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RESUMO

Dispositivos móveis são comuns em todo o mundo, mesmo em países com acesso limitado à
internet, inclusive quando desastres naturais intenrrompem o acesso a uma infraestrutura cen-
tralizada. Este acesso permite a troca de informações em um ritmo incrível e através de grandes
distâncias. No entanto, essa riqueza de informações pode frustrar os usuários a medida que
são inundados com dados irrelevantes ou indesejados. Os sistemas de recomendação ajudam a
aliviar o peso para computar cada perfil. Este projeto apresenta uma nova abordagem de sis-
tema de recomendação de filtragem colaborativa baseada em uma rede distribuída oportunista.
Algoritmos de filtragem colaborativa são amplamente utilizados em muitos sistemas online.
Geralmente, o computação desses sistemas de recomendação é realizado em um servidor cen-
tral, controlado pelo provedor, exigindo conexão constante a internet para coletar e computar
dados. Entretanto, em muitos cenários, essas restrições não podem ser garantidas ou mesmo
desejadas. No sistema de recomendação proposto, os usuários compartilham informações por
meio de uma rede oportunista independente de conexão a internet dedicada. Utilizando tecnicas
de recomendação centralizada de filtragem colaborativa como base, avaliamos dois cenários si-
mulados compostos por diferentes velocidades de movimento e parâmetros de troca de dados.
Nossos resultados demonstram que, em um período de tempo relativamente curto, o sistema
de recomendação distribuído em redes oportunistas podem obter resultados semelhantes a um
sistema centralizado tradicional. Além disso, notamos que a velocidade com que o sistema
de recomendação oportunista se estabiliza dependendo de vários fatores, incluindo densidade
dos usuários, velocidade de movimento e padrões dos usuários, e estratégias de transmissão.
Em trabalhos futuros analisaremos novas estratégias e conjuntos de dados, da mesma forma,
aumentaremos o número de usuários adicionando diferentes cenários.

Palavras-chave: Redes Oportunistas. Sistema de Recomendação. Redes Móveis ad hoc.



ABSTRACT

Mobile devices are common throughout the world, even in counties with limited internet access
and even when natural disasters disrupt access to a centralized infrastructure. This access allows
for the exchange of information at an incredible pace and across vast distances. However, this
wealth of information can frustrate users as they become inundated with irrelevant or unwanted
data. Recommender systems help alleviate this burden. The project presents a novel collabora-
tive filtering recommender system based on an opportunistic distributed network. Collaborative
filtering algorithms are widely used in many online systems. Often, the computation of these
recommender systems is performed on a central server, controlled by the provider, requiring
constant internet connection for gathering and computing data. However, in many scenarios,
such constraints cannot be guaranteed or may not even be desired. On the proposed recommen-
dation engine, users share information via an opportunistic network independent of a dedicated
internet connection. Each node is responsible for gathering information from nearby nodes and
calculating its own recommendations. Using a centralized collaborative filtering recommender
as a baseline, we evaluate three simulated scenarios composed by different movement speeds
and data exchange parameters. Our results show that in a relatively short time, an opportunistic
distributed recommender systems can achieve results similar to a traditional centralized system.
Furthermore, we noticed that the speed at which the opportunistic recommender system stabi-
lizes depends on several factors including density of the users, movement speed and patterns
of the users, and transmission strategies. On future works we will analyze new strategies and
datasets, likewise, we will increase the number of users on different scenarios.

Keywords: Opportunistic Networks. Recommender Systems. Mobile ad hoc Networks.
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1 INTRODUCTION

Mobile devices enable consumers to access vast amounts of data unfettered from land-

line connections. Recent data demonstrate that smartphones are more common in developed

countries, with 72% ownership in the United States, and 41% in Brazil, compared with the

global average of 43% (POUSHTER et al., 2016). Moreover, Internet of things (IoT) appli-

cations are becoming more common and are expected to experience growth with the support

of fifth generation (5G) networks (LI; XU; ZHAO, 2018; MAVROMOUSTAKIS; MASTORA-

KIS; BATALLA, 2016; RAHIMI; ZIBAEENEJAD; SAFAVI, 2018). While this access to data

across many platforms is a great boon, it also presents a challenge. A consumer is likely interes-

ted in only a fraction of the available content, and finding that content can be a time consuming

and arduous task.

Recommender systems can help users find relevant content. Popular applications, such

as Netflix, Spotify, and YouTube, employ recommenders to assist their customers find movies,

music and even user-generated content. Applications such as these often clean the data, build

user profiles and store relevant information for later use (HUANG; CHUNG; CHEN, 2004;

RICCI et al., 2015; YANG; HWANG, 2013).

Many strategies have been proposed to construct recommendations. In academia there

are three popular approaches, which are content-based filtering, collaborative filtering, and

knowledge-based filtering (FELFERNIG et al., 2014). Content-based filtering (BALABANO-

VIĆ; SHOHAM, 1997; PAZZANI; BILLSUS, 2007) leverages the description of the items,

such as genre or director, to find relevant items for a user. Collaborative filtering (EKSTRAND

et al., 2011; SCHAFER et al., 2007), on the other hand, focuses on the user’s interactions with

the system, such as their ratings. This strategy relies on the notion that users which expressed

similar tastes in the past will likely consume similar items in the future. Knowledge-based fil-

tering (TREWIN, 2000) employs explicit domain knowledge to filter items, it does not build

upon users’ record. Therefore, it will not present a cold-start problem (FELFERNIG et al.,

2011). This technique is usually employed to recommend items which are not regularly consu-

med (RICCI et al., 2015).

Generally, recommender systems are implemented on a centralized server. Users con-

sume items provided by the application and the recommender system collects their information

to generate a profile. When queried, the application presents the most relevant information to

the user. As a consequence of this architecture, the application owner controls access to both
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the user and content information. This centralized architecture has many advantages for the

content provider, most notably control over the data.

However, adopting a centralized approach also has many drawbacks such as privacy,

reliability, and scalability. One remarkable problem of having a central server is how to ensure

customers that their recommendations are not manipulated. Likewise, there is no guarantee that

the information collected is secure or would not be exploited without the user’s consent. The

reliability and scalability of the recommender system is also an important concern when the

central architecture can be targeted by hackers or taken offline by natural disasters.

Consider customers of a recommender systems applications in one of these three sce-

narios: in communities where internet access is expensive or intermittent, in a city after an

earthquake or tsunami, or during a political rally when users seek anonymity or the government

is limiting internet access. In these cases, the user may not wish or may not be able to use a

service based on a central server.

We propose a distributed strategy independent of internet connection, employing an

opportunistic network architecture to distribute content among users. The system was designed

having in mind the fundamental needs of a recommender system. Relevant information from the

host user is collected, such as their rating for a song or a whether or not they read a news article.

This information is aggregated to create a user model. Multiple user models are aggregated to

create neighborhoods. From these neighborhoods, recommendations are produced.

However, the goal of our proposed opportunistic distributed recommender system is to

distribute the burden of each step among the users rather than relying on a central server. Its

framework is organized into four components with different steps 1) User Representation 2)

Communication 3) User Profile Ranking and 4) Recommendation. The user representation will

collect information from activities of users on their smartphones, then compresses it into mode-

led profiles, shielding private information. The second component is responsible for detecting

nearby users (or their devices) and exchanging their profiles. The user profile ranking will se-

lect which profiles should be kept or discarded. Finally, the recommender will compute the

metadata stored on the device’s buffer to compute predictions and recommendations.

The framework has several benefits when compared to a traditional approach. First, it

eliminates the need for infrastructural internet connection to communicate with a centralized

server. Second, in a distributed approach, much of the data would be distributed throughout the
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network and would, therefore, be resilient to loss, eliminating a point of failure. Each user mo-

dels their own profiles, stores relevant information, and computes their own recommendations.

Our experimental experiments include simulations over a variety of scenarios. Two

datasets were evaluated. Movielens includes rating applied by users to movies. LastFM includes

the playlists and artist preference for users in the music domain. Users were simulated in a

variety of ways including walking and riding in a car. The density of users in the simulation was

set to model both rural and urban settings. The amount of information transmitted between users

was manipulated to evaluate the trade-off between the size of the messages and the performance

of the recommender. Our results showed that in certain scenarios the proposed framework can

achieve results similar to a centralized architecture while operating solely on an opportunistic

framework.

The paper is organized in five sections. First we introduced the research problem and

the motivations of our framework. In the next section, we introduce related on different areas:

opportunistic networks, recommender systems, and recommender systems in distributed envi-

ronment. Section 3 discusses how the system will operate, from data modeling to generating

recommendations. In section 4 we introduce the evaluation metrics, datasets, and simulations

parameters. We then discuss the experimental results. Finally, in section 5 we discuss our

findings and consider future work.
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2 RELATED WORK

In this section we present related work. We begin with a discussion of opportunistic

networks and then present a background of recommender systems. We then discuss the distri-

buted recommender systems and opportunistic distributed recommender systems.

