
 

 

 

 

 

CLAUDIO CARLOS FERNANDES FILHO 
 

 

 

 

 

BIOMETRICAL METHODS FOR ANALYSIS OF MULTI-

HARVEST FORAGE (Urochloa spp., Panicum maximum and 

Medicago sativa) BREEDING TRIALS 

 

 

 

 

 

 

 

 

 

 

 

 

 

LAVRAS - MG 

2023 



 

CLAUDIO CARLOS FERNANDES FILHO 

 

 

 

 

BIOMETRICAL METHODS FOR ANALYSIS OF MULTI-HARVEST FORAGE 

(Urochloa spp., Panicum maximum and Medicago sativa) BREEDING TRIALS 

 

 

 

 

Tese apresentada à Universidade Federal de 

Lavras, como parte das exigências do Programa 

de Pós-Graduação em Genética e 

Melhoramento de Plantas, área de concentração 

em Genética e Melhoramento de Plantas, para 

obtenção do título de Doutor.  

 

 

 

 

 

 

 

Prof. Dr. José Airton Rodrigues Nunes 

Orientador 

 

Prof. Dr. Sanzio Carvalho Lima Barrios 

Coorientador  

 

 

 

 

 

 

 

 

LAVRAS – MG 

2023 



 

         

 

Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da 

Biblioteca Universitária da UFLA, com dados informados pelo(a) próprio(a) autor(a). 

 

         

         

   

Filho, Claudio Carlos Fernandes. 

       Biometrical methods for analysis of multi-harvest 

forage(Urochloa spp., Panicum maximum and Medicago 

sativa)breeding trials / Claudio Carlos Fernandes Filho. - 2022. 

       122 p. : il. 

 

       Orientador(a): José Airton Rodrigues Nunes. 

       Coorientador(a): Sanzio Carvalho Lima Barrios. 

       Tese (doutorado) - Universidade Federal de Lavras, 2022. 

       Bibliografia. 

 

       1. Melhoramento de pastagens. 2. Genótipo x Ambiente. 3. 

Modelos Mistos. I. Nunes, José Airton Rodrigues. II. Barrios, 

Sanzio Carvalho Lima. III. Título. 

   

       

         

 

O conteúdo desta obra é de responsabilidade do(a) autor(a) e de seu 

orientador(a). 

 

 

 

 

 



 

CLAUDIO CARLOS FERNANDES FILHO 

 

 

BIOMETRICAL METHODS FOR ANALYSIS OF MULTI-HARVEST FORAGE 

(Urochloa spp., Panicum maximum and Medicago sativa) BREEDING TRIALS 

 

MÉTODOS BIOMÉTRICOS PARA ANÁLISE DE EXPERIMENTOS DE 

FORRAGEIRAS (Urochloa spp., Panicum maximum and Medicago sativa) SOB 

MÚLTIPLAS COLHEITAS 

 

 

 

Tese apresentada à Universidade Federal de 

Lavras, como parte das exigências do Programa 

de Pós-Graduação em Genética e 

Melhoramento de Plantas, área de concentração 

em Genética e Melhoramento de Plantas, para a 

obtenção do título de Doutor.  

 

 

APROVADA em 18 de agosto de 2022. 

 

Dr. José Airton Rodrigues Nunes      UFLA 

Dr. Sanzio Carvalho Lima Barrios   Embrapa Gado de Corte 

Dr. Esteban Fernando Rios    University of Florida 

Dr. Júlio Sílvio de Sousa Bueno Filho  UFLA 

Dr. Tiago de Souza Marçal    UFLA 

 

 

 

 

 

LAVRAS – MG 

2023 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedico à minha mãe, Fabrícia, pela vida, 

cuidados, ensinamentos e amor incondicional. 

 

 

 

 

 

 



 

 

AGRADECIMENTOS 

 

À minha mãe Fabrícia por todo o apoio, pela educação que me foi dada, pelo exemplo 

de prosseguir na área acadêmica, pela paciência e confiança. Mãe, seu carinho e atenção foram 

fundamentais para alimentar a esperança e prosseguir. 

Ao meu irmão Gabriel pelo incentivo, principalmente por ser o meu melhor amigo.  

A todos os meus familiares, agradeço-lhes pelo apoio, carinho, torcida e orações. 

À Universidade Federal de Lavras e ao Programa de Pós-Graduação em Genética e 

Melhoramento de Plantas, pela oportunidade de cursar o Doutorado. 

Ao Programa de Pós-graduação em Genética e Melhoramento de Plantas, sediado no 

Departamento de Biologia da Universidade Federal de Lavras, por todo o suporte para a 

realização do doutorado. 

Ao professor e orientador, José Airton, pela orientação, confiança, ensinamentos 

transmitidos, disponibilidade e, sobretudo, pela amizade construída. 

Aos professores de Pós-Graduação, pelos ensinamentos e conselhos. 

Às agências de fomento CAPES e FAPEMIG pela concessão da bolsa de estudos, 

essencial para possibilitar o curso do Doutorado e pela possibilidade de realização do doutorado 

sanduíche na University of Florida pelo Programa CAPES-PrInt-UFLA. 

À Embrapa Gado de Corte pela oportunidade de utilizar os experimentos desta tese e 

por toda a infraestrutura e apoio. 

 À Universidade da Florida, em especial, ao “Forage Breeding and Genomics Lab”, pela 

oportunidade de crescimento profissional e, principalmente, pela amizade construída entre os 

pesquisadores e estudantes.  

 Ao professor Esteban F. Rios, pela confiança, ensinamentos transmitidos e apoio. 

 Aos colegas do Núcleo de Estudos em Genética e Melhoramento de Plantas “GEN”, em 

geral, aos amigos que compartilharam ansiedade e, ao mesmo tempo, colaboração durante as 

disciplinas e eventos realizados; agradeço-lhes pelo prazeroso trabalho em equipe e pela 

amigável convivência. 

 Aos meus amigos Mario, Rebecca e Pablo, do laboratório Forage Breeding and 

Genomics Lab, pelo apoio, conselhos e pela amigável convivência dentro e fora do ambiente 

de trabalho. 

Aos meus amigos conhecidos em Gainesville-FL, Jéssica, Cecília, Renato e Bruna, pelo 

acolhimento, amizade e convivência. 



 

Aos amigos das repúblicas Carandiru e Último Gole, por proporcionarem momentos 

inesquecíveis, também pelos conselhos e risadas. 

Às minhas companheiras de grupo sob orientação do professor José Airton, Brena e 

Maiara pela amizade e convivência. 

Aos membros da banca examinadora, pela disponibilidade e sugestões apresentadas.  

Enfim, a todas as pessoas que me auxiliaram, direta ou indiretamente, para que os meus 

objetivos fossem concretizados. Meu muito obrigado! 

 

  



 

ABSTRACT 

 

This study focuses on the optimization of statistical methods in forage breeding trials, with a 

goal to improve the efficiency of the breeding process and increase the rate of genetic gain. The 

study is conducted on three forage species: Medicago sativa, Panicum maximum, and Urochloa 

spp. The first chapter of the study evaluates the use of spatial analysis in breeding trials, taking 

into consideration the spatial variation and correlations within a trial and between repeated 

measurements. The results of this chapter provide insight into the effectiveness of spatial 

analysis in forage breeding trials. The second chapter of the study focuses on the application of 

random regression and factor analytic mixed models to deal with longitudinal data generated in 

forage breeding trials. These models account for temporal correlations between repeated 

measurements and allow for the appropriate modeling of genetic effects over time. The results 

of this chapter highlight the usefulness of these methods in analyzing data from forage breeding 

trials. In the final chapter of the study, genomic selection is performed in alfalfa, incorporating 

enviromic-based data. This chapter highlights the potential of genomic selection in reducing 

breeding cycles and increasing the rate of genetic gain in perennial forage species. The results 

of this study provide valuable information for forage breeders and plant breeders in general, 

regarding the use of various statistical methods in breeding trials, and their potential impact on 

the efficiency of the breeding process and the rate of genetic gain. The findings of this study 

have the potential to contribute to the improvement of forage production, which is crucial for 

the supply of nutrient-dense food such as meat and milk, particularly in developing countries 

where forages are a primary source of nutrition for most ruminant livestock. 

 

Keywords: Forage breeding; Genotype by Environment; Mixed Models; Spatial Analysis; 

Enviromics; Longitudinal Data. 

 

 

 

  



 

RESUMO 

 

Este estudo se concentra na otimização de métodos estatísticos em ensaios de melhoramento de 

forrageiras, com o objetivo de melhorar a eficiência do processo de melhoramento e aumentar 

a taxa de ganho genético. O estudo é realizado em três espécies de forrageiras: Medicago sativa, 

Panicum maximum e Urochloa spp. O primeiro capítulo do estudo avalia o uso da análise 

espacial em ensaios de melhoramento, levando em consideração a variação espacial e as 

correlações dentro de um ensaio e entre medições repetidas. Os resultados deste capítulo 

fornecem informações sobre a efetividade da análise espacial em ensaios de melhoramento de 

forrageiras. O segundo capítulo do estudo se concentra na aplicação de modelos mistos de 

regressão aleatória e análise fatorial para lidar com conjuntos de dados longitudinais gerados 

em ensaios de melhoramento de forrageiras. Esses modelos levam em consideração as 

correlações temporais entre medições repetidas e permitem o adequado modelamento dos 

efeitos genéticos ao longo do tempo. Os resultados deste capítulo destacam a utilidade desses 

métodos na análise de dados de ensaios de melhoramento de forrageiras. No último capítulo do 

estudo, é realizada a seleção genômica em alfafa, incorporando dados baseados em ambiente. 

Este capítulo destaca o potencial da seleção genômica na redução dos ciclos de melhoramento 

e no aumento da taxa de ganho genético em espécies de forrageiras perenes. Os resultados deste 

estudo fornecem informações valiosas para melhoradores de forrageiras e melhoradores de 

plantas em geral, sobre o uso de vários métodos estatísticos em ensaios de melhoramento, e seu 

potencial impacto na eficiência do processo de melhoramento e na taxa de ganho genético. As 

descobertas deste estudo têm o potencial de contribuir para a melhoria da produção de 

forrageiras, o que é crucial para o fornecimento de alimentos ricos em nutrientes, como carne e 

leite, especialmente em países em desenvolvimento onde as forrageiras são a principal fonte de 

nutrição para a maioria dos animais de pecuária ruminantes. 

 

Palavras-chave: Melhoramento de pastagens; Genótipo x Ambiente; Modelos Mistos; Análise 

Espacial; Ambientômica; Dados Longitudinais. 
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GENERAL INTRODUCTION 

 

Forages (grasses and legumes) are the principal source of nutrition for most ruminant 

livestock in developing countries, thus contributing to the supply of nutrient-dense foods like 

meat and milk (FUGILIE et al., 2021). The Brazilian cattle herd has increased, approximately, 

from 150 million heads in 1990 to 214 million in 2018, at the same time there was a reduction 

of pasture area, from 194 million hectares to less than 162 million (ABIEC, 2019). The meat 

production was increased by 139% in the same period (ABIEC, 2019). This increase in yield 

can be attributed by the reduction/substitution of areas with native forage species, about 18.7% 

between 2006 and 2017, by improved forage species (IBGE, 2017). The improved forage 

cultivars present higher yield and higher nutritive value, consequently resulting in greater 

carrying capacity and provide a differentiation in the meat in terms of competitiveness (lower 

production costs) and product quality, thus contributing to increase the GDP (gross domestic 

product) of Brazilian livestock (JANK et al., 2011). During the last 4-5 decades, plant breeders 

have made important contributions to livestock productivity by developing high yielding forage 

varieties with tolerances to biotic and abiotic stresses (MILES et al., 2006; MILES; HARE, 

2007; AGUIRRE et al., 2013; CARDOSO et al., 2013; RAO et al., 2016; HERNANDEZ et al., 

2017; ABD EL-NABYHAFEZ; HASHEM, 2018). 

The most used forage grasses species (Urochloa spp. and Panicum maximum) and 

legume species (Medicago sativa) are perennial species, thus the breeding cycles in such species 

are longer and phenotypic evaluation are more expensive when compared to annual crops since 

evaluations must be made in several harvests during several years. Therefore, the application 

of proper statistical methods to identify the best genotypes to be selected and increasing the rate 

of genetic gain is critical (SMITH; SPANGENBERG, 2014). Statistical methods for analyzing 

data from perennial forage variety selection trials need to account for the spatial variation and 

correlations within a trial and temporal correlation between repeated measurements. The 

methods also need to appropriately model the genetic effects over time (SMITH et al., 2007; 

DE FAVERI et al., 2015). Furthermore, new breeding methods such as genomic selection 

(MEUWISSEN et al., 2001) can reduce the breeding cycles in perennial forage species 

(ANNICHIARICO et al., 2015; LI et al., 2015; SIMEÃO et al., 2021; ANDRADE et al., 2022; 

AONO et al., 2022) leading to higher genetic gains over time. This study was divided into three 

chapters. The first chapter, we evaluated the use of spatial analysis in three forage species 

breeding trials (Medicago sativa, Panicum maximum and Urochloa spp.). In the second chapter 
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we investigated the use of random regression and factor analytic mixed models in dealing with 

longitudinal data set generated in forage breeding trials. Finally, in the last chapter we 

performed genomic selection in alfalfa by incorporating environmic-based data. 
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ACCOUNTING FOR SPATIAL TRENDS OVER HARVEST IN FORAGE 

BREEDING TRIALS 

 

ABSTRACT 

 

Selection of the best genotypes is the main goal in plant breeding, and the use of proper 

statistical method and its interpretation are very important for the genotype selection process. 

Accounting for spatial across harvests in forage breeding trial can improve the genetics gain 

and experimental precision. Therefore, in this study we investigated the use of spatial models 

in multi-harvest forage breeding trials for dry matter yield by applying a two-stage analysis. 

We evaluated the use of spatial models for three perennial forage species (Urochloa spp. 

Panicum maximum, and Medicago sativa). In this study we compared three different models: 

(i) base model, without any spatial correction; (ii) first-order autoregressive (AR1) models; (iii) 

models based in tensor product (SpATS). The model comparisons were based in the Bayesian 

Information Criteria (BIC), by evaluating the fit of the BLUEs obtained for each harvest in a 

second stage analysis. Our results showed that the pattern of spatial variation changed across 

harvests, and the use of spatial correlation between plots must be evaluate in order to select the 

proper model for each harvest. Spatial models were effective in controlling local and global 

errors and achieved greater accuracy and efficiency over the base model. The spatial models 

also led to differences in the genotypes ranking and consequently in the selection of the best 

genotypes. Therefore, the spatial analysis can lead to greater selection gains because of 

increased heritability as well as decreased experimental errors. Ignoring the spatial variations 

can lead to mistakes in selecting the best genotypes. The SpATS model can be used as a 

standard method to spatially correct the genotypes BLUEs and generates weights to be used in 

a multi-harvest forage breeding trials. 
 

1 INTRODUCTION 

Phenotypic selection in perennial forage species is usually based on multi-harvest trials 

in which cover a potentially large and heterogeneous area. Multi-harvest in perennial trials can 

take several years and can be costlier when compared to annual crops. Therefore, the application 

of proper statistical methods to identify the best genotypes to be selected and increasing the rate 

of genetic gain is critical (SMITH and SPANGENBERG, 2014). Early generation breeding 

trials are composed by a large number of genotypes and incomplete block designs, as 

augmented block design, are used. However, these experimental designs do not control 

efficiently the microenvironmental variation. Furthermore, due to the large number of 

genotypes large areas are needed to conduct the trials increasing the probability of spatial trends 

on the field (VELAZCO et al., 2017). These spatial trends can affect the prediction of genotypic 

values leading to a mistake on the selection process (ANDRADE et al., 2020). 



16 

Several papers have reported the use of spatial models in perennial forage species. 

Nearest neighbor methods (PAPADAKIS, 1937) were applied by Casler (1999), Smith and 

Kearney (2002), and Smith and Casler (2004). Recently, De Faveri et al (2015) applied an first-

order autocorrelation structure on rows and columns in the residual covariance matrix (AR1 x 

AR1), as described by Gilmour, Cullis and Verbyla (1997) to model spatial trends in alfalfa 

(Medicago sativa) breeding trials, and also to model the temporal correlation between harvests. 

However, the authors applied a unique AR1 structure across all harvests, therefore the model 

assumed common spatial parameters over harvests which may not always be the case (DE 

FAVERI et al., 2015). Nonetheless, fitting different spatial structures for each harvest may not 

be possible in a single stage analysis leading to convergence problems, mainly when the number 

of harvests and genotypes are large, and convergence can be more difficult when also modeling 

the genotype by harvest interaction, as the number of parameters to be estimated by the model 

increases substantially (WELHAM et al., 2010). To overcome this problem, the two-step 

analysis have been used extensively in the Australian National Variety Trials for annual crops 

(GOGEL; SMITH; CULLIS, 2018), since Smith (2001) proposed the two-stage analysis by 

applying weights from individual trial analysis into the multi-environment analysis. 

In a two-stage analysis, genotypes’ best linear unbiased estimates (BLUEs) of individual 

trials in stage one are combined in a weighted across trials using a mixed model analysis in the 

stage two, where the weights provide a measure of relative uncertainty of the estimated 

genotypes’ BLUES for each trial (SMITH 2001; MÖHRING and PIEPHO, 2009; GOGEL; 

SMITH; CULLIS, 2018). The weights from the individual analysis account for both within-

trial heterogeneity and differing number of replications (WELHAM et al., 2010), by using the 

weights in the multi-trial analysis on the stage two, the residual heterogeneity across trials are 

also taking in account in the model, since the uncertainty measures are unique for each trial. 

In this study, we investigated the changes in the spatial trends across harvests that may 

occur in multi-harvest trials for four forage species, and the application of spatial analysis in 

the selection of genotypes by applying weights from each spatial model in a two-stage multi-

harvest analysis. 

2 MATERIAL AND METHODS 

2.1 Data set 

In this study, we used data from three forage species conducted from 2015 to 2020 in 

three different locations (Florida – USA, Mato Grosso do Sul – Brazil and Brasilia – Brazil) by
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 using different experimental designs (augmented row-column design – ARCD, alpha-lattice design – ALD, and randomized complete block design 

– RCBD) for total dry matter yield (DMY, kg.ha-1) (Table 1). The number of genotypes evaluated varied from 9 (T6) to 182 (T1). The data sets 

are composed by early breeding trials (T1, T2, T3, T8 and T10) in which a large number of genotypes were tested and advanced breeding trials 

(T6, T7 and T9) (Table 1). The number of harvests in each trial varied from 6 (T7, T8 and T10) to 13 (T6) (Figure 1). 

