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In this letter we study some aspects of the planar Lee-Wick electrodynamics near a perfectly conducting 
line (unidimensional mirror). Specifically, the modified Lee-wick propagator due to the presence of 
a conducting line is calculated, and the interaction between the mirror and the point-like charge is 
investigated. It is shown that the behavior of this interaction is very different from the one already known 
for the (3 + 1)-dimensional Lee-Wick electrodynamics, where we have a planar mirror. It is also shown 
that the image method is not valid in planar Lee-Wick electrodynamics and the dimensional reduction 
yields a stronger taming of divergences.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
Field theories with higher order derivatives have been inten-
sively investigated in the literature. One of the main reasons to 
consider these kinds of models is to improve renormalization prop-
erties and to remove ultraviolet divergences. In this scenario, the 
best-known and simplest gauge theory of this type it the one pro-
posed by B. Podolsky and T. Lee and G. Wick [1–5].

Some aspects of field theories with higher order derivatives 
have been investigated, for example, in issues which concern the 
point-charge self-energy [6–9], gravity theories [10–13], interac-
tions between external sources [14], issues related to the Lee-Wick 
Standard Model [15–18], Pauli-Villars regularization [19], the pres-
ence of boundary conditions [20–23], radiative corrections [24], 
among many others. We also highlight the relevance of field mod-
els with higher order derivatives in condensed matter physics, in 
the study of critical points [25] and phase transitions [26].

Planar physics, which describes field theories in 3d dimensions, 
is a subject of permanent interest due to their value in condensed 
matter systems. In this scenario, some very interesting physical 
properties can emerge in odd spacetimes. In the context of higher 
order derivatives involving scalar fields, we can mention, for in-
stance, the study of quantum critical points with effective field 
theories with higher order derivatives [27] and the role of field 
theories with higher order derivatives in the entanglement phase 
transitions [28]. Furthermore, the planar QED is a very useful tool 
to describe the quantum Hall Effect [29–32], the graphene physics 
[33], the behavior of (high temperature) cuprate superconductors 
[34,35] and ultracold atoms [36]. Besides, the planar QED is used 

* Corresponding author.
E-mail addresses: luizhenriqueunifei@yahoo.com.br (L.H.C. Borges), 

fbarone@unifei.edu.br (F.A. Barone).
https://doi.org/10.1016/j.physletb.2021.136759
0370-2693/© 2021 The Author(s). Published by Elsevier B.V. This is an open access artic
SCOAP3.
as a valuable toy model for the QCD [37] and the confinement 
phenomenon [38].

The planar Lee-Wick quantum electrodynamics have been con-
sidered in a recent paper, where its quantization is performed in 
details in the Heisenberg picture [39]. In this same context, the 
Møller scattering was studied in [40]. In addition, the boson-boson 
interaction mediated by the planar Lee-Wick electrodynamics was 
considered in [41].

Therefore, it would very be welcome to have a better insight 
on the role of boundary conditions (mainly the ones related to 
material boundaries) imposed in the gauge field in the planar Lee-
Wick electrodynamics, as well as the role of field sources in this 
theory.

Investigations which concern the Lee-Wick electrodynamics in 
the vicinity of a perfectly conducting plate (two-dimensional mir-
ror) were performed in 3 + 1 dimensions in the work [20]. More 
specifically, in this reference it was analyzed the interaction be-
tween a stationary point-like charge and the conductor. In special, 
it was showed that the image method is not valid in 4d Lee-Wick 
electrodynamics. However, investigations of this type have not yet 
been carried out in the context of planar Lee-Wick electrodynam-
ics. This topic is an interesting subject since planar models often 
show different properties in comparison with the correspondent 
ones obtained in 3 + 1 dimensions.

In this letter, we investigate some aspects of planar Lee-Wick 
electrodynamics near a perfect mirror, which in 2 + 1 dimensions 
is just a perfectly conducting line. We compute the propagator for 
the Lee-Wick gauge field in the presence of a conducting line and 
analyse the interaction between a static point-like field source and 
the conducting line. We show that the behavior of this interaction 
is very different from the one already known in 3 + 1 dimensions 
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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with a planar mirror. We also verify that image method remains 
not valid in 3d Lee-Wick electrodynamics. We show that the di-
mensional reduction yields a stronger taming of divergences in 
the Lee-Wick electrodynamics. Along the letter we will be work-
ing in a (2 + 1)-dimensional spacetime with Minkowski metric 
ημν = (+,−,−).