2.1 Opportunistic Networks

Device-to-Device (D2D) communication allows devices to exchange information direc-

tly without a network infrastructure (LEI et al., 2012). The communication between mobile

devices are made either through Bluetooth, WiFi Direct or other WiFi interfaces. D2D com-

munication was first proposed as a medium access control (MAC) protocol, to be applied into

a mobile ad hoc network (MANET) with multi-channel access and multi-hop communication

environment (LIN; HSU, 2000). Later, peer-to-peer (P2P) communication techniques were

exploited into D2D architectures (LEI et al., 2012). The D2D paradigm improves network per-

formance by enhancing spectral efficiency, and improving throughput, energy efficiency, delay,

and fairness (ASADI; WANG; MANCUSO, 2014).

Opportunistic Network (OppNet) (PELUSI; PASSARELLA; CONTI, 2006) studies were

motivated by advances on delay-tolerant networking (DTN) architecture (FALL, 2003) and rou-

ting (JAIN; FALL; PATRA, 2004). An OppNet deals with computer network scenarios with

limited or no internet connection, where the connection between nodes are intermittent, or a

path between nodes willing to communicate might not directly exist.

Recent works exploiting OppNets have been developed. In (ANASTASIADES; BRAUN;

SIRIS, 2014), Anastasiades et al. explored Information-Centric and Content Centric Networ-

king solutions into OppNet scenarios for content discovery and transfer. The PRoWait routing

protocol, based on Spray and Wait and Prophet routing protocols, was proposed in (DHU-

RANDHER et al., 2015). It improves the packet delivery ratio, hop count and latency in Opp-

Nets compared to the well-known Spray and Wait, Prophet and Epidemic protocols.

In (MARTÍN-CAMPILLO et al., 2013), several routing protocols are tested in realis-

tic disaster scenarios in order to verify effectiveness on delivery and energy performances. In

the experimental results, The MaxProp forwarding method presented the best delivery perfor-

mance while TTR forwarding presented the lowest energy cost in almost all disaster scenarios

simulated.
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The focus in (IPPISCH; KÜPER; GRAFFI, 2018) is to analyze time syncing and buf-

fer management of mobile devices in OppNets. Using opptain, a OppNet framework for mo-

bile devices, data is exchanged in the network as bundles (IPPISCH; KÜPER; GRAFFI, 2018).

Bundles keep essential time related information like creation time and Time-To-Live (TLL) (IP-

PISCH; KÜPER; GRAFFI, 2018). It is important for devices in the OppNet to be synced in

order to keep time contextuality of data (IPPISCH; KÜPER; GRAFFI, 2018). Furthermore,

personal mobile devices usually have a general purpose buffer shared by applications, perso-

nal data and the OppNet data (IPPISCH; KÜPER; GRAFFI, 2018). Therefore, an important

concern in OppNets is to not demand too much of users’ device storage (IPPISCH; KÜPER;

GRAFFI, 2018). The authors proposed a method to bypass the time syncing problem using

a method that keeps the difference of time between devices from the sender to the destina-

tion (IPPISCH; KÜPER; GRAFFI, 2018). Bundles drop policies were also proposed to deal

with limited storage problem (IPPISCH; KÜPER; GRAFFI, 2018).

Smart-phones with high computational power and several wireless network interfaces

are commonplace today. This adoption allows the applications OppNets into complex distribu-

ted scenarios. Distributed computing is proposed in (CONTI et al., 2010), which is defined as

a step forward in OppNets where users would be able to opportunistically exploit any resource

available in network, including other users’ devices, in a trustable and secure way. Moreover, a

survey in opportunistic mobile social networks is presented in (JEDARI; XIA, 2013), where the

main discussion topics were: mobile social networks characteristics, human mobility models,

dynamic community detection methods, and routing and data dissemination protocols.

A novel approach to building a context representation is proposed in (UNGER et al.,

2016). These contexts are based on users’ mobile phone sensors data (UNGER et al., 2016).

Unsupervised deep learning techniques and PCA are applied in the users’ data to learn latent

contexts, represented by numeric vectors (UNGER et al., 2016). An Android application was

developed to evaluate the proposed approach, which recommends points of interest, e.g., restau-

rants and entertainment centers, retrieved from Foursquare API (FOURSQUARE, 2018). The

authors in (UNGER et al., 2016) compared 4 state-of-art recommender models, which are: (1)

matrix factorization model without contextual information, (2) Explicit content model, (3) The

proposed latent context model, (4) Hybrid context model, which considers both explicit and

latent context information; using RMSE, Hit@K, average ranking, and nDCG as evaluation
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metrics. The results show that the proposed approach provides up to 20% accuracy improve-

ment (UNGER et al., 2016).

2.2 Recommender Systems

The recommender systems, first proposed as collaborative filtering in (GOLDBERG et

al., 1992), was born from the necessity of filtering relevant content from the increasing amount

of information available on internet (RICCI; ROKACH; SHAPIRA, 2011). Recommenders aim

to deliver personalized list of interesting suggestions to its users (BOBADILLA et al., 2013).

Those items might be content from many domains, such as songs, movies or books.

Recommender systems received a great deal of attention after the Netflix Prize (BEN-

NETT; LANNING et al., 2007) was announced. This challenge, proposed by Netflix in 2006,

made their dataset of anonymous movie ratings available and awarded a grand prize to the solu-

tion that provide at least 10% accuracy improvement compared to their own system (BENNETT;

LANNING et al., 2007).

According to Burke’s taxonomy (BURKE, 2002), recommender techniques are divi-

ded into four classes: Collaborative Filtering, Content-Based, Demographics, and Knowledge-

Based; Collaborative Filtering being one of the most popular recommender techniques. More

recently, another technique class has risen in recommender system studies and applications,

the Context-Based (or Context-Aware) Recommender Systems (ADOMAVICIUS; TUZHILIN,

2015). Two or more of those recommender techniques are often combined into Hybrid Re-

commenders (BURKE, 2007) in order to achieve greater performances on either accuracy or

computational cost, or even to deal with classic recommender challenges such as sparsity or the

cold-start problem.

Collaborative filtering recommenders leverage the similarity between items or the simi-

larity between users. They often rely on ratings data, focusing on the interaction of the users

with the items rather than the content of the items.

In user-based collaborative filtering, ratings are predicted for items users have not consu-

med based on how similar users have rated those items (DESROSIERS; KARYPIS, 2011). Fol-

lowing the Tapestry (GOLDBERG et al., 1992) proposal, some early works adopted and evol-

ved user-based collaborative filtering techniques by proposing new collaborative systems (RES-
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NICK et al., 1994) and by evaluating and comparing different user-based recommender algo-

rithms (BREESE; HECKERMAN; KADIE, 1998).

A collaborative recommender based on Facebook data was combined with content-based

and expert-based approaches into an hybrid recommender, called TastedWeights (BOSTAND-

JIEV; O’DONOVAN; HÖLLERER, 2012). This approach recommends music through an inte-

ractive user interface that discloses recommendation process details and allows users to control

it.

In (ZANOTTI et al., 2016), A model-based collaborative filtering is proposed, based

on Continuous Bag of Words (CBOW) and Skip-gram neural network topologies were applied

to build distributed representations and extract semantic relationships between data from mo-

vie domain. The distributed representation was trained using three types of data, which are:

users rating data (ratings users assigned to movies), user assigned tags data (tags users assig-

ned to movies), and movie specific data (e.g., actors, directors, genre) (ZANOTTI et al., 2016).

The users ratings and assigned tags data was retrieved from MovieLens 10M dataset (RIEDL;

KONSTAN, 1998) and the movie specific data was collected from Internet Movie Database

(IMDb) though its interface (IMDB, 2018).

Finally, a weighted hybrid RecSys was built combining all the proposed models and

traditional collaborative filtering models (ZANOTTI et al., 2016). The evaluation results show a

substantial accuracy improvement of the model-based approaches compared with the memory-

based ones, using RMSE as the accuracy metric (ZANOTTI et al., 2016). Furthermore, the

hybrid approach outperformed all standalone models (ZANOTTI et al., 2016).

Recommenders are often designed with the aim at tackling specific challenges, such as

scalability, sparsity and the cold-start problems. A recommender usually holds data from several

users and items. All this data must be processed in order to generate proper recommendations,

which may cause scalability problems since the model demands computational resources and,

depending on the model, it may periodically need additional computation to update the model.

In addition, even the most active users might rate only a fraction of the available items on the

platform. This sparsity may cause the system to fail the recommendation task due to a lack

of information. The utmost sparsity problem occurs when there is no information at all about

a user or an item, usually caused by the addition of new users or items in the system. This

scenario is often called the cold-start problem.
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Collaborative Filtering and Fuzzy C-Means Clustering are combined in (VERMA; MIT-

TAL; AGARWAL, 2013) to deal with sparsity and scalability in a movie domain, which Mo-

vieLens dataset (RIEDL; KONSTAN, 1998) was adopted. The C-Means is applied to cluster

movies by their genre (VERMA; MITTAL; AGARWAL, 2013). So, the scalability is increased

since the system applies Collaborative Filtering separately in each movie cluster, reducing the

amount of data to be matched with each other (VERMA; MITTAL; AGARWAL, 2013). Also,

the sparsity, and even the cold-start problem, is eased since it uses the movie cluster to estimate

ratings when it is unknown (VERMA; MITTAL; AGARWAL, 2013). The evaluation of the pro-

posed recommender, using MAE, showed that C-Means overcome the classic K-Means in this

context and that it is able to handle with sparsity and cold-start problem (VERMA; MITTAL;

AGARWAL, 2013).

