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Abstract. Precision spraying is one of the techniques for the reduction of pesticides use and it 
can help achieve the new European Green Deal standards. The aim of such technique is to apply 
the right amount of pesticides according to the target characteristics. The precision spraying 
implementation requires target volume assessment, which can be carried out by LiDAR sensors. 
Such technique requires complex and time-consuming procedures of canopy characteristics 
computing through post-processing points cloud reconstruction. The present work aimed to 
develop and test an algorithm through the use of a tractor-coupled with terrestrial LiDAR and 
GNSS technology in order to simplify the process. With the aim to evaluate the algorithm the 
LiDAR-based volume was correlated with two manual measurements of canopy volume (Tree 
Row Volume and Point Net Cloud). The results showed good correlations between manual and 
LiDAR measures both for total canopy volumes (R2 = 0.67 and 0.56) and for partial canopy 
volume (R2 = 0.74). In conclusion, although the LiDAR-based algorithm works in automatic 
mode, the canopy volumes approximation seems acceptable to estimate the canopy volumes, with 
the advantages of a swifter procedure and less laborious post-processing computations. 
 
Key words: canopy management technique, canopy measurements, site-specific data, variable 
rate technique, viticulture. 
 

INTRODUCTION 
 

In the last few decades, the public authorities focused their attention on reducing 
pesticide use and/or improving the efficiency of spraying operation (European 
Parliament, 2009; MIPAAF, 2014). The European Commission has recently declared 
that it is essential to introduce coherent strategies to halve the use of chemical pesticides 
by the year 2030 (ECP, 2020). Variable rate applications (VRA), telemetry of crop 
protection stages, integrated pest management (IPM) and decision support systems 
(DSS) can be effective strategies to achieve the European goals. VRA consists of 
variable-rate spraying according to the characteristics of the canopy (height, width, 
volume, leaf area, leaf density) or vigour index (Miranda-Fuentes et al., 2016; Tsoulias 
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et al., 2019; Cheraïet et al., 2020; Román et al., 2020). A 20–30% reduction in pesticide 
use has been achieved by detecting tree size and architecture, (EPRS, 2016). Other 
improvements have been reached by using auxiliary telemetry tools for crop protection 
phases (Sarri et al., 2020). In addition, the adoption of Integrated Pest Management 
(IPM) was able to reduce a sprayed area by approximately 50–80% (EPRS, 2017). 

The variable-rate application technique consists in obtaining similar plant 
protection products (PPP) deposits according to canopy characteristics (Gil et al., 2013). 
To fulfil the variable-rate applications, canopy dimensions have to be measured. 
Originally, canopy measurement was carried out manually and the corresponding 
canopy indicators were created (Tree Row Volume, Leaf Area Index, Leaf Wall Area, 
Unit Canopy Row, Ellipsoid Volume Method) (Pergher & Petris, 2008; Miranda-Fuentes 
et al., 2015). Obtaining these manual indicators was time-consuming. Gradually, thanks 
to technological development, faster and more efficient measurement methods have been 
developed (Rosell & Sanz, 2012; Comba et al., 2019). Several studies have used 
ultrasonic sensors to improve variable-rate application (Llorens et al., 2010; Llorens et 
al., 2011, Gil et al., 2013). These sensors operate with ultrasonic waves, and provide a 
precise assessment of canopy width in small portions of vegetation. Improvements of 
canopy detections were provided by LiDAR (Light Detection and Ranging) sensors. The 
LiDAR technology works with laser beams, and it provides canopy point cloud, at 
various angular resolution and various aperture angle (Rosell & Sanz, 2012). Thus, the 
entire vertical profile of the canopy can be reconstructed. Many studies were carried out 
for implementing the LiDAR-based canopy measurements (Palacín et al., 2007; Rosell 
et al., 2009a; Llorens et al., 2011; Sanz et al., 2013; Miranda-Fuentes et al., 2015; 
Tsoulias et al., 2019). Some works obtained canopy characteristics with complicated and 
laborious steps that required a great amount of post-processing operations. In other 
works it was necessary to carry out point cloud reconstruction and data filtering to obtain 
a correct and precise canopy characterization. Only after these operations it was possible 
to run the canopy parameters computing. Although they are valid methods for research 
domains, these procedures do not coincide with the implementation of variable-rate 
operations during work operations. The data extract must be well suited with the tractor 
speed during spray operations to implement VRA. Therefore, for data processing, few 
milliseconds are usable. Moreover, the accuracy of canopy measurements, reached by 
post-processing operations is often too high for practical purposes. Very few studies 
were focused on practical and operative tools for assessing canopy volumes in real time 
(Zhang et al., 2018). It is thus evident that a functional LiDAR-based tool is needed to 
optimise the variable-rate application of pesticides in viticulture. A procedure for 
automating the LiDAR-based canopy volume computing in real-time was developed to 
reach this target. 

