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ABSTRACT The application of flying base stations (FBS) in wireless communication is becoming a key
enabler to improve cellular wireless connectivity. Following this tendency, this researchwork aims to enhance
the spectral efficiency of FBSs using the radio access network (RAN) slicing framework; this optimization
considers that FBSs’ location was already defined previously. This framework splits the physical radio
resources into three RAN slices. These RAN slices schedule resources by optimizing individual slice
spectral efficiency by using a deep reinforcement learning approach. The simulation indicates that the
proposed framework generally outperforms the spectral efficiency of the network that only considers the
heuristic predefined FBS location, although the gains are not always significant in some specific cases.
Finally, spectral efficiency is analyzed for each RAN slice resource and evaluated in terms of service-level
agreement (SLA) to indicate the performance of the framework.

INDEX TERMS Flying base stations, UAVs, location optimization, wireless communication, deep-
reinforcement learning.

I. INTRODUCTION
Extensive developments in the field of unmanned aerial
vehicles (UAVs) have opened many opportunities for new
applications in both private and public domains, such
as surveillance, transportation, environmental monitoring,
industrial monitoring, agriculture services, and disaster
relief [1], [2]. Recently, the increasing number of use cases
employ UAVs as wireless hotspots or relays to extend
network coverage in areas where it is required. More-
over, nowadays, there are UAV applications used as a tool
for communications at the application level, for example,
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information sharing in social media or searching for missing
persons. Another example is the recent floods inGermany [3],
which showed that the infrastructure is still quite vulnera-
ble. Therefore, it is worth pursuing solutions to overcome
problems when the regular communication infrastructure
stops working. Thus, the use of UAVs provides an essential
resource for allowing the continuity of communications and
supporting human operators to continue to communicating in
search and rescue operations, thereby guaranteeing efficient
operation [4]. In such scenarios, the option of rapidly and
efficiently deploying a fleet of drones is crucial in quickly
establishing a communication network capable of saving
lives, especially as it might be difficult to use terrestrial
means comprising temporary networking equipment, such as
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a cell onwheels in natural disasters. This featuremakes UAVs
unique and crucial for deployment in such use cases [5].

In addition, deploying UAVs as flying base stations
(FBS) has also recently emerged as a feasible response to
highly localized traffic demands in next-generation cellular
networks [6], [7]. Using UAVs in such a way provides an
opportunity to exploit their agility of motion to improve the
air-to-ground link capacity by optimal air placement [8],
[9]. Typically, the above-mentioned use cases consider sig-
nificantly large areas where multiple UAVs must be used.
However, this leads to two major problems. First, the UAVs
must be positioned to optimally cover as many users as
possible [10], [11]. Second, the intracell and intercell inter-
ference must be mitigated [12]. The first problem can be
effectively approached by using heuristic algorithms. These
algorithms can provide a solution with a low computational
time and good results, as shown in [13], for example. In the
case of intracell interference, the system performance can be
improved with a variety of multiple access techniques, such
as orthogonal frequency-division multiple access (OFDMA).
When intercell interference is taken into account, some popu-
lar schemes, such as frequency reuse, graph theory, and coop-
erative multi-point (CoMP) [9], [14]–[18], can be employed.

In our previous work [13], we addressed the UAVs posi-
tion optimality using an heuristic methodology. However,
the radio channel interference problem was not addressed in
detail. The present work extends [13] by employing a repre-
sentative wireless channel model. In addition, we proposed a
radio access network (RAN) slicing framework that enables
the allocation of radio resources (slices) carrying specific data
services. Our proposed framework aims to accommodate a
diversity of services over a single shared fifth generation (5G)
infrastructure and lays the foundation for fine-grained service
management in FBS networks. We have considered that an
agile RAN slicing framework is an appropriate solution to
achieve the performance requirements introduced by verticals
on 5G communication networks. The RAN slicing frame-
work comprises several interworking functional components,
aiming at a flexible instantiation of radio services, that can
cope with the increasing complexity of supporting FBS ser-
vices. In our work, we consider three slices: enhanced mobile
broadband (eMBB), ultra-reliable low-latency communica-
tion (URLLC), and massive machine-type communications
(mMTC).

The allocation of these slices is achieved by optimizing a
cost function that is directly related to the spectral efficiency
(SE) of the downlink data transmission, which is constrained
by the maximum power transmission and the number of
RAN slices. A cellular network based on subchannels usually
has a high probability of intercell interferences in the edge
cell. To solve this intricate allocation problem, we intro-
duce an intelligent component in the framework—i.e., a
deep reinforcement learning (DRL) model—that improves
the system performance and manages the radio resource allo-
cation minimizing the interference. By using our proposed
interference management methodology to optimize the SE

on each RAN slice, specific service-level agreement (SLA)1

can be achieved between the network service provider and the
customer.

To facilitate readers comprehension of this paper, the main
contributions of this paper are summarized as follows:

• enhancement of the UAV location distribution algo-
rithm proposed in [13], using a proper air-to-ground
channel model to enable aa appropriate interference
analysis.

• a novel RAN slicing framework is proposed to enable
the use of advanced machine learning techniques, such
as DRL.

• we propose a distributed DRL approach to mitigate the
downlink interference, in which each FBS operates as an
independent learning agent.

• three representative scenarios of FBSs are described and
analyzed in detail to compare the SLA performance
between the DRL and the benchmark.

