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Abstract: We aimed to measure the efficiency of visual selection of plant vigor 
for green biomass production of U. ruziziensis using single- and multitrait ap-
proaches to maximize the predictive accuracy of the genetic value. The green 
biomass production and plant vigor of 254 U. ruziziensis clones were measured 
over nine evaluation cuttings to determine the efficiency of these approaches for 
production improvement. Individual and multicutting analyses were performed 
under single-trait and multitrait approaches using mixed models. The efficiency 
of visual selection was assessed by measuring plant vigor based on direct and 
indirect genetic gains. Plant vigor showed a high genetic association with green 
biomass and could be selected for production, especially in the initial phases 
of breeding programs. The multitrait approach was superior to the single-trait 
approach in predicting the genetic value of the clones, and it can be used in U. 
ruziziensis breeding programs.
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INTRODUCTION

Tropical forages of the genus Urochloa play a key role in raising Brazilian 
livestock, since these forages are used for direct grazing across an area of 
approximately 100 million hectares, which corresponds to approximately 90% of 
Brazilian cultivated pastures (Simeão et al. 2016). One of the species cultivated in 
Brazil, Urochloa ruziziensis (R. Germ. and C.M. Evrard) Crins (synonym Brachiaria 
ruziziensis), is a diploid species that can be sexually or clonally reproduced and 
has great potential as pasture due to its high nutritional quality and great value 
for pasture diversification (Pessoa-Filho et al. 2015).

The aim of the breeding programs is mainly to achieve a cultivar production 
capacity that is higher than those already on the market, since forage production 
is one of the most important traits to be considered in selection (Mauri et 
al. 2019). In forage crops, selection for green biomass production and other 
complex traits should be performed based on multiple cuttings. According to 
Souza Sobrinho et al. (2010), the number of cuttings necessary to assess the 
actual value of the traits with a coefficient of determination greater than 80% 
ranged between 7–8 for green biomass production. Thus, selection based on 
visual criteria, such as plant vigor, may be a good approach to identify forage 
mass production, as plant vigor has a strong association with forage production. 
In addition, selection based on visual criteria is a practical, fast, nondestructive, 
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and accessible method, which allows the evaluation of many genotypes (Silva et al. 2016). For crops such as Urochloa 
decumbens, red clover, and Panicum virgatum L., indirect preliminary selection for forage production has been shown 
to be as accurate as direct measurements for production (Costa et al. 2009, Riday 2009, Casler and Vogel 2014). For 
Urochloa ruziziensis, visual selection through plant vigor showed moderate to high efficiency in relation to direct selection 
strategies for green biomass production (Teixeira et al. 2020) and can be used especially in the early stages of breeding 
programs, where a large number of genotypes are evaluated.

Due to the complexity of the data derived from forage breeding programs, the statistical methods used need to be 
accurate, efficient and informative; they must also consider the spatial variation and temporal correlation between the 
repeated measures in addition to appropriately modeling the genetic effects over time (De Faveri et al. 2015). An approach 
that is used to address the complexity of the data generated in breeding programs is linear mixed models, which have 
been successfully used in animal, annual and perennial crop, and forage crop breeding programs (Andrade et al. 2016, 
Alves et al. 2018). An important aspect of linear mixed models is the ability to analyze the different traits evaluated 
during breeding programs via both univariate (single-trait) and multivariate (multitrait) models (Balsalobre et al. 2016).

Although the use of visual selection in the breeding of forage plants can be considered an accessible and low-cost 
method, its efficiency for the selection of superior genotypes for green biomass production via single-trait and multitrait 
approaches still needs to be investigated. Therefore, we aim to measure the efficiency of visual selection of plant vigor 
for green biomass production of U. ruziziensis and verify which approach maximizes the predictive accuracy of the 
genetic value.