We start by considering the Lagrangian density for the Lee-Wick 
electrodynamics [14,20],

L = −1

4
Fμν F μν − 1

2ξ

(
∂μ Aμ

)2 − 1

4m2 Fμν∂α∂α F μν

− Jμ Aμ , (1)

where Aμ is the vector potential, F μν = ∂μ Aν − ∂ν Aμ is the field 
strength, Jμ is the external source, ξ is a gauge fixing parameter 
and m is a parameter with mass dimension. The propagator in the 
Feynman gauge, ξ = 1, for the theory in (1) is given by [14,20]

Dμν (x, y) =
ˆ

d3 p

(2π)3

(
1

p2 − m2
− 1

p2

)

×
(
ημν − pμpν

m2

)
e−ip·(x−y) . (2)

For a quadratic theory, like the one in (1), the interaction be-
tween stationary field sources can be obtained from expression 
[42–47]

E = 1

2T

¨
d3x d3 y Jμ(x)Dμν(x, y) Jν(y) , (3)

where T is the time variable and it is implicit the limit T → ∞.
First let us consider the interaction between two point-like field 

sources in two dimensions, which is described by the following 
external source

J CC
μ (x) = λ1η

0
μδ2 (x − a1) + λ2η

0
μδ2 (x − a2) , (4)

where the position of the charges are given by the spatial vectors 
a1 and a2 and the super-index CC means that we have a system 
composed by two point-like charges in the planar Lee-Wick elec-
trodynamics.

From now on in this paper, for simplicity, we shall refer to sta-
tionary point-like sources in (2 + 1) dimensions, like the ones in 
(4), as charges. Besides, we shall use the symbol λ to designate the 
intensity of this kind of source.

Substituting (2) and (4) in (3), discarding the self-interacting 
contributions, we obtain

ECC = λ1λ2

(ˆ
d2p

(2π)2

eip·a

p2
−
ˆ

d2p

(2π)2

eip·a

p2 + m2

)
, (5)

with a = a1 − a2 standing for the distance between the two 
charges.

Performing the relevant integrals in (5), we arrive at

ECC = −λ1λ2

2π

[
ln

(
a

a0

)
+ K0 (ma)

]
, (6)

where a =| a |, a0 is an arbitrary constant length scale and K0 (ma)

stands for the K-Bessel function [48]. This result is already known 
in the literature [14] and we present it in this letter just for com-
pleteness and to point out some peculiarities in comparison with 
the (3 + 1)-dimensional case.

The interaction force between the charges reads

F CC = −dECC

= λ1λ2
[1 − (ma) K1 (ma)] . (7)
da 2πa

2

Fig. 1. Plot for 2π F CC

mλ1λ2
in Eq. (7), as a function of ma.

Fig. 2. Plot for
4π F CC

(3+1)

m2q1q2
in Eq. (8), as a function of ma.

The first term between brackets on the right hand side of the 
Eq. (7) is the usual Coulomb interaction obtained in 3d Maxwell 
electrodynamics. The second one is a contribution due to the pa-
rameter m, which falls down when m or a increases. We notice 
that the force is repulsive for charges with the same signal and 
attractive otherwise.

In Fig. 1, we have a plot for the force (7) multiplied by 2π
mλ1λ2

. 
We highlight that this force has a global maximum around ma ∼=
1, 14, and vanishes when a → 0.

At this point we highlight some differences in the behavior of 
the forces between point-like sources the in Lee-Wick electrody-
namics when we compare the (3 + 1)-dimensional case with the 
planar situation.

The interaction force between two point-like charges q1 and q2

placed at a distance a apart in the (3 + 1)-dimensional Lee-Wick 
electrodynamics can be computed by taking the derivative (with 
an overall minus sign) of Eq. (16) of Ref. [14] with respect to dis-
tance a,

F CC
(3+1) = q1q2

4πa2

[
1 − e−ma − (ma) e−ma] , (8)

In Fig. 2, we have a plot for the force (8) multiplied by 4π
m2q1q2

, 
where we can see that when a → 0, this force is finite and equal 
to m2q1q2

8π . The curve in the graphic (2) goes to 1/2 when ma = 0.
Comparing Figs. 1 and 2, we notice that the behavior of the 

interaction force between two point-like charges in 3d Lee Wick 
electrodynamics is notably different from the correspondent one 
obtained in 4d dimensions. In the 4d case, the force is monotonic, 
falls down when ma increases and exhibits a nonzero value for 
ma = 0. For the planar setup, the force exhibits a global maximum 
around ma ∼= 1.44, vanishes for ma = 0 and goes to zero when 
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ma → ∞. In both cases the force is always repulsive for charges 
with the same signal and attractive otherwise.