• a multiagent learning technique is proposed to optimize
a nonconvex problem in the FBS system model.

The rest of the paper is organized as follows. The model
finding optimal placement of UAVs in a given area, used as
benchmark in this research work, is presented in Section II. In
Section III, the RAN slicing framework is defined, including
the system model and the DRL methodology to allocate the
radio resources. A detailed description of the optimization
sequence is given in Section IV. The simulation setup is
presented in Section V. Numerical results together with a
thorough comparative performance analysis are discussed in
Section VI. Our concluding remarks and future work are
presented in Section VII.

II. UAV LOCATION OPTIMIZATION
The effective deployment of UAVs across a selected area is a
difficult task that falls into the category of NP−complete
class of problems [19]. To address this task, we enhance
the model presented in [13] for location covering of the
UAV deployment in on-demand connectivity scenarios. The
enhancement focuses in the elimination of interference for all
pairs of newly added centres and for new and existing centres.
The proposal in [13] did an extended explanation of the UAV
location methodology. The main idea of this deployment was
to select a feasible locations where UAVs can be located by
this heuristic methodology. Based on that, the optimization
algorithm selected the suitable UAV location to compose a
list of UAVs and their respective locations.

A. DEPLOYMENT MODEL
To facilitate the understanding of the model, we provide the
terminology used in the rest of this paper adapted to the
terms used in the literature in Table 1. To localize the suit-
able positions for the FBS deployment, location optimization

1SLAs establish customer expectations regarding the service provider’s
performance and overall quality. It is a contract between the network ser-
vice (NS) provider and the customer.
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TABLE 1. Mapping mathematical terminology to communication
networks terminology.

problems is taken as inspiration. Currently, there exist several
facility location problems dealing with many real-world use
cases. Simply, they can be divided into location set cover-
ing problems (LSCPs) [20], and maximal covering location
problems (MCLPs) [21]. The LSCP targets the minimization
question in which the number of facilities that satisfy the net-
work requirements and the need to be located is minimized.
On the other hand, in the MCLP, a predefined number of
resources tries to maximize its coverage. The main division
is based on the available resources. Because these models
have been used for a wide range of applications, they are not
tied to telecommunication network deployment only. Hence,
to the best of our knowledge, there is a gap in the literature
that [13] aims to bridge for these models and the use case of
UAV deployment. As a gap, we see the following factors (or
their combination in one model):

(i) Separating the capacity of facilities or locations covering
both downlink and uplink. This may differ for each
location or facility.

(ii) Consideration of the existing services; for the use case
of UAVs, it is essential to consider the existing infras-
tructure that can serve at least some demand from the
locations to be covered ad hoc.

(iii) Splitting capacity requirements from one location to
only one facility at a given moment.

(iv) Covering some locations with zero or a higher number
of facilities. This is crucial for the must-have locations
where it is not acceptable to lose the connectivity.

(v) The oversimplified wireless interference is based on
the overlaps between cellular cells. We eliminate the
interference by Eq. (8) and (9).

In [13], it is assumed that coverage availability is guar-
anteed. Capacity considerations are critical in the 5G-and-
beyond deployments that expect a significant increase in
network traffic. This is due to the growth of services that have
considerably higher network throughput requirements, such
as the growth of high-definition videos, augmented reality
(AR) / virtual reality (VR), machine-to-machine communica-
tion, and other very intensive or demanding services in terms
of network requirements. In particular, we have to deal with
a high density of users that are simultaneously connected.
For the existing facilities Ef and their corresponding decision

variables xi, where i ∈ Ef , we set this parameter to 1, which
means that all the existing facilities are taken into account.
The allocation of capacity requirements between uploads and
downloads represents a split of 100 Mbps to 80 Mbps for
download (more extensive) and 20 Mbps for upload. In addi-
tion, we still need to satisfy the requirement that the demand
j both for download and upload must be assigned to the same
facility i.
To derive a mathematical model, let us set the following

notation:
• I = a set of facility sites (UAV or FBS) 1, 2, . . . ,m;
• J = a set of demand areas (customers) 1, 2, . . . , n;
• dij = the shortest distance between facility i and
demand j;

• Dmax = maximum distance which will be accepted for
operation between the facilities and demands;

• lj = number of facilities required for servicing demand j;
• xi ∈ {0, 1}, where xi = 1 means that facility i is selected,
while xi = 0 means that it is not selected.

• Nj = {i|dij ≤ Dmax} = the set of facilities i that can
cover the demand location j;

• Cu
i = upload capacity of facility i;

• Cd
i = download capacity of facility i;

• auj = upload amount of demand at j;
• adj = download amount of demand at j;
• yij ∈ {0, 1} = nonfragmented demand from location j is
assigned (1) or is not assigned (0) to facility i.