 

Table 1 - Description of experimental layout for the three forage specie evaluated from 2015 to 2020. 

 

Trial Specie Origin Year Location Design Genotypes Harvests Columns Rows Plots 

T1 

Alfalfa 

(Medicago 

sativa) 

University of 

Florida 2018 - 2019 Citra - FL - USA ARCD 182 11 32 14 405 

T2 

Panicum 

maximum Embrapa 2016 - 2019 Campo Grande - MS - BR ALD 110 9 22 20 330 

T3 

Panicum 

maximum Embrapa 2016 - 2019 Campo Grande - MS - BR ALD 110 9 22 20 330 

T6 

Urochloa 

decumbens Embrapa 2018 - 2019 Campo Grande - MS - BR RCBD 9 13 9 4 36 

T7 

Urochloa 

decumbens Embrapa 2018 - 2019 Brasilia - MS - BR RCBD 12 6 12 4 48 

T8 

Urochloa 

(Inter) Embrapa 2015 - 2016 Campo Grande - MS - BR RCBD 99 6 8 50 396 

T9 

Urochloa 

(Inter) Embrapa 2019 - 2020 Campo Grande - MS - BR RCBD 15 10 6 11 60 

T10 

Urochloa 

decumbens Embrapa 2015 - 2016 Campo Grande - MS - BR RCBD 36 6 3 50 144 

Source: from the author (2022).
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2.2 Statistical analysis 

 

2.2.1 Base model 

 

All trials were analyzed considering a linear mixed model assuming independent errors 

as shown in the equations 1 (ARCD), 2 (RCBD) and 3 (ALD), that is, considering only the 

global errors through the design used in the experiment for each harvest. 

euZuZXy ccrrgg ++++=   (1); 

euZXy bbgg +++=   (2); 

𝑦 = 𝜇 + 𝑋𝑔𝛽𝑔 + 𝑋𝑟𝛽𝑟 + 𝑍𝑏𝑢𝑏 + 𝑒 (3); 

where, y is the vector of phenotypic data (e.g. DMY) per plot;  is a vector of 1’s representing 

the intercept; g is the vector of the fixed effects of genotypes in all trials; r is the vector of 

fixed effects of replications in the ALD (T2 and T3); ru and cu are the vectors of random effects 

of rows and columns, respectively in the ARCD (T1, Table 1), where ),0(~ 2
rrr INu   and 

),0(~ 2
ccc INu  ; bu is the vector of random effects of blocks in a randomized complete block 

design (T6, T7, T8, T9 and T10, Table 1), or the vector of the random effects of the blocks 

inside replication in the alpha-lattice design (T2 and T3, Table 1), in which ),0(~ 2
bbb INu  ; e 

is the vector of random errors, ),0(~ 2
eeINe  ; 

2
r , 

2
c , 

2
b and 

2
e are the variance components 

associated to the random effects of rows, columns, blocks and errors. X , rZ , cZ and bZ are design 

matrices for the fixed effects, the random effects of rows, columns and blocks, respectively. rI

, cI , bI , and eI are identity matrices. 

 

2.2.2 AR1 X AR1 and AR1 X AR1 + nugget models 

 

In AR1 X AR1 models the errors are assumed to be autocorrelated through row and 

columns directions. These models were fitted by a first-order autoregressive process 

(GILMOUR; CULLIS; VERBYLA, 1997). For the AR1 X AR1, the model will be the same as 

described for the base model (1 and 2). The difference between the base model and AR1 X AR1 
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models consist in the (co)variance structure for the error matrices, in which in the AR1 X AR1 

models, the errors are assumed ),0(~ 2
eRNe  , where three co(variance) structure presented in 

equations 3, 4 and 5 were tested: 

c
r

re IR =  )(2   (4);  

)(2 =
c

cre IR  (5);  

)()(2  =
c

c
r

reR  (6); 

where, R is the co(variance) structure of the errors; )(r
r  and )(c

c  represents the first-

order autoregressive correlation matrices; r and c are the autocorrelation parameters along 

rows and columns, respectively;  denotes the Kronecker product. 

 The AR1 X AR1 models can be extended by inserting the random term ( ) 

representing the independent part of the error. The   term is commonly known as nugget or 

measurement error (GILMOUR; CULLIS; VERBYLA, 1997). The AR1 X AR1 + nugget 

model can be described as: 

 ++++= euZuZXy ccrr  (7); 

 +++= euZXy bb  (8); 

where, all terms in the models are the same as described for the base model;  is the vector of 

random independent errors, in which ),0(~ 2
 IN ; 

2
 is the variance component associated 

to the independent errors; e can be described as the same in the AR1 X AR1 model, where 

),0(~ 2
eRNe   the co(variance) structure tested are described in equations 3, 4 and 5. 

 After fitting each model (AR1 X AR1 and AR1 X AR1 + nugget), they were compared 

by the Bayesian information criterion (BIC). Those models presenting smaller BIC were 

selected and compared to the Base Model and SpATS model in the second stage analysis, in 

this work we are designating the selected AR1 model as Best AR1. 
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2.2.3 SpATS model 

 

In this model, field trends by a bivariate function of the spatial coordinates ),( crf , 

represented by 2D P-splines. The cubic B-splines is used for second-order penalties considering 

the number of knots as the number of rows and columns in each trial. The SpATS model can 

be described as follow: 

euZuZuZXXy rrccssss +++++=  (9); 

euZuZXXy bbssss ++++=  (10); 

where all terms in the model 8 and 9 are the same as in models 1 and 2, except for ssX  and 

ssuZ ; s is the vector of fixed effects of the smooth spatial surface (unpenalized); su is the 

vector of random effects of the penalized part of the smooth surface (penalized). The fixed term 

( ssX  - unpenalized) and random term ( ssuZ - penalized) describe the mixed model expression 

of the smooth spatial surface ( ssss uZXcrf += ),( ), where the random spatial vector su has 

(co)variance matrix S. 

The SpATS model uses the P-spline ANOVA (PS-ANOVA) (LEE; DURBÁN; 

EILERS, 2013) to describe the 2D-splines in the mixed model framework. The sX , sZ

incidence matrices, and the (co)variance matrix S are decribed by Lee, Durbán and Eilers (2013) 

and Rodríguez-Álvarez et al. (2018). The PS-ANOVA parametrization can be decomposed as 

a linear sum of the univariate and bivariate smooth functions (VELAZCO et al., 2017):  

),()()()()(),( 54321321 crfcrhcrhcfrfrccrcrf sss +++++++=  (10) 

where the spatial surface is represented by: linear trends across row and columns ( cr ss 21  + ) 

and a linear interaction trend ( rcs3 ); two main smooth trends through tows and columns [

)()( 21 cfrf + ]; two linear-by-smooth interaction terms, where the slope of a linear trend along 

one covariate (c or r) is allowed to vary smoothly as function of other covariate [ )()( 43 crhcrh +

]; ),(5 crf  is the pure smooth-by-smooth interaction between column and row trends. 

 The random vector of the penalized spatial trends ( su ) has five independent sub-vectors 

sku , with k representing the additive components from the interactions. Therefore, the spatial 
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covariance matrix S is the direct sum of the Sk matrices, where each parameter of sk depends on 

a specific smoothing parameter ( sk ). These smoothing parameters can be estimated via 

residual maximum likelihood (REML) as the ratio between the residual variance of the 

corresponding spatial effect, 
22
ske  = . The spatial surface is adjusted by five parameters in 

an anisotropic process dealing with two variations, global and local. 

 

2.2.4 Model comparison 

 

The model comparisons were done in a second stage analysis, where BLUEs (Best 

Linear Unbiased Estimation) from the base model, best AR1 X AR1 model, and SpATS model. 

For each model, we adjusted the BLUEs by using the weights from each spatial model in a 

second stage analysis to account for the spatial trends and variance heterogeneity and modeling 

the genotype by harvest interaction with a compound symmetry (co)variance structure: 

eZgXy ++=  (11) 

where, y is the genotypes BLUEs in each harvest;  is the vector of fixed effects of the intercept 

and harvests; g is the vector of random effects of genotypes, in which ),0(~ 2
ggg IHNu  ; e is 

the random effects of the errors associated with the estimation of y, where ),0(~ 2
eNe  . H is 

genotype by harvest (co)variance structure matrix considered as a compound symmetry matrix, 

where the diagonal terms are composed by the 22
ghg  +  and the off diagonal is composed by 

genetic variance component ( 2
g ); 2

gh  is variance component associated with the genotype 

by harvest interaction.  is the variance matrix of the errors, where )( 1 jdiag = , in which 

j is the harvest. X and Z are the incidence matrix of the fixed and random effects. 

 In practice, j are unknown and replaced by an estimate 
j̂  from each trial. It is 

sometimes not feasible to store and use the full matrix 
j̂  from each harvest, and so a vector of 

approximate weights is required. We used the weights proposed by Smith, Cullis and Gilmour 

(2001), where the weights are based on the diagonal elements of 1ˆ − j
 designated as  , in 

which: 

)( 1
T
j

Tdiag  = (12) 
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j consists of the diagonal elements of 1ˆ − j
. This simple approximation reflects the uncertainty 

in each estimated BLUE, accounting for both within-trial heterogeneity and differing 

replication. 

 After fitting the BLUEs from the base model, Best AR1 model, and SpATS model by 

using the weights from each model and harvest in the model 11, we compared the models based 

on the BIC, generalized heritability (H2), relative efficiency (RE) and coincidence index (CI). 

 

2.2.4.1 Heritability 

 

The heritability was computed based on the Cullis, Smith and Coombes (2006) 

estimator: 

2

2

2
1

g

BLUPH



−= (13) 

where, BLUP  is the mean prediction error variance between two best linear unbiased prediction 

(BLUP) of two genotypes, and 2
g is the genetic variance component. 

 

2.2.4.2 Relative efficiency 

 

The relative efficiency between the models were computed to evaluate the improvement 

on accuracy by using the BLUP  estimated from model 11: 

100

1

0

1 =
BLUP

BLUP

BestARBaseRE



; 

100

2

0 =
BLUP

BLUP

SpATSBaseRE



 

where, 
0BLUP , 

1BLUP and 
2BLUP are the estimated error variance estimated by using BLUEs and 

weights in model 11 from the Base model, Best AR1 model and SpATS model, respectively. 

The RE cannot be used as a criterion to select the best model, therefore these estimates were 

used as supplementary information. 
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2.2.4.3 Impact in the selection 

 

 To infer about the spatial correction on the genotype selection we used five selection 

intensities, 10%, 20%, 30%, 40% and 50%, and the percentage of agreement of the best 

genotypes selection was computed by using the coincidence index (QIAO et al., 2000): 

ba

a
C

+
=  

where, a is the number of genotypes selected by both models, and b is the number of genotypes 

selected only by the base model. 

All the analyses were performed in R 4.1.1 (R CORE TEAM, 2021). The AR1 X AR1 

models and second stage analysis were performed by the ASREML-R 4.1 package (BUTLER, 

2021), and the SpATS model was performed by using the SpATS package (RODRIGEZ-

ALVAREZ et al., 2018). All the figures were done by using the ggplot2 package (WICKHAM 

et al., 2016). 

 

3 RESULTS 

 

3.1 Selecting the best AR1 model for each harvest 

 

The Figure 1 shows the best model selected for the 70 harvests and trials combinations. 

The spatial models were superior to the base model in approximately 64% of the harvests and 

trials combinations (smaller BIC values, data not shown). These results show the importance 

of evaluating the spatial correlation between plots in forage breeding trials.  When observing 

the trials individually, there were changes in the best model across harvests, except for trials T7 

and T9. This result evidenced that there was no unique model that would be appropriate for all 

harvests in a given trial (Figure 1). Only for the trials T7 and T9 the base model was superior 

for all harvests, indicating no presence of spatial trends in these trials (Figure 1). The use of the 

measurement error (nugget) was necessary in 71% of the cases where spatial modeling was 

needed, indicating the presence of variation inside the plots in the forage species evaluated 

(Figure 1). 
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Figure 1 - AR1 x AR1 and AR1 x AR1 + nugget models selected for each harvest and trial 

by       using the smaller value of BIC for DMY. 

 

 

Source: from the author (2022). 

 

The trials T2 and T3 have the same genotypes and design, however these trials were 

evaluated in different conditions of fertility, in which the trial T2 was conducted under low 

fertility conditions and T3 under low fertility conditions. It was observed that unfertilized trials 

need to account for spatial trends in all harvests evaluated, whereas under high fertility levels 

only three harvests presented the need for spatial corrections (Figure 1). Therefore, spatial 

models can handle with heterogeneity present on field trials reducing the variance between 

plots. There was no clear pattern between the size of the trials and the need of using spatial 

corrections, where we observed that the smallest trial (T6 – Table 1) needed to account for 

spatial trends in five of the 13 harvests evaluated. Moreover, one of the largest trials (T2 – Table 

1) did not need spatial corrections for most of the harvests evaluated (Figure 1). 

 

3.2 Comparison between Base, best AR1 and SpATS in the second stage analysis. 

 

Perennial forage breeders are always interested in the genotypes’ performance across 

several harvests of evaluation. In this study we evaluated the use of proper estimated weights 

and BLUEs from each model in a multi-harvest analysis based on BIC, relative efficiency (RE), 

heritability (H2), coincidence index (C) and Spearman correlation. 
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3.2.1 BIC, relative efficiency and heritability 

 

By the BIC estimates, it was observed that the analysis in which used weights from 

models accounting to the spatial trends had smaller BIC values, except for trial T9 (Table 2). 

When comparing the best AR1 model to the SpATS model, it was observed better adjustment 

for the analysis in which used the weights form the SpATS model led to smaller BIC, except 

for trial T2 and T9 (Table 2). 

 

Table 2 - BIC estimates for the in the second stage analysis by using weights from each 

harvest and model evaluated. 

 
 

*Lowest BIC Between models for each trial. 

Source: from the author (2022). 

RE was calculated based on the mean prediction error variance between two BLUPs (

BLUP ), therefore the higher the RE lower the BLUP and better the experimental precision. The 

RE varied from 89% (SpATS – T2) to 176% (Best AR1 – T6) (Figure 2). Although SpATS 

models tended to have smaller BIC, this did not reflect in greater RE where SpATS model had 

lower RE than the base model for trials T2, T3 and T9 (Figure 2 and Table 2). However, the 

best AR1 models always had RE at least equal to the base model when BIC was higher for best 

AR1 model (T7 – RE = 98% and T9 – RE = 100%) (Figure 2 and Table 2). The SpATS models 

had better RE than best AR1 model for trials T1, T7 and T8 (Figure 2). 

The heritability estimates varied from 0.11 (T7 – SpATS) to 0.96 (T3 – SpATS) (Figure 

3). Similar heritabilities were estimated when comparing the models, being slightly bigger for 

SpATS model (Figure 3). The main difference on heritability estimation ca be observed 

between SpATS model and best AR1 model for trial T6 where greater heritability was observed 

by using SpATS model. The AR1 model performs better in reducing the prediction error, since 

Trial Base Best AR1 SpATS 

T1 26498 26372 26212* 

T2 12621 12579* 12598 

T3 12144 12142 12108* 

T8 7987 8009 7944* 

T6 1207 1204 1203* 

T7 1013 1015 1009* 

T9 1831* 1835 1843 

T10 2807 2804 2768* 
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this models most always led to an increase in the RE (Figure 2). However, the SpATS model 

tend to increase the genetic variance, since this model had lower RE but the heritabilities were 

similar to the other models (Figure 2 and Figure 3). 

 

Figure 2 - Relative efficiency based on the average of the mean prediction error variance 

between two BLUPs. The horizontal black line represents the threshold to show 

when spatial models were better (above the line) or worse (below the line) than 

the base model. 

 

Source: from the author (2022). 
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Figure 3 - Heritability estimates contrasting different models – base model X best AR1 

model (A); base model X SpATS model (B); best AR1 model X SpATS model 

(C). 

 

 

Source: from the author (2022). 

3.2.2 Impact on the selection of the best genotypes 

 

The practical use of spatial models was measured based on the Spearman correlation 

and on the coincidence index (CI), to infer about the changing in rank that may occur when the 

genetic effects are corrected by spatial trends. Therefore, this is the most important subject for 

breeders since they are always concerned in selecting genotypes mostly accurate as possible. 

The overall changing in genotypes’ ranking varied from 0.85 (SpATS model/base model – T6) 

to 1.00 (best AR1 model/base model – T7; Best AR1 model/SpATS model – T2 and T3) (Table 

3). Greater differences on genotypes’ raking were observed between base model and spatial 

models based on the Spearman’s correlations mean. Only for the trial T9 the genotypes’ ranking 

had more changes between spatial models (Table 3) where the base model was the best based 

on BIC (Table 2). 
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Table 3 - Spearman correlations between predicted BLUPs by using the BLUEs and weights 

from the base model, best AR1 model and SpATS model. 

aSpATS model had the smallest BIC; bBest AR1 model had the smallest BIC; and cBase model had the 

smallest BIC. 

Source: from the author (2022). 

 

 

The greatest impact on the selection can be observed by the CI, where varied from 0% 

to 100% depending on the selection intensity and trial (Figure 4). As expected, the concordance 

between selected genotypes tended to increase as the selection intensity is less strict, on the 

average across all comparisons the coincidence between selected genotypes was from 78% 

using 10% of selection intensity to 90% using 50% of selection intensity, this trend can also be 

observed in most trials on Figure 4. The same genotypes were selected by using any model for 

the trial T7 (Figure 4). These results show the importance in using proper weights on the multi-

harvest analysis. The changing in the ranking can also be verified on figure 5, where the 

predicted BLUPs are plotted for each model for trial T8.  

 

  

Trial 

Base model/Best AR1 

model 

Base model/SpATS 

model 

Best AR1 model/SpATS 

model 

T1a 0.97 0.96 0.99 

T2b 0.99 0.99 1.00 

T3a 0.95 0.94 1.00 

T8a 0.93 0.91 0.97 

T6a 0.87 0.85 0.90 

T7a 1.00 0.99 0.99 

T9c 0.95 0.97 0.91 

T10a 0.90 0.92 0.93 

Mean 0.95 0.94 0.96 
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Figure 4 - Coincidence between selected genotypes by using 10, 20, 30, 40 and 50% of 

selection intensity. 

 

 

Source: from the author (2022). 