2.3 Hybrid Recommender Systems

The main focus of Hybrid RecSys is to provide recommendations with higher accu-

racy. Hybrid recommender techniques are adopted to build the so-called TastedWeights (BOS-

TANDJIEV; O’DONOVAN; HÖLLERER, 2012), a music RecSys with an interactive user in-

terface that discloses recommendation process details and allows users to control it. This ap-

proach first builds recommenders from three data sources: Facebook (collaborative and so-

cial), Wikipedia (content-based and semantics), and Twitter (expert-based ) (BOSTANDJIEV;

O’DONOVAN; HÖLLERER, 2012). The systems hybridization combines these three models

using three different hybrid methods: weighted, mixed, and cross-source (BOSTANDJIEV;

O’DONOVAN; HÖLLERER, 2012). The accuracy of the approach proposed in (BOSTAND-

JIEV; O’DONOVAN; HÖLLERER, 2012) was evaluated using a utility metric based on Bre-

eze’s R-Score (BREESE; HECKERMAN; KADIE, 1998). The results show that all the hybrid

approaches overcome the standalone ones, being Cross-Source the best among the hybrid strate-

gies (BOSTANDJIEV; O’DONOVAN; HÖLLERER, 2012). Moreover, the interaction methods

overcome hybrid approaches (BOSTANDJIEV; O’DONOVAN; HÖLLERER, 2012).

A novel approach to build a context representation is proposed in (UNGER et al., 2016).

These contexts are based on users’ mobile phone sensors data (UNGER et al., 2016). Unsuper-

vised deep learning techniques and PCA are applied in the users’ data to learn latent contexts,

represented by numeric vectors (UNGER et al., 2016). An Android application was developed
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to evaluate the proposed approach, which recommends points of interest, e.g., restaurants and

entertainment centers, retrieved from Foursquare API (FOURSQUARE, 2018). The authors

in (UNGER et al., 2016) compared 4 state-of-art recommender models, which are: (1) matrix

factorization model without contextual information, (2) Explicit content model, (3) The propo-

sed latent context model, (4) Hybrid context model, which considers both explicit and latent

context information; using RMSE, Hit@K, average ranking, and nDCG as evaluation metrics.

The results show that the proposed approach provides up to 20% accuracy improvement (UN-

GER et al., 2016).

In (ZANOTTI et al., 2016), Continuous Bag of Words (CBOW) and Skip-gram neural

network topologies were applied to build distributed representations in order to extract seman-

tic relationships between data from movie domain. The distributed representation was trained

using three types of data, which are: users rating data (ratings users assigned to movies), user

assigned tags data (tags users assigned to movies), and movie specific data (e.g., actors, direc-

tors, genre) (ZANOTTI et al., 2016). The user rating and assigned tags data was retrieved from

MovieLens 10M dataset (RIEDL; KONSTAN, 1998) and the movie specific data was collected

from Internet Movie Database (IMDb) though its interface (IMDB, 2018). Then, user-based and

item-based collaborative filtering models were built based on both CBOW and Skip-gram dis-

tributed representations (ZANOTTI et al., 2016). Finally, a weighted hybrid RecSys was built

combining all the proposed models and traditional collaborative filtering models (ZANOTTI et

al., 2016). The evaluation results show a substantial accuracy improvement of the hybrid ap-

proach compared with all standalone models, using RMSE as the accuracy metric (ZANOTTI

et al., 2016).

Hybrid approaches are often applied to tackle specific challenges, such as scalability,

sparsity and the cold-start problems. A RecSys usually holds data from several users and items.

All this data must be processed in order to generate proper recommendations, which may cause

scalability problems since the model demands a lot of computational resources to be build and,

depending on the model, it may need additional high-priced computation to update the model

from time to time. In addition, even the most active users rates only few of the available items

in the RecSys. So, this sparsity aspect sometimes causes the system to fail the recommendation

due to lack of information. The utmost sparsity problem is when there is no information at all

about a user or an item, usually caused by the add of new users or items in the system, which is

the so-called cold-start problem.
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In (NIU et al., 2016), a Feature Combination Hybrid RecSys is proposed aiming at dea-

ling with sparsity problem. A novel rating prediction strategy is proposed, which train a classi-

fier, adopting Random Forest in this case, to forecast ratings based on three information, which

are: items side information features, such as movie data from IMDb (IMDB, 2018) or tags ex-

tracted from online platforms using Natural Language Processing (NLP); users profiles made

by their favorite items; the ratings users have already assigned to items (NIU et al., 2016). The

proposed prediction strategy is then applied to predict all the missing ratings in the data (NIU et

al., 2016). The new user vector is used to compute users similarity, using traditional similarity

metrics, as cosine, adjusted cosine, and correlation-based, and also a novel similarity metric,

the so called Customer Relative Interest (CTRI) (NIU et al., 2016). Finally, the hybrid system,

called FUIR, combines item and user-based collaborative filtering to compute the top-N predic-

ted items (NIU et al., 2016). The experimental evaluation in (NIU et al., 2016) was conducted

using three datasets, which are: MoveiLens (RIEDL; KONSTAN, 1998), Book-Crossing (ZIE-

GLER et al., 2005), and LastFM (LASTFM, 2018). The results suggests that FUIR algorithm

effectively deals with sparsity of data and provides high quality recommendations according to

MAE evaluation (NIU et al., 2016).

In (YIN et al., 2013), The LCARS, a location-content-aware RecSys, is proposed to ge-

nerate recommendation, with venues and events as the items, to people that are traveling. In

this context, the user-item matrix is very sparse since a user can visit only few places in a limi-

ted space range (YIN et al., 2013). Furthermore, the system has no local historic information

about users who are traveling to new cities (YIN et al., 2013). To deal with this issues, the

LCARS exploits location and content information about the spatial items though the proposed

LCA-LDA offline model, which learns user interests and city local interest (YIN et al., 2013).

The online step computes the top-k recommendations, optimized by an extension of Threshold

Algorithm (YIN et al., 2013). In the experimental evaluation, Foursquare and DoubanEvent

datasets were adopted, using Google Maps API to partition spatial items into cities and Natural

Language Processing toolkits to extract content words from the events summary and description

in DoubanEvent dataset only (YIN et al., 2013). The proposed model was compared with seve-

ral traditional and state-of-art models, such as User interest, social and geographical influences,

Category-based k-Nearest Neighbors Algorithm, Item-based k-Nearest Neighbors Algorithm,

LDA, Location-Aware LDA, and Content-Aware LDA (CA-LDA) (YIN et al., 2013). Accor-
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ding to the experimental evaluation, using Recall@k as the effectiveness measure, the proposed

LCARS significantly overcomes the other models (YIN et al., 2013).

Considering the huge amount of data in the Big Data era, some effort have been made to

use Hybrid RecSys to ease processing time and computational resource allocation to compute

all this data.

In (VERMA; PATEL; PATEL, 2015), the Hadoop framework (WHITE, 2012) was ex-

ploited to provide scalability, distributed and fault-tolerance RecSys to run in low-cost hardware

by using MapReduce (DEAN; GHEMAWAT, 2008) programming model. The RecSys model

in (VERMA; PATEL; PATEL, 2015) was built using Mahout architecture (OWEN; OWEN,

2012). The evaluation, made using different sizes of MovieLens dataset (RIEDL; KONSTAN,

1998), show that the execution time do not increase at the same ratio as the data size.

2.4 Recommendations in Distributed Environments

Taking advantage of smart-phones with high computational capabilities, decentralized

approaches in recommender systems have recently attracted attention. In (TAO, 2015), a mo-

bile advertising recommender is proposed to perform distributed large scale recommendati-

ons in real-time. The users are grouped by their location and there is one recommender to

meet each group separately (TAO, 2015). The communication between all recommenders is

made through high speed networks (TAO, 2015). The distributed system is built using Hadoop

framework (WHITE, 2012), which provides tools for performance and low latency applicati-

ons (TAO, 2015).

A distributed cloud-based service recommendation system is presented in (GANCHEV;

JI; O’DROMA, 2015). Based on the “always best connected and best served” (ABC&S) para-

digm, arising from the emerging ubiquitous consumer wireless world (UCWW), this systems

aims at providing a personalized list of preferred mobile services considering contexts related

to users, services and network (GANCHEV; JI; O’DROMA, 2015).

In (KERMARREC et al., 2010), both user-based and item-based collaborative filtering

algorithms are compared in a decentralized environment. Moreover, a user-based random walk

approach for decentralized systems, which is designed to deal which sparse data, has been pro-

posed (KERMARREC et al., 2010). The approach is evaluated with different sparsity, similarity

measures and neighbourhood configurations (KERMARREC et al., 2010). The authors analyze
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the effects of the most active users in the random walk approach, which tend to intensify the

influence of those user over users with less ratings (KERMARREC et al., 2010). Adopting

the MovieLens 10M dataset (RIEDL; KONSTAN, 1998), the experimental evaluation suggests

that the proposed algorithm outperforms other collaborative filtering techniques in precision

considering distributed P2P environments, where user-based techniques perform better than the

item-based ones (KERMARREC et al., 2010).