It is well-known that the presence of a perfectly conducting 
line imposes a boundary condition on the gauge field in such a 
way that the Lorentz force on the line must vanish, as discussed in 
Ref. [20].

Now, let us consider the presence of a perfectly conducting line 
in (2 + 1)-dimensional Lee-Wick electrodynamics. We take a coor-
dinate system where the conductor lies on the line x2 = a. In this 
case, the condition that makes the Lorentz force to vanish along 
the conducting line is achieved by

nμ ∗ Fμ|x2=a = 0 ⇒ ε νλ
2 ∂ν Aλ (x) |x2=a = 0 , (9)

where nμ = η
μ

2 = (0,0,1) is the Lorentz three-vector normal to 
the conducting line and ∗ F μ = (1/2)εμνλ Fνλ is the dual field 
strength, with εμνα standing for the Levi-Civita tensor (ε012 = 1).

By using the functional formalism employed in [20,49–52], we 
can write the functional generator as follows

ZC [ J ] =
ˆ

DAC ei
´

d3x L , (10)

where the sub-index C means that we are integrating out in all 
field configurations which satisfy the condition (9). This restriction 
is achieved by introducing a delta functional, which is not equal to 
zero only where the restrictions (9) are satisfied, as follows

ZC [ J ] =
ˆ

DA δ
[∗ F 2 (x) |x2=a

]
ei
´

d3x L . (11)

Now we use the Fourier representation for the delta functional

δ
[∗ F 2 (x) |x2=a

] =
ˆ

DB exp
[

i

ˆ
d3x δ

(
x2 − a

)
×B

(
x‖

) ∗ F2 (x)
]

, (12)

where B 
(
x‖

)
is an auxiliary scalar field and xμ

‖ = (
x0, x1,0

)
means 

that we have only the coordinates parallel to the conducting line. 
(In the (3+1) dimensional case, we have a similar expression, but 
with an auxiliary vector field [20]).

Performing similar steps that was employed in Ref. [49], we can 
write the functional generator in the following way

ZC [ J ] = Z [ J ] Z̄ [ J ] , (13)

where Z [ J ] is the usual functional generator for the gauge field,

Z [ J ] = Z [0] exp
[
− i

2

ˆ
d3x d3 y Jμ (x) Dμν (x, y)

× Jν (y)
]

, (14)

and Z̄ [ J ] is a contribution due to the scalar field B 
(
x‖

)
,

Z̄ [ J ] =
ˆ

DB exp

[
i

ˆ
d3x δ

(
x2 − a

)
I (x) B

(
x‖

)]

×exp
[
− i

2

ˆ
d3x d3 y δ

(
x2 − a

)
δ
(

y2 − a
)

×B
(
x‖

)
W (x, y) B

(
y‖

)]
, (15)

where we defined

I (x) = −
ˆ

d3 y ε
γα

2

(
∂

∂xγ
Dαμ (x, y)

)
Jμ (y) ,

W (x, y) = ε
γα

2 ε
βλ

2
∂2 Dλα (x, y)

β γ
. (16)
∂x ∂ y

3

Substituting (16) and (2) into (15), using the fact that [20,49,51]

ˆ
dp2

2π

eip2
(
x2−y2

)
pμpμ − m2

= − i

2
ei|x2−y2| ,

ˆ
dp2

2π

eip2(
x2−y2)

pμpμ
= − i

2L
eiL|x2−y2| , (17)

where p2 stands for the momentum component perpendicular to 
the conducing line,  =

√
p2‖ − m2 and L =

√
p2‖ , defining the par-

allel momentum to the line pμ
‖ = (

p0, p1,0
)

and the parallel met-
ric

η
μν
‖ = ημν − η

μ
2η

ν2 , (18)

one can write the expression (15) as follows

Z̄ [ J ] = Z̄ [0] exp
[
− i

2

ˆ
d3x d3 y Jμ (x) D̄μν (x, y)

× Jν (y)
]

, (19)

where we defined the function

D̄μν (x, y) = − i

2

ˆ
d2 p‖
(2π)2

(
η

μν
‖ − pμ

‖ pν‖
p2‖

)
1( 1

L − 1


)
×exp

[−ip‖ · (x‖ − y‖
)](

eiL|x2−a|

L
− ei|x2−a|



)