Now, we set out the following model extracted from [13]
to minimize the number of required FBSs and maximize the
cellular coverage area.

min
∑
i∈I

xi, (1)

subject to ∀j ∈ J :
∑
i∈Nj

xi ≥ lj (2)

∀j ∈ J :
∑
i∈Nj

yij = 1 (3)

∀i ∈ Nj : Cu
i xi ≥

∑
j∈J

yijauj (4)

∀i ∈ Nj : Cd
i xi ≥

∑
j∈J

yijadj (5)

(∀i ∈ I )(∀j ∈ J ) : yij ≤ xi (6)

∀i ∈ Ef : xi = 1 (7)

(∀i ∈ I − Ef )(∀j ∈ I − Ef )(i 6= j) :

dij ≥ (xi + xj − 1)dmin (8)

(∀i ∈ I − Ef )(∀j ∈ Ef ) : dij > dminxi (9)

∀i ∈ I : xi ∈ {0, 1} (10)

(∀i ∈ I )(∀j ∈ J ) : yij ∈ {0, 1} (11)

Constraint (3) guarantees that the demand j is assigned to
only one facility at a given moment. All selected facilities
must have a sufficient sum of their capacities for uploads and
downloads to cover all upload and download demands (in
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practice, this is an ideal case that network operators are trying
to reach with the available resources), this is guaranteed by
constraints (4) and (5). If a facility is selected to be removed
from the network infrastructure, none of the demand should
be assigned to it; this constraint is given by (6). In [13], the
interference is simplified to minimize the coverage overlaps
defined by the cells. Finally, consider the following: if dij,
i ∈ I , j ∈ I is the distance between the facilities i and j, then
we can set that for all pairs of selected facilities, the facilities
will have a distance greater or equal than a certain threshold,
which is guaranteed by constraint (8).

Further, as it is typical in the state of the art dealing with
location coverage with model enhancements, authors in [13]
provided an alternative maximization model that considers a
predefined number of new facilities (not yet optimized) to be
located and covered as much area as possible:

max
∑
i∈Nj

∑
j∈J

yij(auj + a
d
j ), (12)

subject to the same constraints as in the minimization
model, but with the addition of the following constraint for
a predefined number of new facilities.∑

i/∈Ef

xi = p (13)

Note that this model targets the localization of FBS nodes,
which defines the benchmark. This information is used as
input in the optimization of FBS based on (RAN) slicing
framework, which is detailed in Section III-E.

The brief explanation of the algorithm implementing the
model is detailed in Algorithm 1. TheGetInputData part rep-
resents the list existing facilities, expected/existing demands
with coordinates, and additional important metadata. For
the CoveringModel computation part the heuristics needs to
implement repair operator satisfying all the model constraints
(e.g., adding new UAVs or FBSs to the list of solution to
satisfy the capacity requirements).

B. CONSIDERATIONS OF THE COMPUTATIONAL
COMPLEXITY MODEL
The size of the search space is determined by the number of
all possible selections of facilities. For m facilities, according
to the binomial theorem, it is equal to(
m
1

)
+

(
m
2

)
+ · · · +

(
m
m

)
= (1+1)m − 1=O(2m). (14)

Furthermore, we need to find the most complex con-
dition in extended models for m < n (where n is the
number of demand areas) to find the resulting computa-
tional complexity. In the minimization model, these are (6)
and (11) in the corresponding equations of the maximization
model, which require m · n operations. This is based on
the fact that the resulting time complexity of these models
is O(2mmn) [13].

Algorithm 1 Algorithm That Optimizes the UAVs or FBSs
Location
FMain part

1: function findLocations
2: GetInputData
3: Generate theoretical possible UAVs locations
4: Apply CoveringModel() with these data
F Covering model

5: function CoveringModel()
6: Generate possible solutions
7: Apply repair operator providing feasible solutions
8: Apply selected heuristics to find optimal solution

Suitable locations for the UAV deployment

III. RAN SLICING FRAMEWORK
To complement the benchmark described in Section II, in this
section we describe the proposed RAN slicing framework.
We employ the standardized definitions of RAN slicing in
5G, the system channel model, the radio optimization prob-
lem formulation, and our proposed approach using DRL.

A. FRAMEWORK DESCRIPTION
The diverse performance requirements introduced by 5G
communication networks are fertile ground for the appli-
cation of an agile RAN slicing framework. Our proposed
framework aims to accommodate a diversity of services over
a single shared 5G infrastructure and lays the foundation
for fine-grained service management in FBS networks. This
RAN slicing framework primarily comprises several inter-
working functional components, aiming at a flexible instanti-
ation of radio services. The proposed architecture is devised
to cope with the rising complexity of supporting FBS ser-
vices, achieving not only more manageable RAN slices but
also conforming the business propositions sought by network
operators and service provider stakeholders.

This framework comprises orthogonal physical resources
that split the available bandwidth to support a specific number
of network slices. In this specific work, we consider three
slices: eMBB, URLLC, and mMTC. In a cellular network
based on subchannels, the RAN slicing framework is exposed
to a high probability of intercell interference, specially in the
edge cell. To address this issue, we incorporate an intelligent
component in the framework to manage the radio resource
allocation using DRL. This interference management aims to
achieve specific SLA policies between the network service
provider and the customer by optimizing the SE on each RAN
slice. A graphical description of the concept of the proposed
framework is shared in Fig. 1. The systemmodel and the DRL
methodology are detailed in the following section.

B. SYSTEM MODEL
Consider a set I of I FBS providing downlink wireless ser-
vice to a group of user equipments (UEs) in a geographical
area A. Each FBS i ∈ I serves an area Ai, such that
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FIGURE 1. The RAN Slicing framework emphasizing the role of the DRL module. In this particular case we consider that each slice uses dedicated
physical resources in each FBS. Thus, the cognition element optimizes the interference reduction using the deep-reinforcement learning approach.

