
Received March 7, 2022, accepted March 18, 2022, date of publication March 28, 2022, date of current version April 1, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3162618

Dynamic Algorithm for Interference Mitigation
Between Cells in Networks Operating in
the 250 MHz Band
DICK CARRILLO MELGAREJO 1,2, (Member, IEEE),
LUIZ QUIRINO REZENDE DA COSTA FILHO 3,
ÁLVARO AUGUSTO MACHADO DE MEDEIROS 3,4,
CARLOS LORENA NETO5, FABRICIO LIRA FIGUEIREDO6, AND
DEMÓSTENES ZEGARRA RODRÍGUEZ 7, (Senior Member, IEEE)
1Department of Electrical Engineering, School of Energy Systems, Lappeenranta-Lahti University of Technology (LUT), 53850 Lappeenranta, Finland
2School of Electrical and Computer Engineering, State University of Campinas, Campinas 13083-970, Brazil
3Department of Electrical Engineering, Federal University of Juiz de Fora University (UFJF), Juiz de Fora 36036-900, Brazil
4Department of Computer Science, Munster Technological University, Cork, T12 P928 Ireland
5Tropico Systems and Telecommunications, Campinas 13086-510, Brazil
6Research and Development Center in Telecommunications (CPqD), Campinas 13086-902, Brazil
7Department of Computer Science, Universidade Federal de Lavras (UFLA), Lavras 37200-000, Brazil

Corresponding author: Dick Carrillo Melgarejo (dick.carrillo.melgarejo@lut.fi)

This work was supported in part by the Academy of Finland through FIREMAN Consortium under Grant CHIST-ERA-17-BDSI-003 and
Grant 326270, in part by the EnergyNet Research Fellowship under Grant 321265 and Grant 328869, and in part by the Jane and Aatos
Erkko Foundation through STREAM Project.

ABSTRACT The growing demand for Internet of Things (IoT) applications in agribusiness increases the
necessity of reliable and secure connectivity in rural areas. Thus, in the particular case of Brazil, some
initiatives aim to take advantage of frequency bands dedicated to limited private services. For instance,
cellular networks based on orthogonal frequency-division multiple access (OFDMA) in 250 MHz bands
require specialized adaptations because the interference between cells increases when these systems operate
in the Very High Frequency (VHF) band. This work presents an analysis based on a reliable simulation
of interference mitigation in OFDMA systems at 250 MHz using a network simulator. The simulator is
calibrated with data obtained in the field by an extensive and rigorous drive test. Therefore, the analysis is
based on a comparison of traditional frequency reuse schemes with a machine learning approach based
on deep reinforcement learning (DRL) to reduce inter-cell interference. The numerical results indicate
that the DRL approach outperforms the traditional frequency reuse (FR) schemes in four different typical
agribusiness scenarios.

INDEX TERMS Frequency reuse, Internet of Things, deep reinforcement learning, customized cellular
networks, 250 MHz.

I. INTRODUCTION
The Internet of Things (IoT) is an emerging and promising
technology that aims to revolutionize the world through the
connection of every physical object to the Internet. Although
the IoT concept is generic, involving Internet connections
in highly dense urban areas for a diversity of applications,
many solutions are being developed for use in rural areas
to support applications that today are being prioritized by
the pandemic [1] (remote education, remote working, and

The associate editor coordinating the review of this manuscript and
approving it for publication was Ali Afana.

remote healthcare), and also the agribusiness market [2].
Thus, relevant characteristics of rural regions, such as diffi-
cult access and long distances involved, have a direct impact
on the development of IoT solutions for pandemic [3] and
agribusiness scenarios [4]. Unfortunately, most of the tech-
nologies offered by telecom operators in urban areas are not
available in remote areas, which makes it difficult to use
adequate transport layer technologies to support IoT applica-
tions. Therefore, the use of very high frequency (VHF) bands
is emerging as a technical solution to improve the propaga-
tion and optimize the coverage of wireless communication
systems [5].
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The increasing connectivity demand in rural areas has
driven several research and development projects into design-
ing cellular network solutions for this specific scenario. Sev-
eral wireless technologies are compared in [6] to provide
Internet access in rural areas. Long-Term Evolution (LTE)
arises as a solution that can provide a variety of services for
rural IoT environments. For instance, the feasibility of an LTE
network in the 800 MHz frequency band to serve rural areas
in India and Spain is presented in [7] and [8]. The details of
planning an LTE network operating in the 900 and 1800MHz
frequency bands in Indonesia are presented in [9]. In [10],
the coverage and capacity of LTE IoT technologies, namely
LTEmachine-type communication (LTE-M) and narrowband
IoT (NB-IoT), are analyzed in Denmark through an intensive
drive test with the network operating in the 800 MHz fre-
quency band. In [11], a Fourth Generation (4G) network is
analyzed in the field in order to identify gaps that aim to be
supported by Fifth Generation (5G) in rural scenarios.