A decentralized collaborative filtering based news dissemination system, called What-

sUp, is presented in (BOUTET et al., 2013). This system is central authority independent (BOU-

TET et al., 2013). WhatsUp builds an implicit social network, where users are clustered ba-

sed on the ratings (like or dislike) they assigned to news they have received (BOUTET et al.,

2013). The authors also proposed a novel heterogeneous gossip protocol, which biases the in-

formation dissemination based on users’ taste and amplifies the dissemination of popular news

items (BOUTET et al., 2013). The proposed system was compared against social cascades and

distributed collaborative filtering schemes, outperforming them in terms of precision, recall and

harmonic mean using three different datasets: a synthetic dataset, a real dataset crawled from

Digg, and a news survey dataset conducted by the authors (BOUTET et al., 2013).

In (YANG; HWANG, 2013), the iTravel system is proposed. iTravel is a cost-effective

travel recommender system that provides on-tour attraction recommendations to tourists (YANG;

HWANG, 2013). The users’ rating information is exchanged through P2P communication, achi-

eving infrastructure-free and cost-free convenience in communication tasks (YANG; HWANG,

2013). The authors proposed three approaches of data exchange: (1) Unconditional — all the

ratings lists is exchanged between close users; (2) Preference-based — only ratings lists that

are similar to the recipient’s rating list is sent; and (3) Hybrid — combines the other two appro-

aches aiming at users with atypical taste who can be prevented from acquire enough rating data

for recommendations in the preference-based approach (YANG; HWANG, 2013). The experi-

mental results showed that the data propagation methods improved recommendation accuracy

over the systems without data propagation (YANG; HWANG, 2013). Also, a user evaluation

was conducted, showing that iTravel can provide useful and proper recommendations to support

travel decisions (YANG; HWANG, 2013).

Based on collaborative filtering and the decentralized matrix completion algorithm, a

decentralized recommender is proposed in (WANG et al., 2015). In this context, users could

only exchange limited data with users that are nearby and data is computed locally, providing
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privacy, scalability, and robustness benefits (WANG et al., 2015). Using average percentile

score, which is based on the average ranked order, as the evaluation measure, the experimental

results showed that the proposed recommender achieve similar performances compared with

other state-of-art recommender techniques (WANG et al., 2015).

In (ARNABOLDI et al., 2013), opportunistic sensing services are exploited to perceive

context and social information in order to support a mobile social network, called DroidOpp-

PathFinder, for people who enjoy outdoor physical activities. In DroidOppPathFinder, people

share information about paths for physical activities (ARNABOLDI et al., 2013). Combining

users’ interest and environmental data collected by the sensor, the proposed solution recom-

mends the best path in a specific area (ARNABOLDI et al., 2013).

In (ARNABOLDI et al., 2017), a tag-based recommender, called PLIERS, is exploited

into a decentralized environment, where data exchange is made through D2D communications

only. This framework is called Pervasive PLIERS (p-PLIERS) (ARNABOLDI et al., 2017). The

proposed framework was evaluated using synthetic and real data in three different scenarios: (1)

users attending to Expo2015; (2) users attending a scientific conference; and (3) users during a

working day in the city of Helsinki (ARNABOLDI et al., 2017). The experiments showed that,

in an opportunistic environment, p-PLIERS can generate recommendations that are as effective

as the ones achieved in a centralized approach (ARNABOLDI et al., 2017).

A location-privacy recommender using opportunistic networks is proposed in (ZHAO;

YE; HENDERSON, 2016) aiming to mitigate privacy issues related to centralized recommen-

der systems. In this context, data is also exchanged through short-range communications and

the recommendations are locally generated (ARNABOLDI et al., 2017). The experimental eva-

luation showed that the decentralized recommender performance is close to the centralized one

after proper data are acquired (ARNABOLDI et al., 2017). Also, a reputation scheme is propo-

sed that is able to decrease the success ratio of sampling attacks (ARNABOLDI et al., 2017).
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3 OPPORTUNISTIC DISTRIBUTED RECOMMENDER SYSTEM

In this section, we present the framework for a distributed collaborative filtering recom-

mender on mobile devices employing only D2D communications to exchange messages among

users. The proposed framework builds users profiles by collecting information from their appli-

cations activities. Then, those profiles may be exchanged among users using an opportunistic

network. Later, the application will process the collected data to compute recommendations,

using collaborative filtering techniques. The opportunistic distributed recommender system

suggests several benefits over a centralized approach. The system would be trustworthy, resili-

ent, scalable, independent of internet connection, and free of a single controlling entity.

A trustworthy recommendation from a centralized system is not guaranteed. Since the

server is controlled by a private company, there is no assurance recommendations are not ma-

nipulated. Moreover, private companies can exploit the collected information to recommend

certain items. Further, the collected data are stored on their servers. The knowledge of users

activities can be applied on different areas, without the user’s permission. Our distributed sys-

tem retains critical information on the owners device. The device will restrict the data to be

exchanged among users. Therefore, users will be in full control of their personal information.

The resilience of the system is remarkable on distributed systems; the data is distributed

among users and will not present a single point of failure. The service can only be suspended

when all users are removed from the network. In contrast, a centralized approach presents a

dependency of servers, under the control of a single entity. Therefore, the stored data of both

users and items can be withheld at any time.

Centralized recommender systems can present scalability and maintenance problems. In

order to achieve optimal recommendations, a high number of profiles is necessary and compu-

ting it for each user has a high computation cost. Moreover, providing this service for millions

of users can be expensive. In the proposed framework, the burden of computing each profile

would be distributed among users. The greatest burden for a user in this framework is the ne-

cessity of exchanging messages regularly in order to renew the database. However, this burden

can be prioritized or suspended based on the user’s needs. Thus, the distributed framework can

provide a dynamic and low cost alternative for the computation and storage of data.

Considering that the proposed framework adopts an opportunist network as its exclusive

method to exchange messages, it is expected that the system would have similar advantages

common among other opportunist networks. The framework is independent of internet connec-
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tion and may occasionally if at all connect to a centralized server. Consequently, this appro-

ach is particularly desirable in regions where the internet connection is scarce and unreliable.

However opportunist networks have some drawbacks. A network based on message passing

between devices must include enough interactions between users to allow for the dissemination

of information. As more people join the network it becomes more reliable. However, if the fra-

mework is deployed in areas where people are isolated, users may not have enough information

to produce useful recommendations.

3.1 Scenarios

Generally opportunistic networks applications are designed for emergency scenarios,

since they are infrastructure-less. Analogous to this condition, we have examples of under-

developed communities could have limited internet access due to high prices or intermittent

providers. Despite of the obvious advantage of use on those scenarios, a recommender sys-

tem independent of internet connection could be suitable for daily proposes, especially in less

developed countries. Our solution aims on building a local knowledge of the population and

recommend the most suitable content for each individual.

The proposed framework was designed as a community building a shared database,

where the data is stored locally on devices and maybe shared among members. The data col-

lection will occur locally on each member device, selecting exactly which information would

be shared among the network. When those users are close in distance, the framework would

automatically connect their devices, sharing selected data during the connection time. After

a period of time, the members belonging to this community could have shared enough infor-

mation to have construct a reliable recommendation system. As new users are included in the

system, the recommendations will become more accurate and reliable.

Alternatively, consider people during a political rally seeking for information and pri-

ming for the anonymity. The system would be capable of selecting relevant information and

distribute among participants. Therefore, the gathered data would be temporary and related to

that event. Furthermore, the recommendations processed on the circumstance would only be

stored on users related to it.

Figure ?? represents an agglomeration of people on the downtown of a city. This scena-

rio might portray pedestrians at a concert in the center of a city. The vehicles outside the radius
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Figure 3.1 – "The ONE"simulator downtown dense simulation.

Source: Author

of the concert would be traveling around the city. Therefore, general information collected on

crowded regions can be distributed by high speed nodes.

A remarkable detail on the first scenario presented was the agglomeration on the central

area, clearly benefiting our proposed framework. In Figure 3.2 represents a realistic scenario

with different cities with the population distributed randomly. The population contains people

on bikes, motorcycles, cars, or even on foot. Having the population with sparse distribution and

lower speed, individual users would not perform enough trades to acquire suitable profiles. A

specialized approach was designed to answer those needs. The framework will be presented in

details in Section 4.2 with the specifics configurations for each designed scenario.

3.2 System Overview

In this section we illustrate the key modules of the proposed framework. The opportu-

nistic distributed recommender system is organized into four components: 1) Users Represen-

tation, 2) Communication, 3) User Profile Ranking, 4) Recommendation.
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Figure 3.2 – A portion view of three of the cities simulated on our second experiment. The city
in the center is Lavras; the west side is Ribeirão Vermelho; the north portion is
Perdões.