 

Figure 5 - Predicted genotypes’ BLUP in the second stage, by using BLUEs and weights 

from each model (Base, AR1 and SpATS) evaluated in the first stage of the 

analysis for trial T8. 

 

 

Source: from the author (2022). 
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4 DISCUSSION 

 

Selection of the best genotypes is the main goal in plant breeding, and the use of proper 

statistical method and its interpretation are very important for the genotype selection process. 

Accounting for spatial across harvests in forage breeding trial can improve the genetics gain 

and experimental precision. Therefore, in this study we investigated the use of spatial models 

in multi-harvest forage breeding trials by applying a two-stage analysis. 

In plant breeding field trials, plots closer to each other commonly have spatial 

correlation (GILMOUR; CULLIS; VERBYLA, 1997; GEZAN; WHITE; HUBER, 2010). This 

correlation can lead to dependence between errors, consequently closer plots tend to have an 

increased rate of the type II error, whereas plots far apart the probability of type I error would 

be increased (VAN ES and VAN ES, 1993). Gilmour, Cullis and Verbyla (1997), De Faveri et 

al. (2015) and Andrade et al. (2020) demonstrated that no one spatial model will be always the 

better model for each trial and unique spatial trends and correlation might be present at each 

individual trial. In this study, different forms of spatial variation were found for each harvest 

and trial as demonstrated in Figure 1, where sometimes only spatial variation (AR1 x AR1) 

needed to be accounted in the model, and in some harvests the measure error (nugget) also 

needed to be incorporated in the model. The efficiency of AR1 models in controlling the spatial 

variations on field trials has been reported by several studies for several crops: wheat, sorghum, 

cotton, beet, barley, alfalfa, and potato (GILMOUR; CULLIS; VERBYLA, 1997; MÜLLER et 

al., 2010; LIU et al., 2015; DE FAVERI et al., 2015; VELAZCO et al., 2017; ANDRADE et 

al., 2020). In this study, the use of AR1 spatial models led to better efficiency in most of the 

harvests and trials, where 64% of the trials needed to account for local variation modeled by an 

AR1 process. 

The inclusion of the nugget term in the model is used to represent an error inherent to 

the plot, this error is also called measurement error (DUTKOWSKI et al., 2006). De Faveri et 

al. (2015) found significant measurement error in the analysis of persistence for alfalfa. Sripathi 

et al. (2017), studying the efficiency of spatial variation in forage yield trials pointed out the 

importance of the measurement errors in forage, the authors reported that due to the larger plots 

frequently used in forage breeding trials, it causes the spatial variation most likely appears on 

a microscale at the plot level. Although larger plots control more efficiently the field 

heterogeneity, smaller plots can be more efficient than larger plots because of the ability of 

spatial analyses to capture variation on relative fine scale (CASLER, 2013). In this study, the 
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use of measurement error was needed in 71% of the trials in which AR1 modeling was 

necessary, so this type of error is very important on the forage breeding studied here. 

  Smith et al. (2007) and De Faveri et al. (2015), modeled spatial and temporal errors in 

a single stage analysis by using AR1 models. However, the three-way separable (harvest by 

column by row) structure assumed for spatial-temporal correlation may not always be 

appropriate (SMITH et al., 2007). De Faveri et al., (2015) reported that the model used by the 

authors assumes common spatial parameters over harvest times which may not always the case. 

Our results indicate the spatial trends change across harvests and different magnitude of spatial 

correlation can be found and different types of AR1 model can be fitted (Figure 1 and Figure 

6). 

 

Figure 6 - Predicted spatial surface by the SpATS model for the trial T2 (Harvests 1 to 9). 

 

 

Source: from the author (2022). 

 

One way of considering the spatial trends at each harvest is using a weighting method 

in a two-stage analysis. Smith et al. (2001) proposed a weighting method based on the diagonal 
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elements of the inverse matrix of variance error difference between two BLUEs in wheat trials. 

The authors concluded that the weights in the combined analysis (second stage) not only 

accommodate variance heterogeneity between trials but also spatial variation and unequal 

replication within trials. In this study we evaluated the BLUEs and weights from each spatial 

model and non-spatial models. The SpATS model seemed to be very flexible in dealing with 

spatial variation that may occur over harvest, even when the trial did not need to account for 

AR1/nugget terms (trial T7 – Table 2) the model in which used the weights form the SpATS 

model had better BIC estimates.  

When comparing the SpATS model to the best AR1 model, it was observed a tendency 

of AR1 models presenting smaller estimates of error variance components (Figure 2). This 

results, corroborate with the results showed by Velazco et al. (2017). Rodrigez-Álvarez et al. 

(2016) through simulation studies showed that autoregressive model tends to underestimate the 

residual variance term, whereas the SpATS model provides relatively accurate estimates of the 

random error variance. Small differences can be found on heritability estimates between the 

models evaluated. The differences in heritability estimation did not change much between the 

best AR1 model and SpATS model, however SpATS models heritabilities tended to be slightly 

bigger (Figure 3). These differences may occur because of the difficulties of the models in 

separating the genetic variance component from the spatial variation (VELAZCO et al., 2017). 

The changes in estimates of genetic variance indicate that by not modeling spatial trends, these 

values can be over or underestimated. Andrade et al. (2020) reported that SpATS model was 

equally efficient in controlling variation when compared with the best model based on first-

order autoregressive process. The differences reported between the two approaches may be due 

to differences in the parametrization of the spatial variation (VELAZCO et al., 2017). 

The SpATS model has some advantages over AR1 models. The process of adjusting the 

model is done directly, not requiring the numerous steps on which the AR1 models are based, 

such as graphical analysis and significance tests. Our results also showed when there is no 

spatial variation detected by the AR1 models, the SpATS model can yield similar results than 

the base model. Therefore, SpATS model can be used as a standard method to generate weights 

for a two-stage analysis in forage breeding trials. 
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5 CONCLUSION 

 

This study shows that spatial trends can change over harvests time in forage breeding 

trials, and the variation presented in each harvest can be taken into account by using weighting 

methods in a two-stage analysis approach. The spatial analysis can lead to greater selection 

gains because of increased heritability as well as decreased experimental errors. Ignoring the 

spatial variations can lead to mistakes in selecting the best genotypes. The SpATS model can 

be used as a standard method to spatially correct the genotypes BLUEs and generates weights 

to be used in a multi-harvest forage breeding trials. 
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MODELING GENOTYPE BY HARVEST INTERACTION BY RANDOM 

REGRESSION (RRM) AND FACTOR ANALYTIC (FAMM) MODELS 

 

ABSTRACT 

 

Genotype selection in perennial forage species is based on several repeated measures over time, 

seasons, and years. These repeated measurements in forage breeding trials generates 

longitudinal data set, in which must be properly analyzed giving useful interpretation in 

genotype selection process. In this study, we have presented methods of analysis for 

longitudinal DMY data generated from perennial forage breeding trials for ten trials and three 

different perennial species [Medicago sativa L. (T1), Panicum maximum (T2 and T3) and 

Urochloa spp. (T4 to T10)]. Two approaches were addressed in this paper the random 

regression models (RRM) and factor analytic mixed models (FAMM). We also proposed the 

estimation of adaptability based on the area under the curve and stability based on the curve 

coefficient of variation. Our results showed that FAMM is more a flexible model, since it 

approximates an unstructured (co)variance structure for the GxE effects, whereas RRM always 

approximated the (co)variance structure into an autoregressive pattern. However, RRM can 

offer more useful information about longitudinal data in forage breeding trials, where the 

breeder can select genotypes based on their seasonality by interpreting reaction norms. 

Therefore, we recommend the use of RRM for longitudinal traits in forage breeding trials. 

 

1 INTRODUCTION 

 

Genotype selection in perennial forage species is based on several repeated measures 

over time, seasons, and years. Therefore, the evaluation of multi-harvest forage breeding trials 

is time-consuming and expensive. In this context, the use of proper statistical methods that 

accurately predict the true genotypes’ potential is crucial (SMITH and SPANGENBERG, 

2014). As the genotypes experience different growth environmental conditions over time it is 

expected differential gene expression occurring over time. Therefore, in a multi-harvest trial a 

response variable can be treated as different traits in a multi-variate framework analysis 

(FALCONER and MACKAY, 1996). In this way, the genetic correlation between the traits is 

a measure of genotype by harvest (GxH) interaction (APIOLAZA; GARRICK, 2001; 

CROSSA; YANG; CORNELIUS, 2004; VAN EEUWIJK; BUSTOS‐KORTS; MALOSETTI, 

2016). Multi-harvests trials can be described as a special case of multi-environment harvest, in 

which the environments are the different times when the data were collected for in the same 

trial. The repeated measurement of the same trait over time generates a longitudinal data set, 

the sequential nature of measurements creates patterns of variation (HAND and CROWDER, 

2017).  
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There are several models to deal with longitudinal data set, the most common and simple 

(co)variance structure is the autoregressive (AR1), where a single correlation parameter (  ) is 

estimated. The model postulates a mechanism where the correlation between measurements j 

and k is 
|| kj− , where the genotypic value of the genotype is a function of genes acting in a given 

time plus genes acting on the new measurement (APIOLAZA and GARRICK, 2001). AR1 

models is an appealing method for modeling (co)variance structure for phenotypes measured 

over time (APIOLAZA and GARRICK, 2001; YANG et al., 2006; VANHATALO; LI; SILLA, 

2019). However, AR1 model is recommended when the time between measurements is equally 

spaced, when the data set are unequally spaced nonlinear restriction should be imposed for 

parameters estimation (MCKENZIE, 2001). Irregular time series is frequently observed in 

perennial forage yield measurements over time, due to the yield seasonality. The yield 

seasonality is characterized by variation in forage availability and quality in response to climate 

conditions, in which do not allow the plants to have uniform growth rates during the whole year 

(REIS and ROSA, 2001). Therefore, under favorable climate conditions the plants grow faster, 

and the harvests are more frequent, whereas under unfavorable conditions harvests are less 

frequent. Thus, the time series for forage yield measures are naturally irregular. 

 Random regression models (RRM) were introduced by Henderson (1982) and Laird and 

Ware (1982). Schaeffer and Dekkers (1994) suggested their use in dairy cattle breeding for the 

analysis of test day production records. Since then, several papers were published using RRM 

to predict growth in sheep (LEWIS and BROTHERSTONE, 2002), body weight in beef cattle 

(ARANGO; CUNDIFF; VAN VLECK, 2004), body weight in swine (HUISMAN; 

VEERKAMP; VAN ARENDONK, 2002), egg production in layer (WOLC et al., 2011). 

Recently random regression models have been applied to longitudinal data from perennial 

forage breeding trials for dry mater yield (DMY) in elephantgrass (Pennisetum purpureum 

Schmach.) (ROCHA et al., 2018). The use of RRM has also been increasing for annual crops 

with the advent of high-throughput phenotyping, which generates longitudinal data set (SUN et 

al., 2017, CAMPBELL et al., 2018; MOREIRA et al., 2021). RRM can deal with longitudinal 

data very well (SCHAEFFER, 2004) because it captures the change of a trait continuously over 

the trajectory with few parameters by covariance functions (eg. orthogonal polynomials and 

splines) (KIRKPATRICK; LOFSVOLD; BULMER, 1990; MEYER, 1998). Kirkpatrick, 

Lofsvold and Bulmer (1990) reported that RRM can deal with unequally time spaced 

measurement, relating that RRM should be the adequate model under this condition. 

Furthermore, there is a possibility to include environmental-dependent covariate in RRM e.g., 
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temperature and humidity to study the genotypes’ response to abiotic stress (BRÜGEMANN et 

al., 2011; BOHLOULI et al., 2013; MBUTHIA; MAYER; REINSCH, 2021). 

Another way to model longitudinal data set is applying a multi-trait model, where 

(co)variance structure for the GxH interaction is modeled by an unstructured (co)variance 

structure (SMITH et al., 2007). This model is the most general form for the genetic (co)variance 

matrix and involves 2/)1( +tt unknown parameters, namely all the genotypes’ variances and 

covariances (SMITH et al., 2007). Although this model is very informative, where all variances 

and covariances will be estimated, there may be computational difficulties and convergence 

problems associated with the estimation of such a structure, particularly if the number of 

harvests is large and/or the number of genotypes is small (SMITH; CULLIS; THOMPSON, 

2001; THOMPSON et al., 2003; KELLY et al., 2007). In order to overcome these difficulties, 

Smith, Cullis and Thompson (2001) proposed the factor analytic mixed models (FAMM). This 

model with sufficient multiplicative terms (loadings and scores) has been found to provide a 

good parsimonious approximation to the unstructured form and is generally more 

computationally robust (THOMPOSON et al., 2003). The genotypes adaptability and stability 

can be easily interpreted by latent regression, where the genotypes genotypic value for each 

harvest are regressed on environmental covariates (the loadings) but the covariates are 

estimated from the data rather than externally (SMITH; CULLIS; THOMPSON, 2005; 

CULLIS et al., 2014; SMITH and CULLIS, 2018). This has the advantage that regressions 

usually account for large proportion of GxH interaction (SMITH; CULLIS; THOMPSON, 

2005). However, the environmental covariates are data-dependent so cannot be used for harvest 

prediction. 

In this study, we investigated the use of RRM and FAMM for longitudinal data of dry 

matter yield in ten forage breeding trials for three different species [Medicago sativa L. (T1), 

Panicum maximum (T2 and T3) and Urochloa spp. (T4 to T10)] for genotype selection and 

genetic interpretation. 
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2 MATERIAL AND METHODS 

 

2.1 Data set 

 

In this study, we used data from three forage species conducted from 2015 to 2020 in three different locations by using different experimental 

designs (augmented row column design – ARCD, alpha-lattice design – ALD, and randomized complete block design – RCBD) for total dry matter 

yield (DMY, kg.ha-1) (Table 1). The number of genotypes evaluated varied from 8 (T4 and T5) to 182 (T1), the data set is composed by early 

breeding trials (T1, T2, T3, T8 and T10) in which many genotypes are tested and advanced breeding trials (T4, T5, T6, T7 and T9) (Table 1). The 

number of harvests in each trial varied from six (T7, T8 and T10) to 16 (T4 and T5), the total number. 

 

Table 1 - Description of experimental layout for the three forage species evaluated from 2015 to 2020. 

 

Source: from the author (2022).

Trial Specie Year Location Design Genotypes Harvests Columns Rows Plots 

T1 Medicago sativa 2018 - 2019 Citra - FL - USA ARCD 182 11 32 14 405 

T2 Panicum maximum 2016 - 2019 Campo Grande - MS - BR ALD 110 9 22 20 330 

T3 Panicum maximum 2016 - 2019 Campo Grande - MS - BR ALD 110 9 22 20 330 

T4 Urochloa brizanta 2009 - 2011 Campo Grande - MS - BR RCBD 8 16  -  - 32 

T5 Urochloa brizanta 2009 - 2011 Terenos- MS - BR RCBD 8 16  -  - 32 

T6 Urochloa decumbens 2018 - 2019 Campo Grande - MS - BR RCBD 9 13 9 4 36 

T7 Urochloa decumbens 2018 - 2019 Brasilia - DF - BR RCBD 12 6 12 4 48 

T8 Urochloa (Inter) 2015 - 2016 Campo Grande - MS - BR RCBD 99 6 8 50 396 

T9 Urochloa (Inter) 2019 - 2020 Campo Grande - MS - BR RCBD 15 10 6 11 60 

T10 Urochloa decumbens 2015 - 2016 Campo Grande - MS - BR RCBD 36 6 3 50 144 
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2.1 Statistical analysis 

 

In this study, the analyzes were performed based on a two-stage analysis by using the 

weighting method proposed by Smith, Cullis and Thompson (2001). In a two-stage analysis, 

genotypes’ best linear unbiased estimates (BLUEs) of individual trials in stage one were 

combined in a weighted across trials mixed model analysis in stage two, where the weights 

provide a measure of relative uncertainty of the estimated genotypes’ BLUES for each trial 

(SMITH 2001; MÖHRING and PIEPHO, 2009; GOGEL et al., 2018). All the analyses were 

done by using ASRM-R (BUTLER, 2021) and SpATS (RODRIGUEZ-ALVAREZ et al., 2018) 

R packages, and the data summarization through graphs were done by ggplo2 (WICKHAM et 

al., 2016) R package. The scripts for the analysis can be found at github 

(https://github.com/claudiocff/RRM-and-FAMM-asreml-two-step). 

 

2.1.1 First stage: estimating the genotypes’ BLUEs and weights accounting for spatial 

field trends 

 

We obtained the BLUEs and weights of the genotypes at each harvest and trials, using 

the SpATS R package (VELAZCO et al., 2017) in a mixed model framework: 

euZuZuZXXy rrccssss +++++=  (1); 

euZuZXXy bbssss ++++=  (2); 

where, y is the vector from measured DMY from each plot;  is the vector of the fixed effects 

of genotypes in all trials, and replication in the alpha-lattice design (T2 and T3-Table1); ru and 

cu are the vectors of random effects of rows and columns, respectively in the augmented row 

column design (T1 - Table 1), where ),0(~ 2
rrr INu   and ),0(~ 2

ccc INu  ; bu is the vector of 

random effects of block effects in a randomized complete block design (T4, T5, T6, T7, T8, T9 

and T10 - Table 1), or the vector of the random effects of the blocks inside replication in the 

alpha-lattice design (T2 and T3 - Table 1), in which ),0(~ 2
bbb INu  ; s is the vector of fixed 

effects of the smooth spatial surface (unpenalized); su is the vector of random effects of the 

penalized part of the smooth surface (penalized). The fixed term ( ssX  - unpenalized) and 
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random term ( ssuZ - penalized) describe the mixed model expression of the smooth spatial 

surface ( ssss uZXcrf += ),( ), where the random spatial vector su has (co)variance matrix S. The 

SpATS model uses the P-spline ANOVA (PS-ANOVA) (LEE; DURBÁN; EILERS, 2013) to 

describe the 2D-splines in the mixed model framework. The sX , sZ incidence matrices, and 

the (co)variance matrix S are decribed by Lee, Durbán and Eilers (2013) and Rodríguez-Álvarez 

et al. (2018). The PS-ANOVA parametrization can be decomposed as a linear sum of the 

univariate and bivariate smooth functions (VELAZCO et al., 2017); e is the vector of random 

errors, ),0(~ 2
eeINe  ; 

2
r , 

2
c , 

2
b and 

2
e are the variance components associated to the 

random effects of rows, columns, blocks and errors. X , rZ , cZ and bZ are incidence matrices 

for the fixed effects, the random effects of rows, columns and blocks, respectively. rI , cI , bI

, and eI are identity matrices. 