Therefore, this paper focuses on the development and testing of a LiDAR-based 
algorithm and software for the automatic calculation of canopy volume using a tractor-
coupled with terrestrial 2D LiDAR and GNSS receiver. 

In order to check algorithm and software, a number of comparison tests were 
carried out between two different manual canopy volume measurements and LiDAR 
canopy volume measurements. The experimental tests were carried out in two vineyards, 
with different row spacing and plant density parameters. Finally, the canopy volumes of 
four vine-rows, which were completely travelled, were analysed in two work sessions to 
check the software functioning during the different growth stages. 



391 

MATERIALS AND METHODS 
 
Instrumentations: 
The 2D LiDAR Sick TIM561 was used (Fig. 1, a) to perform the study. The main 

sensor features were an angular resolution of 0.33°, an aperture angle of 270°, a working 
range from 0.05 m to 10 m, a laser emission wavelength of 850 nm and a scanning 
frequency of 15 Hz (TIM561 Sick). Thanks to these characteristics, 12,150 points were  

During field tests, all these instrumentations were mounted on a Kubota B2420 
tractor. On the one hand, the Panasonic computer and the GNSS receiver were assembled 
near the steering station. On the other hand, the 2D LiDAR was positioned in the rear of 
the tractor in a vertical position to correctly scan the vertical profiles of the canopy, 
thanks to 270° opening angle. 
 

Algorithm and Software: 
The calculation of the canopy volume was made using an algorithm for extracting 

the canopy contours, integrated into software for real-time visualisation of the canopy 
volumes and its main characteristics. In addition, the software creates a comma-
separated values (CSV) file-data where the volumes of canopies, associated with their 
global position (EPSG:4326-WGS 84), and working parameters of the tractor (speed, 
distance between scani–scani+1) were recorded. 

It is worth noting that before starting the data acquisition, the GNSS acquisition 
frequency can be changed from 0.1 to 15 Hz in the software interface page. 

Its frequency rate controlled the entire exchange of data. Specifically, each time the 
GNSS string arrived, it was processed by software that sent a data request to the LiDAR. 
Instantly, a LiDAR scan was run, processed and recorded (with an angular resolution of 
0.33° and a scan range of 270°). This process was reiterated until the data acquisition 
end. For the transfer of LiDAR data, an ethernet connection was used. Instead, an RS232 
serial port was used for GNSS data transfer. 

First of all, row data provided by LiDAR sensor were transformed from polar to 
cartesian coordinates. The transformation was made for all points individuated by 
LiDAR sensor in a single scan (angular resolution: 0.33°; aperture angle: 270°; 

captured each second. 
Moreover, to obtain geo-

referenced data, the 2D LiDAR was 
coupled with Ag Leader GPS6500 
GNSS receiver (Fig. 1, b). This 
GNSS receiver provides differential 
correction with a horizontal position 
accuracy of 0.4 m, a velocity accuracy 
of 0.03 m s-1 and a maximum data 
rate of 50 Hz (GPS 6500, Ag Leader). 

The LiDAR sensor and GNSS 
receiver were connected together 
through a Panasonic Tough Pad  
FG-Z1, where the algorithm and 
software for calculating the canopy 
volume were installed (Fig. 1, c). 