One important drawback of using cellular networks in
sub-1GHz bands, such as 250 MHz, is the inter-cell inter-
ference. To address this issue, in [12], a flexible tool was
provided to implement traditional FR schemes in the LTE.
Details of these FR techniques are described in a compre-
hensive survey of inter-cell interference coordination (ICIC)
techniques in [13]. These techniques aim to improve the
basic FR concept to mitigate or avoid interference between
cells. As the FR evolves from a static to a dynamic pro-
cedure, the ICIC algorithm complexity increases such as
typical resource allocation algorithms [14]. Such an increase
in complexity requires higher processing capabilities of the
base station, thereby having an impact on the final cost.
This may not be an issue when a dense urban scenario is
considered, where cells become smaller in order to meet
the increasing demands of the traffic of a large number of
users [15]–[17]. However, when it comes to a rural scenario,
the extensive coverage requirements and the sparse user occu-
pation of the cell discourage the cellular network deployment.
Thus, there is a demand for simple and cheaper solutions
that will not bring a significant increase in the operational
and capital expenditures (OPEX/CAPEX) of IoT network
providers [5], [18].

Recently, artificial intelligence methodologies for cel-
lular network optimization have been gaining popularity.
Especially in radio resource management, the allocation of
resources is a difficult task. For instance, in [19], a deep rein-
forcement learning-based decentralized multiagent power
control algorithm was proposed to improve the sum rate of
a cellular network. In [20], multiagent deep reinforcement
learning-based autonomous channel selection and transmis-
sion power selectionwere used to reduce the co-channel inter-
ference in a cellular network. However, to the best of author’s
knowledge, there is no similar approach with a proper com-
parison of traditional FR schemes with this deep reinforce-
ment learning approach, especially in 250 MHz bands.

One of the primary motivations of this study is to com-
pare the performance of traditional FR schemes with radio

resource scheduling allocation based on deep reinforcement
learning.

To establish the framework of our study, we provide a brief
contextualization of the problem and a description of the par-
ticular scenario in Brazil and highlight the main contributions
of this paper in the following subsections.

A. PROBLEM CONTEXTUALIZATION
As the rural scenario requires an extensive area cell coverage,
the operation in a lower frequency band can make the pro-
vision of IoT services feasible for many agribusiness appli-
cations, such as precision farming, livestock control, storage
monitoring, and automation of agricultural processes. How-
ever, the usage of lower frequency bands also implies higher
inter-cell interference. An advanced solution is the use of
directional antennas aimed at narrowing the radiation lobe of
each sector and reducing the secondary lobes [21]. However,
because of the low availability of off-the-shelf directional
antennas for this frequency range, spectrum allocation and
channel reuse control techniques, such as ICIC techniques,
stand out as a viable solution for performance improvement
in a VHF propagation scenario.

As the orthogonal frequency division multiplexing access
(OFDMA) allows more specific occupation of the spec-
trum on a shorter time basis, the allocation management of
resources for each user in the cell can be optimized in order to
reduce the interference between cells. In such a way, a min-
imum quality of service (QoS) can be reached in different
regions of the cell after applying techniques such as FR.
Following this assumption, each resource block (RB) can be
assigned with a specific transmission power to cell users in
different time and space domains to reuse the neighbor cells.

B. THE PARTICULAR SCENARIO IN BRAZIL
In 2010, the Brazilian National Agency of Telecommu-
nications (ANATEL) released Resolution 555 [22], which
allocates 225 MHz to 270 MHz to the private limited ser-
vice (SLP) on a primary and nonexclusive basis, aiming to
modernize the radios that occupy this band. In this context,
this paper presents a broadband system based on the LTE
protocol stack, which was adapted and developed to operate
in VHF bands. The target is to provide broadband IoT ser-
vices to the agribusiness markets, because the coverage of
large areas of plantations or pastures is favored by the best
propagation in the range of VHF. This broadband technology
has shown satisfactory results in terms of the radius of cell
coverage and the ability to support several IoT solutions.
As the 250 MHz frequency band is not available worldwide
for such purposes, there is a lack of studies that analyze the
performance of an LTE network in this scenario.

C. CONTRIBUTION
The main contributions of this study are the following:

• An open-source simulator is calibrated with data
obtained in a driving test on a real scenario of the
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network operating in 250 MHz in Brazil. Thus, our
results provide a strong representation of what is
expected in real scenarios.
(https://gitlab.com/aikonbrasil/freuse250mhz).

• A novel FR is proposed based on a deep reinforcement
learning scheme to schedule sub-bands and power trans-
mission simultaneously.

