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RESUMO 

Compreender os mecanismos que controlam o armazenamento de carbono florestal é crucial 

para apoiar soluções “baseadas na natureza” para a mitigação das mudanças climáticas. No 

primeiro artigo, usamos um conjunto de dados de 892 inventários da Mata Atlântica para 

avaliar os efeitos diretos e indiretos das condições ambientais, impactos humanos, 

propriedades da comunidade arbórea e métodos de amostragem sobre os estoques de carbono 

de árvores acima do solo. Mostramos que os fatores amplamente aceitos de estoques de 

carbono, como clima, solo, topografia e fragmentação florestal, têm um papel muito menor do 

que o histórico de distúrbios florestais e as propriedades funcionais da Mata Atlântica. 

Especificamente, o nível de perturbação dentro da floresta foi o fator mais importante, com 

efeito pelo menos 30% maior do que qualquer uma das condições ambientais 

individualmente. Assim, nossos resultados sugerem que a conservação dos estoques de 

carbono tropical pode ser dependente, principalmente, de evitar a degradação florestal e que 

as políticas de conservação focadas apenas no carbono podem falhar na proteção da 

biodiversidade tropical. No segundo artigo, usando um grande conjunto de dados de 697 

inventários da Mata Atlântica, avaliamos a aplicação de equações regionais e específicas do 

tipo de floresta para estimar os estoques de carbono com base em duas variáveis estruturais do 

povoamento: área basal do povoamento e densidade de árvores do povoamento. Comparamos 

a capacidade preditiva de equações de uma e duas variáveis e mostramos que estimar o 

estoque de carbono a partir da área basal e densidade do povoamento fornece resultados 

precisos para florestas úmidas e secas do domínio Mata Atlântica. As equações desenvolvidas 

com base apenas nas variáveis estruturais do povoamento explicaram 85,2%-96,2% das 

variações dos estoques de carbono com menos de 6,5% de erros de estimativa. Assim, os 

estoques de carbono das variáveis estruturais florestais do povoamento podem ser precisos e, 

portanto, podem representar uma alternativa quando medições e identificações de árvores 

individuais de onde não estão disponíveis inventários florestais completos. 

 

Palavras-chave: Estoques de carbono, Distúrbios Humanos, Mudanças climáticas, Estimativas 

de carbono 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

ABSTRACT 

Understanding the mechanisms controlling forest carbon storage is crucial to support “nature-

based” solutions for climate change mitigation. In the first article, we used a dataset of 892 

Atlantic Forest inventories to assess the direct and indirect effects of environmental 

conditions, human impacts, tree community proprieties and sampling methods on tree above-

ground carbon stocks. We showed that the widely accepted drivers of carbon stocks, such as 

climate, soil, topography, and forest fragmentation have a much smaller role than the forest 

disturbance history and functional proprieties of the Atlantic Forest. Specifically, within-

forest disturbance level was the most important driver, with effect at least 30% higher than 

any of the environmental conditions individually. Thus, our findings suggest that the 

conservation of tropical carbon stocks may be dependable on, principally, avoiding forest 

degradation and that conservation policies focusing only on carbon may fail to protect tropical 

biodiversity. In the second article, using a large dataset of 697 Atlantic Forest inventories, we 

evaluated the application of regional and forest type-specific equations to estimate carbon 

stocks based on two stand structural variables: stand basal area and stand density. We 

compared the predictive ability of one- and two-variable equations and showed that 

estimating carbon stock from the stand basal area and stand density provides accurate results 

for moist and dry forests of the Atlantic Forest domain. The developed equations based only 

on the stand structural variables explained 85.2%-96.2% of the carbon stocks variations 

having less than 6.5% of estimation errors. Thus, carbon stocks from the stand forestry 

structural variables can be accurate, and thus may represent an alternative when individual 

tree measurements and identifications from where complete forest inventories are not 

available. 

 

Keywords: Carbon Stocks, Human Disturbances, Climate Change, Carbon Estimates 
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INTRODUÇÃO GERAL 

 

Com as nações fazendo pouco progresso na redução de suas emissões de carbono, as 

“soluções baseadas na natureza (NbS)” surgem como uma estratégia-chave para a mitigação 

das mudanças climáticas (POPKIN 2019). Essas soluções abrangem a conservação florestal, a 

restauração e a melhoria das práticas de manejo da terra, visando aumentar o armazenamento 

de carbono e/ou evitar a emissão de gases de efeito estufa (GRISCOM et al.,2017). Embora as 

soluções baseadas na natureza ofereçam oportunidades reais para a mitigação das mudanças 

climáticas, ainda são necessárias mais pesquisas (GIRARDIN et al., 2021). Por exemplo, 

umas das grandes barreiras para o êxito das NbS é a falta de abrangência na atual 

contabilidade de carbono que se concentrou em fluxos em vez de estoques de carbono e levou 

a resultados perversos (KEITH et al., 2021). Além disso, como os estoques de carbono acima 

do solo são amplamente inferidos a partir de equações alométricas genéricas, o 

desenvolvimento de métodos precisos e fáceis de aplicar para estimar os estoques de carbono 

tropical pode fornecer o tipo de informação necessária para que as estratégias de NbS atinjam 

efetivamente os resultados de mitigação. 

Gradientes ambientais naturais (por exemplo, clima, solos, topografia) e impactos 

humanos podem impulsionar os estoques de carbono direta e indiretamente. Os efeitos diretos 

estão geralmente associados à mortalidade e ao crescimento das árvores. Por exemplo, 

condições ambientais que aumentam o risco de mortalidade de plantas, como eventos 

climáticos extremos (por exemplo, El Niño), tendem a resultar em menores quantidades de 

estoques de carbono (GRACE et al., 2006; STEGEN et al., 2009). Da mesma forma, os 

estoques de carbono são reduzidos pela fragmentação e distúrbios florestais (por exemplo, 

corte seletivo, fogo, pastagem e cultivo de gado no sub-bosque), com a mortalidade das 

árvores sendo impulsionada por mudanças na estrutura física das florestas (por exemplo, 

microclima, abertura do dossel (MAGNAGO et al.,2015). Efeitos indiretos são aqueles 

mediados por outras propriedades florestais, como propriedades de comunidades arbóreas 

(POORTER et al., 2017). As condições climáticas e os impactos humanos podem alterar a 

contribuição relativa de algumas características funcionais na comunidade, como densidade e 

estatura da madeira das árvores, que desempenham papéis importantes para o potencial de 

armazenamento de carbono florestal (SHEIL & BONGERS 2020; DURÁN et al.,2015). Da 

mesma forma, os distúrbios podem induzir uma sucessão regressiva em direção ao aumento 

da dominância por espécies de sucessão precoce, que por sua vez têm menor capacidade de 
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armazenamento de carbono (por exemplo, baixa densidade de madeira, menor estatura) 

(TABARELLI et al., 2008). 

Embora diferentes estudos tenham avaliado os efeitos dos fatores dos estoques de 

carbono, as evidências existentes sobre os fatores são inconsistentes. Por exemplo, alguns 

estudos mostraram as características das espécies como o principal condutor biológico dos 

estoques de carbono (ver FINERGAN et al., 2015, VAN DER SANDE, 2018), enquanto 

outros mostraram a diversidade funcional como o condutor mais importante (POORTER et 

al., 2015; ZHANG et al., 2012). Além disso, há algumas evidências contraditórias na 

literatura sobre a direção dos efeitos de alguns desses fatores. Por exemplo, em algumas 

florestas, a temperatura foi positivamente relacionada aos estoques de carbono (RAICH et al., 

2006), enquanto em outras, o aumento da temperatura diminuiu os estoques de carbono 

(STEGEN et al., 2011). Da mesma forma, os estoques de carbono geralmente não aumentam 

com a fertilidade do solo (por exemplo, VAN DER SANDE, 2018). Nas florestas amazônicas, 

os maiores estoques de carbono foram encontrados em solos de baixa fertilidade (BAKER et 

al.,2004, MALHI et al.,2006, QUESADA et al.,2012). Tal inconsistência pode ser explicada 

por diferenças no papel desempenhado por esses drivers em contextos biogeográficos ou 

porque a maioria dos estudos avaliou um ou poucos drivers de estoques de carbono, o que 

impede a avaliação de efeitos interativos entre eles e a quantificação do papel relativo de cada 

driver (HOLDAWAY et al. 2016).  Além disso, a diferença nos métodos utilizados entre os 

estudos (por exemplo, protocolos de campo, equações alométricas de carbono) também pode 

explicar essa inconsistência e ter consequências que vão além da identificação do mecanismo 

direcionador dos estoques (CHAVE et al., 2004). 

Equações alométricas genéricas são amplamente utilizadas para inferir os estoques de 

carbono acima do solo em florestas tropicais (CHAVE et al., 2014). As mais utilizadas 

baseiam-se em diâmetro do caule a 1,3 m (peito) de altura (dbh) e altura da árvore (H) e 

oferecem estimativas confiáveis de carbono à nível da árvore. No entanto, a dependência de 

inventários florestais detalhados, árvore por árvore, faz com que a utilização dessas equações 

demande muito tempo e tenha maior custo associado (MCROBERTS et al., 2013). Como 

alternativa, o uso de equações alométricas baseadas em povoamento pode trazer grandes 

avanços nas estimativas de carbono, uma vez que as variáveis de povoamento são medidas 

rapidamente no campo e são comumente fornecidas em inventários florestais já publicados. 

Particularmente, equações alométricas usando a área basal do povoamento como preditor é 

uma opção promissora para estimar os estoques de carbono florestal. Por exemplo, a área 
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basal provou ser um bom preditor da biomassa florestal ao integrar o efeito tanto do número 

quanto do diâmetro das árvores. Além disso, a densidade de árvores do povoamento também 

já provou ser uma opção para melhorar o desempenho das equações alométricas de carbono 

no nível do povoamento (ver KHAN et al., 2018). 

Aqui, meu principal objetivo foi acessar os principais direcionadores dos estoques de 

carbono e desenvolver equações alométricas precisas capazes de expandir as estimativas de 

carbono da Mata Atlântica. Utilizei dados já coletados e compilados pertencentes ao banco de 

dados Neotropical Tree Communities -TreeCo e ao Inventário de Minas Gerais. 2000) e que 

devido a cinco séculos de intensa ocupação humana, mais de 80% de suas florestas são 

menores que 50 ha e cerca de 50% delas a menos de 100 m de uma borda (RIBEIRO et al. 

2009), oferecem um dos exemplos mais dramáticos relacionados ao efeito dos humanos nos 

ecossistemas, refletindo assim o futuro de outras florestas onde os impactos estão avançando 

rapidamente (por exemplo, Amazônia). 
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Understanding the mechanisms controlling forest carbon storage is crucial to support “nature-

based” solutions for climate change mitigation. We used a dataset of 892 Atlantic Forest 

inventories to assess the direct and indirect effects of environmental conditions, human 

impacts, tree community proprieties and sampling methods on tree above-ground carbon 

stocks. We showed that the widely accepted drivers of carbon stocks, such as climate, soil, 

topography, and forest fragmentation have a much smaller role than the forest disturbance 

history and functional proprieties of the Atlantic Forest. Specifically, within-forest 

disturbance level was the most important driver, with effect at least 30% higher than any of 

the environmental conditions individually. Thus, our findings suggest that the conservation of 

tropical carbon stocks may be dependable on, principally, avoiding forest degradation and that 

conservation policies focusing only on carbon may fail to protect tropical biodiversity. 

 

Teaser 

The human-induced disturbance is 2-6 fold more important than other drivers of tropical 

forest carbon stocks 

 

1 INTRODUCTION 

 

Tropical forests play a central role in the carbon cycle on earth, not only regarding 

carbon flows but also in terrestrial carbon stocks (KEITH et al., 2021). We currently know 

that forest carbon stocks are determined by tree species proprieties, environmental conditions, 

and anthropic disturbances. Different tree community proprieties can increase carbon stocks 

through a more efficient use of the available resources (e.g., species niche complementarity) 

(ZHANG; CHEN; REICH, 2012) and through the carbon storage potential of the most 

dominant species (e.g. functional traits) (GRIME,2002). Climate and soil conditions (e.g., 

temperature, soil fertility) can directly affect forest carbon (STEGEN et al., 2011; QUESADA 

et al., 2012) but they can also control species composition, which in turn can affect the carbon 

storage potential of the forest (ENGELBRECHT et al., 2007; TOLEDO et al., 2012). 

Moreover, topography can influence carbon stocks through its influence on local soil 

conditions and sunlight incidence (LIN et al., 2016.). Finally, forest degradation and 

fragmentation not only cause the direct removal of biomass but also shifts in species’ 

demography and functional tree composition (e.g., wood density, maximum height), which 
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can translate into long-term losses of carbon storage potential (MAGNAGO et al., 2014; 

ANDRADE et al., 2017; AVILA et al., 2018).  

Although different studies have evaluated the effects of tree community proprieties, 

environmental conditions, and human impacts on carbon stocks, the existing evidence is more 

concentrated in relatively undisturbed forests (e.g.(MALHI et al., 2006; PHILLIPS; LEWIS, 

2014)) and it is inconsistent (e.g. (STEGEN et al. 2011; QUESADA et al., 2012; POORTER 

et al., 2017; MENSAH et al., 2016). Such inconsistency may be explained by differences in 

the role played by each driver across biogeographic contexts or in the methods used across 

studies, such as field protocols or carbon allometric equations (CHAVE et al., 2004). 