 

 
 
Figure 1. Instruments assembled during a field 
test session with details of the individual tools  
used (a) GNSS receiver; b) LiDAR sensor;  
c) Panasonic computer).  

b) Ag Leader 
GPS6500 

 
 
 

Panasonic 
c) ToughPad 

FG-Z1 
 
a) Sick TIM561 
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maximum point for single scan: 810) and for all scan frequency (scan frequency: 15 
Hz = 15 scan s-1), using the following formula: 

ݕݔ_ܥ =  ൜
ܺ = ܦ ܸ כ  cosߙ               
ܻ = ܪ  ܦ + ܸ כ  sinߙ   (1) 

where ݕݔ_ܥ – detected canopy point in cartesian coordinates; ܦ ܸ – distance between 
LiDAR and canopy at determined angular position M� and the moment i; ߙ – angle 
subtended by ܦ ܸ; ܪ – LiDAR average height from ground-level. Graphically 
representation is shown in Fig. 2. 

Then, if X coordinates of the canopy points (ݕݔ_ܥ), that corresponded to the 
distance between LiDAR and canopy in the cartesian system, were equal or bigger than 
semi row spacing (ܦ௦ 2Τ ), they were considered in the calculation of canopy volume as 
values 0, because these points did not belong to the canopies near the tractor. In 
comparison, laser beams that did not encounter any obstacles were not counted. 
Moreover, another condition had to be respected. The < coordinates of the canopy points 
  (average cordon height). In this way, the points detectedܪ must be bigger than (ݕݔ_ܥ)
in the ground-level or other interferences, as grass or vine trunk, were not considered. 
Thanks to LiDAR characteristics (TIM561 Sick), particularly the aperture angle of 270°, 
it was possible to detect two sides of vine-rows for each working route. Therefore, the 
conversion formula and the conditions previously exposed were viable for both sides of 
vine-rows (Fig. 2, left side). 
 

 

 
 

 

 
 

Figure 2. In the left side of the figure, the LiDAR and algorithm working principles were 
represented. In the other side, the subdivisions in three bands were shown. 

 
A subdivision of total canopy volume in three bands according to the height from 

cordon was carried out. Specifically the low band was between the cordon (ܪ) up to 
0.30 m in vertical height (ܪାଷ), the middle band was between the end of the previous 
one up to 0.60 m apart the cordon (ܪା) and the high band was between the end of the 
previous one up to the last canopy detected point (ݔܽ݉ݕ) (Fig. 2, right side). The 
subdivision in three bands was necessary to discriminate how the canopy arranges on 
the vertical profile. Without these partitions, only the total canopy volume would have 
been measured and it would not have been possible to show the differences in the vertical 
profile of the canopy. 
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Then the algorithm, according to different canopy bands, computed total and partial 
means of the x-values of canopy points (ݕݔ_ܥ). To differentiate the three bands, the  
y-values of canopy points (ݕݔ_ܥ) were used. These average values (ܺ௧௧തതതതത; ܺపതതതതതതത; ܺపௗതതതതതത; 
ܺ௪തതതതതത) correspond to distance between LiDAR and canopy in a different portion of canopy 

profile. The subtraction between semi row spacing (ܦ௦ 2Τ ) and average values were done 
to obtain both total average canopy width and partial average canopy widths (low, mid 
and high canopy bands). Finally, the entire and partial areas of canopy sections were 
obtained by the multiplication between their widths and heights. In such a manner, the 
canopy areas (m2 scan-1) of vertical LiDAR scan were obtained, both for left and right 
sides. The equations below showed the procedure aforementioned (2) (3) (4) (5). 

