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ABSTRACT: Considering that the biospeckle laser is a dynamic interferometric

phenomenon adopted as a tool to monitor changes in biological samples and that the

temporal variation of speckle pattern depend on the activity level of the sample surface

illuminated, this work proposes to analyse the time-varying scale-mixing matrix. Using

two-dimensional scale-mixing wavelet transform several descriptive summaries varying

on time are derived. These descriptors are signature of image regularity and fractality

useful in tissue classification. In this work we propose to verify the behavior of the

energy-flux between the scales, considering a set of 128 images to classifying cancer

areas in images of an anaplastic mammary carcinoma in a female canine and in images

of skin cancer in a cat obtained over time. The time-varying spectral slopes applied

in the analysis of dissimilarities of tissues allowed to note that healthy area descriptors

have lower values than cancer area descriptors, resulting in higher Hurst exponents. By

using scaling properties of tissue images, we have captured information contained in

the background tissue of images which is not utilized when only considering traditional

morphological analysis.
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1 Introduction

The research of cancer identification demands permanent efforts to scientists.
The optical techniques are an actual alternative to achieve the diagnosis of tumors
(KURACHI et al., 2008 ) which are also known as optical biopsy. The development
of technologies associated with the dynamic laser speckle has offered alternatives to
access the sensitive activities in animal and vegetable tissues (BRAGA et al., 2012).
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For locally isotropic medical images, the Hurst exponent is known to be useful
for diagnostic purposes (BURDETT et al., 1993; RICHARDSON, 1995; NICOLIS
et al., 2011; JEON et al., 2014).

The biospeckle laser is a dynamic interferometric phenomenon, which has been
adopted as a sensitive tool to monitor changes in biological samples, and thus it
has been applied in many areas, from medicine to agriculture, since the fact that it
is a non-destructive technique is relevant in biological applications(BRAGA et al.,
2008).

The multitude of applications is associated to a range of methods to illuminate,
to assemble the images and to provide their analysis.

The static appearance of a speckle pattern is expressed by an image with
clear and dark grains distributed over all the illuminated material. Since it is
a dynamic phenomenon, the speckle pattern expresses the boiling effect with the
grains changing their shape and level of lightness related to the level of movement of
the scatterers of the coherent light. The scatterers in an inert material, for example,
do not change, so much so, the boiling effect isn’t observed and its intensity is linked
to the level of activity. This measurement technique is identified as an alternative
to that of a conventional mechanical stylus (DAINTY et al., 1975.)

Several speckle pattern analysis methods have been investigated in literature
to facilitate different application tasks including the speckle contrast (GEORGE,
1975), autocorrelation function (CHENG, 2004), etc. In addition to speckle pattern
analysis, the temporal variations of speckle patterns are found to depend strongly
on the activity level of the sample surface illuminated.

The irregular behavior of complex structures is difficult or impossible to
quantify by standard modeling techniques; but when observations are inspected
at different scales, there is in fact a regular relationship between the behavior
among the scales. This phenomenon has been demonstrated in many medical images
(JEON et al., 2014), leading to its diagnostic use as a tool capable of quantifying
statistical similarity of data patterns at various scales (NICOLIS et al., 2011).

Wavelets are a mathematical tool for extracting information from different
types of data. The Fourier analysis is suitable for stationary signals while the
wavelet analysis is robust to non-stationary signals, because its transform has a
local aspect. One key difference, however, is that the wavelet transform is localized
in both frequency and time, while the standard Fourier transform is only localized
in frequency. In other words, the Fourier transform tells us what frequencies are
present in a signal, and the wavelet transform tells us what frequencies are present
and at which locations. Wavelets are used for a variety of purposes, including the
compression, denoising, and filtering of signals as well as measuring the degree
of regularity of a signal. Often, discussions of wavelets focus on the study of
one-dimensional signals, but wavelet techniques may also be applied to the study
of multi-dimensional objects (NICOLIS et al., 2011; TONER, 2019). Statistical
aspects of wavelets are discussed in Vidakovic (1999) and Morettin (2014).