 

2.1.2 Second stage: modeling the genotype by harvest interaction 

 

2.1.2.1 Random regression models (RRM) 

 

For the statistical model described below, the BLUEs obtained for each genotype in 

each trial were regressed on a time gradient (days), where the first harvest of each trial were 

considered as day zero and the other harvest times are days after the first harvest. Therefore, 

random coefficients are computed for each genotype to describe the ‘genopes’ DMY trajectory 

over harvest time. Polynomial functions were used to model the longitudinal dimensions by 

using orthogonal Legendre polynomials (KIRKPATRICK; LOFSVOLD; BULMER, 1990). 

The orthogonal polynomials were obtained by rescaling the time points from -1 to 1 using the 

expression: 


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
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the Legendre polynomials are denoted by )(tPn . Defining  1)(0 =tP , the polynomial n+1 is 

described by the recursive equation: 
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on the normalized form the Legendre polynomial can be described: 
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therefore, for a polynomial of order two we can obtain the following equations: 
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considering m = 2 as the order of the covariance function to be used, the Legendre coefficient 

matrix Λ will have dimensions of ( ) )1(1 ++ mm can be defined as: 
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considering four different time points and an order two polynomial, the incidence matrix of 

time points (M) can be defined as: 
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where ti is the time point scaled by the equation (3).  

Finally the Legendre polynomials can be computed as = M , where  is a matrix 

containing the normalized polynomials for harvest time; M store polynomials of standardized 

harvest times; Λ is the matrix of Legendre polynomial coefficients of order m+1, where m is 

the degree of fit (SHAEFFER, 2016). The random regression model can be defined as: 

 

euy g ++= 21 (9) 

Where y is the vector of BLUEs estimated by the models (1) or (2); β is the vector of 

the fixed regression coefficients; gu is the vector of random regression coefficients of genotypes, 

in which ),0(~ 2
gggg IKNu  ; e is the vector of the errors, where ),0(~ 2

eRNe  . Kg is an 
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unstructured (co)variance matrix associated to the random regression coefficients. The matrix 

Kg can be described as: 
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where, 2

mg is the variance component associated to the coefficient of order m; 
mngg is the 

covariance between the coefficient of order m and n. 

R is the variance matrix of the errors, where )( 1 jRRdiagR = , in which j is the harvest. 

In practice, jR are unknown and replaced by an estimate 
jR̂  from each harvest. It is sometimes 

not feasible to store and use the full matrix 
jR̂  from each harvest, and so a vector of approximate 

weights is required. We used the weights proposed by Smith, Cullis and Gilmour (2001), where 

the weights are based on the diagonal elements of 
1ˆ −

jR  designated as  , in which: 

)( 1
T
j

Tdiag  = (11) 

j consists of the diagonal elements of 
1ˆ −

jR . This simple approximation reflects the uncertainty 

in each estimated BLUE, accounting for within-trial heterogeneity, differing replication and 

spatial trends. 

Based on Kirkpatrick, Lofsvold and Bulmer (1990), the following estimator was used 

to obtain the genetic variance and covariance components across harvest times ( g̂ ) on 

original scale: 

T
gg K 22

ˆ = (12) 

where, 2 is the incidence matrix of the Legendre polynomials associated to the random 

effects of genotypes; Kg is the (co)variance matrix associated to the random genotypes’ 

coefficients, defined in (10). 

The genotypic values for each genotype across harvest time can be estimated by the 

equation: 

T
g

TT
V UJG 21 +=  (13) 

where VG is a i x j matrix of the genotypic values on the original scale, where i is the number 

of genotypes and j the number of harvest time points; J is a column vector of 1’s size equal the 
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number of genotypes (i); 
T is the transposed vector of the fixed regression coefficients of size 

1 x (d+1), in which d is the degree of the polynomial fitted for the fixed regression; 
T
1 is the 

transposed incidence matrix of the Legendre polynomials for each harvest time for the fixed 

regression with size (d+1) x j; gU is the genotypes’s random coefficients matrix, size i x (m+1); 

T
2  is the transposed incidence matrix of the Legendre polynomials for each harvest time for 

the random regression with size (d+1) x j. 

The polynomial function for the fixed regression was defined graphically by using a 

loess function, where the function order was determined by the number of curves (c) +1 in the 

mean DMY trajectory across harvest time. For example, for the trials T1 and T2 a polynomial 

of degree three were fitted, since two curves were observed on the mean DMY trajectory. The 

random polynomial regression degree was determined by the Bayesian information criteria 

(BIC). 

 
 

Figure 1 - Mean DMY trajectory over time for trials T1 (Alfalfa - B) and T6 (Urochloa 

decumbens). 

 

 

Source: from the author (2022). 

 

2.1.2.1.1 Heritability, broad adaptability and stability for RRM 

 

The heritability over harvest times was estimated by the expression: 
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where 2
jH is the broad sense heritability estimated at each harvest time; g is the genetic 

variance-covariance matrix estimated by the equation (12); 
2
e is the mean error variance 

component across harvests; r is the number of replication in the trial. 

The broad adaptability for each genotype was estimated based on the area under the 

DMY trajectory curve, in which reflects the total DMY accumulation over harvest time: 
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where Ai is the area under the trajectory curve of the genotype i; b0 is the fixed regression 

intercept; gi0 is the random regression intercept of the genotype i; t is the harvest time point; d 

and m are the polynomial fitted degree for the fixed and random regression, respectively; bd is 

the fixed regression coefficient of degree d; img is the random regression coefficient of degree 

m for genotype i. 

The genotypes’ stability was calculated based on the trajectory curve’s coefficient of 

variation (CVc), in which reflect the genotypes’ Type I stability, where the genotype is stable if 

present small variance between environments, also called biological stability (LIN et al., 1986): 

00 i

c

c
gb

CV i

i +
=


(16) 

where, 
ic is the standard trajectory curve deviation for genotype i; 00 igb + is the overall 

performance for genotype i. 

 

2.1.2.1.2 Genetic interpretation on random regression models 

 

One of the advantages of random regression models is the use of eigenfunction ( )k  of 

the genetic coefficient (co)variance matrix (10), in which can provide genetic insights about the 

studied trait, bases on Kirkpatrick, Lofsvold and Bulmer (1990): 
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where mkv )(  is the mth element of the kth eigenvector of Kg, and m  is the normalized value of 

the mth Legendre polynomial. 

 

2.1.2.2 Factor analytic mixed model (FAMM) 

 

The factor analytic mixed model can be described as a mixed model equation in the 

matrix notation: 

eZuXy g ++=  (18) 

where: y is the vector of the genotypes’ BLUES estimated by the model (1) or (2); β is the 

vector of fixed harvests effects added to the overall mean; g is the vector of the genotype 

(random) effects within sites within harvests, with )I G  (0, N~  u gg
2 ; e is the vector of random 

errors, with )I  R (0, N~  e e
2 ; X and Z are incidence matrices for β and ug, respectively; G is the 

variance and covariance matrix for the genotype effect within harvest-sites combinations; R is 

the variance and covariance matrix for the error, the R matrix is the same as used for the random 

regression model in the equation (11); I is an identity matrix. 

To account for the covariances of the genetic effects between harvest in terms of small 

number, k, of (unknown) common factors, we used a factor analytic model (FAk), proposed by 

Smith, Cullis and Thompson (2001). 

+= )( ** T
G (19) 

where * is the rotated loadings matrix (p x k), in which p is the number of site-harvest 

combinations and k is the number of factors considered in the model. The rotation matrix ( aV ) 

for  was obtained by the eigenvectors of = T
aV . We obtained rotated estimated loadings 

as: aVc=*
; where c is a constant is either 1 or -1. The sign is chosen to ensure the majority 

of first rotated loadings are positive than negative. is a diagonal matrix (p x p) of the specific 

variances for environment p. 

The percentage of the genetic variance ( k ) explained by the k factors from FA structure 

was calculated using: 

)(/)(100 **** += TT
k trtr (20) 

The rotated scores of the genotypes (
*

af ) can be obtained as: 
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a
T
aa fIcVf )(* = (21) 

where af  is the vector of genotype scores in the k factors. 

 

2.1.2.2.1 Heritability, adaptability and stability for FAMM 

 

The broad sense heritability (H2) for each harvest was estimated by the following 

equation: 

r
Gdiag

Gdiag
H

e

j 2

2

)(

)(


+

= (22) 

G is the genetic variance-covariance matrix; 
2
e is the mean error variance across harvests; r 

is the number of replications for each trial. 

The adaptability and stability were estimated by the latent regression as proposed by 

Cullis et al. (2014), where the genotypes’ BLUPs for each harvest are regressed over the rotated 

environmental loadings estimated for the first factor. In this approach the broad adaptability is 

the regression intercept, and the stability can be measured by the determination coefficient R2. 

Furthermore, the genotype plasticity can be measured by the slope coefficient of the latent 

regression: 

ijjiiij bBLUP  ++= *
 

where ijBLUP  is the BLUP for genotype i in the jth harvest; i is the overall genotype 

performance across harvests (broad adaptability);bi is the genotype plasticity; *
rj is the rotated 

loading the jth harvest; ij is the regression errors. 

 

3 RESULTS 

 

3.1 Overall description of RRM and FAMM across trials 

 

The degree of the polynomial fitted for the fixed part of the RRM varied from 2 (T10) 

to 5 (T2 and T3), there was no clear pattern between the number of harvests evaluated in each 

trial and higher order degrees (Table 1 and Table 2). The polynomial order for the fixed part of 

the model was determined by the number of contrasting seasons evaluated in each trial, these 
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contrasting seasons form the pits and peaks that needed to be model by the fixed polynomial. 

For the random part for the RRM there was a predominance of lower order polynomial, most 

of the trials the genotype by harvest interaction (GxH) a first order polynomial was needed, the 

second order polynomial was fitted for trials T4 and T8, and a third order polynomial was fitted 

for trial T1 (Table 2). The number of factors to be retained by the FAMM did not present a 

correlation between the number of harvests in each trial (Table 1 and Table 2).  

The mean heritability across harvest varied from 0.16 (T6 – RRM) to 0.76 (T7 – 

FAMM) (Table 2). There was no big change in the mean heritability through the harvest 

between the two models, except for trials T6, T7 and T9. In general, FAMM tended to yield 

higher heritabilities. However, more variation for heritability can be observed for FAMM 

(Table 2). Otherwise, RRM tend to estimate higher genetic correlation between harvest then 

FAMM, and the variation for genetic correlation was also smaller for RRM (Table 2). These 

results can be explained by the different parametrization between the two models, where RRM 

uses a covariance function to estimate the variance and covariance components over harvest 

times, therefore these parameters are estimated in a smoother way in which RRM tend to 

approximate the genetic correlations in an autoregressive pattern (Figure 1). The FAMM 

approximates an unstructured genetic variance-covariance matrix, and more complex pattern of 

genetic correlation can be observed (Figure 1). 

 

Table 2 - Fitted polynomial order for fixed and random regression for RRM, number of factors 

retained for each trial by FAMM, mean heritabilities and genetic correlation between 

harvest for each trial estimated by RRM and FAMM. 

 

Trial 
RRM FAMM 

Degree (F) Degree (R)  H2  𝜌𝑔  Factors H2 𝜌𝑔  

T1 3 3 0.36 (0.11) 0.78 (0.19) 2 0.39 (0.14) 0.79 (0.21) 

T2 5 1 0.63 (0.02) 0.98 (0.02) 2 0.65 (0.19) 0.95 (0.05) 

T3 5 1 0.51 (0.01) 0.90 (0.10) 2 0.59 (0.19) 0.82 (0.14) 

T4 3 2 0.34 (0.20) 0.26 (0.54) 1 0.44 (0.34) 0.06 (0.72) 

T5 3 1 0.52 (0.10) 0.67 (0.33) 2 0.61 (0.25) 0.45 (0.43) 

T6 3 1 0.16 (0.08) 0.75 (0.28) 1 0.42 (0.24)  -0.06 (0.76) 

T7 4 1 0.42 (0.18) 0.29 (0.61) 1 0.76 (0.34) 0.48 (0.23) 

T8 4 2 0.69 (0.02) 0.82 (0.18) 2 0.69 (0.06) 0.81 (0.20) 

T9 3 1 0.31 (0.03) 0.89 (0.11) 1 0.53 (0.25) 0.51 (0.26) 

T10 2 1 0.55 (0.07) 0.88 (0.11) 2 0.57 (0.10) 0.85 (0.11) 

Source: from the author (2022). 
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H2 is the mean heritability through harvest; 𝜌𝑔 mean genetic correlation between harvest. 

The values between parenthesis represent the standard deviation of heritabilities and genetic 

correlations through harvests. 

 

Figure 2- Genetic correlations between harvests for each trial, estimated by FAMM and RRM. 

 

 

 

 

 

 

 

 

 

 

Source: from the author (2022). 

In general, the FAMM yielded similar (co)variance structures as RMM, except for trials 

T5, T6 and T7 (Figure 1), this differences in the (co)variance structures reflected on the lack of 

correlation between adaptability parameters (area under the curve [A] – RMM and overall 

performance [OP] – FAMM), mainly for trial T6 (𝜌𝐴−𝑂𝑃 = 0.22, Table 3). However, all 

correlation between OP and A were higher (𝜌𝐴−𝑂𝑃 > 0.74, Table 3). It is worthy to note that 

when genetic correlations are higher (above 0.8, Table 2), the stability and adaptability 

parameters had higher correlations for both models, this fact can be observed for trials T2, T3 

T8 and T9 (Table 2 and Table3). Therefore, the genotype selection can be done based only on 

adaptability. When complex interaction between harvest, i.e. there was a lack of genetic 

correlation between harvests, the correlation between adaptability and stability (𝜌𝐴−𝐶𝑉𝑐, 

𝜌𝐴−𝑅2, 𝜌𝑂𝑃−𝑅2, and 𝜌𝑂𝑃−𝐶𝑉𝑐) tended to be lower (Table 3), in these cases genotype selection  

should be done based on adaptability and stability. 
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Table 3 - Correlation between broad adaptability and stability parameter estimated for RRM 

(Area under the curve – A and curve coefficient of variation – CVc) and for FAMM 

(overall performance – OP and latent regression R2). 

 

Trial 𝜌𝐴−𝐶𝑉𝑐 𝜌𝐴−𝑂𝑃  𝜌𝐴−𝑅2  𝜌𝐶𝑉𝑐−𝑂𝑃 𝜌𝐶𝑉𝑐−𝑅2 𝜌𝑂𝑃−𝑅2  

T1 -0.55 0.99 0.32 -0.5 0.47 0.38 

T2 -0.97 0.99 0.94 -0.97 -0.96 0.94 

T3 -0.98 0.99 0.97 -0.98 -0.97 0.97 

T4 0.21 0.74 -0.37 0.19 -0.78 0.06 

T5 -0.51 0.99 0.53 -0.47 0.42 0.58 

T6 0.01 0.22 -0.19 -0.46 -0.49 0.85 

T7 -0.26 0.82 0.24 -0.46 -0.78 0.64 

T8 -0.92 0.91 0.92 -0.71 -0.89 0.73 

T9 -0.85 0.95 0.79 -0.76 -0.75 0.85 

T10 -0.61 0.99 0.12 -0.61 0.59 0.13 

Mean -0.54 0.86 0.43 -0.57 -0.41 0.61 

Source: from the author (2022). 

 

In the following sections of this study, we will present the models interpretation for 

genotype selection. The trials to be discussed later were chosen by presenting higher complex 

GxH, i.e., lower genetic correlation between harvests. Therefore, trials T1, T5 and T7 were 

chosen for interpretation (Table 2). 

 

3.2 Genotype selection and GxH interpretation for RRM and FAMM 

 

3.2.1 Alfalfa (Medicago sativa L.) breeding trial – T1 

 

 In this trial, 182 genotypes were evaluated for DMY through 11 harvests. The degree of 

Legendre polynomial fitted for this trial was three for both fixed and random part of the model, 

whereas for FAMM two factors were needed to model the GxH (Table 2). Twelve parameters 

were estimated for RRM and 35 were estimated by FAMM (data not shown). 

 

3.2.1.1 Variance components, heritability, and genetic behavior – RRM 

 

 The polynomial genetic variances varied from 2,930 to 343,654 for g3 and g0, 

respectively. The genotypes’ intercept (g0) retained most of the genetic variance, explaining 

74% of the genetic variance, and the components related to the genotype’s curve shape (g1, g2 

and g3) accounted to 26% of the genetic variance (Table 4). The most important correlation 



50 

between the polynomial coefficients and the easiest to interpret is the correlation between g0 

and g1, it shows the genetic variance behavior over time. In this trial, the correlation between 

g0 and g1 was negative (-0.22, Table 4), indicating lower genetic variance can be observed over 

time. 

 

Table 4 - Summary of genetic and non-genetic parameters estimated by RRM for trial T1. 

 
  𝑔0 𝑔1 𝑔2 𝑔3 
𝑔0 343,654 -0.22 0.76 0.03 

𝑔1  101,118 -0.61 -0.07 

𝑔2   19,627 -0.63 

𝑔3    2,930 
Importance (%) 74 21 4 1 

2
e  365,436 

Source: from the author (2022). 

 

𝑔0, 𝑔1, 𝑔2 and 𝑔3 are the random regression intercept and first, second and third order 

coefficient, respectively. 
2
e is the mean error variance across harvests. The diagonal elements 

of the table are the genetic variances associated with the intercept and polynomial coefficients 

( 2222

3210
,,, gggg  ); the off diagonal of the table are the correlations between intercept and 

polynomial coefficients (
323121302010

,,,,, gggggggggggg  ). 

One advantage of RRM is the heritability estimation in function of time, as well as 

pointed out above by the negative estimate of 
10gg the heritability tended to decrease over time 

as the genetic variance also decreased. The lower heritabilities (H2 < 0.30) can be observed 

between in harvests done between 120 days and 220 days after the first harvest on they zero 

(Figure 3). It is worth noting, the harvests with lower heritabilities consist in the period from 

late simmer to the late fall, where alfalfa plants are dormant (Figure 3). Therefore, selecting 

alfalfa non-dormant genotypes can be more challenging. 
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Figure 3- Heritability estimates over harvests time for trial T1. 

 

 

Source: from the author (2022). 