Furthermore, most studies have evaluated one or few drivers, which prevents more 

comprehensive assessments of their relative roles and of possible interactive effects among 

candidate drivers (HOLDAWAY et al., 2017). Regardless of the reason, a better 

understanding of what drives forest carbon storage, especially in highly altered tropical 

forests, may anticipate the outcomes of global changes in more intact forests (e.g. Amazon) 

(CHAVE et al., 2014), optimize the efficiency of carbon conservation and restoration projects 

(POPKIN, 2019) and to support nature-based solutions for climate change mitigation 

(POPKIN, 2019). 

Here, we use a large dataset with 892 forest inventories to assess the relative role of 

tree community proprieties, environmental conditions, and human impacts as drivers of 

carbon stocks. We also assess the effect of field sampling methods on the estimation of 

above-ground carbon stocks. We focus on the highly-threatened Atlantic Forest (LIMA et al., 

2015; LIMA et al., 2020) (Fig. 1), which comprises a wide spectrum of environmental 

conditions, biogeographic and human intervention histories (RIBEIRO et al., 2009) and 

represents the present or the future of other tropical forests, providing a good testing ground 

to answer our questions. We use a causal mediation analysis, which allows for the 

simultaneous quantification of many different drivers, and the separation into their direct and 

indirect effects (AUNG et al., 2020). Based on the present knowledge on forest carbon drives, 

we quantify the direct effects of tree community proprieties, environment, human impacts, 

and field methods and also the indirect effects of the environment and human impacts on 

carbon stocks through their effects on tree community proprieties. We address two questions: 

(i) what are the main drivers of the Atlantic Forest carbon stocks? and (ii) what are the direct 

and indirect effects of the different drivers? Finally, we explore the implications of our results 
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for the future of carbon stocks, projecting carbon losses and gains in scenarios of climate and 

human impacts changes.  

 

Figure 1 – The distribution of the Atlantic Forest inventories included in this study. 

 

Subtitle: For each inventory (points) we present the estimated above-ground carbon stock, separated by 

classes (colors). The inventory data was obtained from the Neotropical Tree Communities database (Lima et al., 

2020). 

 

 

2 RESULTS 

 

2.1 THE RELATIVE ROLES OF CARBON STOCK DIRECT DRIVERS 

 

Human impacts, tree community proprieties, environmental conditions and field 

sampling methods (i.e. fixed effects) explained 34.76% of the total variance of the forest 

above-ground carbon stocks in the Atlantic Forest, with relative contributions of 

39.95%,37.36%, 13.05% and 9.76%, respectively (Fig. 2 and Table S1). The within-forest 

disturbance level was the main driver of carbon stocks, with an effect that was at least 30% 

greater than the climatic driver with the greatest effect, namely temperature (Fig. 2 and Table 

S1). Forests with heavy, high and medium levels of human disturbance showed approximately 
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66%, 76% and 96% of the carbon stocks found in fragments with low levels of human 

disturbance (Fig. 3 and Table S2 and S3). 

The CWM of seed mass was the second variable with the greatest effect size and 

partial pseudo-R² on carbon stocks (Fig. 2). Carbon stocks increased with the abundance of 

large-seeded, large-leaved, hardwood species (Fig. 2 and Table S1). Species functional 

evenness had a negative effect on carbon stocks, while the functional divergence had a 

positive one. Potential maximum tree height and functional richness had not displayed 

significant effects on the carbon stocks (Fig. 2 and Table S1). Carbon stocks decreased with 

temperature but were not affected by the climatic water stress (Fig. 2 and Table S1). Soil 

quality and slope declivity did not have a significant direct effect on Atlantic Forest carbon 

stocks. (Fig. 2 and Table S1). The reduction of fragment size (at the local scale) and mean 

fragment size (at landscape scale) both decreased the carbon stocks (Fig. 2 and Table S1). 

Finally, it is noteworthy that the effects of the dbh cutoff criteria and particularly of the 

perimeter-area ratio of the sampling units were equal or greater than some of the 

environmental, tree community and human-related variables (Fig. 2 and Table S1). The 

sampling effort did not have a significant effect on carbon stock estimates (Table Fig. 2 and 

Table S1). 

 

Figure 2 – The main drivers of carbon stocks in the Atlantic Forest. 

 
Subtitle: (A) Standardized estimates of the coefficients from averaged models containing the effects of 

environmental conditions, human impacts, tree community proprieties and sampling methods on carbon stocks. 

(B) Bars show the partial pseudo-R² values for each of the co-variables (Table S1) included in the averaged 

models (n = 892 inventories). Drivers with significant effects (p-value < 0.05) are shown with asterisks. The 

error bars show standard errors for 95% confidence intervals of the mean parameter estimates. 
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Figure 3 – Individual co-variable with the greatest effect on the Atlantic Forest carbon stocks. 

 

Subtitle: The effect of within fragment disturbance level on above-ground carbon stocks (Table S2 and S3), was 

fitted with the optimum model (Table S1). Within fragment disturbance level is shown as a categorical variable 

(i.e., without Ridit score transformation). Different letters are significantly different group means (p-value < 

0.05). Error bars represent the 95% of confidence intervals (n = 892 inventories). 

Source: 

 

2.2 INDIRECT EFFECTS OF ENVIRONMENT AND HUMAN IMPACTS ON CARBON 

STOCKS 

 

We found a considerable influence of the environmental conditions and human 

impacts on carbon stocks via effects on the tree community proprieties (Fig. 4 and Table 1). 

So, in addition to their direct effects, temperature, mean fragment size and within fragment 

disturbance level also presented indirect effects on carbon stocks. The stocks increased with 

mean fragment size, while they decreased with temperature and within fragment disturbance 

level (Fig.2). The indirect effects of within fragment disturbance level on carbon stocks were 

predominantly negative (via seed mass, wood density and FEve), whereas the indirect effects 

of temperature and mean fragment size in the landscape (via leaf area, wood density, FEve 

and FDiv) were predominantly positive (Fig. 4 and Table 1). Although climatic water stress, 

soil quality and slope declivity showed no significant direct effect on carbon stocks (Fig. 2), 

they affected the tree community proprieties, resulting in significant but indirect effects on 

carbon stocks (Fig. 4 and Table 1). Climatic water stress (via seed mass, wood density, leaf 

area and FDiv), soil quality (via wood density and leaf area) and slope declivity (via seed 

mass, wood density, leaf area, FEve and FDiv) indirectly decreased the Atlantic Forest carbon 

stocks (Fig. 4 and Table 1). 
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Figure 4 – Causal mediation analysis describing the direct and indirect effects of multiple 

drivers on the carbon stocks (n = 892). 

 
 Subtitle: Solid lines indicate positive significant effects (p-value < 0.05), whereas dotted lines indicate negative 

significant effects (p-value <0.05). Environmental conditions with significant effects are indicated in orange, 

human impacts in purple, tree community properties in green and field sampling methodology aspects in pink. 

Variables with non-significant effects on carbon stocks are indicated in grey. All model estimates are presented 

in Table S4. 

 

Table 1 – Indirect effects of environmental conditions and human impacts on carbon stocks. 

Driver via Indirect effect p-value 

Climatic water deficit FDiv 0.00031 0.044 

Climatic water deficit FEve 
  

Climatic water deficit WD 0.00222 <0.0001 

Climatic water deficit Seed mass -0.00723 0.006 

Climatic water deficit Leaf area -0.00358 0.01 

Slope declivity FDiv   

Slope declivity FEve -0.00099 <0.0001 

Slope declivity WD -0.00058 <0.0001 

Slope declivity Seed mass -0.00661 <0.0001 

Slope declivity Leaf area 0.00591 0.01 

Within fragment disturbance level  FDiv   
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Within fragment disturbance level FEve -0.00046 0.006 

Within fragment disturbance level WD -0.00059 0.004 

Within fragment disturbance level Seed mass -0.00637 <0.0001 

Within fragment disturbance level Leaf area   

Soil quality FDiv   

Soil quality FEve   

Soil quality WD 0.00050 0.002 

Soil quality Seed mass   

Soil quality Leaf area -0.00144 0.048 

Mean annual temperature FDiv   

Mean annual temperature FEve -0.00076 0.002 

Mean annual temperature WD   

Mean annual temperature Seed mass 0.01180 <0.0001 

Mean annual temperature Leaf area 0.01200 0.004 

Mean fragment size FDiv   

Mean fragment size FEve 0.00067 <0.0001 

Mean fragment size WD 0.00047 0.008 

Mean fragment size Seed mass 0.00346 0.038 

Mean fragment size Leaf area   

Standardized coefficients with a significance level (significant; p-value <0 .05) are given for 

all relationships. Note: WD (CWM wood density), Seed mass (CWM Seed mass), Leaf area 

(CWM Leaf area), FEve (Functional evenness), FDiv (Functional divergence) (n= 892). 

Climatic water deficit was -1 transformed and WD, Seed mass and Leaf area were 

transformed in the natural logarithmic scale. All models were fitted with scaled drivers. 

 

2.3 CARBON GAINS AND LOSSES TO CLIMATE AND FOREST HUMAN 

DISTURBANCES CHANGES 

 

Projecting the carbon losses, we found that an increase of the within-forest disturbance 

level in 100%, 50% and 25% of the Atlantic Forest fragments with low to medium levels of 

disturbance to heavy and high levels would represent losses of 15.24%, 8.09% and 4.20% of 

Atlantic Forest carbon stocks (Table 2), respectively. If temperature increases 1.5°C without 

changes in precipitation, the regional carbon losses could be 5.12%, while an increase of 4°C 

in global temperatures may result in a decrease of 13.11% of carbon stocks across Atlantic 

Forest (Table 2). Projecting the carbon gains, if 100%, 50% and 25% of fragments with heavy 



22 

 

 

 

and high levels of human disturbance advance in their successional trajectory to fragments 

with medium and low levels of human disturbance, the regional carbon gains would be 

17.44%, 8.42% and 4.03%, respectively (Table 2). 

 

Table 2 – Carbon gains and losses from forest human disturbance and climate changes. 
Human impacts scenarios 

  

AGC 

stocks 

(ha-1) 

AGC stocks 

changes (%) 

AGC 

stocks (Mg 

ha-1) 

Optimistic scenario     

100% of fragments with high and heavy levels of 

disturbances are recovered to medium and low levels of 

disturbances 80.92 17.44 12.02 

50% of fragments with high and heavy levels of 

disturbances are recovered to medium and low levels of 

disturbances 74.70 8.42 5.80 

25% of fragments with high and heavy levels of 

disturbances are recovered to medium and low levels of 

disturbances 71.79 4.20 2.896 

Pessimistic scenario    

100% of fragments with low and medium levels of 

disturbances are degraded to high and heavy levels of 

disturbances 58.39 -15.24 -10.50 

50% of fragments with low and medium of disturbances are 

degraded to high and heavy levels of disturbances 63.32 -8.09 -5.57 

25% of fragments with low and medium of disturbances are 

degraded to high and heavy levels of disturbances 66.12 -4.03 -2.77 

Climate impacts scenarios 

  

AGC 

stocks 

(ha-1) 

AGC stocks 

changes (%) 

AGC 

stocks (Mg 

ha-1) 

MAT increases by 2°C 65.36 5.12 -3.53 

MAT increase by 4°C 59.86 13.11 -9.03 

Subtitle: The predictions were obtained from the direct and indirect effects provided by mediation 

causal analysis (Fig. 3 and Table 1). 
Note: MAT= Mean annual temperature;  
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Carbon change estimates are shown according to the difference between the current carbon stock estimates and 

the projected carbon stock estimates. Current carbon stock: 68.9 (Mg ha-1). 

Source: 

 

3 DISCUSSION 

 

Given the global urgency to mitigate climate change, understanding the drivers of 

carbon stocks in tropical forests is increasingly important (HARRIS et al., 2021). Here, we 

found that widely accepted drivers of carbon stocks, such as climate, soil, topography, and 

forest fragmentation have a much smaller role than forest human disturbances and tree 

functional proprieties. In the Atlantic Forest, the greatest driver of the variation in carbon 

stocks was the level of human disturbances within fragments, with a role two- to six-fold 

greater than any other variable included in the analysis (Fig. 2 and Table 1). The greater 

accessibility to forest fragments increases their exposure to fire, selective logging and 

fuelwood extraction (LAURANCE; GOOSEM; LAURANCE, 2009). In addition, the opening 

of the fragment canopy and microclimatic changes created by disturbances can increase tree 

damage and mortality even after the disturbance has ceased (MAGNAGO et al., 2015; 

BALCH, 2011). Along with fragment disturbance, reductions in the fragment size and mean 

fragment size in the landscape also played an important role (Fig. 2 and Table 1). In small 

fragments, tree mortality is usually induced by stronger edge-effects which alter the fragment 

microclimate and increase wind turbulence (MAGNAGO et al., 2015). Furthermore, logging 

and forest ground fires can be aggravating sources of tree mortality in landscapes marked by 

high levels of forest fragmentation (BARLOW et al., 2003).  

Tree community proprieties was also important, with larger carbon stocks found in 

forests dominated by heavy-seeded, large-leaved, hardwood trees (Fig. 2 and Table 1). 

Hardwood species can accumulate more carbon per unit of biomass but also more carbon over 

time due to the lower inherent mortality, turnover, and stem breakage (PRADO-JUNIOR et 

al., 2016). Seed mass does not directly affect species’ carbons storage potential, but it 

correlates well with species longevity (MITTELMAN et al., 2021) and carbon storage 

potential (BELLO et al., 2015). In addition, if water availability is not a limiting factor, 

species with larger leaf areas can be more efficient to intercept light (WRIGHT et al., 2017), 

an essential resource for the growth and thus carbon assimilation. It has been well 

documented that carbon stocks are determined by these functional traits. However, our result 

contrasts with those of other studies conducted in Amazonia, where wood density was the 
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main trait controlling the variation in carbon stocks (CAVANAUGH et al., 2014; FAUSET et 

al., 2015; SOUZA et al., 2019). In Atlantic Forest, the functional trait with the greatest effect 

on carbon stocks was seed mass, with an effect at the least 40% greater than wood density 

(Fig. 2 and Table S1). 