• The performance of typical FR schemes is evaluated
and compared with the proposed approach in a cellular
network operating in 250 MHz.

• An open source simulator is calibrated with data
obtained by a drive test on a real scenario of the network
operating in 250 MHz in Brazil. Thus, our results pro-
vide a strong representation of what is expected in real
scenarios.

With the network simulator already calibrated to simu-
late real scenarios, we execute a performance analysis of
ICIC techniques, presenting improvements in the system,
especially in scenarios with high interference. Furthermore,
we propose an algorithm that can be easily implemented in
the deployed base stations in order to reduce interference
considering performance for different scenarios.

The paper is organized as follows. Section II describes
the cellular network developed for agribusiness applications
that are used to obtain field measurements in 250 MHz. The
adaptation of the ns-3 simulator to the field test network is
detailed in Section III. Section IV gives a summary of the
FR algorithms considered in this study. In Section IV-D, the
algorithm proposed in this work is described. Section V pro-
vides details of the simulation campaign. In Section VI, the
simulation results are presented and discussed. Conclusions
and future work are addressed in Section VII.

II. DEPLOYMENT IN A REAL SCENARIO
Resolution 555 of the National Agency of Telecommunica-
tions (ANATEL) of Brazil, which allocates the 225 MHz
to 270 MHz band to the Private Limited Service (SLP)
on a primary and non-exclusive basis [22], was published
in 2010 with the intent to modernize the radios operating in
this band. In this context, a broadband system was developed
based on the LTE to operate at this frequency band to provide
broadband IoT services to the agribusiness market because
the best propagation range of VHF favors the coverage of
large areas of plantations or pastures.

The developed system is based on the protocol stack
defined by the 3rd Generation Partnership Project (3GPP)
LTE Release 81 [23] for the base station (BS) and cellu-
lar terminal (User Equipment or UE) software. The devel-
oped LTE system operates in the FDD (Frequency Division
Duplex) mode, with a 5 MHz bandwidth, within the Resolu-
tion 555 bands described in Table 1.
The broadband system operating in the 250 MHz band

was installed in a rural area of the interior of São Paulo

1The same approach also applies to 5G new radio, since it is also based
on OFDMA as stated in [11].

TABLE 1. Channeling used in the broadband system operating in the
250 MHz band.

TABLE 2. Key features of the broadband system operating in the
deployed 250 MHz band.

belonging to a sugarcane plantation. The characteristics of the
elements used to assemble this cellular network are described
in Table 2.

A. DEPLOYED BROADBAND SYSTEM ARCHITECTURE
The field installation of the broadband system operating in the
250 MHz band was performed according to the architecture
described in Fig. 1. In this Figure, it is possible to differentiate
the main components of a cellular network, e.g., the evolved
packet core (EPC), which is responsible for managing each
user’s features, such as charging, QoS, connectivity with
external networks, IP packet addressing (Internet Protocol),
paging processes, and user authentication. The other ele-
ments, installed in the field and taking care of the air interface,
are part of the access network. The access network consists of
the BS and the user terminal (UE). Note also in Fig. 1 that the
UEs were installed on machines that participate in the sugar-
cane process. It is also possible to identify the network used
as backhaul, called point-to-point (P2P) radio, in addition to
other technologies used in IoT applications.

B. FIELD MEASUREMENTS
Field measurements were performed considering the topol-
ogy shown in Fig. 2. In this Figure, it is observed that the
distance between the base stations varies between 20 and
24 km. Fig. 2 also indicates the region to most likely present
interference between cells.

A field measurement procedure was developed to collect
data regarding throughput, signal to interference plus noise
ratio (SINR), and system coverage. The system achieved a
cell radius up to 40 km with an acceptable SINR value that
enabled a data rate up to 2 Mbps (downlink).

III. CALIBRATION OF SIMULATION TOOLS
Because the ns-3 simulator only supports some bands defined
by the LTE standard, it was necessary to adapt the EARFCN
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FIGURE 1. Agribusiness architecture deployed in the field using a broadband wireless network based on an OFDMA network, such as the LTE.

FIGURE 2. Topology of the broadband system operating in the 250 MHz
band used for field measurements.

(evolved-UTRA absolute radio frequency number) configu-
ration so that the protocol stack of the simulator considers the
propagation calculations of the VHF band. Fig. 3 shows the
addition of the coverage of each cell when the system operates
in the 250 MHz band in comparison with the operation at
700 MHz (EARFCN=12).