 

The genetic correlation varied from 0.43 to 1.00 (Figure 3A). The genetic correlation 

between harvests followed an autoregressive pattern, where harvest closer to each other tend to 

have higher genetic correlation and those harvests far apart from each other had lower genetic 

correlation (Figure 4A). The eigen functions can be used in RRM to infer about gene expression 

over time (Figure 4B). Where the first eigenfunction had a nearly constant behavior and 

explained 74% of the genetic variation, this variation represents a common gene poll that is 

being expressed over time, and explain the simple GxH interaction, since non differential 

expression was observed (Figure 4B). The second eigenfunction represents another gene pool, 

in which explained 21% of the genetic variation that shows differences in gene expression under 

different environment conditions, explaining most of the complex GxH interaction (Figure 4B). 

The third and fourth eigenfunctions explained only 4 and 1% of the genetic variation, also 

representing the complex GxH interaction, where differences on gene expression can be 

observed over time (Figure 4B). 
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Figure 4- Genetic correlation between harvests estimated by RRM for trial T1 (A);  

Estimation of the four eigenfunctions for trial T1 (B). 

 

 

Source: from the author (2022). 

 

3.2.1.2 Genotypes’ adaptability, stability and yield trajectory over time – RRM 

 

One of forage breeders’ interest is evaluate the genotypes behavior over time, for this 

RRM can be a very useful tool where genotypes’ reaction norms can be plotted (Figure 5). 

There was great variability on the genotypes’ reaction norm, and the main changes on ranking 

occurred between harvests realized from 39 to 220 days. On Figure 5, we highlighted seven 

genotypes in which presented higher area under the curve (A), i.e., higher broad adaptability, 

the checks (UF2015, FL99 and B_805), and the mean yiled trajectory curve. Among these 

genotypes, we can highlight the genotype 15F, 103F, 33_H and 42F, these genotypes hap better 

performance under the fall dormancy period (from day 150 to the day 265) and could be selected 
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as non-dormancy alfalfa genotypes (Figure 5). All seven genotypes with higher A performed 

better than the checks for most of the harvest evaluated (Figure 5). 

 

Figure 5 - Genotypes’ DMY trajectory over harvest time for trial T1. The Highlighted 

genotypes represents the better genotypes based on the area under the curve, the 

checks (B_805, UF2015 and FL99) and the mean DMY trajectory. 

 

 

Source: from the author (2022). 

Although very informative, the genotypes selection based only on the reaction norms is 

not feasible mainly when the higher number of genotypes are evaluated and the complex GxH 

interaction plays an important role. To overcome this difficulty, we proposed the genotype 

selection based on the area under the curve (A) and in the curve coefficient of variation (CVc), 

these two parameters represent genotypes’ adaptability and stability for DMY, respectively. It 

was observed high variability for A and CVc between genotypes (Figures 6A and 6B), and the 

correlation between the two parameters was of median magnitude (-0.55, Figure 6A), thus it is 

possible to select genotypes with higher A and lower CVc, i.e., genotypes presenting high 

adaptability and stability. For section purposes we did a scatter plot showing the genotype’s A 

and CVc values, where the genotypes to be selected are on the superior left quadrant of the 

graph (Figure 6A). The 10% genotypes with higher A are highlighted on Figure 6A. 
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Figure 6- Stability versus adaptability scatter plot, the solid black lines are the mean values for 

A and CVc for trail T1(A); histogram for adaptability (B); histogram for stability (C). 

 

 

Source: from the author (2022). 

 

3.2.1.3 Variance components and heritability – FAMM 

 

The FA2 model explained most of the genetic variance (99%, Table 5). The first factor 

explained 78% of the total genotypic variance, whereas the second factor explained 21% (Table 

5). The specific variance explained only 1% of the genetic variance and was different from zero 

only for harvest 1 (Table 5). The higher values of common variance (or communalities) showed 

that the two factors retained by the model explained a high amount of the genetic variance, 

showing a good fitting of the model to the data set (Table 5). Since communalities explained 

most of the genetic variance, there is a clear pattern between the percentage of the common 

variance in each harvest and heritability, where the higher percentage higher heritabilities were 

estimated (Table 5). It is worth noting that for the first factor only positive loadings were 

estimated, so this factor is explained only the simple GxH interaction (Table 5). Otherwise, for 

the second factor there are positive and negative values, indicating that this factor is explaining 

the complex GxH interaction (Table 5). The same pattern was observed in this trial for RRM 

and FAMM, where 74% of the genetic variance was explained for simple GxH as showed by 
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the eigenfunction and the other 26% was explained by complex GxH interaction (Figure 4B). 

The genetic correlation between harvest followed the same pattern as estimated by RRM 

(Figure 4A), where an autoregressive pattern was observed (Figure 7). 

 

Table 5 - Estimated rotated loadings, common variances (communalities) and specific variances 

for trial T1 in each harvest. 

Harvest 
*
1  

*
2  H2 Common Variance Specific Variance 

1 758.7 0 0.62 575,743 (19) 28,846 (1) 

2 668.5 23.5 0.55 447,556 (15) 0 

3 601.0 -39.4 0.50 362,829 (12) 0 

4 532.5 -89.7 0.44 291,671 (10) 0 

5 337.0 -174.8 0.28 144,163 (5) 0 

6 253.4 -250.1 0.26 126,833 (4) 0 

7 175.6 -225.6 0.18 81,766 (3) 0 

8 185.2 -278.4 0.23 111,846 (4) 0 

9 267.3 -413.2 0.40 242,268 (8) 0 

10 258.5 -472.6 0.44 290,213 (10) 0 

11 183.9 -481.8 0.42 266,017 (9) 0 

Importance (%) 78.0 21.0 - 99.0 1.0 

Source: from the author (2022). 

0
*
1 are the estimated rotated loadings for each harvest for the first factor; 

*
2 are the 

estimated rotated loadings for each harvest for the second factor; the numbers between 

parenthesis represents the amount of genetic variance explained by common and specific 

variances. 

 

Figure 7 - Genetic correlation estimated by FAMM for trial T1. 

 

Source: from the author (2022). 
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3.2.1.4 Genotypes’ stability and adaptability – FAMM 

 

Genotype selection in FAMM can be easily by using latent regression, where the 

genotype’s predicted values are regressed over the environmental loadings for the first factor. 

On latent regressions the genotype slope is related to the genotypes’ response to the 

improvement in environment quality, the regression intercept is related to the broad sense 

adaptability (overall performance – OP) over harvests and the R2 is the parameter for stability, 

in which reflects the genotype’s predictability. On Figure 1A the R2 and OP were plotted in a 

scatter plot to select genotypes with higher OP and R2. The genotypes that presented high OP 

and R2 can be observed on the superior right quadrant on Figure 8A, where the 10% of the 

genotypes with higher OP were highlighted. In this trial, where the all the loadings for the first 

factor had positive values (Table 5), indicating that this factor explained the simple GxH 

interaction, the correlation between the first factor genotypes’ scores with OP was high (0.99) 

and R2 was closed related with the second factor genotypes’ scores with correlation 0.76. 

Therefore, the genotypes’ adaptability and stability can be also verified by the FAMM biplot 

(Figure 8B). The biplot can also be used to observe how harvest are grouped, the harvests from 

1 to for had higher genetic correlation between each other, whereas harvests 5 to 11 were 

clustered in another group, these results agree with the estimated genetic correlations (Figure 7 

and Figure 8B). 

 

  



57 

Figure 8 - Overall performance versus stability scatter plot (A); FAMM biplot (B), red numbers 

are the harvests. The 10% best genotypes for overall performance and checks are 

highlighted. 

 

 

Source: from the author (2022). 

3.2.2 Urochola brizanta advanced breeding trial – T5 

 

In this trial, 9 genotypes were evaluated for DMY through 16 harvests. The degree of 

Legendre polynomial fitted for this trial was three for fixed and one for random part of the 

model, whereas for FAMM two factors were needed to model the GxH (Table 2). Seven 

parameters were estimated for RRM and 49 were estimated by FAMM (data not shown). 
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3.2.2.1 Variance components, heritability, and genetic behavior – RRM 

 

For this trial only the intercept and first order polynomial coefficient were needed to 

model the GxH interaction. The intercept (g0) and slope (g1) explained 69 and 31% of the 

genetic variance (Table 6). The negative correlation ( 41.0
10

−=gg ) between g1 and g0 indicates 

that genetic variance decreased over time. The highest heritabilities estimates occurred between 

harvests realized between 0 to 71 days (H2 > 0.70), and the lowest heritability occurred between 

harvests realized between 450 and 619 days (H2< 0.43) (Figure 8). The first drought season (71 

to 238 days – May to October/2009) occurred presented heritability varying from 0.69 to 0.57, 

whereas the second drought season (450 to 619 – May to October/2010) presented the lower 

heritabilities varying from 0.40 to 0.43 (Figure 8). The higher heritability occurred on the first 

drought season can be explained by number of preceding harvests, where only three harvests 

occurred before for the first drought season, whereas for the second drought season ten harvests 

had occurred before (Figure 8). 

 

Table 6 - Summary of genetic and non-genetic parameters estimated by RRM for trial T5. 

 
  𝑔0 𝑔1  

𝑔0 117,153 -0.41  

𝑔1  53,359  

Importance (%) 69 31  
2
e  282,442 

 

Source: from the author (2022). 

 

𝑔0 and 𝑔1 are the random polynomial intercept and first order coefficient. The diagonal 

elements of the table are the variance components associated with the polynomial intercept and 

coefficient; and the off diagonal is the correlation between intercept and regression coefficient 

( 
10gg ). 

2
e  is the mean error variance through harvests. 
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Figure 9 - Heritability estimates over harvests time for trial T5. 

 

 

Source: from the author (2022). 

 

 The genetic correlation across harvests varied from -0.17 to 1.00 (Figure 9A). As 

occurred for trial T1 (Figure 3A) the genetic correlations followed an autoregressive structure 

(Figure 9A). Differently than occurred for trial T1, there was not a common factor explaining 

the GxH interaction for all harvest, since genetic correlations below zero occurred in this trial 

(Figure 9A). This fact can also be explained by the eigenfunctions, where the two 

eigenfunctions varied over time (Figure 9B). Both first and second eigenfunctions explained 

the complex GxH interaction, where the gene expression varied over time for the two 

eigenfunction (Figure 9B). 
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Figure 10 - Genetic correlation between harvests estimated by RRM for trial T5 (A);  

Estimation of the two eigenfunctions for trial T5 (B). 

 

 

Source: from the author (2022). 

 

3.2.2.2 Genotypes’ adaptability, stability and yield trajectory over time – RRM 

 

The genotypes’ reaction norms (Figure 11) showed that most changes in genotypes 

raking occurred between days 238 and 664. The maximum DMY was reached between the first 

drought season (154 days) and beginning of the second rainy season (238 days) (Figure 11). 

This is an atypical behavior and can be explained by the time interval between harvests, 

reflecting on a longer period of dry matter accumulation (Figure 11). Another factor is the 

number of harvests realized before this period where only three harvests were done until the 

first drought season (Figure 11). Furthermore, atypical climate condition could happen in this 

season. As expected, the lowest DMY occurred at the end of the second drought season (619 

days) (Figure 11). By the atypical behavior of the genotypes on first drought season, the 

selection of tolerant genotypes to this condition should be done by looking at genotypic values 

in the period from 450 to 619 days (Figure 11). Under drought conditions the genotypes BRS 
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Ybapé, Xaraés and Mulato had the best performance (Figure 11). However, the genotype BRS 

YBAPÉ had the lowest DMY at the first harvest, indicating a poor establishment (Figure 11). 

By the reaction norms the genotype Mulato had the best performance across harvest with good 

establishment as well as good performance under the drought season (Figure 11). The 

correlation between adaptability and stability was -0.54, indicating that selection can be done 

for both parameters (Figure 11). Three genotypes can be select by presenting higher stability 

and adaptability (Mulato, Xaraés and BRS paiaguás, Figure 12). 

 

Figure 11 - Genotypes’ DMY trajectory over harvest time for trial T5. 

 

 

Source: from the author (2022). 
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Figure 12 - Genotypes’ stability versus adaptability scatter plot. 

 

 

Source: from the author (2022). 

 

3.2.2.3 Variance components and heritability – FAMM 

 

 The FA2 model explained a large amount of the genetic variance by communalities 

(87%), indicating good fit of this model to the data set (Table 7). In this trial, the specific 

variances explained a considerable amount of the genetic variance (13%), indicating particular 

gene expression under certain environmental conditions (harvests 1, 2, 4 and 11) (Table 7). 

 

Table 7 - Estimated rotated loadings, common variances (communalities) and specific variances 

for trial T5 in each harvest. 

 

Harvest 
*
1  

*
2  H2 Common variance Specific variance 

1 1,147.1 300.5 0.95 1,406,362 (24.7) 202,470  (3.5) 

2 1,205.4 193.02 0.96 1,490,354 (26.2) 265,992 (4.7) 

3 321.6 98.5 0.61 113,140 (2.0) 0 

4 -0.7 -277.7 0.81 77,144 (1.3) 240,748 (4.2) 

5 422.6 -589.8 0.88 526,498 (9.2) 0 

6 280.9 -437.8 0.79 270,697 (4.8) 0 

7 641.6 -66.4 0.85 416,111 (7.3) 0 

8 386.0 -307.1 0.77 243,342 (4.3) 0 

9 167.3 -90.7 0.33 36,236 (0.6) 0 

10 193.7 -140.9 0.44 57,399 (1.0) 0 

11 42.30 -64.4 0.27 5,938 (0.1) 20,475 (0.4) 

12 228.8 -131.3 0.49 69,617 (1.2) 0 



63 

13 -18.5 -260.1 0.49 68,048 (1.2) 0 

14 101.1 -310.2 0.6 106,483 (1.9) 0 

15 -91.7 -220.0 0.44 56,831 (1.0) 0 

16 -59.6 -96.3 0.15 12,832 (0.2) 0 

Importance (%) 67 20   87 13 
Source: from the author (2022). 

 

 When observing the drought season harvests (harvests 4 and 11), the largest amount of 

genetic variance accounted to the specific variance, in these harvests the amount of specific 

variance was three times greater than common variance (Table 7). Therefore, specific gene pool 

was expressed only under drought conditions. Specific variance had also great importance for 

harvest 1 and 2, indicating specific gene poll being expressed on the plants’ establishment phase 

(Table 7). There was non-common factor acting over all the 16 harvests since both factors had 

positive and negative values (Table 7). This result indicates that the two factors are explaining 

complex GxH interaction, thus genetic correlations below zero are expected (Figure 13). 

Differently than occurred for trial T1 where the genetic correlations followed an autoregressive 

pattern for both models (RRM and FAMM, Figures 3A and 6), in this trial the genetic 

correlations pattern estimated by FAMM followed a more complex structure (Figure 13). The 

genetic correlation varied from -0.75 to 1.00, indicating a strong complex GxH interaction 

(Figure 13). 

 

Figure 13 - Genetic correlation estimated by FAMM for trial T5. 

 

 

Source: from the author (2022). 
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3.2.2.4 Genotypes’ stability and adaptability – FAMM 

 

The correlation between overall performance (OP) and the first factor genotypes scores 

was high (0.89), indicating that theses scores explained the genotypes adaptability. However, 

the correlation between the second factor scores and the stability parameter (R2), was low 

(0.44). The genotype Mulato and BRS PAIAGUÁS had the better performance for adaptability 

and stability (Figure 14A), and this result agrees with the best genotypes selected by RRM 

adaptability and stability parameters (Figure 12). By the FAMM biplot the harvests were 

separated into four main groups given the distance between harvests in the biplot. The 

genotypes Mulato, HBGC336 and Xaraés responded positively to latent covariables explained 

by the first factor (Figure 14B). Only the genoype HBGC331 and HBGC336 responded 

positively for latent covariables explained by the second factor (Figure 14B). 

 

Figure 14 - Overall performance versus stability scatter plot (A); FAMM biplot (B), red 

numbers are the harvests. 

 

Source: from the author (2022). 
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3.2.3 Urochola decumbens advanced breeding trial – T7 

 

In this trial, 12 genotypes were evaluated for DMY through six harvests. The degree of 

Legendre polynomial fitted for this trial was four for fixed and one for random part of the model, 

whereas for FAMM one factor was needed to model the GxH (Table 2). Eight parameters were 

estimated for RRM and 19 were estimated by FAMM (data not shown). 

 

3.2.3.1 Variance components, heritability, and genetic behavior – RRM 

 

 Differently than occurred for trial T1 and T5, the intercept explained lower amount 

(35%) of genetic variance than the first order polynomial coefficient in which explained 65% 

of the genetic variance (Table 8). Furthermore, the correlation between slope and intercept was 

positive, indicating that genetic variance increased over time (Table 8). The heritabilities 

estimates varied from 0.20 at the third harvest (drought season – August/2018) to 0.82 at the 

last harvest (beginning of drought season – June/2019) (Figure 15). 

 

Table 8 - Summary of genetic and non-genetic parameters estimated by RRM for trial T7. 

 
  𝑔0 𝑔1 
𝑔0 165,648 0.68 

𝑔1  299,828 
Importance (%) 35 65 

2
e  694,316 

Source: from the author (2022). 

 

𝑔0 and 𝑔1 are the random polynomial intercept and first order coefficient. The diagonal 

elements of the table are the variance components associated with the polynomial intercept and 

coefficient; and the off diagonal is the correlation between intercept and regression coefficient 

(
10gg ). 

2
e  is the mean error variance through harvests. 
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Figure 15 - Heritability estimates over harvests time for trial T7. 

 

 

Source: from the author (2022). 

 

The genetic correlations across harvests varied from 0.99 to -0.79, indicating a high and 

complex GxH interaction effect (Figure 16A). As in other trials previously studied the RRM 

approximated the (co)variance structure into an autoregressive structure, where more close 

harvests are more correlated than those far apart (Figure 16A). The two estimated 

eigenfunctions varied across time, indicating there was not a common gene pool expressing in 

the same way for all harvests evaluated (Figure 16B). Both gene pools represented by the 

eigenfunctions are expressing differentially across harvest, explaining the strong complex GxH 

interaction occurred for this trial (Figure 16B). 
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Figure 16 - Genetic correlation between harvests estimated by RRM for trial T7 (A); 

Estimation of the two eigenfunctions for trial T7 (B). 

 

 

Source: from the author (2022). 

 

3.2.3.2 Genotypes’ adaptability, stability and yield trajectory over time – RRM 

 

 The most changes in genotypes raking occurred after the first drought season at harvest 

realized on day 181 (Figure 17). The highest DMY occurred at harvest realized on day 365 

(rainy season), and the lowest DMY occurred at the first drought season (day 181) (Figure 17). 