ܺ௧௧തതതതത =
 σ ௫
ೌೣ
సಹ 


 Æ ܣ௧௧ = ቀೝೞ

ଶ
െ  ܺ௧௧തതതതതቁ כ ݔܽ݉ݕ) െ  ) (2)ܪ 

ܺపതതതതതതത =
 σ ௫
ೌೣ
సಹశలబ 


 Æ  ܣ =  ቀೝೞ

ଶ
െ  ܺపതതതതതതതቁ כ ݔܽ݉ݕ)  െ  ା) (3)ܪ 

ܺపௗതതതതതത =
 σ ௫
ಹశలబ
సಹశయబ 


 Æ ܣௗ = ቀೝೞ

ଶ
െ  ܺపௗതതതതതതቁ כ  ାܪ)  െ  ାଷ) (4)ܪ 

ܺ௪തതതതതത =
 σ ௫
ಹశయబ
సಹ 


 Æ ܣ௪ = ቀೝೞ

ଶ
െ ܺ௪തതതതതതቁ כ  ାଷܪ)  െ  ) (5)ܪ 

where ܺ௧௧തതതതത, ܺపതതതതതതത, ܺపௗതതതതതത, ܺ௪തതതതതത – average values of x coordinates, respectively for total 
canopy, high canopy band, mid canopy band and low band; ܪ – cordon height; 
 the y – ݔܽ݉ݕ ;ା – cordon height plus 0.60 mܪ ;ାଷ – cordon height plus 0.30 mܪ
coordinate of last canopy point detected by LiDAR; ݔ – x coordinate in ݕݔ_ܥ; ݊௧, ݊, 
݊, ݊ – number of canopy points included respectively in total, high, mid and low 
canopy band; ܣ௧௧, ܣ, ܣௗ, ܣ௪ – respectively total section area of the canopy and 
partial sections area (high, mid, low); (ܦ௦ 2Τ ) – semi row spacing. 

The first version of the algorithm had not division into three canopy bands. 
Nevertheless, during the early tests, it became necessary to highlight how the canopy 
arranges in the vertical profile. It has been essential for showing how the total canopy 
volume and the proportion of partial canopy volume, in the vertical profile, changed 
during the growing season. 

positions, provided by GNSS receiver. The volumes of canopy can be obtained referring 
to the distance travelled (Eqs 6, 7, 8, 9) or to the linear meter of row (Eqs 10, 11, 12, 13). 
 

The final algorithm step consisted 
in calculating the canopy volumes 
through the multiplication between the 
canopy area and travelled distance by 
tractor during a detection session. The 
travelled distance was obtained by 
GNSS receiver. The final output was a 
CSV file with canopy volumes (total 
and partial) linked with their global 

 

௧ܸ௧ = ௧௧ܣ  כ  ௧ିଵ (6)ܦ௧,   ݉ଷܦ 

ܸ = ܣ  כ  ௧ିଵ (7)ܦ௧,   ݉ଷܦ 

ܸௗ = ௗܣ  כ  ௧ିଵ (8)ܦ௧,   ݉ଷܦ 

ܸ௪ = ௪ܣ כ  ௧ିଵ (9)ܦ௧,   ݉ଷܦ 
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௧ܸ௧ = ௧௧ܣ)  כ (௧ܦ  כ  ଵ


,  ݉ଷ݉ିଵ 

௧ܸ௧ = ௧௧ܣ)  כ (௧ܦ  כ  
1
௧ܦ

,  ݉ଷ݉ିଵ 
(10) 

ܸ =  ൫ܣ כ ௧൯ܦ  כ  
1
௧ܦ

,  ݉ଷ݉ିଵ (11) 

ܸௗ = ௗܣ)  כ (௧ܦ  כ  
1
௧ܦ

,  ݉ଷ݉ିଵ (12) 

ܸ௪ = ௪ܣ)  כ (௧ܦ  כ  
1
௧ܦ

,  ݉ଷ݉ିଵ (13) 

where ௧ܸ௧ – total canopy volume; ܸ – high band canopy volume; ܸௗ – mid band 
canopy volume; ܸ௪ – low band canopy volume; ܦ௧ – distance travelled. 

The algorithm carried out all calculations, both for left and right side of vine-rows, 
during a working session. 