∪∀i∈IAi = A and Ai ∩Ak 6= ∅ for any i 6= k ∈ I. In other
words, we consider that when UAVs are allocated by the
optimization algorithm presented in Section II, it is possible
that some cells have a significant intersection between them.

The path loss of the air-to-ground communication link
from a typical FBS located at xi ∈ R3 to a typical ground
UE that is located at y ∈ R3 is given as follows [22]:

h(t)v→n[dB](xi, y) = 20 log10

(
4π fc‖xi − y‖

c

)
+ ξ (xi, y),

(15)

where fc is the carrier frequency of FBS downlink com-
munications, ‖xi − y‖ is the FBS–UE distance, c is the
speed of light, and ξ (xi, y) is the additional path loss of the
air-to-ground channel, compared with the free space prop-
agation. The value of ξ (xi, y) can be modeled as a Gaus-
sian distribution with different parameters (µLOS, σ

2
LOS) and

(µNLOS, σ
2
NLOS) for line-of-sight (LOS) and non-line-of-sight

(NLOS) links, respectively. Then, the downlink spectral effi-
ciency achieved by the RAN slice m, the user n, at the time
slot t from the FBS located at xi to a UE located at y ∈ Ai is

C(t)n,m(xi, y) = log2

(
1+ γ (t)

n,m(xi, y)
)
, (16)

where γ
(t)
n,m(xi, y) is the signal-to-interference-plus-noise

(SINR) at the user n, on the RAN slice m, at the time slot t ,

which is defined by (17)

γ (t)
n,m(xi, y) =

[
β
(t)
l,m g

(t)
l→n,m(xl, y) p

(t)
l

]
l=n∑

v6=l
β
(t)
v,m g

(t)
v→n,m(xv, y) p

(t)
v + σ 2

n

, (17)

where β(t)v,m is the binary variable that indicates the RAN
slicing selection m transmitted from the UAV v at time t ,
g(t)v→n,m(xv, y) indicates the downlink channel gain from the
FBS v to the user n on the RAN slice m in the time slot t
when the UE is located in the position y and the FBS in the
position xv ∈ R3, p(t)v is the transmit power of the UAV v in
the time slot t , and σ 2 is the additive white Gaussian noise
power spectral density at the user receiver n.

g(t)v→n,m(xv, yn) = h(t)v→n(xv, yn)
∣∣∣α(t)n→l,m

∣∣∣2 t = 1, 2, · · · ,

(18)

where hv→n(xv, yn) is the path loss in a linear scale, which
is calculated in (15), and α(t)n→l,m is the small-scale Rayleigh
fading.

The probability of having an LOS link between the FBS j
located at xj and the UE located at y is given by [22]:

PLOS(xj, yi) =
1

1+ a exp
(
− b

[
180
π
σ (xj, y)− a

]) , (19)
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where a and b are constant values that depend on the com-

munication environment, σ (xj, y) = sin−1
(

Hj
‖xj−y‖

)
is the

elevation angle, and Hj is the altitude of the FBS j. Then,
the average downlink SE between an FBS i and the UE at
n located in yn ∈ Ai will be:

C̄(t)n,m(xi, yn) = PLOS(xi, yn)C(t)LOSn,m (xi, yn)

+ (1− PLOS(xi, yn))C(t)NLOSn,m (xi, yn). (20)

C. RAN SLICING IN 5G
A simplified 5G logical architecture is composed of a core
cloud, an edge cloud, and an RAN. The core cloud pro-
vides generic control plane signalization, slice management,
mobility management, and authentication. The edge cloud
performs some user plane functions as a packet/service gate-
way (P/S-GW) to improve latency communication on crit-
ical applications. It also enables data forwarding, control
plane functions, and mobile edge computing platforms, such
as content storage servers. In the radio access plane, the
3rd Generation Partnership Project (3GPP) defines the next-
generation RAN (NG-RAN), which is comprised of next-
generation NodeBs (gNBs) connected to the core network.
This architecture is used to support the network slicing
approach proposed in 5G. In this aspect, there are two types
of subnets in the 5G slicing architecture: core network slice
subnets and RAN slice subnets.

In the core network slice subnets, the network slicing oper-
ation used in the core network is controlled by the network
slicing management. It is composed of the virtualized net-
work function management (VNFM), the software-defined
network (SDN) controller, the management and orchestration
unit, and the virtualized infrastructure management (VIM).
The VNFM maps the physical network functions to virtual
machines (VMs); the SDN controller manages and oper-
ates the entire virtual network; the VIM allocates virtualized
resources to VMs; and themanagement and orchestration unit
creates, activates, and deletes network slices based on the
service requirements.

In the RAN slice subnets, the gNB is a crucial enabler
of network slices. It provides RAN slice subnets that are
composed of a centralized unit (CU), multiple distributed
units (DUs), and multiple radio units (RUs). The gNB func-
tionalities are distributed in a flexible manner between the
CU, DUs, and RUs. To manage their life cycles, the standard
specifies the RAN network slice subnet template (NSST)
and two management entities, such as the RAN network
slice subnet management function (NSSMF) and the network
function management functions (NFMFs) [23].

The core network slice subnets have been studied and
developed in the current 5G with outstanding results. How-
ever, the RAN slicing is still an open topic, and it is not
yet standardized. The RAN slicing aims to improve the
efficient usage of available physical radio resources and
simultaneously guarantees the SLA policies imposed in each
slice.