Using the values of the received signal strength indicator
(RSSI), SINR, and throughput measured in the field, a cal-
ibration was made in the model of large-scale attenuation
of the wireless channel used in the simulator. Among the
large-scale models defined for the ns-3 simulator, the one

FIGURE 3. Adaptation of the configuration of the ns-3 LTE module to
support the 250 MHz band. (a) Signal strength obtained in the ns-3 with
EARFCN = 12 modified to operate in the 250 MHz band. (b) Signal
strength obtained in the ns-3 with the original EARFCN = 12 operating in
the 700 MHz band. The color bar represents the measured signal strength
in dBm.

that best adapted to the values measured in the field was the
Okumura–Hata model [24]. The calibration process consists
of altering the parameters of the Okumura–Hata empirical
formula so that the values of simulated RSSI, SINR, and
throughput are very similar to measurements obtained in the
field.
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FIGURE 4. Calibration of the modified Okumura–Hata path loss model
based on RSSI field measurements.

Signal attenuation in open rural areas in the classical
Okumura–Hata formula is given by

L = Lurban − 4, 78(log f )2 + 18, 33 log f − 40, 93, (1)

where f is the frequency of the transmitted carrier and Lurban
is the loss given in the urban environment, which, in turn,
is calculated by

Lurban = 69, 55+ 26, 16 log f − 13, 82 log ht − A(hr )

+ (44, 9− 6, 55 log ht ) log d, (2)

where ht and hr are the heights of the transmitting and
receiving antennas, respectively, A(hr ) is a correction factor
as a function of hr and the size of the city, and d is the distance
between the transmitter and the receiver.

Thus, (1) and (2) were altered to fit the values obtained by
the field measurements, resulting in

L = Lurban − 4, 78(log f )2 + 18, 33 log f − 15, 94, (3)

and

Lurban = 69, 55+ 26, 16 log f − 13, 82 log ht − A(hr )

+ (20, 9− 6, 55 log ht ) log d, (4)

respectively. Table 3 shows the SINR values measured at
points of the drive test and those obtained with the ns-3
simulator after the change of the model proposed in (3)
and (4).

IV. SYSTEM MODEL AND FREQUENCY REUSE
ALGORITHMS
Consider a set I of I BSs providing downlink wireless service
to a group of user equipments (UEs) in a geographical areaA.
Each BS i ∈ I serves an areaAi, such that ∪∀i∈IAi = A and
Ai ∩Ak 6= ∅ for any i 6= k ∈ I. In other words, it is possible
that some cells have a significant intersection between them.
Then, the downlink spectral efficiency achieved by the sub-
channel m, the user n, at the time slot t from the BS located

TABLE 3. Comparison of the measured values with the values obtained
by the simulator after calibration.

at xi to a UE located at y ∈ Ai is

C(t)n,m(xi, y) = log2

(
1+ γ (t)

n,m(xi, y)
)
, (5)

where γ (t)
n,m(xi, y) is the SINR at the user n, on the subchannel

m, at the time slot t , which is defined in (6)

γ (t)
n,m(xi, y) =

[
β
(t)
l,m g

(t)
l→n,m(xl, y) p

(t)
l

]
l=n∑

v6=l
β
(t)
v,m g

(t)
v→n,m(xv, y) p

(t)
v + σ 2

n

, (6)

where β(t)v,m is the binary variable that indicates the subchannel
selection m transmitted from the BS v at the time slot t ,
g(t)v→n,m(xv, y) indicates the downlink channel gain from the
BS v to the user n on the subchannelm in the time slot t when
the UE is located in the position y and the BS in the position
xv, p

(t)
v is the transmit power of the BS v in the time slot t ,

and σ 2 is the additive white Gaussian noise power spectral
density at the user receiver n

g(t)v→n,m(xv, yn) = h(t)v→n(xv, yn)
∣∣∣α(t)n→l,m

∣∣∣2, t = 1, 2, · · · ,

(7)

where h(t)v→n(xv, yn) = L is the path loss on a linear scale,
which is calculated in (1), and α(t)n→l,m is the small-scale
Rayleigh fading.

It is important to note that based on this framework, the
possibility of using fractional frequency reuse (FFR) is based
on the proper definition of the binary variable β(t)v,m to choose
one specific subchannel or band m, which is used by BS v.
Another important parameter considered in FFR schemes
is the proper consideration of the power transmission in
each BS, which is modeled with the variable p(t)v .

In this work, we implement five methodologies, one
methodology based on a deep reinforcement learning
approach to define the FR dynamically, and four static algo-
rithms derived from [12].

Based on the system model described before, we define
these five methodologies of FR in the following.

A. HARD FREQUENCY REUSE
As in traditional cell reuse, the band is divided into N sub-
channels, and each of the neighboring N BSs uses one of
them. Such division ensures less interference between BSs,
at the cost of less intelligent resource allocation. A didac-
tical representation of this scheme is shown in Fig. 5.
Using (6) as a reference, each BS v transmits into one specific
subchannel m.
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FIGURE 5. Hard FR scheme.

FIGURE 6. Strict FR scheme.