We also found that how species concentrate and diverge in their functional niche 

spaces matters for carbon storage. In the Atlantic Forest, the negative effect of functional 

evenness was substantially greater than the positive effect of functional divergence on carbon 

stocks. Thus, we found more evidence supporting the mass ratio hypothesis, which proposes 

that carbon stocks are determined by the characteristics (traits) of the most dominant species 

in the community (GRIME, 2002), than the niche complementarity hypothesis, which predicts 

that the dominant species in the community have opposite functional trait values (i.e., 

different ecological strategies) allowing to accumulate more carbon due to a more efficient 

use of the available resources (ZHANG; CHEN; REICH, 2012). Therefore, we learned that 

not only the abundance of heavy-seeded, large-leaved, hardwood tree species is important for 

determining higher carbon stocks (CHAVE et al., 2009), but also the concentration of species 

exhibiting similar strategies of resource use (i.e. lower functional evenness) (KRAFT; 

GODOY; LEVINE, 2015). 

We found smaller carbon stocks in sites with higher temperatures, where the rates of 

most of the ecophysiological processes that control primary productivity (i.e. photosynthesis 

and respiration) are higher (CLARK; CLARK, 2010). In boreal and temperate forests, 

increases in temperature allow plants to come close to the maximum photosynthetic threshold, 

increasing their carbon assimilation (KEITH; MACKEY; LINDENMAYER, 2009). 

However, in the warmer conditions of tropical and subtropical forests, the increase in 

temperature leads to higher maintenance costs for trees (e.g., higher respiration costs), and, 

thus, to a decrease in their carbon storage potential (STEGEN et al. 2011; CLARK; CLARK, 

2010). 

The effects of field sampling methodology on forest carbon estimates are poorly 

documented (CHAVE et al., 2003) and, as far as we know, this is the first time that their 

effects are weighted against well-known drivers of carbon storage. Here we found that field 

methods can be as important as some environmental and biological variables to explain the 

variation in carbon stock estimates. The effect of the dbh cutoff criteria was expected (due to 

the inclusion of more or fewer trees) and we reveal that the shape of the sampling units (i.e., 

plots) also plays an important role in carbon storage. Studies carried out using more elongated 
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sampling units (i.e., higher perimeter-area ratio) tended to overestimate above-ground carbon 

stocks, which is probably related to the inclusion or exclusion of larger trees close to the plot 

limits (STOVALL; SHUGART; YANG, 2019). Therefore, we reinforce here that larger and 

less elongated sampling units (e.g. 20 x 20 m or higher) should be used to improve the 

accuracy of carbon stocks estimation (CHAVE et al., 2003; MAUYA et al., 2015). More 

generally, sampling aspects other than the total sampling area should be accounted for while 

modeling biomass stocks, particularly when using data from datasets using different sampling 

strategies. Our results suggest that the simple standardization of carbon estimates by the 

sampling effort alone (e.g. (POORTER et al., 2017; MENSAH et al., 2016; DURÁN et al., 

2015) is not enough to guarantee unbiased interpretations of carbon stocks drivers. 

 

3.1 INDIRECT EFFECTS OF ENVIRONMENT AND HUMAN IMPACTS ON CARBON 

STOCKS 

 

While it has been documented that environmental conditions and human impacts 

affect forest carbon stocks, most studies have focused exclusively on direct effects, 

overlooking their indirect effects (DURÁN et al., 2015). Here we found that indirect effects of 

human impacts on carbon stocks via changes in species functional proprieties were 

predominantly negative (Table 1). The heterogeneity of disturbed fragments or landscapes 

may exclude competitively dominant species (i.e. high FEve) (CONNELL, 1978) and favor 

the proliferation of pioneer species, which have relatively low wood density and light seed 

mass, contributing to further reductions in carbon (MAGNAGO et al., 2014). 

Temperature also presented both direct and indirect effects on carbon stocks. The 

abundance of heavy-seeded and large-leaved trees increased in warmer temperatures, 

resulting in a positive indirect effect on carbon stocks. The positive relationship between 

temperature and seed mass is considered an adaptation to improve germination rates in higher 

temperatures (ZHANG et al., 2019). On the other hand, warmer climates tend to present a 

greater dominance of small-leaved species due to the increase in transpiration rates (TOZER; 

RICE; WESTOBY, 2015). In the Atlantic Forest, there probably is enough water available for 

an effective transpiration cooling, allowing large-leaved species to assimilate carbon even in 

warmer climates ( KIRSCHBAUM; MCMILLAN, 2019). Furthermore, the greater functional 

evenness among dominant species slightly decreased carbon stocks in warmer climates. But if 
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we consider together all indirect effects, the overall effect of temperature on carbon stocks 

remained positive (Table 1 and S1). 

Climatic water stress (i.e. CWD) decreased the abundance of heavy-seeded and large-

leaved trees, while it increased the FDiv and the abundance of hardwood species (Fig. 4). 

Because the effect of the decrease in the abundance of heavy-seeded species was three times 

higher than any other indirect effects, the overall indirect effect of CWD on carbon stocks was 

negative (Table 1). Water stress conditions may favor the reduction of the functional 

similarity between co-occurring abundant species (increases in FDiv), probably due to the 

higher influence of resources competition (MAGNAGO et al., 2014). Moreover, due to the 

fibers and thick-walled vessels, higher wood density protects against vessel implosion and 

allows species survival during periods of water deficit (HACKE, 2001). However, these 

positive indirect effects on carbon stocks were compensated by the higher abundance of light-

seeded and small-leaved trees in forests under drier climates.   

Although soil quality and slope declivity showed no significant direct effect on carbon 

stocks (Fig. 2), they affected the tree community properties variables (Fig. 4), which resulted 

in significant indirect effects on carbon stocks (Table 1). Soil quality increased the abundance 

of hard-wood trees and decreased the abundance of large-leaved ones, resulting in an overall 

negative indirect effect on carbon stocks (Table 1). Interestingly, although we showed that 

low fertility soils have higher carbon stocks, as many findings of several other studies 

conducted in Amazonia (QUESADA et al., 2012), unlike many others, this negative effect is 

due to the greater dominance of species with greater leaf area in low fertility soils. Steeper 

slopes had smaller carbon stocks (Table 1), mainly driven by the decrease in the abundance of 

species wood density, leaf area and seed mass and by the increase in functional evenness (Fig. 

4). On steep slopes, soil leaching, water runoff, higher light incidence and wind exposure, 

filter out some plant strategies that are not already adapted to these conditions (WERNER; 

HOMEIER, 2015) and favor the proliferation and survival of individuals with a short lifespan 

(i.e., lighter wood density and seed mass) (HOFHANSL et al., 2020). 

 

3.2 IMPLICATIONS FOR CARBON PROTECTION POLICIES 

 

Under the current global change scenario, the conservation and restoration of forest 

carbon have attracted unprecedented attention. Here, we provided a comprehensive 

assessment of the main drivers of carbon stocks for the Atlantic Forest with important 
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implications for nature-based solutions to mitigate climate changes. First, the conservation of 

the Atlantic Forest carbon stocks is highly dependent on avoiding forest degradation, which 

can generate carbon losses at least two times higher than any future climate change. 

Moreover, emissions from forest degradation can jeopardize efforts of conservation planning 

and climate change mitigation agreements (e.g.  REDD+, AICHI targets). For instance, the 

intensification of within fragment disturbances could lead to carbon losses of up to 10.50 Mg 

ha-1 (-15.24%), while the carbon protection and enhancement could achieve carbon gains by 

12.02 Mg ha-1 (+17.44%) (Table 2). Second, the Atlantic Forest carbon stocks are also 

threatened by climate changes, specifically increases in temperature and water stress. If global 

warming were constrained to 1.5° C above pre-industrial levels, as suggested by 

Intergovernmental Panel on Climate Change (IPCC, (54)), 3.53 Mg ha-1 (-5.12% carbon loss) 

of carbon would be released only from the Atlantic Forest. If global warming continues at its 

current rate, carbon emissions can exceed 9.03 Mg ha-1 (-13.11% carbon loss) (Table 2). 

Third, initiatives aimed at mitigating climate change through the restoration of forest 

ecosystems could benefit from including species with greater wood density, heavier seeds 

masses and larger leaves. Fourth, the relationship between the taxonomic and functional 

diversity and carbon stocks was weak in Atlantic Forest, revealing that conservation policies 

focusing only on carbon may fail to protect biodiversity and highlighting the importance of 

separate add-on incentive mechanisms to achieve biodiversity conservation as well (PHELPS; 

WEBB; ADAMS, 2012). Finally, policies of carbon conservation should take into account the 

sampling methodology aspects across inventories, which can lead to biases in carbon 

estimation and, consequently, the misinterpretation of the efficiency of climate mitigation 

actions. Thus, the use of “good measurement practices to carbon stocks estimation” across 

forests  (MCROBERTS et al., 2010) should be accounted for in carbon stock reporting. 

 

4 MATERIALS AND METHODS  

 

4.1 FOREST INVENTORIES 

 

We used forest inventory data stored in the Neotropical Tree Communities database 

(TreeCo ( LIMA et al., 2015; LIMA et al., 2020)) continuous effort to compile and organize 

plant community data in eastern South America 

(http://labtrop.ib.usp.br/doku.php?id=projetos:treeco:start). Here, we selected data from forest 
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inventories with any type of stand biomass estimate (i.e., basal area or above ground biomass) 

conducted in any Atlantic Forest types. Aiming to reduce the noise in the dataset, we applied 

four filters to the inventory data: (i) a total sampling area equal or larger than 0.25 ha; (ii) a 

cutoff criterion of stem diameter at breast height (dbh) above 4.8 cm (e.g., dbh≥5.0 cm, dbh 

≥10.0 cm); (iii) data on species names, abundance and biomass fully available and 

extractable; (iv) inventories with species trait data (see details below) that together made up at 

least 80% of the total community abundance. The first filter was applied to reduce common 

overestimation biases of above-ground carbon related to small sample sizes (CHAVE et al., 

2004). The second filter was applied to avoid including tree regeneration and shrubs data. The 

third and fourth were necessary to calculate biotic metrics and ensure that they were 

representative of the community (PAKEMAN; QUESTED, 2009). In the end, we performed 

data analysis using a subset of 892 forest inventories (Fig. 1). 

 

4.2 ABOVE-GROUND CARBON STOCKS 

 

Among the 892 inventories considered here, 365 contained only estimates of the stand 

basal area (BA, m2 ha-1) and 527 contained estimates of both BA and above-ground biomass 

(AGB, Mg ha-1). To make the most out of the available data, we built an equation based on 

the inventories that had both BA and AGB to obtain AGB from BA estimates (eq 1). To do 

this, we first calculated the above-ground carbon stocks (i.e. AGC or carbon stocks) by 

multiplying AGB by the conversion of 0.456 g carbon per gram of AGB (MARTIN; 

DORAISAMI; THOMAS, 2018). Then, because inventories used 20 different allometric 

equations to estimate biomass (Table S5), we converted the AGC values obtained using each 

of the equations to the value expected using a single and common allometric equation, which 

here was the one proposed by ref. (CHAVE et al., 2014). To perform this correction, we used 

individual tree dbh and height measurements available from 109 Atlantic Forest inventories 

available from the Minas Gerais Forest Inventory (SCOLFORO, 2008) to estimate the 

relationships between each of the 20 allometric equations and the one equation proposed by 

(CHAVE et al., 2014). A simple linear regression model was used to describe the relationship 

between each pair of allometric equations and for all pairs of equations, the variance 

explained by the model was above 93% (Fig. S1). After obtaining AGC values using a 

common allometric equation for the 527 inventories with both BA and AGC (or AGB), we 

compared the performance of two linear and 12 non-linear candidate equations to select the 
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one that best described the relationship between BA and AGC. The selection was based on the 

visual assessment of the residues and the lowest value of Akaike Information Criterion (Table 

S6 and Fig. S2). The Gompertz equation had the best performance (Fig. S3) and it was used to 

obtain AGC from BA for the all 892 of inventories: 

Eq. 1∶ ln (AGC)=5.067*exp(-0.807*exp(-0.058*BA)),  

where AGC is given in Mg ha-1 using the allometric equation of ref. (CHAVE et al., 

2014) and BA is given in m2 ha-1.  

 

4.3 PRE-SELECTION OF CO-VARIABLES 

 

A wide range of co-variables associated with each inventory could be combined to 

explain the variation of above-ground carbon stocks, generating thousands of possible 

models. To limit the number of possible models, we performed model construction and 

selection in two steps. First, we separated the available co-variables in groups based on our a 

priori hypotheses (i.e. climatic, topographic, soil, biological, human-related and 

methodological co-variables, Fig. S4 and Supplementary Data 1).  We then performed a pre-

selection of the candidate co-variables within each of these groups, based on their individual 

contribution to model performance (i.e. Akaike Information Criteria, AIC and R-squared of 

the models) and based on their biological meaning and ease-of-interpretation in the context of 

global changes. We constructed 54 candidate models including several possible combinations 

of the pre-selected candidate co-variables related to environmental conditions (17 co-

variables), human-related impacts (7 co-variables), tree community diversity (8 co-variables) 

and field sampling methodology (3 co-variables) (Supplementary Data 1). To select the best 

candidate co-variables, each co-variable was included individually in the model, and its 

additional contribution to improving the model performance was evaluated by the decrease in 

the model AIC value (AIC) and, in case of minimal change in AIC value, we evaluated the 

increase in the full model explained variance, R². At this point, the collinearity was not 

evaluated because our intention was only to select candidate co-variables and not to estimate 

the regression coefficients. The final candidate co-variables selected for modeling carbon 

stocks included four environmental (i.e., Mean annual temperature, climatic water deficit, 

slope declivity and soil quality), three human-related (i.e. Within fragment disturbance level, 

Mean fragment size in the landscape and fragment size), seven related to tree community 

proprieties and diversity (i.e., CWM of tree maximum height, wood density, leaf area and 
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seed mass and functional richness, evenness and divergence) and three related to the field 

sampling methodology used in the inventories (i.e., dbh cutoff criteria, perimeter area-ratio 

and sampling effort). 