D. REINFORCEMENT LEARNING AIDED UAVs
Machine learning is an approach that has become increas-
ingly popular for sequential decision-making on wireless
communication networks with applications in many diverse
areas, such as smart grids, self-driving cars, and robotics.
There are three machine learning categories, depending on
the nature of the information or feedback available to the
learning system: (i) supervised learning; (ii) unsupervised
learning; and (iii) reinforcement learning (RL). In this paper,
we use RL as the primary approach for optimizing the cost
function based on spectral efficiency. RL is a technique that
is concerned with how agents should determine the sequences
of actions in an environment that will maximize cumulative
rewards [24], [25]. It is a trial-and-error process where an
agent interacts with an unknown environment in a sequence
of discrete time steps to achieve a task. At time t , the agent
first observes the current state of the environment, which
is a tuple of relevant environment features and is denoted
as S(t) ∈ S, where S is a set of possible states. It then
takes an action a(t) ∈ A from an allowed set of actions A
according to a policy that can be either stochastic, i.e., π
with a(t) ∼ π (.|S(t)) or deterministic, i.e., µ with a(t) =
µ(S(t)). Because the interactions are often modeled as a
Markov decision process, the environment moves to a next
state S(t+1) following an unknown transition matrix that maps
state–action pairs onto a distribution of successive states, and
the agent receives a reward S(t+1). Overall, the above process
is described as an experience at t + 1 denoted as e(t+1) =
(S(t), a(t), r (t+1), s(t+1)).

The goal is to learn a policy that maximizes the cumulative
discounted reward at time t , defined as follows:

R(t) =
∞∑
τ=0

γ τ r (t+τ+1), (21)

where γ ∈ (0; 1] is the discount factor.
RL has been growing in popularity because it does not

require an extensive network model. Instead, its learning
process is based on the interactions with the environment
that produces its optimal strategies. Owing to the possibility
of combining RL with deep learning [26], DRL is a highly
suitable method for solving problems with a high number
of states and low prior knowledge, which is the case of the
resource allocation scenario in RAN slicing.

DRL has recently been used in problems related to
UAVs [27]–[31]. Moreover, the DRL approach has been
exploited and applied to the problem of UAV position and
resource allocation. In [30], the authors proposed aDRL algo-
rithm based on echo state network (ESN) cells for optimizing
the UAV path, cell association to minimize the intercell inter-
ference level, transmission delay, and transmit power level.
In [32], the ESN algorithm was used based on a multiagent
Q-learning approach, which was employed to predict the
future positions of UEs and determine the positions of UAVs.
However, this work did not consider UAV cooperation and
capacity limitations of fronthaul links between UAVs and
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regular base stations. Further, for the optimization of FBS
placement, the studies in [27], [28], [33] used an RL algo-
rithm. In this work, we present an RAN slicing framework
based on a DRL methodology that complements the location
optimization model obtained in [13] by adding a radio chan-
nel model and optimizing the RAN slice resources between
multiple FBSs covering an arbitrary area.

E. RADIO OPTIMIZATION PROBLEM FORMULATION
To apply the DRL methodology explained in the previous
subsection, we define the radio optimization problem that this
paper aims to optimize. Thus, details of the cost function and
its constraints are defined in the following.

Denoting RAN slices and power vectors in the time slot t as

β(t)
=

[
β
(t)
1,1, β

(t)
1,2, · · · , β

(t)
N ,M

]T
and p(t) =

[
p(t)1 , · · · , p

(t)
N

]T
respectively, we define the sum-rate maximization problem
as

max
p(t),α(t)

N∑
n=1

C̄(t)n (xi, yn)

s.t. 0 ≤ p(t)n ≤ Pmax, ∀n ∈ N ,
β(t)n,m ∈ {0, 1}, ∀n ∈ N , ∀m ∈M,∑
m∈M

β(t)n,m = 1, ∀n ∈ N , (22)

where C̄(t)n =
∑M

m=1 C̄
(t)
n,m(xi, yn).

The nonconvex problem in (22) requires a highly complex
approach that could also increase the computational com-
plexity. To handle this nonconvex problem, we consider a
multiagent learning scheme, where each transmitter, mounted
in each FBS, operates as an independent learning agent. Each
agent successfully executes two policies to determine its asso-
ciated RAN slice and transmission power level. The proposed
multiagent approach is easily scalable to more extensive net-
works and can operate with local information after training.

The components of the DRL methodology considered
based on the system model described before is composed by:

• Agents: in the multiple learning approach, the FBSs
represent the agents.

• Policies: two well defined policies are considered. π1 to
choose an specific RAN slice, and the π2 to select a
proper power level for each user.

• Actions:we consider two well defined group of actions.
The discrete actions related to the selection of RAN
slices, and the continuous action to choose the power
transmission for each individual user.

• States: It is composed by a tuple of information related
to the RAN slice allocation, the SE, interference in each
individual user, gain and interference in each user.

• Rewards: a proportional value of the SE in each receiver
(UE) is used as reward. It considers the following crite-
ria: the SE is evaluated in every user with the condition
of one neighbourhood base station (BS) or agent is not
transmitting. Thus, if the SE value is significant, then

the BS being evaluated is penalized. In contrast, if the
SE remains, then the BS is rewarded.