B. STRICT FREQUENCY REUSE
The band is divided into N + 1 subchannels used by all
BSs. In each cell-edge, the BSs use a different sub-band to
avoid interference. A representation of this scheme is shown
in Fig. 6.

Here, the inter-cell interference comes from disjoint sets of
the interior subchannel, which is reused by all BSs.

C. SOFT FREQUENCY REUSE
The band is divided into N subchannels; each neighboring
BS uses a different subchannel at the edge and center of each
cell; thus, the entire band can be used.

Here, a power control β ≥ 1 is considered for the transmit
power to generate two different classes: Pint = p(t)v and
Pedge = βp(t)v , where Pint is the transmit power of the base
station if the user y is an interior user, and Pedge is the transmit
power of the base station if y is a cell-edge user.
The interfering base stations are also divided into two

classes: Iint, which consists of all interfering base stations
transmitting to cell-interior users on the same subchannel of
one specific user with a transmission power of Pint, and Iedge,
which consists of all interfering base stations transmitting
to cell-edge users on the same subchannel with the power
transmission Pedge.
A heuristic approach proposed in [25] concluded that a typ-

ical value of subchannels is between 2 and 20. To accomplish
this, a power control factor β ≥ 1 is introduced to the transmit
power to create two different classes, Pint and Pedge, where
Pint is the transmit power of the base station if the user is an
interior user, and Pedge is the transmit power of the BS if the
user is in the cell-edge network.

A didactic representation of this scheme is shown in Fig. 7.

FIGURE 7. Soft FR scheme.

FIGURE 8. Dynamic strict FR scheme.

D. DYNAMIC STRICT REUSE
The algorithm proposed in this Section is based on the Strict
FR. Here, the band is also divided intoN+1 subchannels, but
the size of each subchannel is proportional to the number of
UEs within the region that each subchannel is serving. Thus,
we will refer to this algorithm as Dynamic Strict FR.

To calculate the size of each subchannel, the BSs must
communicate with each other in order to discover how many
UEs are serving. A representation of this scheme is shown
in Fig. 8.

The size ωi of the edge subchannel of BS i and the size θ
of the subchannel in the center of each BS are given by

ωi =
ai( n∑

i=1

ai

)
+ b

, (8)

and

θ =
b( n∑

i=1

ai

)
+ b

, (9)

where ai is the number of UEs at the edge of BS i, and b is
the maximum number of UEs at the center of all BSs.

E. DYNAMICS BASED ON DEEP REINFORCEMENT
LEARNING APPROACH
To improve the understanding of this methodology,
we expand the explanation into a description of deep rein-
forcement learning and the particular cost function that is
used to maximize the throughput in the following.
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Algorithm 1 Algorithm Used in Dynamic Strict FR Scheme
F Defining the subchannel bandwidth in the edge and in
the cell center.

1: while Stop Criteria not met do
2: for i=1 do i=i+1
3: b← number of Users at the center of the cell
4: ai← number of Users at the edge
FCalculating bandwidth for users near the cell center and
users in the edge. Iteration in each BS i.

5: ωi ← a bandwidth based on the number of users
in the edge using Eq. 8.

6: θ ← a bandwidth based on the number of users
in the center of the cell using Eq. 9.

7: end for
8: end while

1) DEEP REINFORCEMENT LEARNING
In machine learning there are three categories; depending on
the nature of the information or feedback available to the
learning system, these categories are:
• supervised learning;
• unsupervised learning;
• reinforcement learning (RL).

In this paper, we use RL as the approach for optimizing a
specific cost function with specific constraints to optimize the
system throughput [26], [27]. It is a trial-and-error process
where an agent interacts with an unknown environment in a
sequence of discrete time steps to achieve a specific target
or task. At time t , the agent first observes the current state
of the environment, which is a tuple of relevant environment
features and denoted by S(t) ∈ S, where S is a set of possible
states. It then takes an action a(t) ∈ A from an allowed set of
actions A according to a policy that can be either stochastic,
i.e., π with a(t) ∼ π (.|S(t)) or deterministic, i.e., µ with
a(t) = µ(S(t)). The interactions are modeled as a Markov
decision process. For this reason, the environment moves to
a next state S(t+1) following an unknown transition matrix
that maps state–action pairs onto a distribution of successive
states, and the agent receives a reward S(t+1). Overall, the
above process is described as an experience at t + 1 denoted
by e(t+1) = (S(t), a(t), r (t+1), s(t+1)).
The goal is to learn a policy that maximizes the

cumulative discounted reward R(t) at time t , defined as
follows:

R(t) =
∞∑
τ=0

γ τ r (t+τ+1), and γ ∈ (0; 1] (10)

Owing to the possibility of combining RL with deep
learning [28], deep reinforcement learning (DRL) is a
highly suitable method for solving problems with a high
number of states and low prior knowledge, which is
the case of the FR allocation scenario in the available
subchannels.