The genotype BRS YBAPÉ, also evaluated in trial T5, had the same behavior, where it had a 

poor establishment (day 0 to 59) and a good recovery after the first drought season, being the 

best genotype in all harvests after the drought season (Figure 17). The correlation between CVc 

and A was -0.25, indicating the possibility of selecting adaptable and stable genotypes (Figure 

17). Although the genotype BRS YBAPÉ had the best adaptability, it was one of the most 

instable genotype with greater variation in DMY across harvests (Figure 17). Five genotypes 

were identified having good stability and adaptability (R086, X067, Basilisk, Paiaguás and 254-

1) (Figure 17). 
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Figure 17 - Genotypes’ DMY trajectory over harvest time for trial T7. 

 

 

Source: from the author (2022). 

 

Figure 18 - Genotypes’ stability versus adaptability scatter plot. 

 

 

Source: from the author (2022). 
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3.2.3.3 Variance components and heritability – FAMM 

 

 For this trial the best FAMM fitted, only one factor was needed to model the GxH 

interaction (Table 9). Only positive loadings were observed, indicating this factor is explaining 

the simple GxH interaction effects (Table 9). The complex GxH interaction can be explained 

by the specific variances, in which explained 50.7% of the genetic variance, indicating 

expression of specific gene pools in certain harvest (Table 9). The commonalities explained 

only 49.3% of the genetic variance, indicating a lack of fitness of the model to the data set 

(Table 9). The heritabilities estimates varied from 0.96 in harvest 4 to 0.05 in harvest 3, the 

lowest heritability occurred on the first drought season indicating more difficulty in selecting 

genotypes under this condition (Table 9). The genetic correlations varied from 0.17 to 0.75 

(Figure 19). There was a common factor acting across all harvests since no genetic correlation 

below zero was observed (Figure 19). 

 

Table 9 - Estimated rotated loadings, common variances (communalities) and specific variances 

for trial T7 in each harvest. 

 

Harvest 
*
1  H2 Common variance Specific variance 

1 1,194 0.95 1,426,537 (12.1) 1,927,396 (16) 

2 410 0.86 168,393 (1.4) 921,458 (7.8) 

3 104 0.05 10,828 (0.9) 0 

4 1,596 0.96 2,547,977 (21.7) 1,977,999 (16.8) 

5 522 0.89 273,390 (2.3) 1,179,174 (10.1) 

6 1,133 0.88 1,283,690 (10.9) 0 

Importance (%) 49.3  49.3 50.7 
Source: from the author (2022). 
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Figure 19 - Genetic correlation estimated by FAMM for trial T5. 

 

 

Source: from the author (2022). 

 

3.2.3.4 Genotypes’ stability and adaptability – FAMM 

 

 Although different (co)variance structures were estimated for RRM and FAMM (Figure 

16A and Figure 19), the same genotypes were selected based on broad adaptability and stability 

(Figure 20). The genotype BRS YBAPÉ had the best overall performance, however it is an 

instable genotype (Figure 20). Five genotypes were observed to have higher adaptability and 

stability (R086, X067, 254-1, Paiaguás and Basilisk) (Figure 20). 

 

Figure 20- Overall performance versus stability scatter plot. 
 

 

Source: from the author (2022). 
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4 DISCUSSION 

 

In this study we have presented methods of analysis for longitudinal DMY data 

generated from perennial forage breeding trials for ten trials and four different perennial 

species. Two approaches were addressed in this paper the random regression models (RRM) 

and factor analytic mixed models (FAMM). These two approaches were interpreted in sense of 

variance components estimation and genotype selection for DMY adaptability and stability. 

 

4.1 Random regression models (RRM) 

 

4.1.1 Goodness of fit evaluation 

 

 Statistical methods for analyzing yield data of forage perennial species need to model 

the genetic effects over time properly (DE FAVERI et al., 2015). RRM is commonly used to 

deal with longitudinal records in animal breeding (SCHAEFFER, 2004; KRANIS et al., 2007). 

In all trials analyzed in this study, the DMY records were obtained unequally spaced in time, 

due to the seasonality present in forage grown under tropical and subtropical climate regions 

(REIS and ROSA, 2001). Kirkpatrick, Lofsvold and Bulmer (1990) reported that one advantage 

of infinite-dimensional method such as random regression, it can handle with unequally spaced 

records. This is because yield trajectories are continuous functions of time, so that a trait in an 

individual requires an infinite rather than finite number of measurements to fully describe 

(Kirkpatrick and Heckman, 1989).  

 The random polynomial order choosing in RRM can be easily done by using goodness 

of fit and parsimony criteria (CORRALES; MUNILLA; CANTE, 2015). In this study, the 

random polynomial order was selected by the BIC as suggested by Rocha et al. (2018). Some 

difficulties can arise when in choosing the phenotypic curve shape (fixed function). When the 

overall trajectory is linear fitting the fixed part of the model by a function can be simple. 

However, fluctuation on forage DMY always occur due to the climate conditions changes over 

time. Therefore, DMY trajectory will always follow a non-linear pattern. In this case, the fixed 

part of the model can be treated as factor variables (SCHAEFFER, 2004). However, factor 

variables take up more degree of freedom. In this study we suggested to stablish a fixed function 

based on a smooth loess function, where the polynomial order can be chosen graphically (Figure 
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1). By using a mathematical function instead of factors, gave us smooth trajectories over time 

regardless of the number of observations (Figures 5, 11 and 17). 

 

4.1.2 Genotype by harvest interaction 

 

 In RRM, the genotype by harvest interaction can be studied by ‘genotypes reaction 

norms’, genetic correlations estimated by covariance functions and/or eigenfunctions across 

time. When interpretation is done by reaction norms (Figures 5, 11 and 17), the GxH interaction 

occurs when reaction norms are not parallel, i.e., they intersect, diverge or converge (VAN 

EEWIJK et al., 2016). Divergence and convergence occur when simple GxH is acting over 

time, meaning that the genetic variance is increasing (diverging) or decreasing (converging) 

(CROSSA; YANG; CORNELIUS, 2004). The complex GxH interaction occur when the 

reaction norms intersect, meaning that is a lack of genetic correlation between measurements 

(ELIAS et al., 2016; VAN EEUWIJK; BUSTOS‐KORTS; MALOSETTI, 2016). In all trials 

analyzed, the estimated genetic correlations tended to follow an autoregressive pattern, where 

harvests closer to each other had higher correlations, whereas harvests far apart had lower 

genetic correlation (Figures 4A, 11A and 16A). This autoregressive pattern is very common in 

longitudinal data in perennial species (APIOLAZA and GARRICK, 2001; YANG et al., 2006; 

GIRI et al., 2019; PEIXOTO et al., 2020; BORNHOFEN et al., 2022; ANDRADE et al., 2022) 

and have a satisfactory biological explanation, indicating that genes are expressing differently 

according to the environmental conditions and genotypes’ age (GAUCH and ZOBEL, 1996; 

FALCONER and MACKAY, 1996). Another way to interpreting the GxH interaction in RRM 

is through eigenfunctions. Eigen functions are analogous to eigenvectors (principal 

components). Each eigenfunction is a continuous function that represents a possible 

evolutionary deformation of the mean yield trajectory (KIRKPATRICK; LOFSVOLD; 

BULMER, 1990). When the eigenfunction is nearly constant, it means that the eigenfunction 

captured a gene pool that was equally expressed over time (KIRKPATRICK; LOFSVOLD; 

BULMER, 1990; ROCHA et al., 2018; PEIXOTO et al., 2020). On trial T1, the first 

eigenfunction had a constant behavior and it is explaining the general adaptability gene pool 

equally expressed over time and the positive genetic correlation (Figure 4B). The other 

eigenfunctions from trial T1 are explaining the lack of genetic correlation, where the gene pools 

had differential expression over time (Figure 4B). For trials T5 and T7, there was negative 

genetic correlation over time indicating that there was not a common gene pool expressing 

equally through the harvests, therefore none eigenfunctions had a constant behavior (Figures 
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11B and 16B). As demonstrated in this study, eigenfunctions can explain the GxH interaction 

as introduced Falconer and Mackay (1996), where genotype by environment interaction can be 

considered a pleiotropic effect of a trait evaluated across environments. 

 

4.1.3 Genotypes’ reaction norm, adaptability and stability 

 

 A reaction norm defines a genotype-specific function that translates environmental 

inputs into a phenotype (VAN EEUWIJ; BUSTOS‐KORTS; MALOSETTI, 2016). The 

differential genotypes’ response to the environment (genotype plasticity) generates the 

genotype by environment interaction. In this study, it was observed a higher variation for 

genotypes’ reaction norms for all trials interpreted (Figures 5, 11 and 17), indicating strong 

complex GxH interaction. Reaction norms are very informative for analyzing perennial forage 

over time, it allowed us to observe the behavior of each genotype, identify periods where 

seasonality occurred, and identify those genotypes which respond better to environmental stress 

(Figures 5, 11 and 17). However, when the number of genotypes is too high interpreting each 

reaction norm can be difficult. Therefore, breeders usually use specific-genotype parameters, 

such as intercepts, slopes, curvatures, and variances. These specific-genotype parameters are 

called sensitivity, adaptability and stability parameters in plant breeding literature and they 

facilitate the modeling of complex genotype by environment interaction (FINLAY and 

WILKINSON, 1963; EBERHART and RUSSEL, 1966; LIN and BINS, 1988; PIEPHO, 1998; 

SLAFER et al., 2014). Another way to select genotype based on adaptability and stability is 

computing an index regarding the predicted genotypic values across all environments (KELLY 

et al., 2007; FAVERI et al., 2015; ROCHA et al., 2018). In this study, we proposed as 

adaptability measure the genotype’s area under the curve, in which have a closer meaning to 

the total DMY across all harvest (A) and overall genotype’s performance. For stability 

parameter we proposed the use of the curve coefficient of variation (CVc). Stability can also be 

referred as risk in variety adoption, where the most stable genotype should have lower variance 

across environments, meaning that the genotype is more predictable (EBERHART and 

RUSSEL, 1966; WRICKE, 1966, LIN and BINNS, 1988). The coefficient of variation is a 

broad used and easy to interpret parameter in different disciplines. In time series, mainly in 

economics it is frequently used to infer about the risk and uncertainty in shares on the stock 

market exchange (CURTO and PINTO, 2009). Therefore, we used this concept to infer about 
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DMY stability in genotype selection, in which genotypes having lower CVc will have higher 

stability and will also have lower variation across harvests. 

 

4.2 Factor analytic mixed models (FAMM) 

 

4.2.1 Goodness of fit evaluation 

 

 The factor analysis is a multivariate method (LAWLEY and MAXWELL, 1971; 

COMREY and LEE, 2013) that allows the multivariate correlated data simplification as well as 

the principal component analysis (PCA). The FAMM can be considered as an extension of the 

PCA which approximates the (co)variance structure into an unstructured structure (Figure 3), 

generating parsimonious models (SMITH; CULLIS; THOMPSON, 2005). In the FAMM 

described by Smith, Cullis and Thompson (2001) and Resende and Thompson (2003; 2004), 

the fit of the model, i.e., the number of multiplicative terms needed can be tested by the 

likelihood ratio test (LRT). In this study, we tested the number of factors to be retained by the 

FAMM by using the LRT test, the maximum number of factors needed through the trial was 

two, and six trials needed two factors whereas four trials needed only one factor (Table 2). The 

fit of the model can also be evaluated by the explanation of the genetic variance by common 

variances (communalities), i.e., the amount of genetic variance explained by the factors 

(RESENDE et al., 2014). When observing the interpreted trials in this study the factors 

explained higher amount of the genetic variance for trials T1 (99%) and T5 (87%) was 

explained by the communalities, whereas for T7 only 49% of the genetic variance was 

explained by communalities (Tables 5, 7 and 9). 

 

4.2.2 Genotype by harvest interaction 

 

The FAMM allows the GxH interpretation through the genetic correlations between 

harvests, and by the estimated common and specific variances. Differently than occurred for 

RRM where all the (co)variance structures followed an autoregressive pattern, in FAMM as 

reported by Smith, Cullis and Thompson (2001) the factors will approximate the (co)variance 

structure into an unstructured matrix (Figure 3). In this study, the variance structure estimated 

by FAMM followed an autoregressive pattern for trial T1 (Figure 7). However, for trial T5 and 
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T7 there was not a clear pattern in the genetic correlations (Figures 13 and 18). These results 

demonstrate that FAMM are very flexible and deal with a complex pattern of genetic correlation 

between harvests. The FAMM were capable to capture either complex and simple interaction, 

where harvests with higher genetic correlation had simpler GxH interaction and those in which 

the genetic correlation was smaller had more complex GxH interaction (Figures 7, 13 and 18). 

The amount of complex and simple interaction captured by the factors can be investigated based 

on the rotated estimated environmental loadings. Cullis et al. (2014) pointed out that if the 

environmental loadings from a factor are predominantly positive, it means that most of the 

genotype slopes in the latent regression will be positive and is expected no changes in genotypes 

ranking. However, if the environmental loadings for a factor have positive and negative values, 

it is expected positive and negative slopes for genotypes latent regressions, therefore crossover 

interaction is expected. For trial T1 and T7, the environmental loadings for the first factor were 

all positives, indicating that this factor is explaining most of the simple GxH interaction. 

Therefore, the factors in FAMM can have an analogous interpretation as the eigenfunctions in 

RRM. The common variances represent a common gene pool that is expressing in all harvest, 

when the loadings are positive for a factor it means that this gene pool are expressing equally 

over the harvests, whereas when positive and negative values are present it means a differential 

gene expression over harvests. By the nature of the G×E in this study, exploring the specific 

variance components is not feasible, since time is not a repeatable environment (Yan, 2016). 

Therefore, forage breeders should focus in exploring the variance captured by the factors in 

FAMM. 

 

4.2.3 Genotypes’ reaction norm adaptability and stability 

 

In FAMM, adaptability and stability can be investigated by latent regression, in which 

the genotypic value for each harvest is regressed over an environmental gradient (environmental 

loadings) (CULLIS et al., 2014; SMITH and CULLIS et al., 2018; OLIVEIRA et al., 2020). In 

this context, the environmental rotated loadings will represent the environmental quality, where 

lower values represent lower environmental quality whereas higher values represent high 

quality environments. In this way, the latent regression represents the genotype’s reaction norm 

in response to the environment. The advantage of this method is to represent the genotype’s 

response with a simple linear regression and the interpretation can be done as proposed by 

Finlay and Wilkson (1963), where the slope reflect the genotypes sensitivity, the intercept is 
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the broad adaptability, and the stability can be interpreted based on the R2 of the regression to 

infer about genotype’s predictability. As suggested by Smith and Cullis (2018), the genotype 

selection can be done by scatter plots where adaptability and stability can easily be observed 

for each genotype (Figures 8A, 14A and 19). Another advantage of FAMM is the possibility of 

clustering harvests and select genotypes adaptable to specific environmental conditions through 

biplots (Figures 8A and 14A). 

 

4.3 Comparison between RRM and FAMM for longitudinal data 

 

 Both models RRM and FAMM are very useful in dealing with GxH interaction in 

forage breeding trials and offer a detailed information about GxH interaction. The FAMM in 

all trials evaluates yielded lower BIC estimations than RRM (data not shown), which is 

expected since FAMM approximate an unstructured (co)variance matrix and this structure is 

the most general variance model, and therefore the model will provide the best fit (in a 

likelihood sense) to the data (SMITH; CULLIS; THOMPSON, 2005). However, the 

interpretability of RRM for forage yield data regarding on the genotype’s reaction norm is more 

realist, where breeder can select the genotypes based in their trajectory over a continuous time. 

The environmental loadings (covariates) in FAMM are estimated from the data rather than 

externally (SMITH; CULLIS; THOMPSON, 2005; CULLIS et al., 2014; SMITH and CULLIS, 

2018) and the correlation between environmental loadings and external covariates (temperature, 

humidity, latitude, etc.) can be done ad hoc (OLIVEIRA et al., 2020). In this way, RRM can be 

improved by incorporating not only time, but also environmental covariates in which can 

generate more complex variance structure when combining different (co)variance structures 

estimated for each covariate. Bohlouli et al, 2019, reported higher prediction accuracies of 

longitudinal traits in dairy cattle when using simultaneously a temperature-humidity index as 

covariate in RRM. Therefore, a way to use FAMM and RRM jointly would be select the most 

important covariate using the correlation between the estimated loadings by FAMM and 

environmental covariates to choose the most important environmental covariates. These most 

important covariates could be then studied in RRM, to evaluate how these covariates is shaping 

the genotypes’ reaction norms. The greater advantage of RRM over the FAMM, is the 

possibility of generating yield trajectory over time, which is very appealing for forage breeding, 

to identify genotypes that genotypes having less seasonality. 
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 RRM can be very useful on genomic selection, since the predictions are based on 

regression parameters (slope, intercept, and curvatures), the genomic prediction will be based 

in forecasting the genotypes over time which can be very informative for forage breeding. 

Another advantage is the possibility of QTL mapping over time (YANGET al., 2006), where 

different QTLs can be investigated in each stage of the genotype growth season. 

 

5 CONCLUSION 

 

 In this study we showed the application of FAMM and RRM applied in longitudinal 

data generated from forage breeding trials. Both models are powerful in dealing with 

longitudinal data set giving valuable information about GxH interaction. We also proposed the 

estimation of adaptability and stability based in the are under the reaction norm curve and the 

curve coefficient of variation. In longitudinal data context the RRM allowed better 

interpretation, where is possible to investigate genotypes seasonality by the predicted reaction 

norms. Therefore, we recommend the use of RRM for longitudinal traits in forage breeding 

trials. 
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GENOMIC PREDICTION FOR COMPLEX TRAITS ACROSS MULTIPLES 

HARVESTS IN ALFALFA (Medicago sativa L.) IS ENHANCED BY 

ENVIROMICS 

ABSTRACT 

Breeding for dry matter yield (DMY) and persistence in alfalfa (Medicago sativa L.) can take 

several years as traits must be evaluated under multiple harvests. Furthermore, DMY and 

persistence are complex quantitative traits that exhibit low to moderate heritability and high 

genotype by environment interaction (G×E). In this study, we measured persistence based on 

the phenotypic plasticity for DMY, i.e., the slope of the DMY over time regression. In this 

study, we investigated the implementation of environmental covariates into genomic prediction 

schemes for DMY, persistence, adaptability and stability in 177 alfalfa families evaluated 

across 11 harvests.  Four cross-validation scenarios were tested: (i) predicting tested families in 

observed harvests (CV2); (ii) predicting untested families in observed harvests (CV1); (iii) 

predicting tested families in unobserved harvest (CV0); and (iv) predicting untested families in 

unobserved harvests (CV00). All scenarios were analyzed using six models (M0 to M6) in a 

Bayesian mixed model framework, and models were compared based on the Pearson correlation 

between predicted and observed values (predictive ability – PA). Our results demonstrate that 

models which accounted for enviromic data led to higher PA in a reduced number of harvests 

used in the training data set under CV0 and CV2. The Bayesian framework allowed to model 

G×E even using only one harvest in the training set. Models that accounted for enviromic data 

(M2 and M3) outperformed the base model (M0) for predicting adaptability across all scenarios. 