At the beginning of each time slot, each agent successively
executes two policies to determine its associated transmis-
sion power level and RAN slice selection. For this purpose,
the DRL considers two optimization approaches. The first
considers a Deep Q-network to optimize a stochastic policy
that aims to improve the RAN slice selection. A second
Deep Q-network optimizes a deterministic policy to select a
suitable power transmission value. The agent of the second
Deep Q-network requires the RAN slice decision of the first
approach to determine its state input before setting the trans-
mit power of the agent. A brief explanation of this approach
is done in Algorithm 2.

Algorithm 2 Algorithm of the DRL Approach
FMain Loop

1: while Stop Criteria not met do
2: RAN slice Selection()
3: Power Control()

F RAN slice selection
4: function RAN slice Selection()

F Action Selection
5: action← a(t)n ∈ ARAN-Slice = {1, · · · ,M} =M
6: State set design← s(t)n,m
7: Training by a deep-Q Network
8: Reward function design
9: Update Policies: π1

F Power Control
10: function Power Control()

F Action Selection
11: action← a(t)

n,a(t)n
∈ Apower = [0, 1]

12: State set design← s(t)
n,a(t)n

13: Training by a deep-Q Network
14: Reward function design
15: Update Policies: π2

IV. DESCRIPTION OF THE PROPOSED SOLUTION
This paper aims to complement and enhance the output
obtained in [13], which is not optimal if evaluated in a real
scenario. Thus, the resource allocation that we propose is
conditioned to the prelocation of each FBS obtained using
the methodology presented in Section II. As the bench-
mark does not consider any channel model to evaluate
the intracell and intercell interference, it can get subop-
timal results in practical wireless scenarios. In particular,
we aim to address the following research questions that
arise during the FBS network deployment in a real
scenario:
• What can be the potential improvements based on the
FBSs prelocation defined in [13]?,
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FIGURE 2. Optimization flow diagram showing major steps and stages.
Here, we emphasis the optimization done in the benchmark (in yellow)
and highlight the DRL approach (blue).

• What is the performance of the simulation setup when
different services are supported by the FBS network?,

• Is it possible to develop a practical optimization method
that is capable of improving the performance of FBSs?.

To address these questions, we use a standard simulation
model defined by 3GPP and a RAN slicing framework pro-
posed in Section III, which is proposed to analyze the network
performance using a DRL methodology to optimize the radio
resources.

The whole optimization process is divided into three
phases— data matrix generation, FBS location minimization,
and RAN slicing optimization—as shown in Fig. 2. Here,
Stages 1 and 2 have already been applied and verified in the
original publication [13]. Details of each stage are described
in the following paragraphs.

A. STAGE 1—DATA MATRIX GENERATION
In this stage, users are generated randomly and uniformly in
one specific and fixed area. The FBSs are generated accord-
ing to the desired radius. The larger the radius is, the lower the
number of FBSs is required. A larger radius causes a higher
percentage of overlaps. Note that Stages 1 and 2 do not take
interference into consideration. Thus, interference has to be
avoided by limiting the radio overlapping. The users are given
random data rate requirements according to the traffic mix.
The output of this stage is a matrix whose rows represent all
FBSs and columns represent all users. The matrix is filled

with zeros if the user is inside the specific FBS cell radius,
and otherwise, it is filled with ones. This matrix is completed
and used as the input for Stage 2.

B. STAGE 2—FBS LOCALIZATION
This stage is composed of a software service that uses the
output of Stage 1. This stage aims to optimize the rows of
the generated matrix so that the customer requirements are
met. In this stage, we apply the optimization model from
Section II-A. Because the complexity of selecting the optimal
rows (FBSs) from the matrix is O(2m), heuristic algorithms
are applied. As a consequence, we use the differential evo-
lution and cuckoo search algorithms with repair operators
presented in [13]. The output of the computation is a set
of FBSs (with their locations from the previous stage) that
should be used in the network deployment. Further, the loca-
tion of each FBS is used as an input to Stage 3, considering a
representative interference channel model.

C. STAGE 3—OPTIMIZATION OF RAN SLICES
We add an interference model based on the 3GPP standard
to complement the previous stages to analyze and mitigate
downlink interference. Then, we calculate the SINR, defined
in (17), for each user considering the signal strength coming
from the serving UAV and from the FBSs that are interfering
with that specific user n. Using (22), our simulation model
calculates an optimal spectral efficiency for each user n
following the proposed DRL approach on the RAN slicing
framework defined in Section III.

V. SIMULATION SETUP
Two scenarios were designed to emphasize the gain of the
optimization models that were previously explained. In both
cases, 1000 users were deployed following a uniform distri-
bution in a specific area. Subsequently, in accordance with
the constraints in each scenario, the FBSs location optimizer
determined the coordinates of each FBS. The constraints are
mostly related to the cell radius, that depends on the radio
frequency operation, and throughput demand of each user or
group of users.

Using the predetermined FBSs location, we consider a
specific wireless system model. This system model consid-
ers an infinity backhaul capacity on each FBS. However,
the offered bandwidth is limited in each FBS. The wireless
system simulation considers that only a specific number of
users are capable of getting the access stratum (AS)2 inter-
face. Thus, most of the users are in the RRC_IDLE and
RRC_INACTIVE states, as defined in the 5G new radio (NR)
standard. The remaining users that passed the random access
procedure at the medium access control (MAC) layer are in
the RRC_CONNECTED state.