2) COST FUNCTION DEFINITION
Here, we define the radio optimization problem to be opti-
mized. To this end, details of the cost function and its con-
straints are defined in the following.

The subchannels and power vectors in the time slot t are

denoted by β(t)
=

[
β
(t)
1,1, β

(t)
1,2, · · · , β

(t)
N ,M

]T
and p(t) =[

p(t)1 , · · · , p
(t)
N

]T
, respectively. Using (5), we define the

sum-rate maximization problem as

max
p(t),α(t)

N∑
n=1

C(t)n (xi, yn)

s.t. 0 ≤ p(t)n ≤ Pmax, ∀n ∈ N ,
β(t)n,m ∈ {0, 1}, ∀n ∈ N , ∀m ∈M,∑
m∈M

β(t)n,m = 1, ∀n ∈ N , (11)

where C(t)n =
∑M

m=1 C
(t)
n,m(xi, yn).

The nonconvex problem in (11) requires a highly complex
approach that could also increase the computational com-
plexity. To handle this nonconvex problem, we consider a
multiagent learning scheme, where each transmitter, mounted
in each BS, operates as an independent learning agent. Each
agent successfully executes two policies to determine its
associated subchannel and transmission power level. The pro-
posed multiagent approach is easily scalable to more exten-
sive networks and can operate with local information after
training.

At the beginning of each time slot, each agent successively
executes two policies to determine its associated transmission
power level and subchannel. The agents are represented by
the BSs, and the environment is the wireless communication
channel model in which every agent or BS aims to optimize
the network performance based on UEs’s location. The DRL
considers two different optimizations. The first case, enclosed
in the red dotted square in Fig. 9, considers a Critic network
and an Actor network [29] (both based on a Deep Q-network)
to optimize the stochastic policy that aims to improve the
subchannel selection. In the same Figure, a second Deep
Q-network, enclosed in the blue dotted square, aims to opti-
mize a second policy; a deterministic policy is used to select
a suitable power transmission value. The agent of the second
Deep Q-network requires the subchannel decision of the first
approach to determine its state input before setting the trans-
mit power of the agent. A brief explanation of the algorithm
is detailed in Algorithm 2.

V. SIMULATION
In order to evaluate the traditional FFR algorithms in the
OFDMA system operating in 250 MHz, we use the ns-3
simulator, which is widely known and tested by the scientific
community [30]. The ns-3 simulator is a discrete event sim-
ulator written in open-source C++. In this work, the cellular
network module known as LENA [31] is adopted. This ns-3
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FIGURE 9. Architecture used by the deep reinforcement learning approach in the monte carlo simulation. The reinforcement learning policies �, θ , and γ
are obtained by using a deep learning gradient descent.

Algorithm 2 Algorithm of the DRL Approach
FMain Loop

1: while Stop Criteria not met do
2: SUBCHANNEL SELECTION()
3: POWER CONTROL()
4: end while

F Subchannel selection
5: function SUBCHANNEL SELECTION()

F Agent Selection
6: agent← a(t)n ∈ Asubchannel = {1, · · · ,M} =M
7: State set design← s(t)n,m
8: Training by Critic and Actor Network
9: Reward function design

10: Update Policies: �, γ
11: end function

F Power Control
12: function POWER CONTROL()

F Agent Selection
13: agent← a(t)

n,a(t)n
∈ Apower = [0, 1]

14: State set design← s(t)
n,a(t)n

15: Training by deep-Q Network
16: Reward function design
17: Update Policies: θ
18: end function

module was chosen in this work because it produces accu-
rate results when compared with commercial devices [32].
To evaluate the DRL model, we use Python and TensorFlow,
which is a free and open-source software library for machine
learning and artificial intelligence.

Both simulators are adjusted to the parameters described
in Table 2 to reflect a real scenario as accurately as possible.
The BSs are positioned as shown in Fig. 2, following the same
topology as that used in the field. Here, each simulation has
a duration of 2.5 s of network time.

The simulations are configured to evaluate the total down-
link capacity. Thus, the generated traffic is a constant bit
rate (CBR) over the user datagram protocol (UDP) transport
protocol.

In order to evaluate the FR algorithms, the UEs are posi-
tioned in four different representative scenarios in agribusi-
ness industry:

(I) UEs on the edge – Twenty simulations are performed
with the UEs positioned at the edge of the cell. Starting
with only one UE, each simulation adds a UE for
each BS.

(II) UEs on the center – The UEs are positioned in the
center of the cell in an area of low interference. In the
same way as Scenario (I), the number of UEs for each
simulation is increased until the number of twenty UEs.