Models M2 and M3 also provided higher PA for persistence compared to M0, as predictions 

increased from 0 to 0.16, 0.20, 0.56 and 0.46 for CV00, CV1, CV0 and CV2. For DMY, there 

was a slight increase in PA between M0 and M2/M3 under CV1 from 0.22 to 0.24, and bigger 

increase for CV0 and CV2 (0.53 to 0.61, and 0.52 to 0.63 respectively). The results also 

demonstrate that GBLUP without enviromics has low power to predict persistence, thus the 

adoption of enviromics is a cheap and efficient alternative to increase accuracy and biological 

meaning. 

 

1 INTRODUCTION 

 

Alfalfa (Medicago sativa L.) is an herbaceous perennial forage crop grown throughout 

temperate and sub-tropical regions of the world (BRUMMER, 2003; LI et al., 2015; 

ANNICHIARICO et al., 2015). Alfalfa is allogamous, pollinated by bee species, and is 

characterized by inbreeding depression. Most cultivated alfalfa is a tetrasomic tetraploid 

(2n=4x=32) and cultivars are synthetic populations consisting of highly variable, heterozygous 

plants. Alfalfa growth, especially in late summer into autumn, is affected by fall dormancy, 

which refers to growth reduction and decumbent shoot orientation that typically occurs in late 

summer and early autumn as temperature declines and photoperiod shortens (CASTONGUAY 
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et al., 2006; MCKENZIE et al., 1988). Nondormant cultivars are widely adopted in the southern 

United States and other subtropical regions (BOUTON, 2012). In Florida, nondormant cultivars 

were developed for improved adaptation and greater dry matter yield (DMY) [‘Florida 66’ 

(HORNER, 1970), ‘Florida 77’ (HORNER; RUELKE, 1981), and ‘Florida 99’]. Breeding 

efforts are underway to develop new nondormant alfalfa cultivars (ACHARYA et al., 2020; 

ADHIKARI et al., 2019; ANDRADE et al., 2022; BISWAS et al., 2021). Alfalfa is used to 

supply forage production in the early spring and late fall in Florida, when warm-season 

perennial forages are not actively growing. Therefore, the breeding program at the University 

of Florida focuses in selecting nondormant germplasm that normally exhibits low persistent 

(ACHARYA et al., 2020; HOPPEN et al., 2019; HORNER, 1970; HORNER; RUELKE, 1981). 

Alfalfa breeding is typically conducted as phenotypic recurrent selection using among 

and within half-sib family selection (CASLER; BRUMMER, 2008), although various breeding 

schemes have been proposed to improve DMY (ANNICCHIARICO; PECETTI 2021). Genetic 

gain for DMY has stagnated (BRUMMER; CASLER, 2014), although both DMY and quality 

improvement have been targeted recently (ACHARYA et al., 2020; ANDRADE et al., 2022; 

BISWAS et al., 2021; ADHIKARI et al., 2019; DOS SANTOS et al., 2018; SAKIROGLU; 

BRUMMER, 2017). Dry matter yield, quality, and persistence are complex and quantitatively 

inherited traits, and exhibit moderate to low heritability and high genotype by environment 

interaction (G×E) (ACHARYA et al., 2020; BOWLEY; CHRISTIE, 1981; BRUMMER; 

CASLER, 2014; RIDAY; BRUMMER, 2004). Due to the perennial behavior in alfalfa, 

selection for DMY is usually based on measurements taken across multiple harvests (DE ASSIS 

et al., 2010; FAVERI et al., 2015), which leads to longer selection cycles, high evaluation costs, 

and consequently lower genetic gains (ANNICCHIARICO et al., 2010). Stand persistence is 

critical for alfalfa and it can be defined as the capacity of alfalfa plants to survive over time 

(BOUTON, 2012). Assessing persistence takes several harvests and must be evaluated over 

multiple years. Persistence is a complex trait as it depends on several plant characteristics and 

environmental factors such as drought, temperature, grazing/harvest pressure, aluminum-

toxicity tolerance, fall dormancy, disease resistance, among other factors (IRWIN, 1977; 

LEACH; CLEMENTS, 1984; RIMI et al., 2014; HOPPEN et al., 2019). Due to the complexity 

to evaluate persistence, De Assis et al. (2010) proposed an indirect method to measure 

persistence by regressing yield over time. Therefore, persistence is estimated through the 

regression coefficient, and it is expected to be negative as the plant stand decreases over time. 
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Due to the low heritability estimates, high G×E effects, long and expensive selection 

cycles for DMY and persistence, it is critical to use selection procedures based on genomic 

information (marker SNPs) as a partial substitute of phenotypic selection (LI; BRUMMER, 

2012). Recently, genomic selection (GS) has been applied in alfalfa for DMY 

(ANNICCHIARICO et al., 2015; LI et al., 2015; JIA et al., 2018), and nutritional value traits 

(BIAZZI et al. 2017). All these studies were based on measurements of phenotypic and/or 

genotypic data at the single plant level. More recently, Andrade et al. (2022) reported predictive 

ability (PA) for DMY and canopy height in alfalfa family bulks. However, none of these 

previous studies modeled environmental covariates of G×E interactions.  

For any genotype-phenotype association study across multiple environments, there are 

strong nongenetic influences that can be taken into account in genomic prediction models to 

increase PA, and to reduce the number of harvests to be included in training populations. To 

understand the environmental impacts on crop performance, the concept of “envirotyping” is 

proposed as a third “typing” technology, complementing with genotyping and phenotyping (Xu, 

2016). Envirotyping-based data consists in collecting, processing, and integrating 

environmental information in genetic and genomic studies (COSTA-NETO et al., 2020). The 

genotypes (G) determine the yield potential can be investigated by molecular markers 

(MORRELL et al., 2012; YUAN et al., 2017). For alfalfa, the phenotypes (P) can be obtained 

by collecting ground-based DMY (ACHARYA et al., 2020), and by the development of high-

through-put phenotyping tools and methodologies (ARAUS; CAIRNS, 2014; BISWAS et al., 

2021). 

 Recently, the environmental information, has been incorporated into genomic 

prediction models through envirotyping (E), (JARQUÍN et al., 2014; COSTA-NETO et al., 

2020, 2021a and 2021b). The envirotyping aiming to increase the PA under multi-

environmental trials by including the interaction between genomic features (G) and 

environmental factors (E) under different cross validation schemes (JARQUÍN et al., 2017) 

mimicking prediction scenarios of interest for breeders. All the previous implementations 

attempt to aid breeders to make more informed selections of outperforming genotypes when 

there are no available phenotypic records in a given environment, and/or to select genotypes 

that have never been phenotyped (tested) at any environment. 

Some of the proposed models for including G×E effects were based on the genotype 

response over an environmental gradient (reaction norm) characterized by the environmental 

deviation from the mean value to determine the environmental quality (FINLAY; 
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WILKINSON, 1963). These models are based on a simple linear regression and can fail in 

predicting phenotypes under more complex G×E patterns, and the establishment of the 

environmental gradient in untested environment is difficult without any information about the 

environment. Costa-Neto et al (2021b) proposed the use of envirotyping-based data in the 

prediction of the environmental quality for the Finlay-Wilkinson model. 

Authors found high correlations between observed and predicted environmental quality, 

and proposed that inferences about genomic plasticity can be made in untested environments. 

Gauch (1988) proposed the additive main effects and multiplicative interaction (AMMI) 

models, which consists of decomposing the multiplicative part of the G×E by principal 

component analysis, in order to capture the G×E patterns in a reduced number of latent 

variables. These latent variables (environmental loadings) can be correlated after with 

environmental variables in order to select environmental variables to be used in envirotyping-

based models (RINCENT et al., 2019). Piepho (1998) and Smith et al. (2005) proposed factor 

analytic models to decompose the multiplicative interaction in a mixed model context, and this 

model allows the incorporation of genomic information, and the environmental loadings can be 

correlated with environmental covariates (ECs) to infer the importance of those ECs in the 

phenotypic expression. Furthermore, factor analytic models allow the interpretation about 

adaptability and stability by latent regressions (CULLIS et al., 2014; SMITH; CULLIS, 2018). 

All those models aim at explaining GE effects by using latent variables based on the measured 

phenotypic data records, and then inferences about the ECs can be made after predicting 

environmental loadings; therefore, predicting genomic estimated breeding values (GEBVs) in 

untested environments can be difficult. Jarquín et al (2014) used ECs to create envirotyping-

based kinship matrices, enabling the establishment of putative environmental similarities that 

may drive a large amount of phenotypic variation, thus the information about the similarities 

between environments allow the prediction of genotypes in untested environments. To build 

the environmental kinship matrix, Costa-Neto et al. (2021a), developed an R package 

(EnvRtype). EnvRtype handles a very robust envirotyping pipeline for collecting, processing, 

computing environmental kinship matrices by using linear and nonlinear kernels, and analyzing 

enviromic-genomic models by using the Bayesian Genomic Genotype × Environmental 

Interaction R package (BGGE, GRANATO et al., 2018).  

Previous studies in genomic prediction by using envirotyping information were 

performed in annual crops. In this study, we investigated the use of envirotyping-based data for 

alfalfa in order to estimate the PA of genomic-environmic models for dry matter yield, by using 
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four cross-validation scenarios as proposed by Jarquín et al (2017): (i) predicting tested families 

in observed harvests (CV2); (ii) predicting untested families in observed harvests (CV1); (iii) 

predicting tested families in unobserved harvest (CV0); and (iv) predicting untested families in 

unobserved harvests (CV00). All these scenarios were evaluated by increasing the number of 

harvests used in the training population, to estimate the optimal number of harvests to 

accurately predict genomic estimated breeding values (GEBV) in each harvest for DMY, 

persistence, broad adaptability and stability based in the regression slope (b1), intercept (b0) and 

R2 of the GEBVs over time, respectively. Two types of environmental kinship were also 

evaluated, one based in climate data during the field study, and another based on historical data 

from the last 34 years, in order to evaluate if historical climate data can be used in alfalfa 

genomic prediction. 

 

2 MATERIAL AND METHODS 

 

2.1 Reference population 

 

The population consisted of 177 families (142 full-sib and 35 half-sib) derived from 

crosses between parental lines coming from 33 populations, from various germplasm sources 

selected based on high dry matter yield (DMY) and persistence (ACHARYA et al., 2020). The 

crosses were performed in a factorial mating design. Six male parents adapted to Florida 

conditions were used (four genotypes from the UF breeding program, and two commercial 

cultivars: “Bulldog 805” and “AmeriStand 915”), and 27 selected genotypes were used as 

female parents. All crosses were conducted as described by Acharya et al. (2020). 

 

 

2.2 Genotypic data 

 

The DNA extraction were done at family level as described by Andrade et al (2022) by 

bulking one leaf from 30 individuals belonging to each family. Genomic DNA was isolated 

using the DNeasy Plant Mini Kit (Qiagen) and quantified with a Quant-iT PicoGreen dsDNA 

assay kit (Life Technologies, P7589). The genotyping process was performed at Rapid 

Genomics, LCC (Gainesville, FL), employing targeted hybridization. For this, 30,000 120-mer 

biotinylated probes were designed based on the Cultivated Alfalfa at the Diploid Level genome 

(CADL), and first screened against the same genome, CADL. After this, the probes sequences 
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were further searched against a tetraploid alfalfa assembly (Dr. Maria Monteros, Noble 

Research Institute personal communication), and only probes that hit four or fewer times in the 

genome were kept. Finally, the probes were screened against the alfalfa chloroplast genome 

(KU321683.1), to avoid probes that might be associated with non-nuclear DNA. Finally, 17,707 

target probes were used in the bulked family DNA samples, and sequencing was performed 

using the Illumina HiSeq 1x100 platform. 

Subsequently the raw reads were filtered and trimmed using Trimmomatic v.0.39 

(BOLGER et al., 2014). Filtered reads were mapped against the longest scaffolds of each of the 

eight homologous groups in the genome assembly of Medicago sativa cv. ‘XinJiangDaYe’ 

(CHEN et al., 2020) using the BWA v.0.7.17 software (LI; DURBIN, 2009). The alignment 

files were processed using SAMtools v.1.10 (LI et al., 2009) to convert format and sort files, 

and Picard v.2.21.2 (http://picard.sourceforge.net/index.shtml) to add groups and remove PCR 

duplicates. SNPs were called using FREEBAYES v.1.3.2 (GARRISON; MARTH, 2012). 

 SNPs were further filtered considering the following criteria: minimum base quality of 

20; minimum mapping quality of 30; only biallelic locus; no monomorphic locus; maximum 

missing data of 10%; mean depth value over all samples greater than or equal 30; the ratio 

between the mapping quality of the alternative and the reference allele between 0.95 and 1.05; 

minor allele frequency bigger than 0.05 and smaller than 0.95. After filtering, 114,945 SNPs 

were considered for the downstream population genetics and genomic prediction analyses. 

Alternative and reference read counts for each SNP and sample were extracted from the 

variant calling file using VCFtools v.0.1.16 (DANECEK et al., 2011). Genotype 

parametrization was performed considering the allele ratio #A/(#A + #a), where #A is the allele 

count of the alternative allele and #a is the allele count of the reference allele; in this 

parametrization, the dosage calling step was not performed and the data varied continuously 

from 0 to 1 as described in de Bem Oliveira et al. (2019, 2020). 

 

2.3 Experimental design and phenotyping 

 

The field trial was established at the UF/IFAS Plant Science Research and Education 

Unit (PSREU), Citra, FL (29°24’16’’ N and 82°10’17’’ W) and the phenotypic data were 

collected across 11 harvests from April 2018 to March 2019 (Figure 1). The trial was designed 

as an augmented row and column with three controls, the cultivars “Bulldog 805” and “Florida 

99”, and the breeding line from UF breeding program “UF_AlfPers_2015”. Each plot was 
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composed by twenty seedlings per family, planted in two rows (1.82 x 0.12m). The cultural 

practices were done as described by Acharya et al (2020). 

 

Figure 1 - (A) Weather information for the period from first (March 2018) to last (May 2019) 

harvest. 

 

 

 

 

Blue bars represent the daily precipitation (mm); red bars are the daily 

evapotranspiration (mm); red dashed line is the maximum daily temperature (°C); black solid 

line is the mean daily temperature (°C); and the blue dashed line is the minimum daily 

temperature (°C). (B) Dry matter yield (DMY) of families collected across eleven harvests. 

Plots were manually harvested when the control “UF_AlfPers_2015” reached 10% 

blooming, using a sickle, and total fresh weight was recorded. From the whole plot, a sample 

of approximately 500g was collected and it was dried at 65°C for seven days, to estimate DMY 

(kg.ha-1). 

 

2.4 Weather data collection 

 

We obtained two sets of historical environmental data to compute environmental 

kinship. The first set was obtained from the Florida Automated Weather Network (FAWN) 

(https://fawn.ifas.ufl.edu), that is located at the PSREU (29°48’9’’N; 82°24’39’’W), in the 

period when the trial was conducted (03/10/2018 – 04/11/2019) (Figure 1). The second data set 

https://fawn.ifas.ufl.edu/
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was obtained by the satellite-based weather system named “NASA’s Prediction of Worldwide 

Energy Resources” (NASA POWER, https://power.larc.nasa.gov/), using the EnvRtype 

package (COSTA-NETO et al., 2021a) considering 34 years (1984 – 2017) by using the 

get_weather() function. The goal was to compare the two similarity kernels in the prediction 

models and find out if the generalization of the environmental kinship matrix based on a large 

historical data set (34 years), can be employed in genomic prediction in alfalfa. For the first 

data set from FAWN station we considered 12 weather variables: soil mean temperature (ST, 

°C.day-1), daylight mean temperature (DTMEAN, °C.day-1), daylight maximum temperature 

(DTMAX, °C.day-1), daylight minimum temperature (DTMIN, °C.day-1), night mean 

temperature (NTMEAN, °C.day-1), night maximum temperature (NTMAX, °C.day-1), night 

minimum temperature (NTMIN, °C.day-1), dew point temperature (DP, °C.day-1), relative 

humidity (RH, %), photoperiod (PP, h.day-1), rain fall precipitation (PREC, mm.day-1), solar 

radiation (SRAD, MJ.m-2.day-1). For the data obtained from NASA power, we considered the 

same variables except for ST, NTMEAN, NTMAX and NTMIN. 

 

2.5 Weather data processing 

 

The raw data from the two data set were used to calculate variables related to the eco-

physiological interactions between soil, plant and atmosphere. The potential evapotranspiration 

(ETP, mm.day-1) calculation was based on the Priestley-Taylor method (PRIESTLEY; 

TAYLOR, 1972). The slope of the curve of saturation vapor pressure (SVP) was calculated 

according to the Food and Agriculture Organization (FAO) manual (ALLEN et al., 1998).  The 

difference between rainfall precipitation and crop evapotranspiration (PETP, mm-1.day) was 

calculated by the difference between PREC and ETP. The effect of temperature on radiation 

uses efficiency (FRUE) (SOLTANI; SINCLAIR, 2012) and growing degree days (GDD) were 

calculated based on temperature cardinal points. The temperature cardinal points used in this 

study were the same as proposed by Malik et al. (2018) for alfalfa in the growing conditions of 

Northeast Spain: 3°C (Tb1, base lower), 25°C (To1, base optimum), 33°C (To2, upper optimum) 

and 45°C (Tb2, base upper). The weather variables above were calculated by using the function 

processWTH() using the R package EnvRtype (COSTA-NETO et al., 2021a). 