To facilitate the analysis, we consider that each FBS is
capable of supporting a fixed number of users N in the

2AS is a functional interface that is responsible for transporting data over
the wireless connection and managing radio resources.
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FIGURE 3. Generic simulation system model, considering the key
constraints to be solved by the deep reinforcement learning approach.

RRC_CONNECTED state. Based on this assumption, the
cellular network is simulated with L FBSs, and each FBS sup-
ports K RAN slices. As we consider only downlink transmis-
sion, the interference that each user suffers from nonserving
FBSs is calculated following the assumptions defined in the
3GPP TR 36.931 Ver. 16 specifications. The height altitude
for all FBSs is 20 m.

The DRL and the wireless system model are deployed
in Python. The machine learning implementation is done
using TensorFlow libraries to implement the deep Q-network
setup. The deep neural network used in the simulation has
3 hidden layers with 200, 100, 50 fully connected neurons.
The batch size is 128. The epsilon-Greedy Algorithm, used in
this work, considers a maximum ε equal to 0.1 and an εdecay
of 0.9995. The implementation and further hyper-parameters
are available in the following Github URL http://www.github.
com/TBD.

Three different scenarios were defined, considering
aspects such as a fixed number of FBSs (Scenario 1), and
coverage maximization with a fixed number of users in the
desired coverage area and in each cell (Scenarios 2 and 3,
respectively).

A. SCENARIO 1—FIXED NUMBER OF AVAILABLE FBSs
This scenario considers L = 20 FBSs covering a specific area
and supporting N = 100 users. To facilitate the analysis, it is
considered that each FBS has N/L = 5 attached users. This
scenario aims to identify an optimal cell radius supporting N
users in the RRC_CONNECTED state. A graphical descrip-
tion of this scenario is shown in Fig. 4.

B. SCENARIO 2—MAXIMIZING THE NETWORK
COVERAGE I
In this case, the number of FBSs (L) is defined by the opti-
mization outputs of Stages 1 and 2, which were described
in Section IV. Using Fig. 3 as a reference, the values of X
and Y are 400 m. Thus, the number of FBSs is a function
of cell radius; e.g., the larger the cell radius is, the smaller
the number of FBSs needs to be deployed. In this scenario,
the number of users N in the RRC_CONNECTED state is

TABLE 2. Comparison of parameters used in Scenarios 2 and 3.

always the same in the area defined by X and Y. This scenario
is illustrated in Fig. 5.

C. SCENARIO 3—MAXIMIZING THE NETWORK
COVERAGE II
In this case, the number of UAVs (L) is defined by the
optimization outputs of Stages 1 and 2, which were described
in Section IV. Based on Fig. 3, the value of X and Y is fixed
at 400 m. In this scenario, the number of N users in the
RRC_CONNECTED state varies when the number of FBSs
changes, as it is stated in Table 2. Each cell radius has a fixed
number ofN users in the scenario. Fig. 6 depicts this scenario.

VI. ANALYSIS AND RESULTS
A. ANALYSIS OF SCENARIO 1
The spectral efficiency obtained in Scenario 1 is presented
in Fig. 7. Here, different cell radii between 50 m and 300 m
are evaluated. In the same figure, the first 500 iterations
of the first episode3 (between 1 and 10000 iterations) are
compared with the first 500 iterations of the second episode
(between 10001 and 20000 iterations). The policy, defined
in Subsection III-D, is almost null in the first iterations; the
spectral efficiency is very low, similar to a random allocation
of RAN slicing resources. At the beginning of episode 2, the
spectral efficiency improves quickly despite that a new user
deployment is considered.

To facilitate the interpretation of the simulation results, the
average spectral efficiency in each scenario is calculated. For
instance, Fig. 8 presents the results of Scenario 1 before and
after applying the RAN slicing resource allocation. Before
applying the resource allocation, the maximum spectral effi-
ciency is almost 1.5 bps/Hz for the cell radius of 50 m.
The spectral efficiency decreases for the other cell radii
when the cell radius is increased. This output represents the
network performance when only Stages 1 and 2, described
in Section IV, are considered. However, the performance is
improved in all cell radii after applying the DRL approach.
In all cases, the spectral efficiency is improved. For instance,
the cell radius of 75 m achieves a spectral efficiency of more
than 3.5 bps/Hz, representing a gain of 2 bps/Hz compared
with the setup without optimization.

3With episode we refer to a complete sequence of interactions, from start
to finish. In our simulations, one episode is completed after 10 000 iterations.
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FIGURE 4. Visual description of Scenario 1. Here, the number of FBSs is a fixed, e.g., in this figure there are 11 UAVs. When the cell radius has a relatively
high value with respect to the area of interest, the chances to have intercell interference is increased (cell radius 1). However, when the cell radius is
small (cell radius 2), the chances of cell interference are reduced.

FIGURE 5. Visual description of Scenario 2. Here, the number of FBSs is not fixed. For instance, in this figure there are 11 UAVs for cell radius 1, and 75
UAVs for cell radius 2. When the cell radius has a relatively high value with respect to the area of interest, the chances to have intercell interference are
increased (cell radius 1). However, when the cell radius is small (cell radius 2), the chances of cell interference are reduced. Here, the number of users
(UEs) is fixed for both cell radius in the area of interest.