Source: Author

Figure 3.3 – Modules communication.
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Source: Author

Figure 3.3 illustrates how each component communicates with one another. In order to

produce recommendations the system will select the most relevant profiles to be stored on each
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device’s buffer. The buffer is the storage for users profiles, that will separated on a primary

buffer, containing host’s neighbors profiles and the secondary buffer, containing relevant in-

formation for the network. Therefore, user representation module computes the host metadata

to build its profile. The modeled profile is stored on the buffers, the host and stored profiles

will be exchanged by the communication module. Later, the user profile ranking will select the

most relevant profiles to be stored on the primary buffer and the remaining data will selected

according to the secondary buffer strategy. The function of each module operates is highlighted

in Figure 3.4. Those modules are described in depth in the following sections.

3.3 Users Representation

Algorithm 1: User Representation
Function UserRepresentation(Buffer hostBuffer)

while onItemConsumption() do
storeOnDevice(metadata);

end
if onScheduler() then

hostProfile = dataPreprocessing(storedData());
updateBuffer(hostProfile);

end
Function dataPreprocessing(Profile hp)

if hp contains r<u,i> then
userModel = [hp.idu, hp.idi, hp.r<u,i>];
return userModel;

end
else

ratings = computeRating(hp);
userModel = [hp.idu, hp.idi, ratings];
return userModel;

end

The user representation component is responsible for collecting and modeling the users’

information. Therefore, the system will oversee the user’s activities and store metadata for the

application. From this data, the application will construct the user profiles.

Gathering certain information could cause privacy concerns due to the distribution of

user data across the network. Therefore, the framework collects that information and creates

an anonymous profile to be shared. A random user ID is generated and employed as the key to

access the user’s profile.
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Figure 3.4 – The figure illustrates the organization of the framework. An important observation
is that the four components will be constantly working independent of each other.
User representation will collect information and model user profile. The communi-
cation module exchanges modeled profiles as handshake messages and selects the
top n profiles to be send. The user profile ranking selects which profiles will be
stored and discarded. The recommendation component employs profiles stored as
the neighborhood and computes recommendations.
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The system will store data from all users entertainment activities. The component is

aware of their actions and will store only necessary data. For example, when a user is liste-

ning to a song, the system verifies its history and updates or adds the item to the user profile.

The application may store its title, artist, plays, and timestamp. At this stage the data can be

cleaned and pre-processed. The application may clean noisy data, resolve redundancy, or re-

move outliers. Later, these processed profiles can be used to create a suitable user model for the

recommender system.

Data pre-processing is any process performed on raw data to transform into another

format. Generally, real world datasets are noisy, incomplete and inconsistent. Moreover, they

contain errors, missing values, outliers, and discrepancies in values. Major tasks in data prepro-

cessing are data cleaning, integration, transformation, and reduction.

Algorithm 1 describes how the users representation module will capture the metadata

and generates a user model. Anytime a user consumes an item, the framework will store meta-

data related to that item. Periodically, the system will build the user model, later employed the

user modeled profile. If stored items had a given rating, it will store the information directly.

Otherwise, the information will be processed to be suitable for the model.

A user model is defined by an user id and a vector representation of users over the item

space. Therefore, a user u is represented by a tuple (idu,U), being idu a randomly generated id

and U a set of items that the users u has rated. The set U is composed by item tuples (idi,r<u,i>),

where idi stands for the item id and r(u, i) stands for the rating user u assigned to item i.

3.4 Communication

An opportunistic networks is a mobile ad hoc network on which the communication

between nodes is temporary and within a small radius, communicating not further than walking

distance. In ad hoc communications, nodes can communicate without the aid of an access point.

Generally, nodes are mobile, communication paths are not predetermined, and the messages can

be exchanged among the nodes towards its destination.

For example, imagine a user who wants to send an important message, but the internet

connection is not available. The network was designed to take advantage of mobile nodes.

Therefore, when a node want to send a message to a destination, it will search for the most

likely neighbor to deliver the message to its destination. Each node receiving that message will
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Algorithm 2: Communication module.
Function Communication(pBuffer hostPBuffer, sBuffer hostSBuffer, Message
message)

pBuffer = getHostProfile(hostPBuffer);
listProfiles = idsProfiles(hostPBuffer);
if onSender() then

if onContact() then
sendHandshake(pBuffer, listProfiles);

end
if onReceivedRequest() then

if requestedNeighbors then
sendNRequestedProfile(pBuffer);

end
else

sendAllProfiles(sBuffer);
end

end
end
if onReceiver() then

receivedProfile = message.senderProfile;
if RankProfiles(receivedProfile) is valid then

requestTopNProfiles();
end
else

requestSBufferProfiles();
end
if onReceivedProfiles() then

for p in message.profiles do
RankProfiles(p);

end
end

end

verify which neighbor is the most appropriate to be the next hop. The message will be stored on

the device during a period of time, if there is no encounter, the packet will be deleted eventually.

Opportunistic networks are usually implemented on scenarios of emergency, where the internet

connection is not a possibility and information have to be sent to a person, company or to a base

station.

In our proposal, an opportunistic network is employed to create a distributed recom-

mender system. As presented on Section 3.3, the framework will build a modeled profile for

each user. Then, the communication module will be responsible for detecting users to exchange

profiles. In order to establish the communication without a wireless router, we adopt the Wi-Fi
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Direct technology. The closest interface to Wi-Fi Direct is the Bluetooth. Comparing these two

technologies, there is a large differences in range and transmission speed. The Wi-Fi Direct

offers speeds of up to 250Mbps and has a stated maximum distance of more than 200 metes,

compared to Bluetooth that offers up to 25Mbps in speed and has a maximum distance of 100

meters (ALLICENCE, 2018a; ALLICENCE, 2018b; DIDELES, 2003). Range and speed are

components that provide a most efficient implementation of a distributed recommender system.

Alternatively, the framework could employ 5G technology to improve its performance.

The communication component sends periodic broadcast messages to establish commu-

nication between nearby mobile devices (Algorithm 2). When an encounter occurs, a handshake

message is exchanged, containing the host profiles and a ID list of profiles stored on the primary

buffer. As sender, on the first contact the handshake message will be sent and the device will

wait for a request of profiles. When the request is received, the module will sent the N most

similar profiles stored that are not in the ID list of profiles received. As receiver, the module

will check if the received profile is a potential neighbor, which the Ranking Module will com-

pute, it will be explained how to compute the similarity on Section 3.5. If the Ranking Module

stored the received profile, it will request the top N profiles that are not on the buffer. Later, it

will receive those profiles, adding most relevant on the buffer and selecting from the remaining

profiles which should be stored on the secondary buffer accordingly to the strategy, otherwise,

it will be discarded. The ID list of profiles is used to remove items that are already in possession

of the receiver, avoiding the exchange of redundant information. Profiles will be resent if the

stored profile is outdated. Scenarios was taken from (OpenStreetMap contributors, 2017).

3.5 User Profile Ranking

Employing collaborative filtering technique on a memory-constrained device presents

many unique challenges. The amount of leveraged information and the quality of the recom-

mendation are often directly proportional. Therefore, limiting the number of stored profiles

could be a significant drawback on the accuracy of the system. The ranking module was desig-

ned to reduce this handicap by selecting the most relevant information for each device.

User-based collaborative filtering computes the similarity between users, then selects the

best neighbors for each user. It then employs the knowledge shared from its neighbors to make

a recommendation. The user ranking module reproduces the collaborative filtering algorithm on

demand, storing only the profiles of the k most relevant neighbors for that user. Therefore, the
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Algorithm 3: Rank module.
Function RankProfiles(Profile receivedProfile, Buffer pBuffer)

h = getHostProfile(pBuffer);
th = similarity(h, lastProfile(pBuffer));
if (similarity(h, receivedProfile) > th) then

addBuffer(pBuffer, receivedProfile);
sortBySimilarity(pBuffer);
if nUser(pBuffer) > bufferSize then

discard(lastUser(pBuffer));
end
return true

end
else

secondaryStrategy(receivedProfile);
return false

end

size of the user’s neighbor buffer will be set as the number of neighbors used in the collaborative

filtering algorithm.

In order to calculate the similarity between users, the user ranking module employs the

cosine similarity (Equation 3.1) (ABELLO; PARDALOS; RESENDE, 2013), which proved to

be the most efficient for our system in the previous work (BARBOSA et al., 2018). However, the

standalone metric did not produce optimal recommendations. Therefore, the system employs a

threshold in order to improve it. The users needs at least 10 items in common to be considered

a relevant neighbor, not discarding the profile, but lowing its tier.

Cosinesim(A,B) =
∑

n
i=0 AiBi√

∑
n
i=0 A2

i

√
∑

n
i=0 B2

i

(3.1)

The user rank module is responsible for ranking and sorting stored profiles according

to their relevance, then discarding obsolete ones. Profiles will be discarded if it meets one of

these following conditions: the buffer is full and the received profile similarity is lower than

the least similar profile stored, or the profile is outdated. Since our system aims for daily

use application, profiles stored would be temporary. When a modeled profile is received, the

framework will calculate the similarity between host profiles and receive profile, if it is greater

than the threshold (least similar stored profile), it will be stored, otherwise, the profile will be

discarded, or stored on a secondary buffer

The secondary buffer was implemented due the nature of recommender systems and

opportunistic networks. The majority of users will consume popular items, this is a fact. Howe-
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ver, those who have consumed peculiar items will be affect by a communication protocol that

prioritize most relevant information. Furthermore, users which did not exchanged enough in-

formation due to lack of movement, consequently, lack of encounters with an abundance of user

profiles, will not have most suitable profiles stored on their devices.