(III) UEs near to one BS – Twenty simulations are per-
formed, where eighty UEs are positioned randomly
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FIGURE 10. Four scenarios evaluated for each FR methodology; in each case, the user distribution is modified based on agribusiness applications.

in a region close to only one BS and connected in
that BS.

(IV) UEs randomly positioned – One hundred simulations
are performed with eighty UEs in the coverage area at
random positions and connected to the BSwith the best
signal.

Scenarios (I), (II), and (III) reflect a situation where the
UEs are all positioned close to each other. In the specific
application of sugarcane cultivation, this type of scenario
reflects a situation in which transport trucks connected to
the Internet move together to receive or deliver sugarcane.
Such scenarios may reflect other crop and livestock farming
applications, such as cattle monitoring in limited pasture
areas [33] or precision rotational grazing techniques [34],
among other cases.

Scenario (IV) simulates a more generic case with random
positioning that aims to analyze the behavior of the system
with a large number of UEs.

A graphical representation of these scenarios is given in
Fig. 10. Here, we emphasize the radio coverage of the cell
radius in each BS. The main aspect of this Figure is the loca-
tion of users, which is reflected on the final system throughput
for each FR scheme.

The performance metrics used to compare these
FR methodologies are the following:

• throughput per UE for Scenarios (I), (II), and (III);
• throughput per BS and cumulative distribution function
(CDF) for Scenario (IV).

VI. RESULTS
In this Section, the results obtained in all defined scenarios
are presented in terms of spectral efficiency to show the
learning curve of the methodology based on DRL. After that,
the average throughput is obtained for all scenarios defined
before.
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FIGURE 11. Spectral efficiency result in Scenario I when the DRL
approach is considered to carry out the FR between three subchannels in
the 250 MHz band.

A. DEEP REINFORCEMENT LEARNING APPROACH
Considering a setup defined by Scenario I, the FR based on
DRL is evaluated and presented in Fig. 11. The first iterations
indicate that the performance of each subchannel is very low.
However, when the number of iterations is increased, the
deep-Q network and the policies provide better resource allo-
cation, with a gain of 5 compared with the spectral efficiency
in iteration 10 and iteration 25000.

It is important to remark that the spectral efficiency is
combined with the bandwidth defined in Table 2 to obtain
the throughput, which is used in the next results.

B. SCENARIO I
Fig. 12 shows the results of the simulations for the throughput
per UE in Scenario (I). In this case, the high interference
limits the performance of the system, reducing the throughput
of the UEs. When all UEs are in a region of high interference,
the FR based on DRL achieves a better performance when
compared with the traditional FR schemes. However, the
Hard FR algorithm presents the best performance when there
are two or fewer users to be served. Because the methodology
based on DRL optimizes the subchannel and power transmis-
sion allocation per UE, it has a better performance when the
number of UEs is greater than 2. This performance remains
until the number of UEs is lower than 14 simultaneous users.
Because the Hard FR divides the spectrum for each BS, this
algorithm is the second best methodology that guarantees less
interference but with no flexibility for changes in spectrum
allocation. The Soft FR technique performs very close toHard
FR because the UEs are located on the border of the cell, and
the division of the subchannels is done in the same way as the
Hard FR. However, the Soft FR algorithm has the advantage
of greater flexibility in the allocation of RBs, in case the UEs
are in a situation of lower interference. The Dynamic Strict
FR algorithm also divides the subchannels like the other two
algorithms after some parameter calculation defined in (8)
and (9). However, its performance is close to the Soft FR

FIGURE 12. Average UE throughput for Scenario (I).

technique. The Strict FR technique presents a less satisfactory
performance because it reserves only part of the available
band to the UEs on the edge of the cell. Finally, as expected,
using no algorithm is the worst choice because resources
are not being used efficiently under the high interference
scenario.

C. SCENARIO II
When all UEs are in a situation of less interference
(Scenario (II)), the results indicate that there is no need for
any FR algorithm. In this scenario, not using any algorithm
is the alternative that guarantees the highest throughput,
because the UEs can transmit over the entire band with a very
low probability of inter-cell interference, as it is shown in
Fig. 13. We also note that the Soft FR technique outperforms
similarly because it allows the BSs to use the entire band
in the middle of the cell. By reserving a subchannel for
the UEs with more significant interference, the algorithm of
Strict FR shows a poor performance. The Hard FR algorithm
divides the band between BSs, reducing its performance.
The Dynamic Strict FR technique presents an intermediary
performance because of its time for calculating the proper
quantity of RBs for each BS. The methodology based on
DRL achieves a similar performance to the Dynamic Strict
FR when the number of simultaneous UEs is smaller than
eight. However, when the number of UEs is increased, the
performance tends to improve the average throughput.