 

4.4 SITE DESCRIPTORS 

 

To describe local climate conditions, we extracted the mean annual temperature 

(MAT, °C) and climatic water deficit (CWD, mm) from the geographical coordinates of each 

inventory. MAT was obtained from the maps provided by refs. (ALVARES et al., 2013; 

ALVARES et al., 2013b) at 100 m resolution and ranged in our dataset from 11.5° to 25.6° C. 

For inventories from Paraguay and Argentina, not covered by refs. (ALVARES et al., 2013; 

ALVARES et al., 2013b) MAT was obtained from WorldClim 2 at 1 km resolution (FICK; 

HIJMANS, 2017). The long-term climatic water deficit (CWD) was obtained from maps 

provided by ref. (CHAVE et al., 2014) at ~4.5 km resolution, available at https://chave.ups-

tlse.fr/pantropical_allometry.htm. This variable is calculated as the total rainfall minus 

evapotranspiration during the dry months, when evapotranspiration is equal or exceeds 

precipitation and is commonly used to reflect seasonal water stress. As CWD is by definition 

negative, we decided to multiply it by -1 to facilitate its interpretation. Thus, sites with higher 

CWD values are more seasonally water-stressed. 

Slope declivity (º) was the selected co-variable to describe site topography (range in 

the dataset: 0º to 44º), and it was calculated from the SRTM elevation data (~30 m resolution) 

(FARR et al., 2007). To represent the soil conditions, we used the soil quality index, which 

takes into account the soil depth, fertility, drainage and aluminum toxicity for plant growth 

(LIMA et al., 2020). Each soil attribute (depth, fertility, drainage and toxicity of aluminum) 

was classified with a value of 0 (worst quality for plant growth) to 4 (better quality for plant 

growth). Thus, this index ranged from 0 (worst quality) to 16 (best quality). The soil type 

information necessary for the construction of this index was extracted from the original 

publication or, when absent, from local, state and / or national soil maps. We used the 

database of soil profiles provided by (BENEDETTI et al., 2011) to obtain mean soil physical 

properties. 

To describe human impacts related co-variables, three were selected because they 

explained better the variation of carbon stocks in our dataset (see Supplementary Data 1): 

within fragment disturbance level, fragment size and mean fragment size in the landscape. 
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The within disturbance level of fragment was classified based on the information about the 

type, intensity and timing of human disturbances (i.e. selective logging, fire, hunting, 

thinning) or/and forest successional stage (e.g., initial, early and late secondary or advanced 

and old-growth) provided by the authors of the inventories. Although we recognize that 

natural disturbance events can alter the carbon stocks of forest fragments, these events are 

rare, so we assumed that the major drivers of forest succession are related to human 

disturbances (e.g., clear-cutting, logging, and fire). Then, we considered four levels of within 

fragment disturbance: heavy (N=11), high (N=423), medium (N=285) and low (N=173 

inventories). Heavy levels are represented by early secondary forest regrowing after clear cut 

10–20 years before the inventory, locally known as ‘capoeiras’. The high level represents 

chronically disturbed fragments, typically disturbed less than 50 years before the inventory. 

The medium level represents lightly or sporadically disturbed fragments, and/or forests 

disturbed 50–80 years before the inventory. Finally, the low level represents fragments 

without records of disturbances or those undisturbed for at least 80 years. We recognize that 

this is a rather coarse classification, with substantial variation in forest conditions within 

levels; however, we were unable to refine this classification any further due to a lack of more 

objective and detailed information in the original publications. Still, this classification has 

support in the legal classification of the Atlantic Forest (FUNDAÇÃO S.O.S MATA 

ATLÂNTICA, 2017) and is the best information available to take into account within-

fragment disturbances across the entire Atlantic Forest (LIMA et al., 2020). 

The size of the inventoried fragment was extracted from the original publications and 

double-checked by comparing it with other sources of information (FUNDAÇÃO S.O.S 

MATA ATLÂNTICA, 2017). The mean fragment size is the mean area of all fragments 

present in 4 × 4 km landscape subset centered on the coordinate of each inventory. Landscapes 

were obtained from vegetation cover maps (30 m resolution (HANSEN et al., 1979)) and a 

70% canopy closure threshold was used to classify landscapes into fragment or non-fragment 

pixels. Classified landscapes were then used to calculate mean fragment size and other 

landscape metrics not used for analyses (LIMA et al., 2020). Smaller mean fragment sizes are 

indicative of higher forest loss and lower habitat amount. Landscape metrics were extracted in 

R version 4.2.0 (2022) using the contributed packages ‘raster’ and SDMTools 

(VANDERWAL, 2013). 

To assess effects of tree community properties on above-ground carbon stocks, we 

used three types of metrics: (1) community-weighted means (CWM) of species trait values; 
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(2) functional trait diversity indices; and (3) a taxonomic diversity index, namely the 

Shannon-Wiener index. The CWM represents the central tendency of the species traits in the 

community and was calculated as the mean of each trait weighted by the abundance of the 

species in each community. The abundance was chosen as a weighting factor because basal 

area is strongly related to community biomass/carbon. We computed the CWM of four 

species-level traits considered important for carbon accumulation: maximum height (Hmax, 

m), wood density (WD, g.cm-3), seed mass (SM, g) and leaf area (LA, cm²). The species 

maximum height was calculated as the 90th-percentile height of all trees of the species and 

species WD was obtained from the Global Wood Density database (filtered by Tropical South 

America (CHAVE et al., 2009)). Seed mass and leaf area values were obtained in the 

literature (LIMA et al., 2020).  For the species with no available WD, seed mass and leaf area, 

we used the genera or family mean values. In the end, 100% of the species had values of 

maximum height and wood density, 76% of seed mass and 42% has values of leaf area. For 

wood density, CWM was obtained after removing palms, palmoids, cacti, and tree ferns. For 

maximum height, we removed shrubs prior to the calculation of CWM. For seed mass, we 

removed tree ferns prior to the calculation of CWM.  

We used three measures of functional diversity: functional richness (FRic), functional 

evenness (FEve) and divergence (FDiv). Functional indices were calculated for each 

inventory based on Hmax, WD, seed mass, leaf area and other species traits (i.e., leaf type and 

dispersion syndrome) available from the TreeCo database (see ref (LIMA et al., 2020)) for the 

full list of trait sources stored in TreeCo).  

We included as many traits as available for computing indices so we could better 

describe the functional composition of the community, and not regarding those traits that are 

related to species carbon storage potential. FRic represents the amount of niche space filled by 

species in the community. FEve represents the regularity in the distribution of species 

dominance and reflects how thoroughly the resources available are being exploited by the 

plant community and is higher when the functional strategies of co-occurring species are 

evenly distributed in relation to resource use (KRAFT; GODOY; LEVINE, 2015). FDiv 

represents the functional distance among the most dominant species and is higher when the 

dominant species have high functional trait differentiation (KRAFT; GODOY; LEVINE, 

2015). For FEve and FDiv, species abundances were used as weights to generate species 

multivariate-trait spaces. The CWMs, functional and diversity indices were calculated in R 

version 4.2.2 (2022) using packages “FD” and “vegan” (OKSANEN et al., 2017). 
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Finally, we obtained for each inventory the sampling methods used to estimate carbon 

stocks. The dbh cutoff criteria was obtained from the original publications and it ranged in our 

dataset from 4.8 cm to 20 cm. The perimeter-area ratio of the sampling units was obtained 

from the dimensions of sampling units (range: 0.025 to 0.92) and it provides a simple 

quantitative description of the shape of the sampling unit: the greater the ratio, the more 

elongated the plots sample units are. Sampling effort was obtained from the original 

publications, and it ranged from 0.25 to 26 ha. 

 

4.5 STATISTICAL ANALYSIS 

 

The statistical analysis was divided into two parts. First, we assessed the relative role 

and direct effects of environmental conditions, human impacts, tree community proprieties 

and sampling methods on carbon stocks using an approach based on model selection and 

multi-model inference. In the second part, we assessed the indirect effects of environmental 

conditions and human impacts on carbon stocks mediated by tree community proprieties 

using causal mediation analysis. Although both analyses were based on regression models 

and, causal mediation analysis may also provide the direct effects, the separation was 

necessary because it would not be possible to achieve the variation in carbon stocks explained 

by each co-variable, neither to compare the effect of important but high correlated co-

variables (Spearman's Rho coefficient <0.6), as fragment size and mean fragment size (Fig. 

S5), avoiding multicollinearity issues. 

Model selection and multi-model inference was performed with all the candidate co-

variables selected in pre-selection (Supplementary Data 1). We constructed candidate models 

using all possible combinations of the co-variables and ranked them based on the model AIC 

and performed a model selection based on the lowest Akaike Information Criterion values 

(ΔAICc ≤ 4) followed by model averaging to infer about the relative effects of individual 

variables. The selected models were constrained to have co-variables with spearman 

coefficients lower than 0.6 (Fig. S5) and low variance inflation values (VIF ≤ 4) 

(LAFOURCADE et al., 2013). As no individual model had support from the data to be 

considered as the single best model (AIC weights <0.10), the first forty equally-plausible 

candidate models (i.e. delta AIC≤ 4 and AIC weights sum >0.77) were averaged to address 

the uncertainty in the selection of the best candidate co-variables (BURNHAM; 

ANDERSON; HUYVAERT, 2011). Finally, to describe the relative variable importance of 
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each co-variable we calculated the partial pseudo-R² (Table S1), which represents the 

variance explained by each co-variable taking into account the effects of other co-variables 

present in the model. 

Causal mediation analysis was performed because it allows the simultaneous 

computation of multiple paths (e.g. AUNG et al., 2020; HAUGHIAN; FREGO, 2017). Linear 

mixed-effects models were created as the basis of the mediation analysis: firstly, models 

expressing variation in tree community properties variables (i.e. mediator) in relation to 

environmental conditions and human impacts (the ‘mediator model’, Table S4 a,b,c,d,e) and 

then, a model expressing variation in carbon stocks in relation to the mediators, environmental 

conditions and human impacts , considering the effects of all co-variables  (the ‘outcome 

model’, Table S4 f). Finally, we constructed mediation models (effects of X via M on Y, Fig. 

S5), to identify how much of the effect of environmental conditions and human impacts were 

direct and how much were indirect, mediated by tree community properties variables. Indirect 

effects represent the expected difference in the potential outcome when the mediator took the 

value that would realize under the treatment condition as opposed to the control condition, 

while the treatment status itself is held constant (IMAI; TINGLEY; YAMAMOTO, 2012; 

IMAI; KEELE; TINGLEY, 2010). Given the impossibility to constrain high correlated co-

variables (>0.6) in causal mediation analysis, mean fragment size in the landscape was 

included in this analysis rather than fragment size (Fig. S5). 

For the mixed-effects models and causal mediation analysis, the biogeographical sub-

regions of the Atlantic Forest ( OLSON; DINERSTEIN, 2002)  were defined as random 

effects (to account a possible lack of independence between sites within the same 

biogeographical region). The carbon stocks of each inventory were ln-transformed to: (i) 

achieve the residual normality and homoscedasticity assumptions, (ii) reduce the effect of 

outliers and (iii) account for possible nonlinear relationships between variables. We also ln-

transformed the CWM of functional traits prior to analyses. The within fragment disturbance 

level, the only ordinal variable, we transformed into a continuous variable using “ridit scores'', 

by assigning values of 0 (bottom of hierarchy, heavy level of within fragment disturbance) to 

1 (top of hierarchy, low level of within fragment disturbance), reflecting the relative ranking 

of each level (CHEN; WANG, 2014). All co-variables were standardized to a mean of zero 

and a standard deviation of one to allow comparisons of the strength of the effects among 

variables of the model. 
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Residual diagnostics plots were used to examine the all model residuals normality and 

homoscedasticity assumptions (Fig. S7). We also used correlograms of Moran's I to assess the 

spatial autocorrelation of model residuals. When the presence of spatial autocorrelation was 

significant, we added spatial filters to the models (MEMs, Moran’s eigenvector maps 

(DRAY; LEGENDRE; PERES-NETO, 2006)). The "mediation" package does not provide a 

validation function to assess the goodness of fit of mixed regression models. In this way, the 

validation of the causal mediation analyzes were achieved by ensuring the fit of all models 

included in the analyzes (Table S4 and Fig. S7). Analyses and graphs were performed using R 

version 4.2.0 (2022) and the following packages: mediation (DUSTIN et al., 2019), lme4 

(BATES et al., 2015), MuMIn (BARTON, 2022) and ggplot2 (GGPLOT2, s.d.). The Moran's 

I tests and correlograms were performed using the spDep  (BIVAND, 2022) and ncf  

(BJORNSTAD; CAI, 2018) packages. 