VOLUME 10, 2022 53755



D. Carrillo Melgarejo et al.: Optimizing Flying Base Station Connectivity by RAN Slicing and Reinforcement Learning

FIGURE 6. Visual description of Scenario 3. Here, the number of FBSs is not fixed. For instance, in this figure there are 11 UAVs for cell radius 1, and 75
UAVs for cell radius 2. Here, the number of users (UEs) is the same in every cell; in this illustrative representation every cell has four users. When the cell
radius has a relatively high value with respect to the area of interest, the chances to have intercell interference are not significant (cell radius 1). However,
when the cell radius is small (cell radius 2), the chances of cell interference are increased because the number of users in the area of interest is increased.

FIGURE 7. Spectral efficiency versus number of iterations obtained in
Scenario 1 considering a diversity of radio cells. The first 500 iterations do
not consider any pretrained DRL policy; after iteration 500 the policy gets
a better understanding of the radio channel environment with a small
degradation followed by a continuous improvement in most of the cells,
especially in cells with small radius.

B. ANALYSIS OF SCENARIO 2
In Fig. 9, the spectral efficiencies of six different cell radii
were obtained after 30 000 iterations. In contrast to Sce-
nario 1, the reinforcement learning approach yields a moder-
ate improvement in the SE when compared with the original
benchmark scenario. The best performance is obtained by the
small cell radius of 50 m.

FIGURE 8. Mean of spectral efficiency of Scenario 1 comparing a diversity
of cell radius before and after the RAN slicing resource allocation.

In Fig. 10, the lowest interference for Scenario 2 is for the
cell with the radius equal to 100 m. However, this cell radius
does not get the highest spectral efficiency because FBSs are
deployed in such a way that the desired signal is not so strong
when compared with cell radii of 50 and 75 m.

C. ANALYSIS OF SCENARIO 3
In this scenario, the SE indicates that the cell with a radius
equal to 160 m obtains an SE of 4.5 bps/Hz, which is the best
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FIGURE 9. Mean spectral efficiency performance of different cell radii
deployed for Scenarios 1, 2, and 3.

FIGURE 10. System interference of different cell radii deployed for
Scenarios 1, 2, and 3.

performance when compared with the previous scenarios.
The interference in Fig. 10 indicates that in all cell radii
of this scenario, the interference is above -100 dBm, which
represents a less aggressive scenario in terms of interference
when compared with the previous scenarios.

D. ANALYSIS OF THE RAN SLICING NETWORK
PERFORMANCE
The proposed RAN slicing framework enables the analysis of
the SE performance of individual RAN slices. We considered
that the cellular network supports three different RAN slices
following the 5G requirements defined in [34]. One slice
supports eMBB, the second supports URLLC, and the third
supports mMTC. To show the performance of this RAN
slicing framework, we considered the cell radius equal to
50 m in Scenario 2.

In Fig. 11, we show the improvement in the time domain of
the policy generated by the DRL model to prioritize the slice
that supports URLLC data transmission over the other RAN
slices. Based on the spectral efficiency of the previous figure,
Fig. 12 shows the performance of each RAN slice in terms
of delay. Here, the performance is improved only after the

FIGURE 11. Spectral efficiency performance of three RAN slices deployed
in the cell with a radius of 50 m in Scenario 2.

FIGURE 12. Delay of three RAN slices in the scenario with a cell radius of
50 m in Scenario 2.

time slot 400, which means that the DRL policy has enough
understanding of the RAN slicing environment. In the same
Fig. 12, we present another way to visualize the performance
of each RAN slice though SLA violation. Here, we can verify
that the SLA violation of the URLLC slice only happens
when the DRL model is starting to improve the policies
defined by the optimizer. The other RAN slices still present
frequent SLA violation, especially the slice related tomMTC,
which is mainly used for noncritical applications. However,
this SLA violations can be improved if the RAN slicing target
is relaxed, which is feasible in non-critical applications.

VII. CONCLUSION
In this paper, we have proposed a RAN slicing framework
that enables the allocation of radio resources (slices) carrying
specific data services since it can achieve the diverse per-
formance requirements introduced by 5G wireless systems.
Our proposed framework aims to accommodate a diversity
of services over a single shared 5G infrastructure and lays
the foundation for fine-grained service management in FBS
networks. In particular, we have demonstrated that the DRL
model with the proposed RAN slicing approach is suitable
for improving the SE of a predefined location distribution
of FBSs. Three scenarios were considered to evaluate the
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performance of the proposed framework. These scenarios
were generated by modifying key parameters, such as the
number of FBSs and cell radius, and the optimization target
of the predefined FBSs location. In all cases, the SE perfor-
mance was improved when compared with the benchmark
performance. However, the proposed methodology was more
suitable for Scenario 3 because it presented a wireless net-
work setup with low intercell interference.

The SE performance obtained in Scenarios 2 and 3 indi-
cates that the deployment of the proposed framework in
real scenarios can consider both approaches, and the spe-
cific cell radius should be chosen based on the network
scenario. For instance, when there is a high density of users,
Scenario 2 with a cell radius of 50m is the most suitable setup
to improve the SE system performance. On the other hand,
if there is a moderate or low user density, Scenario 3 with a
cell radius of 160 m will yield a better performance.

Potential future work that we have identified after the
elaboration of this paper could include but is not limited to
running a simulation on a setup with different radii on each
FBS; adding another dimension to the analysis, based on
the flying level or altitude of each FBS; and generating a
full optimization of FBS location considering a cost function
based on the system SE.
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