The algorithm was integrated into a software, designed to process LiDAR data 
automatically and in real-time. This software was implemented in Visual Studio with C# 
programming language. The software has an interface page, where parameters can be 
changed according to vineyards characteristics, and a working page, where canopy 
volumes and heights, positions and errors codes (about LiDAR) can be seen. On the first 
page, it was possible to change parameters such as row spacing, LiDAR height and 
cordon height from ground level. This allowed the setting into other vineyards (with 
different characteristics) or potentially into other crops for instance orchards. In the second 
window, the recording of the work session can be activated and, at the end of it, a CSV 
file is created. This output contains the main working parameters such as time, GNSS 
position and tractor speed, and canopy characteristics such as total canopy volumes, high 
band, mid band and low band canopy volumes for both the right and left side. 
 

 
 
Figure 3. Software interface for computing, in real-time, canopy volumes. On the left, the 
interface window, that allows to set parameters about LiDAR position and vineyard 
characteristics was shown. On the right, there is the working window, where canopy volumes 
(right and left side) and canopy heights were shown in real-time. 
 

 
 
 
 
 
 
b) GNSS data 

(Latitude, Longitude, 
Altitude, Speed,…) 

 

a) Input information 
(Row spacing, 
LiDAR height, 
Gordon height) 

c) Canopy volume data 
(real-time volume  
R & L, real-time last 
point-detection 
height R & L, LiDAR 
characteristics) 
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Field tests: 
The field tests were carried out in two different vineyards in Chianti Classico 

region. The first one was located in Gretole (43°27'23.0" N; 11°13'51.9" E), Castellina 
in Chianti, Siena, Italy and the other located in San Felice (43° 23' 24.8" N; 11° 27' 26.5" E), 
Castelnuovo Berardenga, Siena, Italy. 

At the moment of tests, the vineyard in Gretole was 11 years old, was cordon 
trained, with a row spacing of 2.5 m and an average distance between vines of 0.8 m. 
With a plant density of ~5,000 vine ha-1. San Felice's vineyard was cordon trained, it was 
15 years old, and the plant density was higher than the first one (~9,000 vine ha-1). It is 
due to a smaller row spacing (~1.4 m). Both vineyards were mainly composed of 9LWLV�
YLQLIHUD L. cv. ‘Sangiovese’. During the 2020 vegetative season (May-July), three test 
sessions were carried out in three different phenological phases (BBCH 57, BBCH 71, 
BBCH 81), for a total of 26 vines sampled for each measurement technique. This was 
done to test whether the algorithm could work at very different inter-row distances, 
distinguish canopy growth during sprout's development, and differentiate canopy 
volume according to different vigour zones. 

To check the algorithm two different types of manual non-destructive canopy 
measurements were carried out. The first manual measurements was the Tree Row 
Volume (TRV) which was measured for each single vines involved in the experiments. 
The TRV technique involved in this experiment was partially revised from conventional 
TRV to provide the volume of the canopy of each vine (m3 plant-1) (Scapin et al., 2015). 
This was achieved by computing the average canopy height (m), the average canopy 
width (m) and the average canopy length (m) of a single vine with the following Eq. (14). 

ܴܸܶ = ഥܪ כ ഥܹ כ  ത, (m3 pl-1) (14)ܮ
where ܪഥ – was the average canopy height; ഥܹ  – was the average canopy width; ܮത – was 
the average canopy length; m3 pl-1 – unit of measure. 

The other manual measurements adopted was the Point Net Canopy (PNC). It 
consisted in measuring the canopy width for each mesh of the net, positioned in parallel 
to vineyard row and in front of the canopy surface (Fig. 4). The PNC provides more 
detailed canopy volume than TRV because several canopy width for each vine sampled 
were measured. To calculate the PNC, a net, with a mesh of 0.15 m × 0.15 m, was located 
to a distance of 0.5 m from vertical canopy axis. Then, the distance (di) between canopy 
external surface and net was manually measured for each mesh of the net. In addition, 
the value di was subtracted by the distance between the net and vertical canopy axis (0.5 
m) in order to obtain canopy widths for each mesh of the net. This value was multiplied 
by the area of the mesh (Ai = 0.0225 m2) to obtain the volumes of the canopy subtended 
by single meshes. Finally, they were added up to obtain the total volume of the canopy 
of a single vine, as follows in the Eq. (15). 