 

4.6 PREDICTING CARBON GAINS AND LOSSES TO CLIMATE AND FOREST 

HUMAN DISTURBANCES CHANGES 

 

We used the direct and indirect effects provided by mediation causal analysis (Figure 

4 and Table 1) to predict the impact of changes in climate and fragment disturbance on the 

future carbon stocks across Atlantic Forest. Predictions of fragment human disturbances were 

made for two different scenarios: an optimistic and a pessimistic scenario. In the optimistic 

scenario, we assumed a widespread decrease in fragment disturbance and projected carbon 

gains related to the advance of fragments with heavy and high levels of disturbance to 

medium and low levels of disturbance, respectively. In the pessimist scenario we assumed an 

increase of fragment disturbances, so that fragments with low and medium levels of 

disturbance are disturbed to heavy and high levels, respectively. Future climate changes were 

simulated based on the IPCC Special Report  (MASSON-DELMOTTE, 2019) and as above 

we simulated different scenarios: a stringent mitigation scenario (RCP2.6 (MASSON-

DELMOTTE, 2019)) and scenarios without additional efforts to constrain emissions 

(’baseline scenarios’) (RCP6.0 and RCP8.5 (MASSON-DELMOTTE, 2019)). The first 

scenario (RCP2.6) aims to keep global warming below 2°C of pre-industrial temperatures 

(1850-1900) and in the second we assume an increase in mean temperature by 4°C of pre-

industrial levels (MASSON-DELMOTTE, 2019).  
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Fig S1: The relationship between the 20 allometric equations found to estimate AGC (Table 

S1) and the one provided by ref. (1). The y-axis is the natural logarithmic of the estimate 

provided by ref. (1) formula and the x-axis is the natural logarithmic of the aboveground 

carbon of each allometric equation. We present the mean prediction of the linear regression 

model (in blue) and the associated R2 of the model.  
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Fig S2: Carbon equations residual plots. Smoothers between residuals and fitted values from 

different models tested to find the best description of the relationship between above-ground 

carbon (AGC; estimated by ref. (1)) and basal area (BA) based on from 527 inventories 

reporting both AGC and BA estimates.  

 

 

Fig. S3.:The relationship between above-ground carbon and basal area for 527 forest 

inventories. Values of above-ground carbon were obtained from values of above-ground 
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biomass estimated using the allometric equation provided by ref.(1)). The green line is the fit 

of the Gompertz equation, whose parameter estimates, explanatory power (R2) and standard 

residual error (%) are provided. Points represents the values for each inventory.  

 

 

Figure S4: An a priori model of the causal relationships among climate, soil properties, 

topography, human impacts, tree community properties, and aboveground carbon storage 

(AGC) in Atlantic Forest. We hypothesize that effect of human impacts is negative, the soil 

properties is positive and the climate, slope declivity and field sampling methods can be 

positive or negative depending on the evaluated variable. Taller and hard wood species and 

taxonomic and functional diversity increases the carbon stocks. 

 

 

 

 

 

Figure S5:  

Correlation matrix between potential carbon stocks drivers. Wg_gcm3_log (CWM wood 

density log transformed), MaxHeight_m_log (CWM Maximum height log transformed), 
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FEve.n (Functional evenness), FDiv.n (Functional divergence), FRic.n (Functional richness), 

PAR (perimeter area ratio), DBH_inclusion_c (Dbh cutoff criterion), Ridit_DL (Within 

fragment disturbance level), MAT (Mean annual temperature), ppt (Mean annual 

precipitation), CWD_T (Climatic water deficit -1 transformed), frag_area (Fragment size), 

mean.patch_area (Mean fragment size), DECLIV (Slope declivity), Soil.Quality_T (soil 

quality), LeafArea_log (CWM Leaf area log transformed) and SeedMass_g_log ( CWD seed 

mass log transformed).   
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Figure S6:   

Causal mediation analysis in its simplest form.  a’ = effect of X on Y; b’ = effect of X on 

M, b’c’= effect of X on Y mediated by M.  
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Figure S7: Residual plots. (A) AGC main drivers model (Table S1 and Fig 1). (B-F) Causal 

mediation models (Table S4). 
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Table S1: Standardized coefficients and partial pseudo-R² of model-averaged of AGC main 

drivers model of Atlantic Forest. Model averaging was developed with all candidate models that 

presented ΔAICc ≤ 4. Note: AGC (Above-ground carbon stocks); SE (standard error).  

Log(AGC)~scale(FRic.n)+scale(effort_ha)+scale(DBH_inclusion_c)+ 

scale(PAR)+scale(log(LeafArea))+scale(FDiv.n)+scale(FEve.n)+scale(log(SeedMass_g))+scale(lo

g(wsg_gcm3))+scale(log(MaxHeight_m))+scale(mean.patch.area)+scale(frag_area)+scale(Frag_

Dist_L)+scale(CWD_T)+scale(temp)+scale(Soil.Quality_T)+scale(Slope)+(1|ecoreg) 

 

Variable Code Drivers Estimate SE p-value 

partial 

pseudo-R² (%) 

 Intercept 4.132 0.054 <0.0001  

Frag_Dist_L Within fragment 

disturbance level -0.128 0.010 <0.0001 12.24 

FEve.n Functional evenness -0.075 0.011 <0.0001 3.97 

CWD_T Climatic water deficit 

(-1 transformed) -0.026 0.019 0.174 0.30 

temp Mean annual 

temperature -0.098 0.015 <0.0001 3.97 

DBH_inclusion_c Dbh cuttoff criteria -0.052 0.017 0.002 0.97 

Soil.Quality_T Soil quality -0.017 0.010 0.110 0.25 

Slope Slope declivity -0.001 0.011 0.921 0.00 

FRic.n Functional richness 0.016 0.013 0.234 0.15 

SeedMass_g CWM Seed mass 0.079 0.010 <0.0001 4.88 

frag_area Fragment size 0.029 0.011 0.007 0.73 

FDiv.n Functional divergence 0.044 0.010 <0.0001 1.71 

mean.patch.area Mean fragment size 0.033 0.011 0.002 0.90 

LeafArea CWM Leaf area 0.036 0.014 0.011 0.64 

wsg_gcm3 CWM Wood density 0.054 0.013 <0.0001 1.56 

PAR Perimeter-area ratio 0.057 0.012 <0.0001 2.06 

MaxHeight_m Maximum tree height 0 0 0 0.00 

effort_ha  Sampling effort  -0.020  0.010 0.059 0.35 

 

 

Table S2: The carbon estimate ± standard error (SE) from optimum linear mixed model (Fig.2 

and Table S1). Note: Within fragment disturbance level is shown here as a categorical variable (i.e., 

without Ridit score transformation). 

 

Within Disturbance levels Estimate SE df 

Low 72.399 4.574 8.939 

Medium 69.838 4.231 7.613 

High 55.056 3.326 7.455 

Heavy 48.241 5.225 75.295 

 

 

 

Table S3: Tukey test results from generalized linear mixed models testing effects of within fragment 

disturbances on carbon stocks (AGC). 

 

Within disturbances levels p- value 

Low - Medium 0.595 

Low - High <.0001* 
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Low - Heavy <.0001* 

Medium - High <.0001* 

Medium - Heavy <.0001* 

High - Heavy 0.445 

"*" p-value > 0.05, significant values 
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Table S4: Causal mediation analysis models. The estimated coefficients ± standard error (SE) from 

multiple linear mixed models, testing the effects of human impacts (mean fragment size and forest 

degradation level) and environmental conditions (climate, slope declivity and soil quality) on 

functional traits (wood density -WD, Seed mass and Leaf area) and functional diversity (functional 

richness – FRic, functional evenness -FEve and functional divergence -FDiv). Note: MAT (Mean 

annual temperature), CWD (climatic water deficit), MEMs: Moran’s eigenvector maps, spatial filters. 

Climatic water deficit was -1 transformed and AGC, WD, seed mass and leaf area were transformed in 

the natural logarithmic scale. All models were fitted with scaled drivers. 

a) Wood density mediation model b) Seed Mass mediation model  

 Estimate SE p-value  Estimate SE p-value 

Intercept -0.4869 0.0166 <0.0001 Intercept -0.7511 0.1159 0.0004 

Within fragment 

disturbance level -0.0091 0.0024 0.0002 

Within fragment disturbance 

level -0.0885 0.0211 <0.0001 

Mean fragment size 0.0073 0.0026 0.0054 Mean fragment size 0.0487 0.0225 0.0308 

Slope declivity -0.0092 0.0025 0.0002 Slope declivity -0.0912 0.0215 <0.0001 

Soil quality 0.0079 0.0025 0.0017 Soil quality 0.0343 0.0217 0.1138 

MAT 0.0061 0.0034 0.0750 MAT 0.1611 0.0294 <0.0001 

CWD 0.0345 0.0046 <0.0001 CWD -0.1002 0.0387 0.0103 

c) Leaf area mediation model d) Functional divergence mediation model 

 Estimate SE p-value  Estimate SE p-value 

Intercept 3.6961 0.1019 <0.0001 Intercept 0.7895 0.0072 <0.0001 

Within fragment 

disturbance level -0.0120 0.0171 0.4833 

Within fragment disturbance 

level -0.0024 0.0021 0.2696 

Mean fragment size -0.0246 0.0182 0.1771 Mean fragment size 0.0001 0.0023 0.9634 

Slope declivity 0.1545 0.0174 <0.0001 Slope declivity -0.0013 0.0022 0.5586 

Soil quality -0.0377 0.0175 0.0319 Soil quality 0.0012 0.0022 0.5864 

MAT 0.3129 0.0238 <0.0001 MAT 0.0008 0.0030 0.7666 

CWD -0.0938 0.0317 0.0033 CWD 0.0073 0.0036 0.0468 

e) Functional evenness mediation model f) AGC stocks mediation model 

 Estimate SE p-value  Estimate SE p-value 

Intercept 0.5245 0.0102 <0.0001 Intercept 4.1420 0.0526 <0.0001 

Within fragment 

disturbance level 0.0061 0.0022 0.0074 

Within fragment disturbance 

level -0.1272 0.0106 <0.0001 

Mean fragment size -0.0089 0.0024 0.0002 Mean fragment size 0.0329 0.0114 0.0040 

Slope declivity 0.0132 0.0023 <0.0001 Slope declivity -0.0036 0.0111 0.7464 

Soil quality 0.0040 0.0023 0.0866 Soil quality -0.0191 0.0108 0.0789 

MAT 0.0102 0.0032 0.0015 MAT -0.0975 0.0164 <0.0001 

CWD -0.0069 0.0040 0.0870 CWD -0.0253 0.0197 0.2008 

MEM10 -0.0104 0.0022 <0.0001 Wood density 0.0642 0.0142 <0.0001 

MEM15 0.0071 0.0022 0.0017 Tree Maximum Height 0.0265 0.0154 0.0863 

MEM86 0.0072 0.0022 0.0010 Leaf area 0.0383 0.0147 0.0093 

MEM3 -0.0133 0.0030 <0.0001 Seed mass 0.0721 0.0116 <0.0001 

MEM14 0.0075 0.0022 0.0008 PAR 0.0552 0.0123 <0.0001 

    DBH cutoff -0.0614 0.0189 0.0012 

    Sampling effort -0.0211 0.0108 0.0516 



60 

 

 

 

Table S5. List of the all allometric equations reported in the forest inventories used for data 

analysis. AGB= Above-ground biomass, H= Height of the tree, DBH= diameter at breast 

height, WD= wood density and DW= Dry weight. 

Allometric  equations Authors 

AGB=0.0673*(WD*(DBH^2)*H)^(0.976) Ref. 1 

AGB=0.033430*(DBH^2.397902)*(H^0.426536) Ref. 2 

AGB=exp(-2.289+2.649*ln(DBH)-0.021*(ln(DBH))^2) Ref. 3 

AGB=exp(-2.187+0.916*ln(WD*(DBH^2)*H)) Ref. 4 

AGB=exp(-2.977+ln(WD*(DBH^2)*H)) Ref. 4 

AGB=exp(-2.557+0.940*ln(WD*(DBH^2)*H)) Ref. 4 

DW=(59.321357)+(-12.28289)*DBH+(0.8396136)*(DBH^2) Ref. 5 

AGB=0.04821*(DAP^1.34374)*(H^1.26829) Ref. 6 

ln(AGB)=-4.15190+1.06068*ln((DBH^2)*H) Ref. 7 

AGB=0.317*(DBH^2)+0.009*((DBH^2)*H) Ref. 8 

AGB=-3.025*DBH+0.425*(DBH^2)+0.006*((DBH^2)*H) Ref. 8 

AGB=exp(-10.8771683824+2.6359736325*ln(DBH)+0.0878059946*ln(H))/(0.4802) Ref. 9 

AGB= exp(-11.319842099+2.1415723631*ln(DBH)+0.8134282561*ln(H))/(0.4833) Ref. 9 

AGB=exp(-10.7501678493+2.0580637328*ln(DBH)+0.8604515609*ln(H))/(0.4860) Ref. 9 

AGB=exp(-10.9520199234+2.0898526615*ln(DBH)+0.8096162241*ln(H))/(0.4839) Ref. 9 

AGB=exp(-10.9520199234+2.0898526615*ln(DBH)+0.8096162241*ln(H))/(0.4802) Ref. 9 

AGB=exp(-11.319842099+2.1415723631*ln(DBH)+0.8134282561*ln(H))/(0.4833) Ref. 9 

AGB=25.87071+0.02909*(DBH^2)-0.21382*(H^2)+0.03189*(DBH^2)*H Ref. 10 
AGB = 0.024530*(DAP^2.443356)*(H^0.423602) + 

0.2596*(0.024530*(DAP^2.443356)*(H^0.423602)) + 

0.0445*(0.024530*(DAP^2.443356)*(H^0.423602)) Ref. 11 

AGB=(-4.8639)+0.3981*DBH+0.2625*(DBH^2) Ref. 12 

log10(AGB)=-0.88239023+2.40959057* log10 (DBH) Ref. 13 

 

 

Table S6.  Performance of carbon equations based on basal area. Comparison of the equations 

used to find the best description for the relationship between above-ground carbon (AGC; 

estimated by ref.1) and basal area (BA) based on from 527 inventories reporting both 

estimates. Best equation (i.e Gompertz equation) was selected based on the lowest AIC value 

and are shown in blue. 