MATERIAL AND METHODS

Data and experimental design
The experiment was conducted at the Embrapa Dairy Cattle Experimental Field (lat 21º 33’ S, long 43º 06’ W, alt 410 

m asl) in Coronel Pacheco, Minas Gerais, Brazil. According to the Köppen classification, the climate of this region, with 
an annual mean temperature of 22.5 °C and mean rainfall of 1,600 mm, is of the Cwa type. The soil in the experimental 
area is classified as alic red-yellow Argisol (Santos et al. 2018).

A total of 254 U. ruziziensis clones derived from the breeding program of Embrapa Dairy Cattle, along with the 
cultivars Marandu (U. brizantha) and Basilisk (U. decumbens) as controls, were evaluated using a 16 x 16 lattice design 
with three replications. Single plant plots were spaced 1 m apart.

Two months after planting, a standardization cutting was performed, and nine evaluation cuttings were carried out 
(at 10 cm height in relation to the soil) on the following dates: 09/01/2013; 05/02/2013; 27/03/2013; 06/06/2013; 
05/09/2013; 23/10/2013; 16/12/2013; 24/02/2014; 29/04/2014). Cuttings 1, 2, 3, 7, 8, and 9 were carried out in the 
wet season, while Cuttings 4, 5, and 6 were carried out in the dry season. The following traits were measured for each 
cutting: plant vigor (vigor), for which biomass yield, sanity and architecture before each cutting were considered using a 
score scale from 1 to 5: 1 – very poor; 2 – poor; 3 – fair; 4 – good; 5 – very good (Teixeira et al. 2020), and green biomass 
production (green biomass). The plots were cut and weighed on a portable digital scale (g plot-1).

Statistical-genetic analyses
The data analyses were performed using a mixed-model methodology that included the estimation of fixed effects 

using the empirical best linear unbiased estimator (E-BLUE) and prediction of the random effects using the empirical 
best linear unbiased prediction (E-BLUP) with the solution of the system of equations according to Henderson (1975). 
The variance components were estimated using the residual maximum likelihood (REML) method (Patterson and 
Thompson 1971).

Initially, single-trait analyses per cutting were performed using the following model: 

y = Xββ + Xbb + Zgg + e                                                        [1] 

where y is the vector of the phenotypic data for each cutting;β is the vector of fixed effects (intercept and replications); 
b is the vector of the random effects of blocks within replications, with b ~ MVN(0,Ibσ

 2
b); g is the vector of the random 



Efficiency of indirect selection for green biomass production of Urochloa ruziziensis

3Crop Breeding and Applied Biotechnology - 22(2): e417822212, 2022

effects of the clones, with g ~ MVN(0,Igσ
 2
g); e is the vector of the residual errors, with e ~ MVN(0,Inσ

 2
e); Xβ is the incidence 

matrix for the fixed effects, and Zb and Zg are the incidence matrices for the random effects; and I is the identity matrix 
of the order appropriate for the respective random effect.

The multitrait analyses for the two traits in each cutting were performed according to the following model: 

y = Xβ +  Z1b + Z2g + e                                                        [2] 

where y is a vector of the phenotypic data of the traits yt = [y1, y2]; β is the vector of the fixed effects (intercepts and 
replications) for the traits; b is the vector of the random effects of blocks within replications for the traits, with b ~ 
MVN(0, ∑b); g is the vector of the random effects of the clones for the traits, with g ~ MVN(0, ∑g); e is the vector of the 
residual errors for the traits, with e ~ MVN(0, ∑e); and X is the incidence matrix for the fixed effects, and Z1 and Z2 are 
the incidence matrices for the random effects, respectively. An unstructured covariance structure (US) was assumed 
for the covariance matrices ∑b, ∑g and ∑e.

