.
Again, this problem may be explained by the effects caused by these coefficients associated to
these variables (this statement is true only if both continuous and categorical variables are within
the same range and their associated coefficients are similar).

Regarding Figure 1(d), we may conclude that, greater values of slope imply a greater correct
selection rate. Moreover, as expected, for a greater sample size, Strategy A will perform better,
i.e., it will correctly select the given variable. Also, as we increase penalty κ, more rigorous is
the selection of these variables.

Analyzing the p-values for the selected variables for different settings (see Supplementary
Material), we may conclude that BIC criterion results in the smallest p-values, followed by
GAICav and AIC criteria. As expected, when the sample size increases, the variables, when
selected, become more significant. Looking at x6 and x7, for sigma parameter, we may note that,
even for the smallest penalty (AIC), in more than 50% of the times they were correctly selected,
they were not significant at a 5% level, due to their low coefficient values and also because they
are continuous variables.

Count Data Let us consider the random variable Y ∼ ZIP (μ, σ ). The regression structures
used to generate the data were

μ = exp[0.4 + 0.4x1 + 0.04x3 + 0.04x5 + 0.05x7] and
σ = logistic[−2.11 + 0.75x2 + 1.85x3 + 0.50x6 + 0.63x7].

Figure 2 shows the percentage of selected covariates in each of the scenarios for the ZIP
model. Panels (a, b, c) show that in all cases, the percentage of authentic variables that were in
fact selected for the mean of the Poisson component μ (i.e., it should be included in the model
for μ) using the Strategy A procedure is relatively low, except for x1. However, this does not
mean that there is a problem in the considered model, but actually this might be explained by
the low coefficient value associated to x3 (0.04) compared to the coefficient associated to x1 (0.4)
and, as explained in the previous scenario (normal data), the effect of continuous covariates (x5

and x7) since they are in the same range of the authentic discrete variables. Further, Panel (d)
displays the correct selection rate for different values of slope, considering all other variables as
fixed.

Regarding the probability of zero σ , all scenarios present a similar behavior verified in
the normal data case, since the continuous variables (x6 and x7) were poorly selected, especially
when BIC criterion was considered. Noise variables were selected very few times in the simulation
study. In the worst scenario (considering AIC value and n = 150 as the selection criterion), noise
variables were selected less than 20% of the times. All p-values related to this case are presented
in Supplementary Material.

Censored Data Here, we focus on censored samples, characteristic found in survival analysis
data. The regression structure considered here is based on the accelerated lifetime Weibull model,
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Figure 2: Selection of explanatory variables in the parametric ZIP model. The correct/incorrect
specification percentages, for different sample size, using (a) κ = 2 (AIC), (b) κ = [2 + log(n)]/2
(GAICav) and (c) κ = log(n) (BIC) criteria, and (d) different values for slope.

i.e. Y ∼ Wei(μ, σ ), and is given by

μ = exp[3.85 + 0.06x1 + 0.09x3 + 0.04x5 + 0.08x7] and
σ = exp[1.54 + 0.57x2 − 0.27x3 + 0.05x6 − 0.03x7].

Results of this simulation study are presented in Figure 3. The percentage of authentic
explanatory variables selected to compose the regression structure for the mean parameter μ

and σ present the same behavior of the previous cases, i.e. high selection rate for discrete
variables and low percentage for continuous ones. Also, as expected, AIC criterion presents a
greater correct selection rate (Panel (d)). Finally, the returned p-values of these scenarios are
presented in Supplementary Material.
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Figure 3: Selection of explanatory variables in the parametric Weibull model, for different sample
size, using (a) κ = 2 (AIC), (b) κ = [2 + log(n)]/2 (GAICav) and (c) κ = log(n) (BIC) criteria,
and (d) different values for slope.

3.2 Linear and Nonlinear Structures

In the scenarios where both linear and nonlinear relationships are considered, we have a discrete
variable (X3) affecting both μ and σ parameters simultaneously (Table 2). Variables X1, X5

and X7 will only be considered in the generating process for μ, and variables X2 and X6 for
parameter σ . Moreover, X7 will be generated in such a way that its effect in μ has an increasing-
decreasing-increasing shape.

Normal Data Let us consider once again that Y ∼ N(μ, σ). Now, assuming that X7 has a
nonlinear effect in μ, we will consider the following regression structures for the two parameters
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Table 2: Continuous (cont) and discrete authentic variables considered on the data generating
process (linear and nonlinear structures).

Parameter x1 x2 x3 x4 x5 x6 x7 x8

μ discrete discrete cont cont
σ discrete discrete cont

of the normal distribution

μ = β01 + β11x1 + β31x3 + β51x5 + s(x7) and
σ = exp[β02 + β22x2 + β32x3 + β62x6],

where s(·) stands for a P-spline (Eilers and Marx, 1996) considered to model the relationship be-
tween x7 and the mean parameter μ. The true parameter values in the data-generating processes
are

μ = 40 + 5x1 − 4x3 + 2.5x5 + 10 sin(0.2x7π) and
σ = exp[1.6 + 0.6x2 − 0.35x3 + 0.03x6].