The strategy of a secondary buffer is to carry relevant information to users in need.

Therefore, before discarding dissimilar profiles the communication module will store a portion

of those profiles accordingly to a strategy in order to delivery relevant information to grey sheep.

The communication module is explained step by step on Algorithm 3, the different techniques

for the secondary buffer will be discussed in depth on the Section 4.

3.6 Recommendation

Algorithm 4: Recommendation.
Function Recommend (Buffer hostBuffer)

h = getHostProfile(hostBuffer);
for p in hostBuffer do

Iu = itemsRatedBy(p)
s = score(p, h, Iu)
recommendations += (p, s);

end
sortByScore(recommendations);
return recommendations;

The last component is responsible for computing the recommendations based on profiles

collected in the system’s buffer. Collaborative filtering techniques assumes that users who con-

sumed an item in the past, will consume similar items in the future. It creates a neighborhood of

similar items or users, then employs the knowledge of the past to recommend items. Moreover,

the recommendation component will employ the collected data as the user neighborhood and

make predictions based on the items and ratings that his neighbors have consumed.

When these recommenders rely on user similarity, they are called user-based collabo-

rative filtering (UBCF). Given a user u and item i a predicted rating p(u, i) is produced by

identifying a neighborhood, N, of the k most similar users and leveraging their ratings, r(n, i),

on the item:

p(u, i) =
∑

N
n sim(u,n) · r(n, i)

∑
N
n sim(u,n)

(3.2)
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Algorithm 5: Recommendation
Function Recommend(Buffer hostBuffer, Integer N)

h = getHostProfile(hostBuffer);
P = getStoredProfiles(hostBuffer);
Ih = itemsRatedBy(h)
Ic = /0
for p in P do

Ip = itemsRatedBy(p)
Ic = Ic ∪ (Ip − Ih)

end
Ir = /0
for i in Ic do

Ir = Ir + predictRating(h, i,P)
end
sortItemsByRating(Ir)
recommendations = topNItems(Ir,N)
return recommendations;

In our framework, the recommendation component receives the k most relevant profiles

from previous units, limiting its responsibility to apply the adopted method and to compute

the recommendations. The computation is performed in a periodic manner (Algorithm 5). In

order to recommend an item for the host, the recommendation module will employ all profiles

stored on his buffer. The module will create a list of items the host did not consume but the

host neighbors did (Ic), which are the items to be recommended. Ratings the host would assign

to items in Ic are predicted based on users which are similar to the host and the ratings they

have assigned those items, following Eq. 3.2. Then, the list is sorted by the predicted ratings,

defining the most relevant recommendations that will be presented to the host.
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4 EXPERIMENTAL RESULTS

In this section, we discuss the methods employed to evaluate the distributed recom-

mender system. The following section presents the metric employed to evaluate the system.

Section 4.2 deliberates on scenarios and setups of each simulation. On section 4.3 we explain

which datasets were employed, and what techniques were exploited to produce modeled profiles

for each user. Finally, we discuss the obtained results on each scenario, using two datasets.

4.1 Evaluation Metric

Our proposed framework was evaluated based on its ability to predict a user’s preference

for an item with regard to the ranking and the trade-off between the cost of exchanging n profiles

with the quality of the recommendations. In this work, results were reported employing the

normalized discounted cumulative gain (nDCG).

The nDCG (JÄRVELIN; KEKÄLÄINEN, 2002) (Equation 4.2) measures the perfor-

mance of a recommendation system based on the graded relevance of the recommended entities.

DCGk =
k

∑
i=1

2reli −1
log2(i+1)

(4.1)

nDCGk =
DCGk

iDCGk
(4.2)

Where k is the maximum number of entities that can be recommended, the reli is the importance

of that prediction, iDCGk is the maximum possible (ideal) DCG for a given set of ratings.

4.2 Simulation Configuration

In order to simulate a real-world environment we created distinct movement simulations

on The ONE simulator (KERäNEN; OTT; KäRKKäINEN, 2009). The application is capable

of simulating mobile nodes in different speed and movement model, further, it generates rou-

ting reports of delivering messages. Therefore, we can create different scenarios where users

exchange messages. The simulator allows us to create groups with different behaviours, so we

permuted groups setups in order to create 30 different simulations.
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Each user profile was divided equally across five partitions, employing four folds to train

and build the recommender, and the fifth one to test. First, we simulate the path of users, their

encounters and message exchanged. Then, the report generated by The ONE was employed

as input of encounters. On the framework, it will check the occurred encounters and exchange

messages between users. The user representation component is the only one which will be

reproduced before the simulation starts, producing each user profiles. Experiments were perfor-

med five times, each using a different training set as users profile content and their respective

testing set.

In order to compute the nDCG, we calculated the metric employing the following steps.

First, we trained the system on each device with the profiles stored on buffer, emphasizing that

only information from the training set of that fold would be available for the computation of

the similarity among users. Then, the framework attempts to recommend 20 items for that

user, rating and then ranking each one of them. The iDCG is calculated using the top 20 rated

profiles on the corresponding testing set and is calculated considering the ranking of items. The

observed rating is employed to calculate the iDCG and DCG.

The ONE simulator has a default scenario representing the city Helsinki. It contains

four different routes: roads, main roads, pedestrian paths, and malls. We design our simulations

to use the default scenario as baseline. Wheres nodes can have different speeds and movement

models, we create four different vehicles: pedestrians, bicycles, motorcycles, and cars. There-

fore, we could generate different simulations selecting specifics regions for each node category.

For the communication module, we set the transmission speed of 100 Mbps, the transmission

range of 30 m, and the network interface of WiFi Direct. Those information are presented on

Table 4.1

The first scenario is intended to reproduce a university campus. Imagine a campus

where students would be moving around to perform their activities, their smartphones would

be exchanging information with their college to compute recommendations later on. The set of

students is divided into two groups: some stationary (e.g. taking their classes) and others with

movement (walking or even running). We represented those students as pedestrians (P), they

can walk on every location of the campus.

The second scenario intends to reproduce a city downtown. People would be walking

close to malls or in pedestrian paths around the city. On the other hand, high speed vehicles

would be moving on main roads. Therefore, the pedestrians (P) had their walking path limited
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Table 4.1 – The ONE simulator parameters for communication interface, world map, routes, and vehi-
cles. Values employing for the world was provided as default for simulating Helsinki city.
Parameters used for created vehicles was an approximation of maximum and minimum spe-
eds in general.

2gray!5gray!15

Key Value Key Value
Map Size 4500 m X 3400 m Interface WiFi Direct
Transmit Speed 100 Mbps Transmit Range 30 m
Movement Model MapBased Buffer Size 10 profiles
Route 1 (R1) Roads Route 2 (R2) Main Roads
Route 3 (R3) Pedestrian Paths Route 4 (R4) Mall
Pedestrian (P) 0-5.4 Km/h Bicycle (B) 7.5-23 Km/h
Motorcycle (M) 9-40 Km/h Cars (C) 10-50 Km/h

Source: Author

to routes 3 and 4, bicycles (B) were limited to routes 2 and 3, motorcycles (M) were limited to

routes 1 and 4, and cars (C) were limited to routes 1 and 2

Those scenarios were designed in order to illustrate the progressive enhancement beha-

vior of the distributed system on crowded and non-crowded areas. Since on campus area the no-

des maximum speed would be 5.4km/h, the aid of exchanging multiple profiles becomes more

clear. On downtown scenario, the aid of high speed nodes to distribute information among

distant nodes. Likewise, we expected that different densities would affect the quality of the

recommendation, considering that a higher number of users represents a high number of en-

counter and possible similar neighbors. Therefore, on each scenario we have population of 200

and 500 nodes, evaluating the recommender progression on different densities.

The simulations for of scenarios considered a time period of 60 minutes, generating

recommendations every 5 minutes. A small timelapse for each recommendation was preferable

due to fast convergence of recommendations. The simulations were performed using 10 as

the maximum number of profiles stored on buffer, disregarding the host. The experiments

were executed in order to identify the ideal number of messages that should be exchanged on

each encounter. We simulated different exchanging methods. On each encounter, users could

exchange 0, 2, 5, or 10 profiles per encounter (n). Therefore, when an encounter occurs at least

the sender profile would be exchanged (n = 0). Then, if the similarity of the sender and receiver

is greater than the threshold, the receiver will request n profiles from the buffer. In order to

obtain statistically relevant results, each experiment was executed 30 times. The configuration

of each scenario are presented in Table ??.
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Table 4.2 – The ONE scenarios specific configurations for each scenario. Those configurations
were employed as an attempt to emulate real-world scenarios as a campus and a
downtown of a city. We increase the population on both scenarios in order to deter-
mine the behaviour of the framework with the increase of data.