The multicutting analyses for each trait were performed using the model according to Smith et al. (2007):

y = Xθθ + Zbb + Zg'g' + ε                                                        [3] 

where y is the vector of the phenotypic observations; θ is the vector of the fixed effects, which is comprised of the 
effects of replications, cuttings, and their interactions and are added to the intercept; b is the vector of the random 
effects of the blocks within repetitions of the cuttings, with b ~ MVN(0,Ibσ

 2
b); g is the vector of the random effects of 

the clones within the cuttings, with g' ~ MVN(0,G); e is the vector of the residual errors, with e' ~ MVN(0,R); and Xθ is 
the incidence matrix for the fixed effects, and Zb and Zg are the incidence matrices for the random effects, respectively.

In the multicutting analyses for green biomass production and plant vigor, different covariance structures were tested 
for the residual (R) and genetic (G) matrices, from simple structures such as compound symmetry to more complex 
structures such as US (Smith et al. 2007, De Faveri et al. 2015, Andrade et al. 2016). To choose the ideal structure for the 
R and G matrices, the Schwarz information criterion, which is also known as the Bayesian information criterion (BIC), was 
used. The best models were those with the lowest BIC values. The best structure for the R matrix was first chosen, and 
then, the best structure was identified for G by using the best structure identified for R (Smith et al. 2007, De Faveri et al. 
2015, Andrade et al. 2016). The structures that resulted in convergence problems were removed from further analyses.

The covariance structure for R is R = Rh ⨂ In , in which Rh is the residual covariance matrix that accommodates the 
temporal correlation between the cuttings and the possible presence of heterogeneity of variance between the cuttings 
for each plot, and In is the identity matrix of size n × n, where n is the number of plots. The covariance structure for G 
is G = Gh ⨂ Ig, where Gh is the genetic covariance matrix for cuttings, and Ig is an identity matrix of size g × g, where g 
is the number of clones.

The multitrait and multicutting analysis for the two traits was performed according to the following model:

y = Xθ + Z1b + Z2g' + ε                                                         [4] 

where y is the vector of the phenotypic data of the traits yt = [y1, y2];θ is the vector of the fixed effects, which are 
comprised of the effects of replications, cuttings, and their interactions; b is the vector of the random effects of the 
blocks within replications, with b ~ MVN(0,∑b); g' is the vector of the random effects of the clones within the cuttings, 
with g' ~ MVN(0,∑g'); ε is the vector of the residual errors, with ε ~ MVN(0,∑ε); and X is the incidence matrix for the fixed 
effects, and Z1 and + Z2 are the incidence matrices and random effects. The covariance structures for the residual (∑ε) 
and genetic (∑g') effects that best fit the data were tested and chosen using the BIC.

In the single-trait [3] and multitrait [4] analyses for multiple cuttings, the E-BLUPs of all clones were estimated 
according to Smith et al. (2007): E − BLUP = ∑h whg ͠'1h , where g ͠'1h is the E-BLUP of clone i within cutting h, and wh is the 
assigned weight of each cutting, with wh = 1/m, where m is the number of cuttings. From the results of the single-trait 
[1] and multitrait [2] analyses for each cutting, the clone mean-based heritability was determined according to Cullis 

et al. (2006): h2 = 1 − 
v̅Δ

BLUP

2σ̅ 2
g'

, where v̅Δ
BLUP is the variance of the pairwise mean prediction error of the effects of clones, 

and σ̅ 2g' is the mean genetic variance of the clones along the cuttings, which was obtained from the mean of the genetic 
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components for each cutting. The selective accuracy (r̂g ̂g) was estimated according to r̂g ̂g =    1 − 
PEV
σ̅ 2

g'

, where PEV is 
the mean variance of the prediction error (Resende and Duarte 2007).

Efficiency of multitrait analysis and estimation of genetic and residual correlations
The relative efficiency (RE) of the multitrait approach over the single-trait approach was estimated according to 

Almeida Filho et al. (2016): RE(%) = r̂g ̂g(m) – r̂g ̂g(s)

r̂g ̂g(s)

 × 100, where r̂g ̂g(m) and r̂g ̂g (s) are the estimates of selective accuracy in 

multitrait and single-trait analyses, respectively.