As we can see in Figure 4, the correct selection rate for both parameters (μ and σ ), in-
cluding different values of slope (Panel (d)), of the heteroscedastic normal regression model,
based on the Strategy A method, returned similar results (consequently, the same discussion
can be applied here) to the ones presented when only linear structures were considered. Once
again, as highlighted in Section 2.1, the effect of continuous covariates in the log-likelihood func-
tion is smaller than the one applied by a categorical variable, when they are within the same
range.

Please check Supplementary Material for the p-values of the selected (authentic and noise)
variables. Please note that the covariate x7 is omitted from these plots since a P-spline is being
considered to model its relationship with both parameters μ (authentic) and σ (noise), thus the
resulting coefficients of each smoother and its standard error (consequently its p-value as well)
refer only to the linear part of the smoother and not to the smoother’s contribution as a whole
(Stasinopoulos et al., 2017; Ramires et al., 2019). As in the linear structure scenario, we may
conclude that BIC criterion returned the smallest p-values and, as expected, when the sample
size increases, the variables, when selected, become more significant.

Finally, regarding noise variables, in the worst case scenario, variable x7 was roughly selected
more than 25% of the times to compose the regression structure of σ (considering AIC with a
sample size equals to 150).

Count Data Considering Y ∼ ZIP (μ, σ ) and that x7 has a nonlinear effect in μ, the following
regression structures were used to generate the data

μ = exp [0.4 + 0.4x1 + 0.04x3 + 0.04x5 + 0.2 sin(0.2π x7)] and
σ = logistic[−2.11 + 0.75x2 + 1.85x3 + 0.5x6].
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Figure 4: Selection of explanatory variables in the semiparametric normal heteroscedastic model.
The correct/incorrect specification percentages, for different sample size, using (a) κ = 2 (AIC),
(b) κ = [2 + log(n)]/2 (GAICav) and (c) κ = log(n) (BIC) criteria, and (d) different values for
slope.

Figure 5 displays the percentages of selected authentic and noise variables in this simu-
lation study. The observed behavior for both parameters μ (mean of the Poisson component)
and σ (exactly probability of Y = 0) is quite similar to the one in the scenario where only
a linear structure was considered in the ZIP model, presented in Figure 2. All p-values from
this simulation study are presented in Supplementary Material. Please note, once again, that
covariate x7 is omitted due to the P-spline considered to model its relationship in both regression
structures.
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Figure 5: Selection of explanatory variables in the semiparametric ZIP model, for different sample
size, using (a) κ = 2 (AIC), (b) κ = [2 + log(n)]/2 (GAICav) and (c) κ = log(n) (BIC) criteria,
and (d) different values for slope.

Censored Data In this final simulation study, let us consider Y ∼ Wei(μ, σ ) and a nonlinear
effect in μ. The following regression structures were used to generate the data

μ = exp
[
3.98 + 0.09x1 − 0.07x3 + 0.04x5 + log (1 + 10 sin(0.2π x7)/40)

]
and

σ = exp[1.53 + 0.49x2 − 0.31x3 + 0.05x6].
The results are presented in Figure 6. As can be seen the observed percentages of variable

selection in all scenarios are quite similar to the one presented in Figure 3, i.e. a high selection rate
for authentic discrete variables, while the AIC criterion presented the greatest correct selection
rate (Panel (d)). All p-values of this simulation study are presented in Supplementary Material.
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Figure 6: Selection of explanatory variables in the semiparametric Weibull model, for different
sample size, using (a) k = 2 (AIC), (b) k = [2 + log(n)]/2 (GAICav) and (c) k = log(n) (BIC)
criteria, and (d) different values for slope.

4 Concluding Remarks
The Strategy A procedure, accessed through the stepGAICAll.A() function implemented in the
gamlss package in R is a stepwise-based procedure to select variables based on the generalized
Akaike information criterion (GAIC). Due to the GAIC definition, the selection of a given
variable will directly depend on how much such variable increases the log-likelihood function
(decreasing the GAIC value), weighted by the increasing on the number of degrees of freedom.
Thus, continuous covariates tended to be selected fewer times than discrete ones if they have
some similarity. Nonetheless, three levels of penalties κ were considered, showing that the AIC
criterion tends to include more variables in the model (including those that should not be
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selected, i.e. noise variables), BIC tends to select only covariates with strong effects and GAICav
was a moderate criterion, which is somewhat expected. Furthermore, as sample size increases, the
results of the stepwise-based procedure become better and more realistic. Finally, as suggestions
for future research, we can think in the behavior of the Strategy A procedure considering more
complex distributions (three or more parameters), different shapes for the nonlinear term, the
presence of interactions between covariates and others.

Supplementary Material
Please note that the following supplementary files are available online: i) suppl_stepgaic.pdf:
p-values for the selected variables in each simulated scenario; and ii) codes_stepgaic.zip: all
codes in R software that were used to conduct the simulation studies presented in this paper.
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