    Akaike value 

Gompertz equation log10 (AGC) ~ A*exp(-c*exp(-k*BA)) -184.821 

Monomol equation log10 (AGC) ~ A*(1-c*exp(-k*BA)) -184.783 

Log-Log linear equation log10(AGC)~log10(BA) -183.039 

Weibull equation log10 (AGC) ~ A*(1- exp(-k*BA^c))  -182.772 

Hosffeld equation log10 (AGC) ~ A/ (1+c*exp(-k*ln(BA)) -182.287 

Korf equation  log10 (AGC) ~ A*exp(-k/BA^c) -181.787 

Power equation log10(AGC) ~ A* (BA^k)  -174.293 

Naslund equation log10 (AGC) ~ BA/ (A*BA+k)^2 -160.107 

Curtis equation log10 (AGC) ~ A*(BA/(1+BA)) -150.323 
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Terazaki equation log10 (AGC) ~ A*exp(-k/BA) -144.777 

Meyer equation log10 (AGC) ~ A*(1-exp(-k*BA)) -102.209 

Linear equation AGC ~ BA 4268.906 
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ABSTRACT 

Estimating of carbon stocks from tropical forests is a key part of the unfolding climate crisis. 

Using a large dataset of 697 Atlantic Forest inventories, we evaluated the application of regional 

and forest type-specific equations to estimate carbon stocks based on two stand structural 

variables: stand basal area and stand density. We compared the predictive ability of one- and two-

variable equations and showed that estimating carbon stock from the stand basal area and stand 

density provides accurate results for moist and dry forests of the Atlantic Forest domain. The 

developed equations based only on the stand structural variables explained 85.2%-96.2% of the 

carbon stocks variations having less than 6.5% of estimation errors. Thus, carbon stocks from the 

stand forestry structural variables can be accurate, and thus may represent an alternative when 

individual tree measurements and identifications from where complete forest inventories are not 

available. 

1 INTRODUCTION 

Tropical forests play a key part in the unfolding climate change crisis. Globally, they are 

responsible for great removals of carbon dioxide from the atmosphere, store almost half of the 

terrestrial aboveground carbon (Lewis et al., 2015) and account for 78% of GHG gross emissions 

(Harris et al., 2021). Given such importance, these forests have attracted unprecedented attention 

and several investments for carbon protection and enhancement (Ardila et al., 2021), which led 

governments and forest landowners to track forest carbon cycling closely (Vorster et al., 2020). 

However, measuring forest carbon stocks remains a challenge and the development of easy-to-

apply methods to expand the estimation of carbon stocks could, therefore, make a significant 

contribution to improving the performance of mitigation strategies. 

Forest carbon stocks can be estimated by direct or indirect methods. Direct method 

involves the destructive sampling and weighting of all trees in the forest, which is the most 

accurate method but is seldom feasible (Tashi et al., 2017).  Indirect method mostly involves the 

use of tree allometric equations that are based on tree specific measures or characteristics, such as 

diameter at breast height, tree height and species wood density (see Chave et al., 2014). This 

method is the most widely used and offers reliable carbon estimates of individual trees, forest 

types and stands (Petersson et al., 2012). However, it depends on detailed, tree-by-tree forest 

inventories, which are time-consuming and costly (McRoberts et al., 2013). In addition, carbon 
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stocks can be indirectly estimated using remote sensors based on the spectral reflectance of the 

vegetation (Lu, 2006) and/or high-resolution maps of forest structure (e.g Light Detection and 

Ranging (LiDAR), Silva et al., 2017). These methods are the best ones for estimating carbon over 

large areas (Vicharnakorn et al., 2014), but they still depend on direct and indirect methods of 

carbon stocks estimation for calibration (Baccini et al., 2012; Clark & Kellner, 2012). 

The use of allometric equations based on the stand variables (i.e “stand allometric 

equations”) could be an important alternative when measurements of tree diameter, height, and 

wood density are not available. These variables can rapidly be measured in the field and are 

commonly provided in published forest inventories.  Particularly, allometric equations using 

stand basal area as a predictor is a promising option to estimate forest carbon stocks. The basal 

area has proven to be a good predictor of forest biomass by integrating the effect of both the 

number and diameter of trees. Stand density can also be an option to improve the performance of 

carbon allometric equations at stand level (see Khan et al., 2018). Reductions in the carbon stocks 

of individual trees are commonly related to the increase in the stand density (Yoda et al., 1963; 

Weller, 1987). Some studies have already developed stand-level equations to estimate carbon 

stocks from the basal area (de Lima et al., 2020; Torres & Lovett, 2013) and basal area with 

others stand variables, such as stand density (Khan et al., 2018). But, most were developed single 

species and/or planted species (e.g. Khan et al., 2018, 2020; Rahman et al., 2015) and the errors 

were rarely reported.  

 In this study, we use a large database to propose allometric equations for estimating 

carbon stocks from forest structural variables. With the substantial amount of published forest 

inventory data with the only basal area and tree density, these equations can be useful for 

expanding carbon estimates in the Atlantic Forest. We assess the potential of using stand basal 

area (BA) and stand density (SD) to predict above-ground carbon stocks (AGC) in natural mixed-

species forests. This assessment is performed individually for four different tropical/subtropical 

forest types of the Atlantic Forest domain and also for this tropical forest as a whole. For this, we 

use a dataset of 697 inventories (Scolforo et al.2008; Lima et al., 2015, 2020), in which the 

community basal area, stand density and above-ground biomass estimates are reported. We asked 

the following question: Are stand basal area and stand density capable of generating accurate 

estimates of carbon stocks?  
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2 MATERIALS AND METHODS 

 

2.1 FOREST INVENTORIES 

 

We used forest inventory data stored in the Neotropical Tree Communities database 

(TreeCo, version 4.0, Lima et al., 2015, 2020), in the Santa Catarina Forest Inventory (Vibrans et 

a. 2020), and in the Minas Gerais Forest Inventory database (Scolforo et al., 2008), which contain 

more than 4000 forest inventories from eastern South America in the Brazilian Cerrado, Caatinga 

and Atlantic Forest domains. Here, we restricted our analyses only to forest inventories of 

Atlantic Forest due to the lower representation and spatial concentration of forest inventories in 

the Brazilian Cerrado and Caatinga. In addition, we selected only inventories with (i) a total 

sampling area equal to or larger than 0.25 ha (ii) a cut-off criterion of stem diameter at breast 

height (dbh) above 4.8 cm (e.g., dbh≥5.0 cm, dbh ≥10.0 cm) and (iii) basal area estimates higher 

than 8 m² per hectare. The first filter was applied to reduce common overestimation biases of 

above-ground carbon related to small sample sizes (Chave et al., 2004). The second filter was 

applied to avoid the noise related to the inclusion of trees from different forest strata. The third 

was applied to exclude the initial secondary (capoeiras). In the end, we performed data analysis 

using 697 forest inventories of Atlantic Forest (Fig. 1), composed of 234 rain forests, 158 

Araucaria forests, 63 deciduous forests and 233 semi-deciduous forests. Other forest types 

present in the databases (e.g. Altitude Forest and Restinga) were not included in the analyses due 

to their small representativeness (n<10). 
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Figure 1 – Sites in Atlantic Forest included in the study. The data from the Neotropical Tree 

Communities and Minas Gerais Forest Inventory database. 

 
Source: 

 

2.2 BASAL AREA, STAND DENSITY AND ABOVE-GROUND CARBON ESTIMATES 

 

Basal area, stand density and aboveground carbon (AGC) estimates were compiled from 

the original inventories. Most inventories reported above-ground biomass (AGB) instead of the 

AGC. So, we first obtained the AGC stocks (i.e. carbon stocks) by multiplying AGB by the 

standard conversion of 0.456 g carbon per gram of biomass (Martin et al., 2018). Because the 697 

inventories used here used 20 different allometric equations to estimate biomass/carbon stocks 

(Table S1), we converted all carbon estimates to those using the allometric equation AGBest = 

0.0673 x (WD x DAP² x H) 0.976 proposed by Chave et al. (2014), where AGBest is the AGB 

estimated, WD is the species wood density, DAP is the diameter at 1.3m and H is the tree height. 

To do so, we used the linear regression equations available in Pyles et al., 2022 (Table S1 and 

Figure S1). 
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2.3 EQUATION’S DEVELOPMENT  

 

We compared the performance of one- and two-stand variable equations to estimate log 

values of aboveground carbon stocks for the four different forest types in our dataset and for the 

Atlantic Forest as a whole. The AGC was log10 transformed before equations fitted to address 

the normality and homoscedasticity assumptions and reduce the effect of outliers. Eighteen 

commonly used linear and non-linear equations forms (Table 1) were compared for their 

predictive ability to identify the best fit. The first variable was stand basal area (BA) and the 

second was stand density (SD) (e.g. Khan et al., 2018). The equation parameters were estimated 

using maximum likelihood fit from “nlme” and “nls2” packages (Grothendieck, 2015; Pinheiro et 

al., 2021)  in the R software version 4.0 (R Core Team, 2021).  

 

Table 1.  The candidate equations used to estimate log values of carbon (AGC, Mg ha-1) from 

stand basal area (BA, m2 ha-1) and stand density (SD, ha-1). Values of AGC correspond to the 

estimates obtained using the equation proposed by Chave et al. 2004.  β0, β1, β2, β3, β4 are the 

model coefficients to be estimated. 

Equation Type Reference name 

log10 (AGC)~ β0 + β1* log10(BA) Linear Log-log 

log10 (AGC)~ β0*(BA/(1+BA)) Non-linear Curtis  

log10 (AGC)~ β0*exp(-β1*exp(-β2*BA)) Non-linear Gompertz  

log10 (AGC) ~ β0/ (1+ β1*exp (-β2* log10 (BA)) Non-linear Hosffeld  

log10 (AGC) ~ β0*exp(-β1/BAβ2)  Non-linear Korf  

log10 (AGC) ~ β0*(1-exp(-β1*BA))  Non-linear Meyer  

log10 (AGC) ~ β0*(1- β1*exp(-β2*BA))  Non-linear Monomol  

log10 (AGC)~ BA/ (β0*BA+ β1)² Non-linear Naslund  

log10 (AGC) ~ β0* (BA β1) Non-linear Power  

log10 (AGC) ~ β0*exp(-β1/BA)  Non-linear Terazaki  

log10 (AGC) ~ β0*(1- exp(-β1*BAβ2)) Non-linear Weibull  

log10 (AGC) ~ β0+ β1* log10 (BA)+β2 log10 (SD) Linear Schumacher and 
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Hall 

(logarithmic) 

log10 (AGC) ~ β0+ (BAβ1)*(SD β2) Non-linear Schumacher and 

Hall  

log10 (AGC) ~ β0+ β1* log10 (BA²*SD) Linear Spurr 

(logarithimic) 

log10 (AGC) ~ β0+ (BA²*SD)β1 Non-linear Spurr 

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD)+ 

β3*(BA*SD²)+ β4*SD 

Non-linear Naslund  

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD) + β3*SD Non-linear Stoate 

 

2.4 EQUATION’S SELECTION AND VALIDATION 

 

The selection of the equation that best describes the AGC-BA-SD relationship was based 

on the lowest value of the Akaike Information Criterion (AIC) and on the visual assessment of 

the residual standard error (RSE). The AIC is a measure of the relative performance of statistical 

models for describing a given dataset, while the RSE is a goodness-of-fit measure that can be 

used to analyze how well a set of data points fit with the proposed equation. We also reported the 

coefficient of determination (R²), which indicates the explanatory power of each regression 

equation and the mean relative estimation error (Sxy %), which measures the relative error that 

should be expected in the estimate of a single stand (Li et al., 2013) .The systematic biases 

introduced by the natural logarithmic transformation of AGC were corrected using the correction 

factor (CF) calculated for each equation (Sprugel 1983). The Sxy and CF were computed using 

the formulas below:  

𝑆𝑥𝑦 = √ 
√

( 𝑃𝑖−  𝑂𝑖)²

𝑛

𝑂𝑖̅̅ ̅
 𝑥100  

𝐶𝐹 =  𝑒𝑥𝑝 (
𝑅𝑆𝐸2

2
) 

,where  Pi are the predicted carbon values, Oi are the observed carbon values, 𝑂𝑖 ̅̅ ̅̅  the 

mean value of observed carbon, n is the sample size and RSE is the residual standard error. The 
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predictive performance of the selected equations was evaluated using an independent dataset and 

a 10-fold cross-validation approach. The dataset of each forest type and with all datasets together 

was randomly split into 10 subsamples of approximately the same size (i.e., 10 parts). A small 

part of the data (i.e., 1/10 of total samples) was used as validating data (independent), while the 

remaining 9 parts were used as training data. This process was repeated 10 times. The coefficient 

of determination and the mean relative estimation error were calculated for each dataset and were 

averaged to obtain the final R² and Sxy values for each model. Good equations have R² and Sxy 

of testing dataset quite similar to R² and Sxy of the training dataset. We also evaluate the 

predictive performance of the selected equations by graphical analysis of the AGC predicted vs. 

observed values, which consisted of comparing the trend of predicted vs. observed values to the 

linear 1:1 trend. 