To verify the association between the traits, the genetic (rg(y1y2)) and residual (re(y1y2)) correlations were estimated by 

multitrait analysis (Falconer and Mackay 1996): rg(y1y2) = 
σgy1y2

σ2
gy1

 × σ2
gy2

 and re(y1y2) = 
σey1y2

σ2
ey1

 × σ2
ey2

, where σ 2
gy1y2

 and σ 2
ey1y2 

 are 

the genetic and residual covariances, respectively, between the performance of the clones for traits y1 and y2; σ
 2
gy1

 and 
σ 2

gy2
 are the genetic variances of traits y1 and y2, respectively, in the clones; and σ 2

ey1
 and σ 2

ey2
 are the residual variances 

of traits y1 and y2, respectively, in the clones.

Efficiency of indirect selection for green biomass
Based on the results obtained from the joint analyses of the single-trait and multitrait approaches, the 26 best clones 

(selection fraction of 10%) were selected for both traits to estimate the following parameters: I) Direct and indirect 
expected selection gain for green biomass and plant vigor when selection was performed according to plant vigor. 
For the estimates of direct and indirect gains, the absolute genetic selection (GS) gain was estimated by the E-BLUP 
mean of the 26 clones that were selected, and the relative genetic selection (GS%) gain was calculated by dividing the 
absolute gain by the overall mean. II) Spearman’s correlation was calculated between E-BLUP values. Significance was 
verified using nonparametric bootstrapping with the boot package in R software (Cathy and Ripley 2019); III). The index 
of coincidence (IC%) was determined between the best clones (selection intensity of 10%) of the two traits, according 

to Hamblin and Zimmerman (1986): IC = 
A – C
B – C  × 100, where A is the number of coincident clones among the 26 

best selected in each trait; B is the number of clones selected in Case 26; and C is the number of clones selected due 
to chance (in this case, 10% of B). All analyses were performed in R 3.3.2 with the ASReml 4.0 package (R Core Team 
2016, Butler et al. 2017).

RESULTS AND DISCUSSION

The heritability and selective accuracy values were moderate to high for the two evaluated traits (Table 1). In all the 
evaluated cuttings, the highest estimates of these parameters were obtained for plant vigor in both prediction methods. 

Table 1. Estimates of mean green biomass (GM), mean plant vigor (vigor), mean heritability of green biomass and vigor (h2), and se-
lective accuracy of green biomass and vigor (r̂gg̃) in the single-trait and multitrait analyses and the relative efficiency of the multitrait 
analysis (RE) over nine evaluation cuttings of U. ruziziensis

Cuttings
Overall mean

Single-trait Multitrait

Green biomass Vigor Green biomass Vigor

GM Vigor h2 rĝg̃ h2 rĝg̃ h2 rĝg̃ RE (%) h2 rĝg̃
RE
(%)

1 1696.71 2.51 0.46 0.68 0.52 0.72 0.52 0.72 6.02 0.53 0.73 1.14
2 1087.64 3.12 0.55 0.74 0.69 0.83 0.65 0.80 8.21 0.69 0.83 0.09
3 1666.99 3.02 0.56 0.74 0.66 0.81 0.61 0.78 5.20 0.66 0.81 0.18
4 1124.88 2.72 0.53 0.72 0.62 0.79 0.58 0.76 5.47 0.62 0.78 -0.23
5 1153.98 2.67 0.56 0.75 0.61 0.78 0.59 0.77 2.07 0.62 0.79 0.30
6 1655.07 3.28 0.45 0.67 0.61 0.78 0.50 0.71 5.52 0.62 0.79 0.66
7 1759.34 3.18 0.23 0.48 0.49 0.70 0.42 0.65 35.96 0.50 0.71 1.10
8 1026.46 2.73 0.36 0.60 0.45 0.67 0.38 0.61 2.31 0.46 0.68 1.46
9 1186.12 3.06 0.29 0.54 0.56 0.74 0.43 0.66 21.63 0.56 0.75 0.31
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The lower estimates for green biomass may be due to the large effect of the environment and genetic architecture, which 
are more complex (Gouveia et al. 2021). In general, there was an increase in the estimates of heritability and selective 
accuracy, especially for green biomass, in the multitrait approach. Moreover, increases in these estimates were more 
pronounced in Cuttings 7 and 9, which had lower reliability (Table 1).