×
(

eiL|y2−a|

L
− ei|y2−a|



)
. (20)

Substituting (19) and (14) in (13), the functional generator for 
the (2 + 1)-dimensional Lee-Wick electrodynamics in the presence 
of a perfectly conducting line reads

ZC [ J ] = ZC [0] exp
[
− i

2

ˆ
d3x d3 y Jμ (x)

(
Dμν (x, y)

+D̄μν (x, y)
)

Jν (y)
]

. (21)

From the Eq. (21), one can identify the propagator of the 3d
Lee-Wick electrodynamics in the presence of a conducting line as 
follows

Dμν
C = Dμν (x, y) + D̄μν (x, y) . (22)

The propagator (22) is composed of the sum of the standard 
Lee-Wick propagator (2) with the correction (20), which accounts 
for the presence of the perfectly conducting line. In the limit 
m → ∞, the propagator (20) reduces to the same one as that 
we would have obtained with the planar Maxwell electrodynam-
ics in the presence of a conducting line. It can be showed that the 
conducting line condition (9) is satisfied by the propagator (22), 
namely, ε νλ

2 ∂ν Dμν
C |x2=a = 0.

Now, let us investigate the interaction between a point-like 
charge and the conducting line. The interaction energy between 
a stationary field source and a conducting surface reads [20,49,51,
53–55]

E = 1

2T

ˆ
d3x d3 y Jμ (x) D̄μν (x, y) Jν (y) . (23)

Without loss of generality, we consider a charge located at po-
sition b = (0,b) whose external source is given by

J C
μ (x) = λη0

μδ2 (x − b) . (24)
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Substituting (24) and (20) in (23), and then carrying out some 
straightforward manipulations, we arrive at

E LC = − λ2

4π

∞̂

0

d|p‖|
√

p2‖
√

p2‖ + m2√
p2‖ + m2 −

√
p2‖

×
⎛
⎜⎝e

−R
√

p2‖√
p2‖

− e
−R

√
p2‖+m2

√
p2‖ + m2

⎞
⎟⎠

2

, (25)

where super-index LC means that we have a system consisting of 
a charge and a conducting line, and R =| b − a | is the distance 
between the line and the charge.

Performing the change of integration variable p = |p‖|/m, the 
expression (25) can be simplified as follows

E LC = − λ2

4π

∞̂

0

dp p

[(
p2 + 1

)
+ p

√
p2 + 1

]

×
(

e−2pmR

p2
− 2

e
−

(
p+√

p2+1
)

mR

p
√

p2 + 1
+ e−2mR

√
p2+1

p2 + 1

)
. (26)

Carrying out the integrals, we obtain that

∞̂

0

dp

[(
p2 + 1

)
+ p

√
p2 + 1

]
e−2pmR

p

→ − ln

(
R

R0

)
+ 1

4 (mR)2
+ π

4mR

[
S H1 (2mR)

− Y1 (2mR)
]

,

∞̂

0

dp p

[
1 + p

(
p2 + 1

)−1/2
]

e−2mR
√

p2+1

= K1 (2mR)

2mR
+ e−2mR

4 (mR)2 (1 + 2mR) ,

− 2

∞̂

0

dp

(
p +

√
p2 + 1

)
e
−

(
p+√

p2+1
)

mR

= −e−mR
(

1

(mR)
+ 1

(mR)2

)
− Ei (1,mR) , (27)

where R0 is an arbitrary finite constant with dimension of length 
and Y , S H , K , Ei stand for the Bessel function of second kind, the 
Struve function, K -Bessel function and exponential integral func-
tion, respectively [48]. In the first integral (27) we have added a 
R-independent term and discarded some contributions which do 
not depend on R .

Finally, substituting (27) in (26), we arrive at

E LC = − λ2

4π

[
− ln

(
R

R0

)
+ 1

4 (mR)2

+ π

4mR

[
S H1 (2mR) − Y1 (2mR)

]
−e−mR

(
1

(mR)
+ 1

(mR)2

)
− Ei (1,mR)

+ K1 (2mR)

2mR
+ e−2mR

4 (mR)2 (1 + 2mR)

]
. (28)
4

Fig. 3. Plot for 4π F LC

mλ2 in Eq. (29), as a function of mR .