Wavelet transforms lead to coefficients (numerical values) representing the
nature of a given signal at different locations/resolutions. These coefficients may
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be used to form the wavelet-based spectra of the signal, showing the relationship
between the resolution of the signal and the averaged magnitudes of the coefficients.
By assessing the wavelet-based spectra, we may better understand the mathematical
characteristics of the overall signal. If the energies (an engineering term for squared
coefficients in the wavelet decomposition) decay regularly, this signifies scaling in
the data, meaning all resolutions contribute to the overall observed phenomenon. In
this case, a measure of regularity can be calculated as the rate of energy decay. More
precisely, if the logarithms of average energies in different scales decay linearly with
the scale index, then the slope of this decay is describing the regularity of the original
signal/object. Thus the spectral slope of the wavelet-based spectra can precisely
measure the degree of a signal’s regularity. For details about wavelet-based spectra
and their application to assessing regularity of signals/images we direct the reader
to Jeon et al. (2014), Nicolis et al. (2011) and Sáfadi et al. (2016).

Traditional 2-D wavelet transforms lead to three directional spectra:
horizontal, vertical, and diagonal. These spectra are defined by directional
hierarchies of detail coefficient. Marques and Sáfadi (2020) develop new applications
for image analysis based on the non-decimated discrete wavelet transform. The
behavior of (directional) Hurst exponents were verified, over time, using the non-
decimated wavelet transform in 128 interferometric images of a canine anaplastic
mammary carcinoma, obtained in regular time intervals by means of the dynamic
biospeckle method. They concluded that the temporal analysis of the Hurst
exponents is an alternative tool to distinguish between images of the healthy tissue
and the carcinogenic one.

An ensemble of wavelet based-spectral tools for analysis of 2-D images was
proposed on Ramirez-Cobo et al. (2011) where generalized the notion of 2-D
spectra by generalizing the form of the 2-D wavelet transform and showed that the
new spectra was capable of interfacing different scales when assessing the energy
distribution of the image. Scale-mixing wavelet spectrum is applied to the analysis
of time sequences of two-dimensional spatial rainfall radar images characterized
by either convective or frontal systems. The scale-mixing (or covariance) matrix
captures the “energy flux” between the scales.

Jeon et al. (2014) generalized the scale-mixing wavelet spectra to the complex
wavelet domain. In this domain, they estimated Hurst parameter and image phase
and used them as discriminatory descriptors to classify mammographic images to
benign and malignant. Namazi and Kiminezhadmalaie (2015) evaluated the Hurst
exponent for 50 healthy and 50 lung cancer patients, the analysis found that DNA
walks have smaller values of the Hurst exponent compared to normal DNA. They
concluded that DNA damage is less predictable and more complex compared to
normal DNA.

In this paper, we propose to find dissimilarities between cancer images and
healthy images by analyzing the flow of energy between scales and over time. The
methodology is based on a modification of a 2-D discrete scale-mixing wavelet
transform proposed by Ramirez-Cobo et al. (2011) to classifying cancer areas in
images of an anaplastic mammary carcinoma in a female canine and in images of
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skin cancer in a cat. We considered a set of 128 interferometric images of cancer
tissues (breast and skin), obtained in regular time intervals in a rate of 0.08 s.
Braga et al. (2012) showed that with these 128 images it is possible to separate
different tissues in the same material through the frequency signature, and through
the association of graphic and numerical results of the biospeckle laser images. The
empirical spectral slopes densities and the Hurst exponent are used in the analysis
of dissimilarities in tissues of distinct areas.

The rest of the article is organized as follows. In Section 2, concepts from 2-D
scale-mixing non-decimated wavelet spectra are reviewed. In Section 3, the data
and the methodology are described. In section 4 are presented the results. The
conclusions are presented in Section 5.

2 Background

We describe briefly the non-decimated wavelet transform (NDWT), and
provide motivation for the choice of this redundant transform over usual orthogonal
discrete wavelet transform.

Any square-integrable L2(R) function f(x) can be represented in the wavelet
domain as

f(x) =
∑
k

cJ0,kφJ0,k(x) +

∞∑
j≥J0

∑
k

dj,kψj,k(x),

where cJ0,k indicates coarse coefficients, dj,k detail coefficients, φJ0,k(x) scaling
functions, and ψjk(x) wavelet functions. We use different decomposing atom
functions, as scaling and wavelet functions, depending on a version of wavelet
transform. For standard discrete wavelet transform (DWT), the atoms are

φJ0,k(x) = 2J0/2φ(2J0x− k)

ψjk(x) = 2j/2ψ(2jx− k),

where x ∈ R, j is a resolution level, J0 is the coarsest resolution level, and k is the
location of an atom.