For all cuttings, the genetic correlations between the traits were positive and strong, ranging from 0.80 (Cutting 8) 
to 0.96 (Cutting 1), which indicated the existence of a high association between the traits. The residual correlations 
were positive and ranged from 0.58 (Cutting 9) to 0.81 (Cutting 8), showing that the environment affected the traits in 
the same direction. The genetic correlation between the traits may be due to pleiotropy and/or linkage of the genes 
that control the traits (Falconer and Mackay 1996, Schaid et al. 2016). In the evaluation of the visual criteria, plant vigor 
showed a high association with green biomass and dry mass (Borges et al. 2012, Fonseca et al. 2020, Teixeira et al. 2020). 
The evaluation of plant vigor, which is easy, simple, and fast, may be less affected by the environment. Therefore, visual 
criteria are an interesting approach to enable indirect selection for forage production (Edvan et al. 2016, Dos Santos et 
al. 2018). The relative efficiency (RE) of the multitrait analysis for green biomass ranged from 2.31% to 35.96%, while 
for plant vigor, the RE was lower, with a range from 0.09% to 1.46% (Table 1). Thus, the genetic and residual correlations 
were beneficial to increasing the selection accuracy and heritability using a multitrait approach.

In the multicutting analyses, the choice of the covariance structure for genetic and residual effects was carried out 
based on the BIC to find a parsimonious model with goodness of fit. The ante-dependence (ANTE) matrix best fit the 
residual effects, and the heterogeneous first-order autoregressive (AR1H) structure best fit the genetic effects in the 
single-trait analyses for green biomass and plant vigor. In the multitrait analysis, the model that best fit the data had a 
first-order autoregressive (AR1) structure for the genetic and residual effects.

The clone mean-based heritability and selective accuracy provided by the joint analysis were high. Lower estimates 
were observed for green biomass than for plant vigor in the single-trait and multitrait analyses (Table 2). When comparing 
the two prediction methods, the multitrait analysis provided an increase in the estimates of these parameters for both 
traits, especially for green biomass, where the efficiency of the multitrait analysis was 8.47% higher than that of the 
single-trait analysis. The genetic correlation between the traits was positive and high (0.96), which demonstrates that 
an increase in plant vigor results in an increase in green biomass. The residual correlation was positive (0.54), which 
showed that the environment also affected the traits (Table 2).

The multitrait approach proved to be an important tool to maximize genetic gains and estimate heritability and 
selective accuracy. In this approach, the genetic and residual correlations between traits are used to estimate the 
genetic value. Therefore, the efficiency of the method may be related to the correlation between traits and heritability 
estimates (Ematné et al. 2018).

According to Piepho et al. (2008), the multitrait approach is more advantageous when the traits are highly correlated 
and have low to moderate heritability. In contrast, according to Bauer and Léon (2012), the advantage of the multitrait 
approach may be greater when the traits are negatively correlated, since selection based on multitrait analysis should 
provide opportunities for simultaneous gains in both traits, providing greater gains from selection. Thus, when the 
heritability estimates are similar, the traits that are favorably correlated and the values of genetic and residual correlations 
are similar, the adoption of the multivariate model may not provide an increase in the predictive accuracy of the genetic 
value (Volpato et al. 2019).