 

3 RESULTS 

 

For the rain, Araucaria and semi-deciduous forests, the log-transformed values of AGC 

were best predicted by equations with stand basal and stand density values (see below equation 

(1), (2) and (4)), whereas for the deciduous, the equation-based only on stand basal area (i.e. one-

variable (equation (3)), was found suitable for predicting stand-level carbon stocks. For the 

Atlantic Forest as a whole, equations with stand basal area and stand density showed the best 

performance for predicting carbon stocks. The coefficient of determination of developed 

equations ranged from 85.28% to 94.14% and the relative estimation error from 2.48% to 6.50% 

(Table 2). The goodness of fit statistics for the carbon equations was shown in table 2 and 

estimated parameters for each selected equation were shown in table 3
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Table 2: Model selection parameters. ∆AIC: Delta Akaike information; RSE: residual standard error; Sxy: relative estimation error; 

R²: coefficient of determination; CF: correction factor. 

Rain forest (n=234)                 

Allometric equations Equations  goodness of fit    

  

Cross-validation 

  

  ∆AIC RSE Sxy (%) R² CF RSE Sxy (%) R² 

log10 (AGC) ~ β0+ β1* log10 (BA)+β2 log10 (SD) 0 0.124 2.966 91.09 1.0151 0.124 2.973 89.87 

log10 (AGC) ~ β0+ (BAβ1)*(SD β2) -278.452 0.13 3.114 90.17 1.0174       

log10 (AGC)~ β0 + β1* log10(BA) -201.673 0.153 3.681 86.04 1.0118       

log10 (AGC) ~ β0*(1- exp(-β1*BAβ2)) -201.611 0.161 3.855 85.18 1.0131       

log10 (AGC) ~ β0*(1- β1*exp(-β2*BA)) -201.561 0.161 3.855 85.18 1.0131       

log10 (AGC) ~ β0/ (1+ β1*exp (-β2* log10 (BA)) -201.484 0.161 3.856 85.17 1.0131       

log10 (AGC) ~ β0*exp(-β1/BAβ2) -201.336 0.161 3.857 85.16 1.0131       

log10 (AGC)~ β0*exp(-β1*exp(-β2*BA)) -201.153 0.161 3.857 85.16 1.0131       

log10 (AGC)~ BA/ (β0*BA+ β1)² -195.496 0.164 3.918 84.62 1.0135       

log10 (AGC) ~ β0* (BA β1) -192.509 0.164 3.925 84.56 1.0136       

log10 (AGC)~ β0*(BA/(1+BA)) -191.030 0.165 3.956 84.32 1.0138       

log10 (AGC) ~ β0*exp(-β1/BA) -189.042 0.166 3.973 84.19 1.0139       

log10 (AGC) ~ β0*(1-exp(-β1*BA)) -164.946 0.174 4.172 82.56 1.0153       

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD)+ β3*(BA*SD²)+ β4*SD -99.133 0.19 4.544 79.09 1.0377       

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD) + β3*SD -89.161 0.195 4.663 77.98 1.0396       

log10 (AGC) ~ β0+ β1* log10 (BA²*SD) 38.549 0.259 6.193 61.16 1.0703       

log10 (AGC) ~ β0+ (BA²*SD)β1 48.584 0.265 6.329 59.44 1.0730       

                  

Araucaria (n= 158)                 

Allometric equations Equation’s goodness of fit    

  

Cross-validation 

  ∆AIC RSE Sxy (%) R² CF RSE Sxy (%) R² 

log10 (AGC) ~ β0+ β1* log10 (BA)+β2 log10 (SD) 0 0.103 2.483 94.14 1.005 0.098 2.376 91.70 

log10 (AGC) ~ β0+ (BAβ1)*(SD β2) 29.036 0.113 2.722 92.96 1.006       
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log10 (AGC)~ β0 + β1* log10(BA) 59.068 0.125 3.012 91.33 1.007       

log10 (AGC) ~ β0*exp(-β1/BAβ2) 59.297 0.125 3.024 91.48 1.007       

log10 (AGC) ~ β0/ (1+ β1*exp (-β2* log10 (BA)) 59.545 0.125 3.026 91.47 1.007       

log10 (AGC) ~ β0*(1- exp(-β1*BAβ2)) 59.923 0.125 3.03 91.44 1.007       

log10 (AGC) ~ β0*(1- β1*exp(-β2*BA))    66.184 0.128 3.091 91.10 1.008       

log10 (AGC)~ β0*exp(-β1*exp(-β2*BA)) 69.276 0.129 3.121 90.92 1.008       

log10 (AGC) ~ β0* (BA β1) 72.938 0.131 3.167 90.59 1.008       

log10 (AGC)~ BA/ (β0*BA+ β1)² 88.354 0.138 3.326 89.63 1.009       

log10 (AGC)~ β0*(BA/(1+BA)) 96.323 0.141 3.411 89.09 1.010       

log10 (AGC) ~ β0*exp(-β1/BA) 100.763 0.143 3.459 88.78 1.010       

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD) + β3*SD 154.282 0.167 4.020 84.65 1.014       

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD)+ β3*(BA*SD²)+ β4*SD 155.012 0.166 4.004 84.78 1.014       

log10 (AGC) ~ β0*(1-exp(-β1*BA)) 170.850 0.179 4.318 82.52 1.016       

log10 (AGC) ~ β0+ β1* log10 (BA²*SD) 234.439 0.217 5.247 73.86 1.024       

log10 (AGC) ~ β0+ (BA²*SD)β1 366.636 0.331 7.973 39.66 1.057       

 

Seasonally Dry Tropical Forest deciduous (n=63)             

Allometric equations Equation’s goodness of fit    

  

Cross-validation 

  

  ∆AIC RSE Sxy (%) R² CF RSE Sxy (%) R² 

log10 (AGC)~ β0*exp(-β1*exp(-β2*BA)) 0 0.234 6.500 85.28 1.0292 0.234 6.331 79.64 

log10 (AGC) ~ β0*(1- exp(-β1*BAβ2)) 0.108 0.234 6.506 85.25 1.0293       

log10 (AGC) ~ β0*(1- β1*exp(-β2*BA))   0.349 0.235 6.518 85.19 1.0294       

log10 (AGC) ~ β0*(1-exp(-β1*BA)) 0.751 0.239 6.589 84.62 1.0301       

log10 (AGC) ~ β0/ (1+ β1*exp (-β2* log10 (BA)) 0.811 0.236 6.542 85.08 1.0296       

log10 (AGC) ~ β0*exp(-β1/BAβ2) 1.486 0.237 6.577 84.92 1.0299       

log10 (AGC) ~ β0*exp(-β1/BA) 3.061 0.244 6.711 84.04 1.0312       

log10 (AGC)~ β0*(BA/(1+BA)) 3.774 0.245 6.749 83.86 1.0316       

log10 (AGC)~ BA/ (β0*BA+ β1)² 5.658 0.249 6.851 83.37 1.0325       

log10 (AGC)~ β0 + β1* log10(BA) 15.918 0.270 7.432 80.43 1.0384       

log10 (AGC) ~ β0+ β1* log10 (BA)+β2 log10 (SD) 17.537 0.269 7.291 80.50 1.0360       

log10 (AGC) ~ β0* (BA β1) 25.267 0.291 8.004 77.30 1.0430       
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log10 (AGC) ~ β0+ (BAβ1)*(SD β2) 27.941 0.292 7.919 77.00 1.0435       

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD)+ β3*(BA*SD²)+ β4*SD 55.930 0.354 9.579 66.43 1.0646       

log10 (AGC) ~ β0+ β1* log10 (BA²*SD) 65.341 0.400 10.826 57.13 1.0832       

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD) + β3*SD 74.775 0.417 11.303 53.27 1.0908       

log10 (AGC) ~ β0+ (BA²*SD)β1 86.227 0.472 12.778 40.28 1.1178       

                  

Seasonally Dry Tropical Forest semideciduous (n= 233)             

Allometric equations Equation’s goodness of fit    

  

Cross-validation 

  

  ∆AIC RSE Sxy (%) R² CF RSE Sxy (%) R² 

log10 (AGC) ~ β0+ β1* log10 (BA)+β2 log10 (SD) 0 0.186 4.561 88.63 1.0174 0.186 4.556 86.58 

log10 (AGC) ~ β0+ (BAβ1)*(SD β2) 45.466 0.205 5.028 86.18 1.0212       

log10 (AGC) ~ β0*(1- exp(-β1*BAβ2)) 194.389 0.290 6.967 72.41 1.0429       

log10 (AGC) ~ β0/ (1+ β1*exp (-β2* log10 (BA)) 194.395 0.283 6.967 73.81 1.0408       

log10 (AGC)~ β0 + β1* log10(BA) 194.525 0.284 6.983 73.580 1.0411       

log10 (AGC) ~ β0*exp(-β1/BAβ2) 194.596 0.283 6.970 73.79 1.0408       

log10 (AGC) ~ β0*(1- β1*exp(-β2*BA))     195.888 0.284 6.989 73.65 1.0411       

log10 (AGC)~ β0*exp(-β1*exp(-β2*BA)) 197.349 0.285 7.011 73.48 1.0414       

log10 (AGC)~ BA/ (β0*BA+ β1)² 204.545 0.290 7.135 72.41 1.0429       

log10 (AGC) ~ β0* (BA β1) 204.598 0.290 7.136 72.41 1.0429       

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD)+ β3*(BA*SD²)+ β4*SD 205.838 0.287 7.033 72.96 1.0420       

log10 (AGC)~ β0*(BA/(1+BA)) 210.044 0.294 7.220 71.75 1.0441       

log10 (AGC) ~ β0*exp(-β1/BA) 212.973 0.296 7.266 71.40 1.0447       

log10 (AGC) ~ β0*(1-exp(-β1*BA)) 241.052 0.314 7.717 67.73 1.0505       

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD) + β3*SD 282.399 0.340 8.325 62.13 1.0595       

log10 (AGC) ~ β0+ (BA²*SD)β1 383.793 0.427 10.438 40.47 1.0959       

log10 (AGC) ~ β0+ β1* log10 (BA²*SD) 384.870 0.428 10.462 40.19 1.0959       

                  

Atlantic Forest (n= 696)               

Allometric equations Equation’s goodness of fit     Cross validation 

  ∆AIC RSE Sxy (%) R² CF RSE Sxy (%) R² 

log10 (AGC) ~ β0+ β1* log10 (BA)+β2 log10 (SD) 0 0.190 4.648 85.9 1.0180 0.191 4.542 85.55 
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log10 (AGC) ~ β0+ (BAβ1)*(SD β2) 100.966 0.205 4.998 83.7 1.0213       

log10 (AGC) ~ β0*exp(-β1/BAβ2) 196.658 0.220 5.380 81.91 1.0246       

log10 (AGC) ~ β0/ (1+ β1*exp (-β2* log10 (BA)) 197.596 0.220 5.384 81.89 1.0246       

log10 (AGC) ~ β0*(1- exp(-β1*BAβ2)) 200.565 0.220 5.395 81.81 1.0247       

log10 (AGC)~ BA/ (β0*BA+ β1)² 211.809 0.222 5.442 81.47 1.0251       

log10 (AGC) ~ β0*(1- β1*exp(-β2*BA)) 213.513 0.222 5.445 81.48 1.0252       

log10 (AGC)~ β0 + β1* log10(BA) 220.149 0.224 5.475 81.25 1.0254       

log10 (AGC)~ β0*exp(-β1*exp(-β2*BA)) 223.141 0.224 5.483 81.22 1.0255       

log10 (AGC)~ β0*(BA/(1+BA)) 225.195 0.224 5.494 81.11 1.0256       

log10 (AGC) ~ β0*exp(-β1/BA) 232.669 0.226 5.524 80.91 1.0259       

log10 (AGC) ~ β0* (BA β1) 281.07 0.233 5.717 79.56 1.0278       

log10 (AGC) ~ β0*(1-exp(-β1*BA)) 326.032 0.241 5.902 78.21 1.0296       

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD)+ β3*(BA*SD²)+ β4*SD 718.269 0.318 7.765 60.66 1.0525       

log10 (AGC) ~ β0+ β1*BA²+ β2*(BA²*SD) + β3*SD 776.581 0.332 8.109 57.1 1.0572       

log10 (AGC) ~ β0+ β1* log10 (BA²*SD) 936.231 0.374 9.121 45.73 1.0728       

log10 (AGC) ~ β0+ (BA²*SD)β1 944.338 0.376 9.174 45.1 1.0736       
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Table 3: Estimated parameters for the AGC equations based on stand structural variables. 

AGC: Above-ground carbon stocks; BA: Stand basal area; SD: Stand density; SE = standard 

error at 95%. CIL= confidence interval limits. 