ܥܰܲ =  [ܣ כ  (0.5 ݉ െ ݀)]


ୀଵ

,  (m3 pl-1) (15) 

where ݀ –  distance between canopy external surface and net; ܣ – mesh area; 
0.5 ݉ – the distance between net and canopy vertical axis; ݅ – number of meshes 
contained the sampled vine canopy. 
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PNC provides detailed information on the spatial distribution of canopy volume. In 
particular, canopy volumes for different vegetation bands (0–0.3 m; 0.30–0.60 m; and 
> 0.60 m; distance from cordon) can be extracted from this manual measurements. This 
was essential to correlate with the canopy volume bands provided by LiDAR algorithm. 

 

 
 
Figure 4. Net positioned for a manual measurement session. (a) Net mesh dimension; 
b) Net structure; c) Distance Net structure–Vertical canopy axis. 
 

Finally, TRV and PNC measurements were compared with LiDAR measurements 
to validate the performance of the algorithm. The LiDAR measurements were carried 
out throughout vine-rows, containing the sampled vines, at an average speed of 1 m s-1. 
The acquisition frequency was set up at 10 Hz, to obtain a scan each about 0.1 m. From 
these data, the LiDAR canopy volumes, corresponding to sampled vines manually, were 
extracted thanks to GNSS receiver and a digital marker that highlights sampled vines in 
the file output. The vine-rows, including the sampled vines, were travelled in their 
entirety in order to get the full characterisation of the canopy. 

 
RESULTS AND DISCUSSION 

 
Manually and LiDAR measurements on single vines: 
As far as the canopy volumes of sampled vines, the minimum, average and 

maximum values for the three measurement techniques (TRV, PNC and LiDAR) were 
summarised in Table 1. In this table, canopy volume values, in different work sessions 
(May and July), were simultaneously shown to highlight how LiDAR measurements 
have detected the increasing of canopy volumes during the growing phase (from BBCH 
57 to BBCH 81). The increase in canopy volumes was also identified by the other manual 
measurements. This suggest that the algorithm and software work well enough. 

 

 
a) Mesh of the net (dimension 

0.15×0.15 m) 

 
b) Net structure 

 
c) Distance between Net and 

vertical canopy axis 
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Table 1. Minimum, mean and maximum values of manuals and LiDAR measurements in the 
same plants at different growth stages (BBCH 57–BBCH 81)  

TRV PNC LIDAR  
BBCH 57 BBCH 81 BBCH 57 BBCH 81 BBCH 57 BBCH 81 

0LQ� 0.118 0.326 0.086 0.115 0.096 0.219 
0HDn 0.229 0.368 0.150 0.253 0.193 0.288 
0D[� 0.307 0.472 0.210 0.360 0.290 0.403 
 

Two comparisons of total canopy volumes between instrumental and manually 
measurements to validate the LiDAR measurements were analysed. Linear regressions 
provide more evidence of the algorithm good functioning. This analysis highlights good 
correlations between TRV and LiDAR measurements (R2 = 0.67) and PNC and LiDAR 
measurements (R2 = 0.56), how it is shown in Fig. 5. The obtained linear regression 
(TRV YV LiDAR) has slightly lower coefficients of determination than other similar 
comparisons presented in some papers (Rosell et al., 2009b; Tsoulias et al., 2019). 
Indeed, Tsoulias et al. (2019) found a better coefficient of determination (R2 = 0.77), 
under similar conditions and with the same experimental parameters, but this result was 
obtained with a significantly lower tractor speed. Instead, Rosell et al. (2009b) reported 
a better coefficient of determination (R2 = 0.97), but this was obtained with a small 
sample size and in an apple orchard. 

 

 
 
Figure 5. The linear regression of TRV (x) versus LiDAR (y) volume measurements is shown on 
the left graph. The linear regression of PNC (x) versus LiDAR (y) volume measurements is 
represented on the right chart. 
 