2gray!5gray!15

Scenario Nodes R1 R2 R3 R4

Campus Sparse (CamS) 200 P1 ✓ ✓ ✓ ✓
Campus Dense (CamD) 500 P1 ✓ ✓ ✓ ✓

120 P ✓ ✓
20 B ✓ ✓
20 M ✓ ✓

Downtown Sparse (DowS)

40 C ✓ ✓
300 P ✓ ✓
50 B ✓ ✓
50 M ✓ ✓

Downtown Dense (DowD)

100 C ✓ ✓

Source: Author

Subsequently, we have built a scenario that would represent our routine. The maps made

available by Open Street Map (OpenStreetMap contributors, 2017) were employed as baseline

for the creation of a second map to The ONE simulator. We recreated the Brazilian’s suburban

cities such as Lavras, Perdões, Itumirim, Ribeirão Vermelho, and Nepomuceno. Those are small

cities from the state of Minas Gerais. The highways which connects those cities were removed.

Instead, we added small bridges. Therefore, each city would have just one way in and out,

except Lavras, that was putted in the center of the map, connecting everything (as represented

on Figure 3.2).

The objective of building the a realistic scenario was to expose the flaws of having

segregated groups on each city and the lack of information collected by the main technique to

grey sheep users. The regions will have a specific niche of users, since the majority of them will

have encounters with people from their own region. Consequently, a secondary buffer strategy

would be necessary in order to improve recommendation for stationary users and to those ones

which consume peculiar items.

In Section 4.5.1 will be discussed the trade-off exchanging βN profiles on each encoun-

ter. The optimal number of profiles stored and exchanged are key to develop a functional dis-

tributed recommender system. In Section 4.5.2 we deliberate alternatives to support grey sheep

users. Due to the nature of opportunistic networks and recommender systems, users which have

peculiar item consumption will undoubtedly have disadvantages on their recommendations.

Therefore, we propose a secondary buffer strategy in order to help them.
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4.3 Dataset

The simulations employed users from the “Last.fm Dataset - 1K users” (LASTFM,

2018; CELMA, 2010) and “MovieLens 100K Dataset” (HARPER; KONSTAN, 2016). As dis-

cussed in Section 3.3 some data processing was needed. LastFM dataset contains artist name,

track name, user ID, artist ID, track ID, and timestamp. On the other hand, MovieLens contains

user id, item id, rating, and timestamp. User-based collaborative filtering requires user ID, items

ID, and ratings of each profile to produce recommendations.

Considering the amount of information provided from LastFM, removing missing va-

lues, redundancy, and unnecessary information is only the first step. To compute the preference

for an artist, we adopted, after exhaustive empirical evaluation, the logarithm min-max norma-

lization:

ratinga =
log pa − logminpu

logmaxpu − logminpu

(4.3)

Given an artist a and a user u, the rating is calculated considering the number of plays

that artist had (pa), the most and least listened artist by u (max(pu) and min(pu)).

The data transformation technique (Equation 4.3) was applied on the dataset adjusting

values measured on different scales to a common scale. The new ratings range between [1,5].

The logarithm transformation was applied on the number of plays in order to scale down

their values, since the artists who people like the most have a much higher value than others.

Then, the min-max normalization technique is employed to define the ratings limits, having the

most and least favorite artists as its min and max.

On MovieLens the given ratings were provided. We removed any redundancies and

missing values. Then, we removed users which did not consume at least 10 items. Those users

were remove because our work does not dealing with cold start problems.

4.4 Assessment of the Centralized Approach

In order to select the best method and metrics for our distributed approach, the colla-

borative filtering methods were first appraised using a centralized approach. The user-based

and item-based collaborative filtering algorithm were evaluated considering its coverage, the

percentage of items the system was able to recommend. We employed different metrics to com-
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pute the similarity between users. The results of our experiments are presented in Tables 4.3

and 4.4.

Table 4.3 – Coverage results in different metrics employed on a data centralized item-based
collaborative approach.

2gray!5gray!15

Metric K5 K10 K20 K50 K80

Manhattan 0.111 0.159 0.212 0.291 0.337
Euclidean 0.176 0.239 0.308 0.402 0.451
Chebyshev 0.250 0.336 0.422 0.525 0.571
Cosine 0.336 0.413 0.493 0.557 0.609

Source: Author

Table 4.4 – Coverage results in different metrics employed on a data centralized user-based col-
laborative approach.

2gray!5gray!15

Metric K5 K10 K20 K50 K80

Manhattan 0.082 0.181 0.342 0.578 0.715
Euclidean 0.129 0.217 0.386 0.609 0.723
Chebyshev 0.384 0.507 0.599 0.719 0.776
Cosine 0.556 0.644 0.711 0.776 0.794

Source: Author

Both collaborative filtering algorithms presented the same relation regarding the metrics.

The cosine similarity metric performed better for all neighboring configuration in both methods,

followed by the Chebyshev, Euclidean and Manhattan distances. Therefore, the Cosine metric

was chosen as the metric for our distributed approach.

Considering the neighborhood k, as k increases so does the Coverage with diminishing

returns. The results presented in k50 and k80 were only slightly different. In order to save

memory space of the mobile devices in the distributed approach, we decided to fix k50 as the

maximum number of neighbors.

On this dataset, the user-based collaborative filtering performed better than the item-

based filtering for all tested metrics, which led to the decision to use the user-based method in

our distributed approach. It should also be noted that the sharing of a user profile (stored on the

user device) is simpler than sharing item profiles (potentially stored across multiple devices)

thus making user-based collaborative filtering a more natural choice in this framework. The

results presented here are used as a base comparison for the distributed approach, whose results

are introduced in the next section.
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4.5 Assessment of the Distributed Approach

In this section, the results of our experiments are presented. The simulations were exe-

cuted for a different limit of exchanged profiles, different scenarios, and different storage dis-

positions. The configurations are named as βN, where β stands for the number of exchanged

profiles besides the host profile, i.e., 0N, for example means that only host profile is exchanged

on the handshake message. It is important to remark that β is the additional maximum number

of exchanged profiles per encounter, since only new profiles will be transferred. When a profile

is already in the recipient buffer, it will not be requested again. The only profile always sent is

the host.

4.5.1 Primary Buffer

The first experiments were carried out employing the MovieLens dataset. Figure 4.1

presents the nDCG obtained in one hour simulation for the MovieLens Downtown Sparse

(MDownS) scenario, for different number of maximum exchanged profiles per encounter (0N,

2N, 5N, 10N). Moreover, the optimal results obtained when nodes have global knowledge is

also displayed. It is possible to notice that, for all number of exchanged profiles, the nDCG ri-

ses when time elapses. As expected, the less exchanged profiles the lower nDCG improvement.

In the beginning of the simulation, it is possible to notice a fast development of the recommen-

dations since every encounter brings a lot of new profiles to the nodes. As time elapses, the

encounters bring less novelty, therefore nDCG improvement is slowed down. It is also possible

to notice that the number of maximum exchanged profiles (β ) have a large impact in the results

when comparing the experiment where nodes just exchanging their own profile (0N) to the test

where their own profile plus other two (2N) were transferred. From this point, increasing the

number of exchanged profiles (and network traffic) brought smaller improvements. In spite of

that fact, a trade-off between the number of maximum profiles exchanged (β ) and the conver-

gence speed could be observed. Another important remark is that, after simulating one hour

of encounters, the nDCG reached levels not so far from the optimal point when β is equal or

greater than 3 (2N). This fact demonstrate that distributed recommenders may be employed in

certain real applications.
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Figure 4.1 – Results for MovieLens Downtown Sparce Scenario. The plot presents the nDCG
for the MDowS with n = 0, 2, 5, and 10. Moreover, the number of exchanged profiles
per five minutes is also depicted.
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The same figure also presents the effective number of sent profiles per node. This reflects

the network traffic. For the 0N experiment, the number of sent profiles is equivalent to the

number of encounters, since it always sends its own profile. For the other β , in addition to its

own profile, a node may sent from 0 to β additional profiles, depending on the existence of

these profiles in the recipient buffer. Thus, at the beginning of the simulation, a sightly larger

number of profiles is exchanged for β ≥ 2 when compared to the end of the simulation. It is

also possible to observe that for 5N and 10N cases, the number of sent profiles is similar due to

the high probability of encountering the same users several times, since it is a sparse scenario

the probability of encountering new information is relatively low. This means 5N is enough to

incorporate new profiles.

In a scenario with slower movements, as shown in Figure 4.3, we have a behavior similar

to the already described. Nonetheless, the nDCG stars at a much lower level. This can be

explained by the reduced speed of nodes in this scenario. In the previous one, it could be noticed

that fast nodes distribute valuable information through the network as the system starts to run.