For NDWT, atoms are

φJ0,k(x) = 2J0/2φ(2J0(x− k))

ψjk(x) = 2j/2ψ(2j(x− k)).

Notice that atoms in NDWT have a constant location shift k at all levels, which
yields the maximal sampling rate at each level. Two types of coefficients, cJ0,k and
dj,k, capture coarse and detail fluctuations of an input signal, respectively. These
are obtained as

cJ0,k = 〈f(x), φJ0,k〉

djk = 〈f(x), ψjk〉.
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In a p-depth decomposition of an input signal of size m, a NDWT yields m× (p+1)
wavelet coefficients, while DWT yields m wavelet coefficients independent of p.
The redundant transform NDWT decreases the variance of the scaling estimators.
In wavelet analysis of signals/images the redundancy of non-decimated wavelet
decompositions is often favored to minimality of standard orthogonal wavelet
transforms because of their stationarity, smaller variance, and ease of use for signals
of arbitrary size.

Expanding on the 1-D definitions, we overview a 2-D NDWT of f(x,y), where
(x, y) ∈ R

2. Several versions of 2-D NDWT exist but we focus on the scale-mixing
version. For the standard 2-D NDWT, the wavelet atoms are

φJ0;k(x, y) = 2J0φ(2J0(x− k1))φ(2
J0(y − k2)),

ψ
(h)
j;k(x, y) = 2jφ(2j(x− k1))ψ(2

j(y − k2)),

ψ
(v)
j;k(x, y) = 2jψ(2j(x− k1))φ(2

j(y − k2)), (1)

ψ
(d)
j;k(x, y) = 2jψ(2j(x− k1))ψ(2

j(y − k2)),

where k = (k1, k2) is the location pair, and j = J0, ..., J − 1 is the scale. The depth
of the transformation is p = J − 1 − J0. The wavelet coefficients of f(x, y) are
calculated as

cJ0;k1,k2 = 2J0

∫ ∫
f(x, y)φJ0;k1,k2(x, y)dxdy,

d
(i)
j;k1,k2

= 2j
∫ ∫

f(x, y)ψ
(i)
j;k1,k2

(x, y)dxdy,

where J0 is the coarsest decomposition level, and i ∈ {h, v, d} indicates
the “orientation” of details coefficients as horizontal, vertical and diagonal
(VIDAKOVIC, 1999) .

As in the univariate case, any function f ∈ L2(R2) can be represented as

f(x, y) =
∑
k

cj0kφj0k(x, y) +
∑
j≥j0

∑
k

∑
i

dijkψ
i
jk(x, y),

where i ∈ {h, v, d},k = (k1, k2) ∈ Z
2 and

φjk(x, y) = 2jφ(2jx− k1, 2
jy − k2),

ψijk(x, y) = 2jψi(2jx− k1, 2
jy − k2).
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For the scale-mixing 2-D NDWT, the wavelet atoms are

φJ01
,J02

;k(x, y) = 2(J01
+J02

)/2φ(2J01 (x − k1))φ(2
J02 (y − k2)),

ψJ01
,j2;k(x, y) = 2(J01

+j2)/2φ(2J01 (x − k1))ψ(2
j2 (y − k2)),

ψj1,J02
;k(x, y) = 2(j1+J02

)/2ψ(2j1(x − k1))φ(2
J02 (y − k2)), (2)

ψj1,j2;k(x, y) = 2(j1+j2)/2ψ(2j1(x − k1))ψ(2
j2 (y − k2)),

where J01 and J02 are coarsest levels, j1 ≥ J01 ; j2 ≥ J02 , and k = (k1, k2). As a
result, we obtain wavelet coefficients for f(x, y) from the scale-mixing NDWT as

cJ01
,J02

;k =

∫ ∫
f(x, y)φJ01

,J02
;k(x, y)dxdy,

hJ01
,j2;k =

∫ ∫
f(x, y)ψJ01

,j2;k(x, y)dxdy,

vj1,J02
;k =

∫ ∫
f(x, y)ψj1,J02

;k(x, y)dxdy, (3)

dj1,j2;k =

∫ ∫
f(x, y)ψj1,j2;k(x, y)dxdy.