Eq. (28) is an exact result and gives the interaction energy be-
tween a point-like charge and the conducting line for the 3d Lee-
Wick electrodynamics. The first term on the right hand side is the 
charge-line interaction obtained in the standard planar Maxwell 
theory. The remaining contributions are corrections due to the pa-
rameter m and fall down when R increases faster that the first 
term.

The interaction force between the conducting line and the 
charge can be computed from the Eq. (28), resulting in

F LC = − λ2

4π R

[
1 + 1

2 (mR)2

−π

2

(
Y2 (2mR) + S H0 (2mR) − S H1 (2mR)

(mR)

)

+K2 (2mR) − 2e−mR
(

1 + 1

(mR)
+ 1

(mR)2

)

+e−2mR
(

1 + 1

(mR)
+ 1

2 (mR)2

)]
. (29)

The first term on the right hand side of the expression (29)
is the interaction force between the charge λ and its image −λ, 
placed at a distance 2R apart, obtained in (2 + 1)-dimensional 
Maxwell electrodynamics. The m-dependent contribution falls 
down when mR increases. In Eq. (29) the term between brack-
ets is positive, what implies that the interaction force is always 
attractive. In Fig. 3 we have a plot for the force (29) multiplied by 
4π

mλ2 . We can see that the interaction force has a global minimum 
around mR ∼= 0.82.

It is important to highlight that the results (28) and (29) are 
valid just for mR �= 0. The case where R = 0 must be treated 
carefully. Taking the derivative of Eq. (26) with respect to R and 
evaluating for R = 0, we have zero as result, what implies that the 
interaction force between the conducting line and the point-like 
charge vanishes when the charge is placed on the line. Now taking 
the limit R → 0 in Eq. (29) we also obtain zero as result. There-
fore, the interaction force is finite and continuous at R = 0, this 
fact is evinced in Fig. 3.

The interaction force between two point-like charges for the 
3d Lee-Wick electrodynamics (theory without the conducting line) 
is given by (7). For the special case where we have two opposite 
charges, λ1 = λ, λ2 = −λ, placed at a distance 2R apart, we obtain

F CC = − λ2

4π R
[1 − (2mR) K1 (2mR)] , (30)

where the super-index CC means that we have the interaction be-
tween two point-like charges.

We can verify that the force (30) is very different from (29). So, 
we notice that the image method is not valid for the 3d Lee-Wick 
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Fig. 4. Plot for 16π F P C

m2q2 in Eq. (37) of Ref. [20], in (3 + 1) dimensions, as a function 
of mR .

electrodynamics for the conducting line condition (9). An opposite 
situation occurs in Maxwell-Chern-Simons electrodynamics, where 
the image method is valid for point-like charges [49].

In Ref. [20] the Lee-Wick electrodynamics in 3 + 1 dimensions 
was investigated in the presence of a perfectly conducting plate, 
where it was shown that the image method is not valid for point-
like charges. Using the expression (37) of reference [20] we can 
obtain the interaction force between the plate and the charge, 
F P C , whose behavior is evinced in Fig. 4 where we have a plot 
for 16π F P C

m2q2 , where q is the charge intensity.

Comparing Figs. 3 and 4, we notice that the behavior of the 
interaction force between the point-like charge and a conducting 
line for the 3d Lee-Wick electrodynamics is different from the one 
obtained in 4d Lee-Wick electrodynamics, where the analogue of a 
conducting line is just a conducting plate. In Fig. 4 we can see 
that limR→0 F P C = −3m2q2/(32π). However, in R = 0, we have 
F P C = 0, this fact can be verified by taking the derivative of Eq. 
(30) of Ref. [20] with respect to R and then, taking R = 0. So, we 
notice that F P C is discontinuous when the charge is placed on the 
plate, what is an opposite situation to the one found in (2 + 1)

dimensional Lee-Wick electrodynamics.
It is important to mention that the results obtained throughout 

this letter cannot be directly predicted from the ones of Ref. [20]
before the calculations are performed.

In summary, in the present letter we have investigated some 
aspects of the (2 + 1)-dimensional Lee-Wick electrodynamics in 
the vicinity of a perfectly conducting line. Specifically, the propa-
gator for the Lee-Wick field and the interaction force between the 
conducting line and a point-like charge were computed. We have 
showed that the behaviors of the interaction forces are different 
from that ones found in (3 + 1)-dimensional Lee-Wick electrody-
namics. We have also verified that the image method remains not 
valid in 3d Lee-Wick electrodynamics.
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