Forest types       
Rain       

𝐴𝐺𝐶 = 𝑒1.570+1.390 ln(𝐵𝐴)−0.274 ln (𝑆𝐷) ∗  𝟏. 𝟎𝟎𝟕 

 Estimate SE 2.5% CIL 

97.5% 

CIL t-value p-value 

β0 1.570 0.125 1.322 1.818 12.47 <0.001 

β1 1.390 0.031 1.329 1.451 44.7 <0.001 

β2 -0.274 0.023 -0.32 -0.228 -11.74 <0.001 

Araucaria       
𝐴𝐺𝐶 = 𝑒1.918+1.092 ln(𝐵𝐴)−0.196 ln (𝑆𝐷) ∗  𝟏. 𝟎𝟎𝟓 

 Estimate SE 2.5% CIL 

97.5% 

CIL t-value p-value 

β0 1.918 0.116 1.689 2.148 16.503 <0.001 

β1 1.092 0.024 1.043 1.141 44.261 <0.001 

β2 -0.196 0.023 -0.242 -0.151 -8.552 <0.001 

Deciduous       
𝐴𝐺𝐶 = 𝑒4.456 exp (− 2.098 exp (−0.156 BA))  ∗  𝟏. 𝟎𝟐𝟗 

 Estimate SE 2.5% CIL 

97.5% 

CIL t-value p-value 

β0 4.456 0.093 4.292 4.678 47.891 <0.001 

β1 0.156 0.023 0.112 0.207 6.621 <0.001 

β2 2.098 0.474 1.400 3.471 4.42 <0.001 

       
Semi-deciduous       
𝐴𝐺𝐶 = 𝑒1.978 + 1.467 ln(𝐵𝐴)−0.361 ln (𝑆𝐷) ∗  𝟏. 𝟎𝟏𝟕 

 Estimate SE 2.5% CIL 

97.5% 

CIL t-value p-value 

β0 1.978 0.113 1.755 2.202 17.45 <0.001 

β1 1.467 0.035 1.396 1.538 40.88 <0.001 

β2 -0.361 0.020 -0.402 -0.320 -17.45 <0.001 

Atlantic Forest       
𝐴𝐺𝐶 = 𝑒4.456 exp (− 2.098 exp (−0.156 BA))  ∗  𝟏. 𝟎𝟐𝟗 

 Estimate SE 2.5% CIL 

97.5% 

CIL t-value p-value 

β0 1.526 0.080 1.367 1.685 18.88 <0.001 

β1 1.228 0.019 1.190 1.265 64.23 <0.001 

β2 -0.190 0.012 -0.214 -0.166 -15.73 <0.001 

*Correction factor (CF) is shown in bold in AGC equation.  

In general, the plots of the observed versus predicted values of AGC showed good 

correspondence to the 1:1 linear trend, suggesting that it is possible to obtain accurate AGC 

stocks estimates from stand basal and density (Fig 2), Cross validation approach also showed 
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a good match, that is, the values of R² and Sxy, provided by selected equations were similar 

using testing and training dataset, which indicates that AGC can be confidently inferred from 

stand basal area and density. However, some deviations from straight lines were found in 

stands with high and/or low basal areas in rain, deciduous, semi-deciduous and in Atlantic 

Forest as a whole (Fig. 2)  
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Figure 2: Relationship between predicted carbon stocks with developed equations (Table 3) 

and observed carbon stocks in four forest types and in Atlantic Forest as whole with residuals 

graph. 

4 DISCUSSION 

 

4.1 CARBON ALLOMETRIC EQUATIONS BASED ON STAND STRUCTURAL 

VARIABLES 

 

We showed that estimating carbon stocks from the stand forestry structural variables 

can be accurate (Fig. 2), and thus may represent an alternative when individual tree 

measurements and identifications from where complete forest inventories are not available 

(Chave et al., 2009, 2014). With the developed equations (Table 3), stand basal area and 

density explained more than 85% of the Atlantic Forest carbon stocks (Table 2). Perhaps more 

importantly than to this good explanatory power (i.e. high R² values), the equations to 

estimate AGC based on stand basal area and density had low levels of uncertainties associated 

with their use (Sxy <7%), which is a prerequisite for their use in climate change mitigation 

strategies, as REDD+ projects (Sheng 2017). However, despite the low errors, there were 

some variations between observed and predicted carbon stocks in stands with low and high 

values of basal area (Fig. 2). Therefore, for conservative estimates, we suggest that the carbon 

stocks estimates made from our equations are accompanied by maximum and minimum 

values (Table 3). 
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Previous studies have already shown high accuracy of carbon estimates from stand 

structural variables equations. Lima et al., (2020), also provide carbon stocks equations based 

on stand basal area to some forest types and for Atlantic Forest as a whole (see Lima et al., 

2020, Supplementary Information). In general, our equations had slightly less predictive 

powers (R² value = 85.9%- 94.1% against R²= 88.2% - 97.3%). However, its use may be 

preferable since we used a larger number of samples, especially in deciduous and semi-

deciduous forests, we developed forest type-specific equation for these forests, including rain 

forests in the southeast of the Atlantic Forest and, finally, we reported the error associated 

with the carbon stocks estimation.  Nevertheless, as our dataset did not cover all existing sites 

nor was evenly distributed among forest types, we suggest the use of the equation proposed 

here for Atlantic Forest as a whole in absence of forest type-specific allometric equations. 

For the rain, Araucaria and semi-deciduous forests, the inclusion of stand density 

substantially improved the explanatory power of carbon equations. In these forest types, the 

stand basal area had a positive effect on AGC, while the stand density showed a negative 

effect. This phenomenon is known as “self-thinning” and usually occurs when, under 

conditions of limited resource availability, the growth of larger trees increases 

competitiveness and induces the mortality of weaker trees (Brunet-Navarro et al., 2016).  

Thus, forests dominated by fewer larger trees tend to accumulate more carbon. However, for 

deciduous forests, the best carbon estimates were reached from the stand basal area only 

equations (Table 2), suggesting that stand density apparently does not influence carbon stocks 

in all forest types of Atlantic Forest. Indeed, some studies have shown that the impact of tree 

density (e.g. competition for resources) on forest growth is greater in humid forests than in 

permanently dry forests (see Gleason et al, 2017).  

Predicting AGC from stand-level equations could facilitate the carbon stock estimation 

in several ways. First, it can considerably reduce field measurement requirements in 

comparison with complete inventory methods (Torres and Lovett, 2012). Second, the stand 

basal area and stand density may be easily and quickly measured by instruments, which do 

not require individual tree measurements, such as Criterion RD 1000, Spiegel Relaskop and 

wedge prison (Torres and Lovett, 2012 and Khan et al.,2020). Third, there is a huge number 

of forest inventories published only with the basal area and stand density information (e.g. 

Lima et al., 2015 and 2020), which could provide historical carbon estimates, enabling 

projections and supporting decisions for reductions and/or increases of carbon stocks (Torres 

and Lovett, 2012). Furthermore, future studies with stand allometric equations could be used 
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together with new remote sensing technologies, such as Radar and Light Detection and 

Ranging (LiDAR), which can map the stand basal area and density in extensive forest areas. 

 

5 CONCLUSION 

 

This study presents the first mixed-species allometric equations for estimating stand carbon 

stocks from structural variables in different types of tropical forests. The high explanatory 

power and low associated estimation error confirm that the equations developed with stand 

basal area and stem density are robust and reliably estimate the carbon stocks of the Atlantic 

Forest, allowing the expansion of estimates and greater knowledge about the distribution of 

stocks in this domain. 
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Table S1: List of the all allometric equations reported in the forest inventories used for data analysis. AGB= Above-ground biomass, H= Height 

of the tree, DBH= diameter at breast height, WD= wood density and DW= Dry weight. 

Allometric  equations Authors 

AGB=0.0673*(WD*(DBH^2)*H)^(0.976) Chave et al., 2014 

AGB=0.033430*(DBH^2.397902)*(H^0.426536) Amaro 2010 

AGB=exp(-2.289+2.649*ln(DBH)-0.021*(ln(DBH))^2) Brown 1997 

AGB=exp(-2.187+0.916*ln(WD*(DBH^2)*H)) Chave et al., 2005(DryH) 

AGB=exp(-2.977+ln(WD*(DBH^2)*H)) 

Chave et al., 

2005(MoistH) 

AGB=exp(-2.557+0.940*ln(WD*(DBH^2)*H)) Chave et al., 2005(WetH) 

DW=(59.321357)+(-12.28289)*DBH+(0.8396136)*(DBH^2) Lima 2009 

AGB=0.04821*(DAP^1.34374)*(H^1.26829) Martins 2011 

ln(AGB)=-4.15190+1.06068*ln((DBH^2)*H) Melo & Mantovani 1994 

AGB=0.317*(DBH^2)+0.009*((DBH^2)*H) Ratuchne 2010 FOM 

AGB=-3.025*DBH+0.425*(DBH^2)+0.006*((DBH^2)*H) Ratuchne 2010 FOMm 

AGB=exp(-10.8771683824+2.6359736325*ln(DBH)+0.0878059946*ln(H))/(0.4802) 

Scolforo et al., 

2008(CerAO) 

AGB= exp(-11.319842099+2.1415723631*ln(DBH)+0.8134282561*ln(H))/(0.4833) 

Scolforo et al., 

2008(FAl) 

AGB=exp(-10.7501678493+2.0580637328*ln(DBH)+0.8604515609*ln(H))/(0.4860) 

Scolforo et al., 

2008(FED) 

AGB=exp(-10.9520199234+2.0898526615*ln(DBH)+0.8096162241*ln(H))/(0.4839) 

Scolforo et al., 

2008(FES) 

AGB=exp(-10.9520199234+2.0898526615*ln(DBH)+0.8096162241*ln(H))/(0.4802) 

Scolforo et al., 

2008(FESsm) 

AGB=exp(-11.319842099+2.1415723631*ln(DBH)+0.8134282561*ln(H))/(0.4833) 

Scolforo et al., 

2008(FOM) 

AGB=25.87071+0.02909*(DBH^2)-0.21382*(H^2)+0.03189*(DBH^2)*H Silveira 2009 (FOD) 

AGB = 0.024530*(DAP^2.443356)*(H^0.423602) + 0.2596*(0.024530*(DAP^2.443356)*(H^0.423602)) + 

0.0445*(0.024530*(DAP^2.443356)*(H^0.423602)) Torres et al., 2013 

AGB=(-4.8639)+0.3981*DBH+0.2625*(DBH^2) Veres 2012 

log10(AGB)=-0.88239023+2.40959057* log10 (DBH) Vogel et al., 2006 
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Figure S1: The relationship between the 20 allometric equations found to estimate AGC 1 

(Table S1) and the one provided by Chave et al. (2014). The y-axis is the natural logarithmic 2 

of the estimate provided by Chave’s formula and the x-axis is the natural logarithmic of the 3 

aboveground carbon of each allometric equation. We present the mean prediction of the linear 4 

regression model (in blue) and the associated R2 of the model. Here, we obtained AGB 5 

estimates for each equation using individual tree data (species, diameter and height) from 109 6 

plots of the Atlantic Forest available from the Minas Gerais Forestry Inventory (Scolforo et 7 

al.,2008). Species wood density used in some of the allometric equations was obtained from 8 

the Global Wood Density database (filtered for Tropical South America, Zanne et al. 2009). 9 

10 

11 

12 



87 

 

 

 

13 

14 

15 

 16 



88 

 

 

 

CONCLUSÃO GERAL 

No atual cenário de mudanças globais, a conservação e restauração do carbono florestal 

atraíram atenção sem precedentes. Aqui, fornecemos uma avaliação abrangente dos principais 

impulsionadores dos estoques de carbono para a Mata Atlântica e desenvolvemos equações 

alométricas que podem expandir as atuais estimativas de estoques de carbono do bioma. 

Nossas conclusões foram: Primeiro, a conservação dos estoques de carbono da Mata Atlântica 

é altamente dependente da degradação florestal, a qual pode gerar carbono perdas pelo menos 

30% maiores do que qualquer mudança climática futura. Além disso, emissões da degradação 

florestal podem comprometer os esforços de conservação acordos de planejamento e 

mitigação das mudanças climáticas (por exemplo, metas de REDD+ e AICHI). Por exemplo, 

a intensificação da distúrbios dentro do fragmento pode levar a perdas de carbono de até 

10,50 Mg ha-1 (-15,24%), enquanto a proteção de carbono e seu aumento poderia alcançar 

ganhos de carbono em 12,02 Mg ha-1 (+17,44%). Em segundo lugar, os estoques de carbono 

da Mata Atlântica também são ameaçados pelas mudanças climáticas, especificamente pelo 

aumento de temperatura e estresse hídrico. Se o aquecimento global fosse restringido a 1,5°C 

acima níveis pré-industriais, como sugerido pelo Painel Intergovernamental sobre Mudanças 

Climáticas, 3,53 Mg ha-1 (-5,12% de perda de carbono) de carbono seria liberado apenas da 

Mata Atlântica. Se o aquecimento global continuar em sua taxa atual, as emissões de carbono 

podem exceder 9,03 Mg ha-1 (-13,11% de perda de carbono). Terceiro, as iniciativas com o 

objetivo de mitigar as mudanças climáticas por meio da restauração de florestas ecossistemas 

poderiam se beneficiar da inclusão de espécies com maior WD, sementes mais pesadas e 

folhas maiores. Em quarto lugar, a relação entre a diversidade taxonômica e funcional e os 

estoques de carbono foi fraco na Mata Atlântica, revelando que as políticas de conservação 

focadas apenas no carbono podem não proteger a biodiversidade. Em quinto lugar, as políticas 

de conservação de carbono devem levar em conta aspectos metodológicos pois estes podem 

levar a erros na estimativa de carbono e, consequentemente, baixa eficiência das ações de 

mitigação do clima. Assim, o uso de “boas práticas de medição para estimativa de estoques de 

carbono florestal” deve ser levado em consideração nos relatórios de estoque de carbono. Por 

fim, provamos que as estimativas dos estoques de carbono da Mata Atlântica podem ser 

expandidas pela utilização de equações alométricas baseadas em área basal e densidade de 

árvores do povoamento.  As equações desenvolvidas aqui explicaram 85,2%-96,2% das 

variações dos estoques de carbono com menos de 6,5% de erros de estimativa. 