The coefficients (Equation (3)) will be denoted as c, h, v, and d-type
coefficients. Notice that in the standard NDWT, we use common j to denote a scale,
while in the scale-mixing NDWT, we use the pair (j1, j2), which indicates that two
scales are mixed. The d-coefficients correspond to decomposing atoms consisting
of two wavelet functions, while the atoms of c, v or h-type coefficients contain
at least one scaling function ( see Figure 1a). When an image possess a certain
degree of smoothness, the coefficients corresponding to diagonal decomposition
atoms (d-type coefficients) tend to be smaller in magnitude compared to the c,
v or h-type coefficients. Figure 1a illustrates the tessellation of the scale-mixing
2-D NDWT (KANG, 2016) .

In practice, we operate with vectors and images as sampled versions of 1D and
2D functions. In this discrete case, the wavelet transforms (orthogonal and non-
decimated) due to their linearity can be represented in form of matrix multiplication.
Such wavelet-matrices can be constructed prior to implementation, which facilitates
computational efficiency in repeated use.

A 2-D signal A of size [m x n] for p1 and p2 level decomposition along rows
and columns, respectively, is obtained by NDWT matrix multiplication from the
left and its transpose from the right. The transform results in a 2-D signal B of
size (p1 + 1)m× (p2 + 1)n,

B = W (p1)
m ×A[m×n] × (W (p2)

n )
′

. (4)

Here p1, p2,m and n can take any integer value, and W
(p1)
m and W

(p2)
n could

be constructed using possibly different wavelet filters (KANG, 2016) .
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(a) (b)

1

Figure 1 - (a) Locations of four types of wavelet coefficients in the tessellation of
3-level decomposition with the scale-mixing 2-D NDWT (b)Descriptors
s1 and s2 are traditional spectral slopes, while s3 and s4 are connected
with scale-mixing slopes.

Matrix B will be called the scale-mixing (or covariance) wavelet transform
of matrix A, and will be the basis for defining the scale-mixing spectra. The
motivation for the name scale-mixing is that the atoms mix the scale indices thus
capturing the “energy flux” between the scales. From the transformed images
several spectral indices, describing innate regularity of image background, are
derived. The descriptors involve spectral slopes which are directly connected with
degree of image regularity.

The standard measure of regular scaling is the Hurst exponent. This measure
can also be connected to the presence of long memory and fractality in signals and
images and is viewed as an informative summary. Wavelet transforms are powerful
tool in estimating the Hurst exponent and modeling statistical similarity at different
scales.

For defining a wavelet spectrum, and subsequently for estimating Hurst
exponent H , only detail wavelet coefficients are used. Empirically, we look at the
levelwise average of squared detail coefficients (energies),

d2j =
1

nj

nj∑
i=1

d2j,k,

where nj is the number of wavelet coefficients at level j. The relationship

between average energy d2j and H is

log2 d
2
j

d
≈ −(2H + 1)j +Const.

The spectral slope −(2H+1) is a function of Hurst exponent and is a signature
of irregularity of a signal. For D-dimensional signals, the spectral slope becomes
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−(2H + D). Operationally, the spectral slopes are found by regressing log2 d
2
j on

the level j.
By inspecting the tessellation in Figure 1b, several details spaces can be

identified. Analogous to the one-dimensional case, the scale-mixing spectra are
defined in terms of the scale-mixing coefficients (Equation (3)) as

S(j) = log2E(d2j,j+s,k), (5)

where j ∈ Z and s ∈ Z is fixed.
The empirical counterpart of Equation (5) is

Ŝ(j) = log2(d2j,j+s,k), (6)

for j ∈ Z.

In Equation (6), (d2j,j+s,k) denotes the average of squared detail coefficients
Equation (3) at level (j, j + s).

As in Veitch and Abry (1999) and Nicolis et al. (2011), it is assumed here that
the coefficients within and across the scales are uncorrelated. This assumption is
reasonable; Flandrin(1992) showed that when the number of vanishing moments of
the scaling function is large, the correlation between the coefficients within a scale
decays exponentially fast, while the coefficients from different scales are almost
uncorrelated (RAMIREZ-COBO et al., 2011) .

It can be seen that

E(d2j,j+s,k) = 2−j(2H+2)Vψ,s(H); (7)

where Vψ,s(H) is a constant depending on ψ, H and s, but not on the scale j.
By taking logarithms in Equation (7),

log2E(d2j,j+s,k) = −(2H + 2)j + log2Vψ,s(H) (8)

for j ∈ Z, and thus the Hurst exponent can be estimated from the slope of the
linear Equation (8).