D. SCENARIO III
When all UEs are connected to the same BS (Scenario (III)),
the result is similar to Scenario (II), i.e., a scenario with a very
low probability of interference. As theHard FR and the Strict
FR algorithms reserve a specific subchannel in each BS that
is not serving any user, both show an inefficient use of the
available resources, which explains their poor performance.
As presented in Fig. 14, the Soft FR, the Dynamic Strict FR,
the no-algorithm use case, and the FR based on DRL achieve
a better performance without any significant difference.
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FIGURE 13. Average UE throughput in Scenario (II).

FIGURE 14. Average UE throughput for Scenario (III).

E. SCENARIO IV
The results of the simulation campaign for Scenario (IV) are
shown in Figs. 15 and 16 to represent the throughput and
the cumulative distribution function of the UE throughput
per BS, respectively. In general, in this scenario it is always
convenient to use some FR methodology. However, as the
UEs are positioned randomly using a uniform distribution,
the FR based on DRL outperforms the other traditional
methodologies.

We can see in Fig. 15 that in the 60% percentile of the
measurements, the hard FR and the methodology based on
DRL achieves a better throughput than the other traditional
methodologies. However, as we analyze Fig. 16, we observe
that the great part of UEs (almost 60%) have a throughput
very close to zero (less than 0.1 Mbps).

As the Soft FR algorithm allows all cells to use the entire
band in the center, the interference increases for UEs in the
transition region between the cell center and the cell border.
A result of this is that approximately 70% of the UEs have an
average throughput below 0.1 Mbps. It can be verified that
the average throughput of 40% of the UEs is below 0.1 Mbps

FIGURE 15. Average throughput for Scenario (IV).

FIGURE 16. CDF of throughput for Scenario (IV).

when the Strict FR technique is adopted. The Dynamic Strict
FR algorithm provides a higher fairness between the UEs,
as approximately 90% of the UEs have an average throughput
between 0.1 and 0.2 Mbps. Finally, the CDF indicates that
the performance of the algorithm, which is based on DRL,
outperforms the other traditional methodologies.

VII. CONCLUSION
The need for IoT applications in agribusiness has driven
the development of cellular broadband systems using sub-
1GHz bands owing to the long-range transmission required
by connectivity in rural areas. However, the propagation in
such bands implies an increase in interference, which usually
degrades the system performance.

This work compared the performance of a cellular network
using traditional FR schemes with a data-driven approach
based on DRL when the system is operating in 250 MHz,
which is a band not yet standardized and which has received
limited attention in the literature so far. The simulation tools
were calibrated using data gathered in drive test sessions
using a real cellular network operating in the 250 MHZ band.
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Thus, the results of this work provide a strong ground because
they are obtained considering a real setup as a benchmark.

Four scenarios were defined to represent typical agribusi-
ness setups in terms of UE distribution. In Scenarios I and IV,
the approach based on DRL achieves a better performance
than the traditional FR schemes. In Scenarios II and III,
the cellular system performance reaches a better perfor-
mance when no FR methodology is considered. However, the
approach based on DRL improves its performance when the
number of simultaneous connected UEs is increased.

A. FINAL REMARKS
The importance of using machine learning schemes on FR
allocation is an attractive approach, especially in methodolo-
gies that aim to maximize the allocation of resources in high-
interference scenarios. A widespread scenario in agribusiness
applications is the grouping of UEs in a cell region, either at
the edge or center of the cell. The gain of using fractional
reuse techniques is apparent when the analysis is performed
with UEs located at the edges of the cells (Scenario (I)). For
instance, in a system with four UEs per cell in Scenario I,
the average throughput per UE increased from 0.15 Mbps
to 1.13 Mbps when using the Hard FR or Soft FR algo-
rithm when compared with a scenario that did not use any
FR scheme. A similar comparison between the methodol-
ogy based on DRL and not using any algorithm indicates
that the average throughput is increased from 0.15 Mbps to
1.83Mbps. In practice, it means that the UE can support video
services (throughput over 800 kbps) instead of just supporting
telemetry services (over 100 kbps) when any FR scheme is
used.

When the agribusiness application requires fairness, i.e.,
all UEs with a minimum throughput, the FR based on DRL
is the most acceptable alternative in high-interference sce-
narios, such as Scenario (IV). The methodology performs
satisfactorily in low-interference scenarios when the number
of simultaneous users is increased, such as in Scenario (III).

B. FUTURE WORK
The paper suggests that a similar DRL approach can be han-
dled on 5G New Radio operating in sub-6GHz, specifically
in the evolution of 5G-Advanced, which is standardized by
the 3GPP Rel. 18.

Other interesting topic of future work would be to analyze
beyond 5G networks to compare the performance of cell-free
massive MIMO [35] in rural scenarios with the schemes
proposed in this paper.
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