This study wanted to test the automated assessment algorithm of canopy volume in 
operational working conditions, hence this could be the reason for obtaining smaller 
coefficients of determination. However, this approximation is justified because the 
tractor speed was set to the average speed for future software implementation in canopy 
management operations and variable-rate spraying applications. 

With regard to canopy volumes divided into three bands, linear regressions between 
LiDAR and PNC measurements were obtained. The TRV measurements were not 
considered because the TRV method does not provide specific canopy information as 
vertical distribution of canopy volumes. LiDAR and PNC correlations for low and mid 

y = 0.99x + 0.06 y = 0.82x + 0.002 

R2 = 0.67 R2 = 0.56 
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bands reported similar determination coefficients, respectively 0.498 and 0.491 (Fig. 6). 
Instead, the coefficient of determination for the high band, i.e. the portion of the canopy 
between a distance of 0.60 m from cordon height and the last canopy point detected by 
LiDAR, is 0.736, as shown in Fig. 6. The differences in coefficient of determination 
between the canopy bands are probably due to the dimension of bands. In fact, the high 
band includes a portion of canopy bigger than other bands. So, this brings about the 
values of the canopy of high band (m3 pl-1) being bigger than those of the mid and low 
band. Therefore, slight deviations between PNC and LIDAR measurements in the high 
band cause a minor deterioration of the coefficient of determination compared to what 
happens in low and mid bands, where the values of the canopy are smaller. 

 

 
 
Figure 6. The linear regressions of PNC (x) YHUVXV LiDAR (y) volume measurements are shown 
with the detail of the three canopy bands (on the left: Low Band; in the middle: Mid Band; on the 
right: High Band). 
 

However, this value highlights a good approximation provided by the algorithm for 
automated canopy volumes computing. This information is essential in future 
developments of precision spraying. In fact, the total canopy volume based on LiDAR 
is an excellent index to assess the spatial variability in terms of canopy quantity in 
vineyards. Thanks to the total canopy volume, the pesticides spray volume can vary 
according to site-specific information. Moreover, the spray volume can be targeted 
according to the vertical canopy variability, due to the division of the canopy into bands. 

The significant correlation obtained in the high canopy bands is another interesting 
aspect to be evaluated more carefully. Indeed, the computation of canopy high bands 
could potentially be affected by less accuracy due to slight lateral inclinations of 
vineyards or tractor roll motion. Nevertheless, they do not seem to be problematic in the 
canopy volume approximation. Therefore, the algorithm gives a good approximation of 
the total canopy volume and provides helpful information about the vertical distribution 
of canopy volumes. 
 

LiDAR measurements of entire vineyards 
The canopy volumes detected by LiDAR software during two working sessions 

(May and July) were showed. The data represent the canopy volumes (m3m-1) of four 
vine-rows completely travelled at a constant tractor speed of 1 ms-1. This situation 
simulated the usual working conditions of canopy management. 

R2 = 0.498 R2 = 0.491 R2 = 0.736 

y = 1.15x + 0.02 y = 0.91x + 0.01 y = 0.87x - 0.02 



399 

The absolute frequency of total canopy volumes partitioned in breaks of 
0.01 m3 m-1 during the evolution of total canopy volumes from BBCH 57 stage to 
BBCH 81 was showed in Fig. 7. 
 

 
 
Figure 7. Absolut frequencies of LiDAR measurements with a interval of 0.01 (m3 m-1). Such 
measurements were part of the software output (CSV file) where tractor, coupled with LiDAR, 
travelled completely four vine-rows. The red line corresponds to the mean value. 

 
In BBCH 57 stage, an average canopy volume of 0.282 m3 per linear meter of  

vine-row was detected, with a minimum value of 0.120 m3 m-1 and a maximum of 
0.483 m3 m-1. Instead, in BBCH 81 stage, an average canopy volume of 0.385 m3 m-1 
was measured, with a minimum of 0.185 m3 m-1 and a maximum of 0.644 m3 m-1. 