Finally, the empirical counterpart of (Equation (8)) is a regression defined on

(j, log2(d2j,j+s,k)), j, s ∈ Z. (9)

The slope is indeed the tangent of angle of a regression where log-average
energies are regressed against the dyadic index of multiresolution subspaces.

Notice that the case s = 0 in Equation (6) corresponds to the traditional
diagonal 2-D spectra (descriptors s1 and s2), while s = −1 corresponds to descriptor
s3 and s = 1 corresponds to s4. If the image were a monofractal (such as a fractional
Brownian field) the two slopes (s1, s2) would be identical and would lead to a global
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irregularity index of the image, such as Hurst exponent. The difference between the
slopes will measure the deviation from the monofractality.

On the other hand, the two lateral slopes s3 and s4 measure directional
violation of isotropy. For example, the slope s3 is calculated from average energies
in two multiresolution cells where horizontal and vertical resolutions differ. The
average energies in corresponding cells measure the degree of horizontal or vertical
anisotropy in the image.

If the image were fully isotropic, both s3 and s4 would be equal to s1 and s2,
that is, all four indices will be the same.

We draw the reader’s attention to the fact that, in this work, the matrix B and
the descriptors associated with it are indexed in time (index omitted throughout
the text).

3 Material and Methods

The biological materials chosen to be illuminated were neoplastic tissues from
surgeries in a cat (skin) and in a dog (breast) and were analyzed before the
histological exams. They were maintained cooled just after the surgeries and they
were not fixed in phormaldehyde which is a routine step to implement histological
exams. The samples were cut in pieces creating a flat surface with the neoplastic
and the normal tissues naturally linked side by side. After the illumination,
the neoplastic tissue was fixed in phormaldehyde 10%, and dehydrated through
increasing concentrations of ehtyl alcohol, diaphanized in xylol and included in
paraffin in order to be analyzed in histological exams. The cuts of 5 µm were
pigmented using Hematoxylin-Eosin (HE) staining protocol, and the neoplastic
diagnosis was conducted in accordance to histological and to pathological aspects.

Interferometric images of neoplastic tissues were obtained through an optical
method using the interference pattern formed when a biological material is
illuminated by a laser, called Biospeckle laser technique (BSL). A laser set of HeNe
with 10mw, of 632nm, was opened and illuminated the sample directed by a mirror.
The CCD camera and the computer were responsible for the assembling of the image
with 486×640 pixels for the animal tissues summing 128 frames for neoplastic tissues
in a rate of 0.08s.

In Figure 2 it is possible to observe the images from histological sections with
the basophilic neoplastic tissues. The neoplastic tissues were histologically classified
as basosquamous carcinoma in the feline’s skin and anaplastic mammary carcinoma
in a female canine. The anaplastic mammary carcinoma, besides its distinct cell
origin, presented lower differentiation if compared to the basosquamous carcinoma.
In turn, the anaplastic mammary carcinoma was plenty of fibrous stroma while it
was rare in the basosquamous, and in addition the anaplastic mammary carcinoma
had areas of inflammatory infiltrated dominated by neutrophils (characterized by
whitish areas) which was either absent in the basosquamous carcinoma. The
anaplastic mammary carcinoma is observed in the Figure 2a in dark situated
bellow and the normal tissues in light on the top of the image. In Figure 2b,
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the basosquamous carcinoma can be seen in dark, and a normal tissue in the right
bottom of the image with light (eosinophlic), in a format of a tail. On right are the
illuminated images.

(a)

(b)

1

Figure 2 - Histological analysis of samples with: (a) a breast cancer in dark
connected to a normal tissue (on left) and an illuminated image (on
right), (b) a skin cancer in dark connected to a thin normal tissues (on
left) and an illuminated image (on right).

To implement the 2D-non-decimated wavelet transform, we consider 4 sub-
images (64 x 64) in each of the 128 images, two from the cancer area and two
from the healthy area. The location of healthy and cancerous tissues was based on
research by Braga et al. (2012). The proposed methodology is evaluated through
the empirical densities of spectral slopes and the Hurst exponent.

We use the Daubechies’ db2 basis with 2 vanishing moments to perform the
non-decimated wavelet decomposition with 3 levels of details. Selection of this
wavelet was motivated by its good localization properties and the continuity of
scaling and wavelet functions.