Here, the information dissemination has a reduced speed. This low starting point is followed
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Figure 4.2 – Results for MovieLens Downtown Dense Scenario. The plot presents the nDCG
for the MDowD with n = 0, 2, 5, and 10. Moreover, the number of exchanged profiles
per five minutes is also depicted.
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by a rapid improvement for scenarios with β ≥ 2. Similarly to the previous experiment, when

each node just exchanged its own profile, the improvements were very slow. The final results,

after one hour, were far behind the downtown sparse scenario. This can be explained by the

slow movement of the nodes, which brings less encounters per time unit. As expected, the

movements of the nodes play a very important role in the convergence of our system. Similarly,

the profiles sent per node are also affected by the speed of the nodes. The number of encounters

per time unit is impacted, resulting in a lower network traffic.
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Figure 4.3 – Results for MovieLens Campus Sparce Scenario. The plot presents the nDCG for
the MCamS with n = 0, 2, 5, and 10. Moreover, the number of exchanged profiles
per five minutes is also depicted.
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Figure 4.6 – Results for LastFM Downtown Sparse Scenario. The plot presents the nDCG for
the LDowS with n = 0, 2, 5, and 10. Moreover, the number of exchanged profiles
per five minutes is also depicted.
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Figure 4.4 – Results for MovieLens Campus Dense Scenario. The plot presents the nDCG for
the MCamD with n = 0, 2, 5, and 10. Moreover, the number of exchanged profiles
per five minutes is also depicted.
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Figure 4.2 presents the nDCG for the MovieLens Downtown Dense Scenario (MDowD).

The results are similar to the MDowS scenario, with the following difference: nDCG increases

faster in the first minutes of the system. This can be explained by the greater amount of en-

counters at the beginning of the experiment. The convergence to the optimal line is also faster

with higher density. When just its own profile is exchanged (0N), the results are considerably

lower than the other configurations (2N, 5N, 10N). The network traffic in this experiment was,

in average, much higher than the Downtown Sparse scenario. When compared with the Campus

Scenarios, the difference is even higher. In this experiments, the β also influenced the number

of sent messages, since with high density, novel information is very frequent among nodes.

Figure 4.4 depicts the results for the MovieLens Campus Dense scenario (MCamD).

This scenario has a similar behavior to the MCamS (Campus Sparse Scenario). Nevertheless, it

is possible to notice an increased network traffic due to the higher density and a faster nDCG

convergence. This reinforces the relation between the number of exchanged profiles and the

quality of the recommendations. It is possible to notice than, after running one hour, the results

are much closer to the optimal line when compared with the sparse scenario. As general con-
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Figure 4.5 – Results for LastFM Campus Dense Scenario. The plot presents the nDCG for the
LCamD with n = 0, 2, 5, and 10. Moreover, the number of exchanged profiles per
five minutes is also depicted.
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clusion, for the MovieLens scenarios presented here, if a fast convergence to good recommen-

dations is an application requirement, a considerable number of nodes with movement should

be present in the environment.

The second set of experiments were carried out employing the LastFM dataset. When

observing this dataset in comparison with the MovieLens, it is possible to notice a much gre-

ater diversity of users. For example, one user may have consumed a lager number of repeated

items and the disparity among users is much greater then the previous dataset. These facts were

mirrored in the simulation results. We performed experiments using the same scenarios (Down-

town Sparse, Downtown Dense, Campus Sparse and Campus Dense scenarios). In general, each

LastFm scenario presented result similar to the correspondent MovieLens scenario. Nonethe-

less, the nDCG was always behind the MoviLens matching scenario. This can be explained by

the higher disparity of the LastFM dataset. To exemplify this fact, Figures 4.5 and 4.6 illustrates

the results for the Campus Dense and Downtown Sparse scenarios for the LastFM dataset.
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4.5.2 Secondary Buffer

The following experiments employed a realistic scenario and MovieLens dataset. Si-

mulating five different cities on the region of Universidade Federal de Lavras, as presented on

Section 4.2. The following results employed the complete dataset, distributing users randomly

throughout the map. The initial results demonstrate the average result across the network. It

established that increasing the number of profiles on the secondary buffer decreases the average

result. The fact can be explained since each user will store dissimilar profiles in order to support

grey sheep users.

A derivative experiment was performed to determine if employing the profile informa-

tion from primary and secondary buffer on the recommendation would have a better outcome

when compared with a scenario with only information from the primary buffer. The result

demonstrated that recommendation considering only the primary buffer would have a better

results, since the remaining profiles will only generate noises on the recommendations. Moreo-

ver, the secondary buffer technique would increase general performance on the network, since

it would have tradable information on each encounter. Specially when considering a niche of

users.

On Figure 4.7 we demonstrate how ineffective the secondary buffer approach is when

considering the entire dataset. Furthermore, we present a series of experiment considering

a selected portion of users. We have employed the K-means technique with the Euclidean

distance in order to clusterize the MovieLens dataset. Then, selected the cluster which presented

considerable improvement on outlier users. Figures 4.8, 4.9, and 4.10 displays the impact on

the recommendations for grey sheep users. The obvious drawback is a decreased performance

for users with popular taste.

The impact of the secondary buffer on grey sheep users is notable. However, the draw-

back of helping those in need are too high. Since we employed constant buffers, we have

impacted the entire environment. An alternative for this flaw is a dynamic buffer. Users which

have stable recommendations would contribute by donating part of their buffer to collect cri-

tical data for the network. Those users could be selected by the number of encounter and the

relevance of profiles collected.
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Figure 4.7 – Secondary buffer result across five different cities, considering three hours of cons-
tant movement.

Source: Author

Figure 4.8 – Scatter plot for the technique employing 5 profiles for the primary buffer and 5
profiles for the secondary buffer.

Source: Author
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Figure 4.9 – Scatter plot for the technique employing 10 profiles for the primary buffer and no
profiles for the secondary buffer.

Source: Author

Figure 4.10 – Scatter plot for the technique employing 10 profiles for the primary buffer and 5
profiles for the secondary buffer.

Source: Author
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5 CONCLUSIONS AND FUTURE WORK

On the current state of the project, we proposed an opportunistic distributed recommen-

der system employing the user-based collaborative filtering technique. The framework collects,

processes, shares, ranks and computes the recommendation for the users in a collaborative dis-

tributed manner. User profiles are exchanged when an opportunity is presented, i.e., two nodes

enter into direct communication range.

In order to produce recommendations, the following steps are performed. The user

representation component gathers users activities on entertainment applications and then per-

forms the data preprocessing in order to transform the information to an appropriate model.

The communication component will opportunistically establish a connection between users and

exchange relevant preprocessed profiles. Each node has a profile buffer and the ranking com-

ponent will discard the least relevant profiles when the application buffer is full or when the

profile is outdated. Then, the recommender is responsible for computing the recommendation

for each user.

A conventional central server approach was used to select the optimal parameters for the

distributed approach and to be used as a baseline for comparison. Simulations were performed

using The One Simulator, in order to assess the quality of the recommendations of our distribu-

ted system compared to a centralized recommender which contains the knowledge of all users’

data. Three scenarios were designed to simulate real-world environments, a campus, a suburb

and a downtown.

Furthermore, we studied different scenarios for an opportunistic distributed recommen-

der system employing user-based collaborative filtering technique. Initially, the system collects

information from user activities and builds an user model. A communication system is res-

ponsible to detect nearby users and, after a handshake, exchange relevant profiles which will

populate the buffer of our recommendation system. To decide which profiles are relevant, each

node calculates the similarity between the host and the neighbor. If this profile has a higher

value than a threshold, the TopN profiles of the neighbor will be received.

The recommendations of each node are computed based on the profiles stored on each

local buffer. In order to assess the performance of our system, we selected different scenarios

combined with two different node densities and run simulations employing The One opportu-

nistic network simulator. Two different datasets were applied in our assessment. The optimal

result for each scenario was obtained by given each node the global knowledge of the network.
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Based on these results, we compared the performance of our system during the run time of one

hour. For all the scenarios, the nDCG was improving over time, since the nodes acquire more

relevant information with the increasing number of encounters. The speed was a relevant fac-

tor in the improvement of the quality of recommendations: scenarios with nodes with higher

speeds tend to have faster improvements. The density also played a important role: a higher

exchange of information is noticed in scenarios with high density. Nevertheless, the commu-

nication costs are much higher in high density, high speed scenarios. Another important factor

was the structure of the dataset: the LastFM dataset has larger disparity among users when

compared with the MovieLens. This leads to a difficulty to recommend quality items, as more

time was needed to achieve good recommendations. In general, for scenarios with an adequate

amount of movement and considerably density of nodes, after one hour, it was possible to have

good recommendations, not so far from the optimal ones. The presented results suggest that a

distributed recommendation system can be used in real applications assuming that a minimum

density of moving users are present in the environment. Secondary buffer to carry on messages

for specific necessities on the system. As the users which consumed most popular items would

already have their most relevant neighbors, however, users which have consumed unusual items

would probably need more information to have a good recommendations. Therefore, we would

implement several strategies to fix the gray sheep problem.

The improvements on the presented components and features that still needs to be in-

cluded are presented below. The current communication module employs fixed settings regar-

ding transmission range and speed. However, this could be a reliably on battery consumption.

Furthermore, an algorithm to adapt those settings in relation to the information gathered from

the network. Increasing those variables on a moment of need and decreasing otherwise. Regar-

ding the recommendation module, different techniques can be explored as the context-aware,

content-based, and even hybrid approach. Therefore, testing different approach for the recom-

mendations combined with an optimal selection of information from the network would result

in a decentralized recommender system with low battery consumption, low cost, and great re-

commendations.
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