The estimates of direct and indirect genetic gains demonstrated that the multitrait approach was superior to the 
single-trait approach for both traits (Table 3). The largest increase was in green biomass, with an increase of 2.14% in 

Table 2. Overall mean green biomass (GM) and plant vigor (vigor), genetic (rg) and residual (re) correlations between traits, mean 
heritability of green biomass and vigor (h2), selective accuracy of green biomass and vigor (r̂gg̃) in the single-trait and multitrait analyses 
for multiple cuttings, and relative efficiency of the multitrait analysis (RE) in U. ruziziensis

Traits Overall mean rg re

 Single-trait  Multitrait

h2 rĝg̃ h2 rĝg̃ RE (%)

 GM 1373.70
0.96 0.54

0.63 0.80 0.76 0.87 8.47
 Vigor  2.92 0.72 0.85 0.78 0.88 4.28
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the estimate of the direct gain. Moreover, the gain obtained by directly selecting for green biomass was higher than that 
obtained from indirect selection under both prediction methods. Selection based on plant vigor provided significant 
gains in green biomass, confirming the positive genetic correlation between these traits. In the multitrait analysis, the 
difference between direct and indirect gains was smaller. The indirect gain of the multitrait analysis for green biomass 
was higher than the direct gain under the single-trait analysis (Table 3), which demonstrated the greater efficiency of 
this approach, with more accurate and realistic estimates. These results are consistent with the estimates of heritability 
and selective accuracy (Table 2).

The Spearman correlation between E-BLUPs for green biomass and plant vigor in the single-trait and multitrait 
approaches ranged from 87% to 99% (Table 4). The lowest estimate of this parameter was between green biomass and 
plant vigor using the single-trait analysis, and the highest estimate was between green biomass and plant vigor using 
the multitrait analysis, thus corroborating the results of indirect genetic gain, since the indirect gain estimate was higher 
and the difference between direct and indirect gains was lower in the multitrait analysis. All correlations were significant 
by the nonparametric bootstrapping method. Moreover, the coincidence index between the best clones ranged from 
44% to 83%. The coincidence between the best clones for green biomass and plant vigor was 44% in the single-trait 
approach, with 13 clones being among the top 26 best clones for both traits. In the multitrait approach, the coincidence 
index was 74%, where 20 clones coincided (Table 4).

The highest coincidences and correlations between the E-BLUPs of the traits occurred when using the multitrait 
analysis. These results are consistent with those found for direct and indirect gains, since the difference between direct 
and indirect gains was smaller in the multitrait analysis. Thus, the multitrait analysis was a better option for both indirect 
selection and direct selection because the absolute and relative genetic gain estimates were superior under this approach.

Therefore, there was a high genetic association of plant vigor with green biomass through visual selection. This is 
a useful tool in the breeding programs of U. ruziziensis, allowing indirect selection for green biomass, especially in the 
initial stages of the breeding programs. Moreover, the multitrait analysis provided a maximization of genetic gains and 
selective accuracy, proving that this approach is more efficient and informative with respect to plant vigor and green 
biomass, and it can be used in U. ruziziensis breeding programs.
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Table 3. Estimates of direct and indirect absolute genetic selection (GS) and relative genetic selection (GS%) gain of the top 26 best 
U. ruziziensis clones (selection fraction of 10%) in the single-trait and multitrait analyses for multiple cuttings for green biomass (GM) 
and plant vigor (vigor)

Genetic gain
Single-trait Multitrait

Direct Indirect Direct Indirect
GM Vigor GM GM Vigor GM

 GS 353.86 0.51 278.12 383.22 0.57 369.31
 GS (%) 25.76 17.58 20.25 27.90 19.35 26.88

Table 4. Spearman correlation between E-BLUPs and the coincidence index (IC%) between the best U. ruziziensis clones for green 
biomass (GM) production and plant vigor (vigor) in the single-trait (ST) and multitrait (MT) analyses for multiple cuttings

Correlation GM-ST Vigor-ST GM-MT Vigor-MT
 GM-ST 1 0.87* 0.94* 0.90*
 Vigor-ST 44 1 0.95* 0.98*
 GM-MT 70 66 1 0.99*
 Vigor-MT 44 83 74 1

* Significance by nonparametric bootstrapping.
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