4 Results

In this section, we will consider time-varying subfigures of healthy and
cancerous areas. For each subfigure, scale-mixing matrix wavelet and several
spectral slopes are derived. The dissimilarity analysis is performed through the
empirical density of the spectral slopes and the Hurst exponent.

4.1 Feline tissues

Initially, we considered two sub-images from the feline image (Figure 2b), the
first in the healthy area and the second in the cancer area. The empirical densities
for each spectral slope are shown in Figure 3. Note that the distributions for each
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descriptor are similarly in the two areas. In addition, s2 and s4 are bimodal with
greater variability in healthy areas.
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Figure 3 - Empirical densities of spectral slopes : (a) cancer area , (b) healthy area
.

The mean and the confidence interval for each descriptors are shown on
Table 1, note that the values for s1, s2, s3 and s4 are distinct indicating anisotropy
in the image. For the slopes s1 (traditional) and s3 (mixture of scales) whose
distributions are unimodal, the confidence intervals indicate different descriptors
when comparing images of cancer and healthy tissues. The Hurst exponent was
obtained using the mode instead of the mean on Equation (8), because we have
asymmetric and bimodal distributions. Note that healthy tissues have greater Hurst
exponents than cancer tissue, indicating that healthy areas are more irregular than
cancer areas.

Table 1 - Mean (standard deviation in parentheses), 90% Confidence Intervals (CI)
and Hurst exponent for Cancer and Healthy areas in a feline

Cancer Healthy
Descriptors Mean (sd) CI Hurst Mean (sd) CI Hurst
s1 -1.56 (0.11) -1.74;-1.38 -0.07 -2.12 (0.14) -2.35;-1.89 0.25
s2 -3.09 (0.39) -3.72;-2.45 0.80 -2.76 0.79) -4.06;-1.46 0,87
s3 -3.15 (0.09) -3.29;-3.00 0.71 -3.33 (0.10) -3.49;-3.31 0.77
s4 -2.47 (0.27) -2.91;-2.03 0.45 -2.16 (0.65) -3.23;-1.09 0.51

Considering, as proposed, 2 sub-images from the cancer area and 2 from the
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healthy area of the feline skin image, it is observed (Figure 4) that the empirical
densities for the descriptors of the cancer areas are closer than the densities of
healthy areas. Indicating that healthy areas are more irregular than cancer areas.
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0
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(a) empirical density for s1 
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(b) empirical density for  s2 
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 (c) empirical density for s3 
−4 −3 −2 −1 0
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1.5

(d) empirical density for  s4 

Figure 4 - Empirical densities of spectral slopes for two cancer regions (in black and
blue) and two healthy regions (in green and red): (a) s1, (b) s2, (c) s3
and (d) s4.

4.2 Canine tissues

The analysis for canine tissues was divided into two parts, in the first we tried
to choose regions of the healthy area as homogeneous as possible, Figure 5, and in
the second we considered sub-images of whitish regions associated with infections,
Figure 6.

When considering healthy areas, but with more evident infection (whitish
areas), Figure 6, we observed that the empirical densities of the descriptors of these
regions are closer, indicating greater regularity. Statistics of the descriptors for the
region with cancer and healthy are shown in Table 2. Note that, as in Table 1,

Braz. J. Biom., Lavras, v.40, n.1, p.120-137, 2022 - doi: 10.28951/bjb.v40i1.557 131



−2.5 −2 −1.5 −1 −0.5
0

1

2

3

(a) empirical density for s1
−6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

(b)  empirical density for s2

−4 −3.5 −3 −2.5
0

2

4

6

 (c) empirical density for s3 
−6 −4 −2 0 2
0

0.2

0.4

0.6

0.8

(d) empirical density for s4

Figure 5 - Empirical Densities of Spectral Slopes for Cancer (in black and blue) and
Healthy (in green and red) Areas: (a) s1, (b) s2, (c) s3 and (d) s4.
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Figure 6 - Empirical Densities of Spectral Slopes for Cancer (in black and blue) and
Healthy (in green and red) Areas with inflammatory areas in a mammary
canine (breast): (a) s1, (b) s2, (c) s3 and (d) s4.

healthy area descriptors have lower values than cancer area descriptors, resulting
in higher Hurst exponents. It is interesting to note that despite being considered a
healthy area because it does not contain cancer, it is an area of great infection and
even so the methodology used was efficient.