The increase in canopy volume (from 0.282 to 0.385 m3 m-1) between the two 
phases was 37% reflecting thenatural growth phase of the vineyard, as shown in Table 2. 
This increase was also detected by the two manual canopy measurements (Table 1). 
Therefore, the algorithm for the automatic calculation of canopy volumes was able to 
detect the different canopy volumes during the growth phase of the vineyard. 

 
Table 2. Means of canopy volumes of LiDAR measurements, percentage of canopy distribution 
between bands and rate of volume increase between different growth stages (BBCH 57 – BBCH 81)  

BBCH 57 BBCH 81 BBCH 57 – BBCH 81   
Mean % Mean % % 

7RW 0.282 
 

0.385 
 

37% 
High 0.1565 61% 0.205 60% 31% 
0LG 0.0598 23% 0.0834 24% 39% 
/RZ 0.0417 16% 0.0549 16% 32% 

 
In addition, the canopy volumes data were analysed according to the differentiation 

of the three bands (low, mid and high band). In this case, the absolute frequency of partial 
canopy volumes was partitioned in intervals of 0.001 m3 m-1 because of the lower canopy 
volume detected for single bands. Fig. 8 showed the data obtained in two different work 
sessions, corresponding to the BBCH 57 and BBCH 81 growth stage, and differentiated 
for single bands. The lower band is situated on the bottom of Fig. 8, and the others are 
above according to an increasing levels layout. 
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Figure 8. Absolut frequencies of LiDAR measurements of the three bands (Low, Mid, High) with 
an interval of 0.01 (m3 m-1). These measurements are part of software output (CSV file) where 
tractor, coupled with LiDAR, travelled completely four vine-rows. The red line corresponds to 
the mean value. 

 
The graphs of low band canopy volumes showed that the average value of canopy 

volumes ranges from 0.042 m3 m-1 to 0.055 m3 m-1 during the growth stage (May–July), 
increasing 32%. A similar trend was highlighted for the other bands. The mid band 
ranges from 0.059 m3 m-1 to 0.083 m3 m-1, with a volume increase of 39%, and the high 
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band goes from 0.156 m3 m-1 to 0.205 m3 m-1, with a rise of 31% (Table 2) These 
increases prove that the software could also detect the growth of canopy volumes into 
the three bands between different moments of detections. The proportion of canopy 
distribution between bands seems not to change in the two different data collections. 

 
CONCLUSIONS 

 
The LiDAR-based algorithm and software for automated canopy volume 

calculation described in this work, can be a valid alternative to the complex and laborious 
procedures of canopy characteristics computing through post-processing points cloud 
reconstruction. The good correlations obtained between manual and LiDAR-based 
measurements (R2 = 0.67, R2 = 0.74) suggest that the simplified computing system can 
be a valuable tool for measuring canopy characteristics, such as tree row volume, and 
distinguishing the spatial canopy distribution. 

The LiDAR-based algorithm showed good working adaptability on different 
vineyards vertical training systems, such as cordon training or Guyot, with different plant 
density. With inputs that can be set (row spacing, cordon height and LiDAR height) 
according to crop characteristics, the software for automatic canopy volume calculation 
can potentially be used in orchards. 

The working conditions under which the software was tested are an indication that 
the LiDAR-based system can work at speeds similar to the on-farm management and 
spraying operations. Further tests will need to be carried out to fully investigate the best 
scanning frequency to achieve more accurate canopy volumes without compromising 
tractor working speed and efficiency. In addition, another interesting suggestion to 
evaluate further is the relation between canopy evaluation shown in this paper and 
canopy extraction in post-processing. 

The results achieved in correlations between manual and LiDAR measurements 
take the work to the next stage of development. Firstly, it is necessary to check for bugs 
or other instrumental problems through a large number and lengthy field tests. Moreover, 
it will be about understanding how to best interact the data obtained from this system 
with the spraying equipment and spray volume. 

In conclusion, the system (LiDAR, GNNS receiver, algorithm and software) has 
the potential to be implemented in precision viticulture both in on go variable-rate 
equipment and int on-board terminals based on prescription maps. 
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