In Figures 4 and 6, where we have a basosquamous carcinome and an anaplastic
carcinome tissues, respectively, we see that the densities for healthy areas had lower
values than the densities for cancer areas, mainly observed in s1 (diagonal) and s3
(scale-mixing) descriptors.

Note that healthy area descriptors have lower values than cancer area
descriptors, resulting in higher Hurst exponents. A similar result was obtained
by Marquez and Sáfadi (2020) using directional Hurst exponents.

Our results are in agreement with those found by Namazi and Kiminezhad-
malaie (2015), whose results for damage DNA (lung cancer) in humans showed
higher values of the Hurst exponent when compared with normal DNA.
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Table 2 - Mean (s.d. in parentheses), Mode and Hurst exponent - Cancer and
Healthy areas in a breast canine

Descriptors Mean (sd) Mode Hurst
Cancer

s1 -1.61 (0.14) -1.99 -0.01
s2 -2.82 (0.71) -3.69 0.84
s3 -3.21 (0.12) -3.51 0.75
s4 -2.18 (0.52) -2.99 0.49

Healthy
s1 -1.78 (0.14) -2.10 -0.11
s2 -2.59 (0.98) -3.81 0.91
s3 -3.29 (0.10) -3.57 0.79
s4 -1.94 (0.76) -3.02 0.51

Healthy (with whitish areas)
s1 -1.72 (0.16) -2.11 0.05
s2 -2.69 (0.89) -3.79 0.89
s3 -3.27 (0.09) -3.53 0.76
s4 -2.05 (0.68) -2.99 0.49

5 Conclusions

The methodology makes no a priori assumptions about the morphology of a
cancer, but rather detects it by departure from normal background. By using scale-
mixing spectra properties of tissue images, we have captured information contained
in the background tissue of images which is not utilized when only considering
traditional morphological analysis.

The time-varying spectral slopes applied in the analysis of dissimilarities of
tissues allowed to note that healthy area descriptors have lower values than cancer
area descriptors, resulting in higher Hurst exponents.

The method used in this research can be applied for analysis of other types of
cancer. The ability to apply the methodology in the animal tissue can be considered
a potential usage in this research field.

We suggest that this type of classifier may be used in conjunction with other
methodologies in order to improve the detection. If the tool proves robust on further
investigation, it may be useful in outlining cases that require heightened scrutiny
or even addition of supplemental screening modalities.

Sensitivity and specificity analysis will consider in future work.
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Supporting Information

The biospeckle laser data: cancer dog is available at
http://repositorio.ufla.br/jspui/handle/1/11986.

The matrix W referenced in Section 2 equation (2.4) , is available at
WavmatND: A MATLAB Package for Non-Decimated Wavelet Transform and its
Applications.
https://www.researchgate.net/publication/301648108.

SÁFADI, T. Detecção de câncer em tecidos animais: uma abordagem de wavelet.
Braz. J. Biom., Lavras, v.40, n.1, p.120-137, 2022.

RESUMO: Considerando que o biospeckle laser é um fenômeno interferométrico

dinâmico adotado para monitorar mudanças em amostras biológicas e que a variação

temporal do padrão do speckle depende do ńıvel de atividade da superf́ıcie da amostra

iluminada, este trabalho propõe analisar a matriz de mistura ao longo do tempo.

Utilizando a transformada bidimensional de ondaletas, são obtidos vários resumos

descritivos variando no tempo a partir da matriz de mistura. Esses descritores são

assinaturas de regularidade e fractalidade da imagem, úteis na classificação dos tecidos.

Neste trabalho propomos verificar o comportamento do fluxo de energia entre as escalas,

considerando um conjunto de 128 imagens obtidas variando no tempo para classificar

áreas de câncer em imagens de um carcinoma mamário anaplásico em uma cadela

e em imagens de câncer de pele em um gato. Os declives espectrais variando no

tempo aplicados na análise de dissimilaridades dos tecidos permitiram observar que

os descritores da área saudável têm valores mais baixos do que os descritores da área

de câncer, resultando em expoentes de Hurst maiores. Ao usar as propriedades de

dimensionamento de imagens de tecido, capturamos informações contidas na imagens

dos tecidos que não são utilizadas quando se considera apenas a análise morfológica

tradicional.

PALAVRAS-CHAVE: Tecidos de carcinoma animal; expoente de Hurst; análise de

imagem; análise multiescala; transformada wavelet não dizimada.
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