By using the processed variables, we estimated the leaf area index (LAI) as a function 

of thermal-time accumulation by assuming an optimum leaf area expansion rate (LAERopt) of 

0.016 m2.m-2.degree-day (TEIXEIRA et al., 2007). Using the values of LAI for each day until 

https://power.larc.nasa.gov/
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the harvest, intercepted photosynthetically active radiation (PARi) was also estimated, 

considering a single coefficient of diffuse PAR (kd) of 0.81 (TEIXEIRA et al., 2007) by the 

expression: LAI
i ePAR *81.01 −−= . The air-soil temperature ratio (ASR) was calculated once/after 

this variable is related with the partitioning between shoots and roots (TEIXEIRA et al., 2008; 

Engels, 1994). The variables LAI, PARi and ASR were used only to compute the similarity 

kernel based on the data from FAWN. 

 

2.6 Computing the environmental covariable matrices (E and Eg) 

 

For the first set of environmental data (FAWN), each variable was sampled within each 

environment. The environment was represented by the weather conditions between consecutive 

harvests (Figure 1A and 1B). In each environment, time intervals (growth stages) were 

determined as: 0 to 7, 7 to 14, 14 to 21, 21 to 28, 28 to 35 and 35 to 42 days after harvest. For 

each weather variable we established thresholds based on the Shelford’s Law of Tolerance 

(SHELFORD, 1931) as suggested by Costa-Neto et al. (2021b). Furthermore, each weather 

variable was split in three thresholds: (i) stress by deficit, (ii) optimum growing conditions, and 

(iii) stress by excess, these thresholds were established according to the literature (Table 1). For 

variables without a clear threshold, we performed the discretization using histogram of 

percentiles (0-25, 26-50, 51-75 and 75-100%) as suggested by Costa-Neto et al (2021b). 

Finally, to compute the environmental covariable matrix (E) (Figure 2A) we considered the 

frequency of days within each environment for the three thresholds for each growth stage as an 

environmental covariable (EC). 

For the historical data set, we assigned as an environment a two-month interval time, by 

overlapping the last month of an environment (harvest) to the first month of the next harvest. 

This was done using weather data across 34 years. The historical weather data was used to 

compute a generalized matrix of environmental covariates (Eg) (Figure 2B). This matrix intends 

to mimic the conditions that plants could encounter in future trials, since breeders do not have 

in advance the weather data for future trials and the exact dates for planting and harvesting. 

After processing the historical weather data, we computed the Eg matrix in the similar way as 

was done for the E matrix, but for computing Eg we set time intervals of 15 days (0 to 15, 15 

to 30, 30 to 45 and 45 to 60). After filtering by the variance greater than zero for each EC, we 

retained 388 and 174 ECs for E and Eg respectively. 
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Figure 2 - (A) Environmental covariable matrix E, and (B) generalized environmental 

covariable matrix Eg. The columns represent each combination of growth stage and 

weather variable threshold, and the rows represent each harvest. 

 

 

 

Table 1 - Weather variable thresholds based on the Shelford’s Law of tolerance for daylight 

temperature, night temperature, photoperiod, PAR, LAI, and air-soil ratio temperature. 

Variable 

Stress  

by deficit 

Lower  

sub-optimum Optimum 

Higher  

sub-optimum 

Stress by 

excess Reference 

Daylight 

temperature  < 10°C 10°C to 24°C 25°C to 30°C 31°C to 34°C > 34°C 

Patterson (1993) 

 Collino et al. (2005)  

Malik et al. (2018)  

Night 
temperature <  5°C 5°C to 14°C 15°C to 20°C 21°C to 25°C >25°C  

Robison et al.  (1969)  
Patteson (1993)  

Photoperiod 

No leaf 

expansion Linear leaf expansion Maximum leaf expansion 
Teixeira et al. (2007) 

< 10h 10h to 12.5h >12.5h 

PAR 
Linear interception Maximum interception 

Teixeira et al. (2007) 
<0.81 > 0.81 

LAI < 3 > 3 

air-soil 

ratio 

temperature 

No 

partitioning to 

the roots Linear partitioning to the roots 

Maximum partitioning to  

the roots 
Teixeira et al. (2008) 

<0.8 0.8 to 1.3 >1.3 

PREC Threshold stablished as quantile from data set  - 

ETP Threshold stablished as quantile from data set  - 

PETP Threshold stablished as quantile from data set  - 

SRAD Threshold stablished as quantile from data set  - 

SPV Threshold stablished as quantile from data set  - 

GDD Threshold stablished as quantile from data set  - 

FRUE Threshold stablished as quantile from data set  - 
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2.7 Computing environmental and genomic similarity kernels (KE, KEg, Kg) 

 

The environmental similarity kernels (KE (1) and KEg (2)) were computed based on the 

linear variance-covariance matrix as proposed by Jarquín et al. (2014) and the genetic 

relationship kernel (KG (3)) was computed as suggested by Bem Oliveira et al (2020): 
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where, EK and EgK  are the environment and generalized environment similarity kernels 

between harvests, respectively; E and Eg are the environmental co-variance matrices (Figure 2) 

and their entries describe environmental similarities between pairs of harvests; rE and rEg are 

the number of rows in the matrices E and Eg, respectively. GK is the kinship matrix and its 

entries describe genomic similarities between pairs of genotypes; Z is the mean centered matrix 

of SNP frequency and rM is the number of rows in the M matrix. 

 

2.8 Statistical models 

 

We obtained the best linear unbiased estimates (BLUEs) of the families at each harvest, 

using the following linear mixed model: 

ecZrZXy +++= 21 (4), 

where, y is the vector of data,  is the vector of the fixed effects of the intercept and families, 

r and c are the random effects of the rows and columns following independent and identically 

distributed (IID) normal densities such that ),0(~ 2
rINr  and ),0(~ 2

cINc  ; 
2
r and 

2
c are the 

variance components associated with the effect of rows and columns; and e is the vector of the 

residuals, with ),0(~ 2
eINe  ; 

2
e is the variance component of the residuals. X is the incidence 

matrix of the fixed effects; 1Z and 2Z are the incidence matrix of the effects of rows and 

columns, respectively; and I is an identity matrix. 

After adjusting the families mean for each harvest by the design effects using the model  

(4), we tested six genomic prediction models and assess the effects of accounting for the family 

by harvest interaction term: (i) Model without account to the  G×E effects (G-BLUP – M0), 

considered as baseline model; (ii) Model accounting to the G×E effects modeled as a block 
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diagonal matrix, without any environmental similarity kernel (GE-BLUP – M1); (iii) model 

with environmental kernel KE, and families by harvests interaction (G×E) modeled as a block 

diagonal matrix (GE-BLUP-KE – M2); (iv) model with environmental kernel KEg, and G×E 

interaction modeled as a block diagonal matrix (GE-BLUP-KEg – M3); (v) model with 

environmental kernel KE, and G×E modeled as a Kronecker product between KEg and KG (RN-

BLUP- KE – M4); and (vi) model with environmental kernel KE, and G×E modeled as a 

Kronecker product between KEg and KG (RN-BLUP- KE – M5). All the kernel models were 

fitted using the BGGE R package (GRANATO et al., 2018) using 20,000 iterations, with 1,000 

used as burn-in and using a thinning of 10. Models are described in the following sections. 

 

2.8.1 G-BLUP Model (M0) 

 

The model used as a baseline (M0) includes a fixed intercept for each harvest and 

random additive genetic effects. In this model, only the additive genetic effects were modeled 

by the use of genomic relationship matrix (Kg): 

 +++= AAE uZXy 1 (6) 

where, y  is the vector of the families’ BLUEs in each q harvest; 𝜇 is the intercept; 𝛽 is the 

vector of fixed effect of harvests; Au is the additive genetic effects, with ),0(~ 2
AGqA KJNu  , 

where 
2
A  is the variance component associated with the additive genetic effects;  is the 

residual deviations assumed as ),0(~ 2
 nIN . EX  and AZ  are incidence matrices of the fixed 

effects  and random effects Au , respectively; qJ is a q x q matrix of 1s; nI is an identity matrix 

of size n, where n is the number of observations; and  denotes a Kronecker product. 

 

2.8.2 GE-BLUP Model (M1) 

 

The second model (M1) includes a fixed intercept for each harvest, random additive 

genetic effects, random harvest effects and, random additive genetic by harvest interaction. In 

this model, the interaction was modeled as the main effect of families plus genomic-by-harvest 

deviation (G + GE model) as follows: 

 +++++= AEEAAE uuuZXy 1 (7) 
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Eu is the main random effect of harvests with ),(~ 2
EpqEE JIZNu   , where pJ is a p x p matrix 

of 1s ; AEu is the additive genetic by harvest interaction effects modeled using a block diagonal 

matrix of the additive effects, built as ),0(~ 2
AGqAE KINu  ;  is the residual deviations 

assumed as ),0(~ 2
 nIN .  

 

2.8.3 GE-BLUP-KE (M2) and GE-BLUP-KEg (M3) 

 

The model accounting for the environmental similarities (KE or KEg) can be described 

in the same way as equation (7) by adding a main environmental relatedness effect: 

 +++++= AEEAAE uuuZXy 1  (8) 

with ),(~ 2
EpEEE JKZNu   , where EK  is the environmental similarity kernel; and 

2
E is the 

variance component from the environmental co-variance matrix E. For the model M3 we 

substituted the EK  by EgK kernel. In this model, the effects of G×E are modeled as a block 

diagonal (GE +E) as in the GE-BLUP model. Therefore, if no information about the 

environment is provided the expected value for harvests is given by EZ as the G-BLUP model 

(COSTA-NETO et al., 2021a). 

 

2.8.4 RN-BLUP-KE (M4) and RN-BLUP-KEg (M5) 

 

The model (8) can be expanded by modeling the G×E interactions as reaction norms 

(RN) (JARQUÍN et al., 2014) based on the Kronecker product between the environment and 

genomic kernels (MARTINI et al., 2020): 

 +++++= AEEAAE uuuZXy 1 (9) 

with, ),0(~ 2
AEGEAE KKNu  , where 

2
AE  is the variance component associated with enviromic 

by additive genetic effects interaction. For the model M5 we replaced  EK by EgK . 

 

2.9 Persistence, adaptability and stability evaluation 

 

For each model, we adjusted a linear regression of the predicted GEBVs for each family 

over time, adjusted by the seasonality: 
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ijkijikijk ebtbsy +++= 10 (10) 

where, ijky is the GEBVs for DMY of the family i in the time j and season k; ks is the effect of 

season k (spring, summer, fall and winter); ib0 is the intercept of the family i (adaptability); 𝑡𝑗 

is the time j, denoted as a regressor variable given by days after the first harvest (harvest 1 – 0 

to harvest 11 – 396 days); and ib1 is the regression coefficient of the family i (persistence, DE 

ASSIS et al., 2010); 𝑒𝑖𝑗𝑘 is the residual deviation, with 𝑒𝑖𝑗𝑘~𝑁(0, 𝐼𝜎𝑒
2). To measure the 

stability, we estimated the determination coefficient R2 of the linear regression for each family 

in which reflects the type 3 stability, when the stable genotype has smaller deviation from the 

regression model, i.e. it has greater predictability (LIN et al., 1986). 

 

2.10 Cross-validation and predictive ability 

 

The cross-validations (CVs) were done by assigning, randomly, 70% of the families as 

training data set and the other 30% families were set as the validation set. Furthermore, we set 

a constraint on the CV given the presence of population structure in the breeding population, 

by sampling 70% of the families within each of the six genetic structured groups (ANDRADE 

et al., 2022). The CVs were repeated ten times, by assigning different training and testing 

populations and increasing the number of harvests used in the training set (Figure 3). 

For the CV, we stablished four different scenarios (Figure 3) according to Jarquín et al. 

(2017): 

(i) CV2: predicting tested families in observed harvests; 

(ii) CV1: predicting untested families in observed harvests; 

(iii) CV0: predicting tested families in unobserved harvests, and; 

(iv) CV00: predicting untested families in unobserved harvests. 

The PA was assessed in all the CVs scenarios by calculating the Pearson’s correlation 

coefficient between predicted (GEBVs) and observed DMY values (BLUEs from model [4]). 

The CVs were also performed for the regression parameters b0, b1 and R2, in which the observed 

values for b0, b1 and R2 were estimated by regressing on the BLUEs (4) over time by using the 

regression model (10). The standard error for the correlation (SE) was estimated following the 

expression presented by Carvalho et al (2020): 
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where, SD is the standard deviation of the genomic-enviromic prediction, Nfp  is the size of the 

whole population; Nftrn is the size of the training population; 𝑁𝑓𝑣𝑎𝑙 is the size of the validation 

population; and tn  is the number of times each CV was sampled (10 times). 

 

Figure 3 - Example for the CV schemes (CV0, CV00, CV1 and CV2) using only three harvests 

(H1, H2 and H3), three genotypes (G1, G2 and G3) and three folds (F1, F2 and F3), 

by increasing the number of harvests from one to two. The reduced number of 

harvests, genotypes and folds were used only for simplicity. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, we adjusted the Pearson’s correlation coefficients over the number of harvests 

used in the training data set by using an asymptotic non-linear regression adjusted by the R 

function nls(), in order to estimate the optimal number of harvests after which PA will not 

increase significantly: 

ij
Xc

iiiij
iebaar +−−=

− )(
*)( (12) 

where, ijr is the Pearson correlation between predicted and observed values for model i with j 

number of harvests in the training set; ia is the asymptotic point for model i; bi is the correlation 

where X equals to zero; ci is the proportional in PA gains over number of harvests in the training 

set; X represents the number of harvests in the training set; and is the error. The optimal 
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number of harvests were calculated based on the inverse function of the equation (12), in which 

the lower limit of the asymptotic point ( ia ) 95% confidence interval. 

 

3 RESULTS 

 

3.1 Genetic and non-genetic parameters 

 

The inclusion of the environmental effects in Models 2 to 5 led to a better partition of 

the phenotypic variance, as the error variance (𝜎𝜀
2) was decreased and the genetic variance (𝜎𝐴

2) 

increased, compared to Model 1 (Table 2). Models that accounted for the environmental 

relatedness kernel (M2, M3, M4 and M5) were able to capture more variance from the 

environment effects. These results showed that enviromic effects were an important component 

of the phenotypic variance (Table 2). When comparing the models M2 and M3  to the models 

M4 and M5, the inclusion of a more complex variance structure for including the G×E 

interaction term led to an increase of the variance component associated with it (i.e., 𝜎𝐴𝐸
2 ), 

indicating that the reaction norm kernel was more efficient in capturing the G×E pattern present 

in the phenotypic data (Table 2). 

 

Table 2 - Summary of the variance components for the five models evaluated for alfalfa dry 

matter yield. The variance components were estimated by fitting the models with all 

recorded phenotypes across all harvests (p = 177 families and q = 11 harvests). 

 

Variance 

component 

Model 

M0 M1 M2 M3 M4 M5 

 441,448 741,648 736,784 747,041 765,795 759,882 

 - 1,504,121 2,478,132 3,995,112 4,349,691 3,634,176 

 - 122,295 123,572 121,919 246,610 230,930 

 996,763 169,005 169,023 169,461 146,128 155,408 

 

𝜎𝐴
2 , 𝜎𝐸

2, 𝜎𝐴𝐸
2  and 𝜎𝜀

2 are the variance components of the additive genomic effects, 

harvests effects, additive genomic by harvests interaction effects and error, respectively. 

The magnitude of the 𝜎𝐴
2, 𝜎𝐴𝐸

2  and 𝜎𝜀
2 did not change significantly between models with 

different enviromic kernels (M2 and M3; M4 and M5) (Table 2). These results can be explained 

by the similar pattern of the environmental relatedness explained by KE and KEg, in which the 

eviromics effects grouped the harvests in two main clusters, the first group constituted by 

harvests 1, 8, 9, 10, and 11 and the second by harvests 2, 3, 4, 5, 6 and 7 (Figure 4). 
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Figure 4 - Environmental similarity kernels KE (A) and KEg (B) computed by the environmental 

covariables. 
 

 

 

 

 

 

 

 

 

 

 

 

3.2 Predictive ability of the models 

 

The PA varied from low (-0.08 – M4 in CV1 for R2) to high (0.66 – M2, M3 and M4 in 

CV0 for b0) (Table 3). Comparing all the tested scenarios, validation sets composed only by 

untested genotypes in all harvests (CV00 and CV1) had the lowest PA for all parameters 

estimated (Table 3). The M0 model showed similar PA compared to the other models evaluated 

for the CV00 and CV1 for GEBV and R2, and lower PAs were estimated for M0, M4 and M5 

for b0 and b1 when compared to M1, M2 and M3 under CV00 and CV1 scenarios (Table 3). For 

the CV0 and CV2 scenarios, the models M0 and M1 showed similar PAs for GEBV, whereas 

models M2, M3, M4 and M5 had higher PAs for all parameters (Table 3). The model in which 

ignores the G×E effects (M0) had the lowest PA for b0, b1 and R2 when compared to other 

models under CV0 and CV2. When comparing the different enviromic relatedness kernels (M2 

and M3, M4 and M5), similar PAs can be observed across all simulated scenarios. 
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Table 3 - Mean predictive ability across all number of harvests in the training population for 

GEBV, b0, b1 and R2 estimated by using M0, M1, M2, M3, M4 and M5 models for 

the CV00, CV1, CV0 and CV2 scenarios. 

 

Parameter Model CV00 CV1 CV0 CV2 

GEBV 

M0 0.21 ± 0.03 0.22 ± 0.03 0.53 ± 0.07 0.52 ± 0.03 

M1 0.21 ± 0.03 0.24 ± 0.03 0.54 ± 0.02 0.51 ± 0.03 

M2 0.20 ± 0.03 0.24 ± 0.03 0.61 ± 0.02 0.63 ± 0.03 

M3 0.20 ± 0.03 0.24 ± 0.03 0.61 ± 0.02 0.63 ± 0.03 

M4 0.20 ± 0.03 0.20 ± 0.03 0.59 ± 0.02 0.61 ± 0.03 

M5 0.20 ± 0.03 0.20 ± 0.03 0.59 ± 0.02 0.63 ± 0.03 

b0 

M0 0.08  ± 0.03 0.08 ± 0.01 0.42 ± 0.05 0.37 ± 0.03 

M1 0.12 ± 0.03 0.11 ± 0.02 0.53 ± 0.02 0.45 ± 0.03 

M2 0.11 ± 0.03 0.13 ± 0.02 0.66 ± 0.02 0.60 ± 0.03 

M3 0.11 ± 0.03 0.12 ± 0.02 0.66 ± 0.02 0.56 ± 0.03 

M4 0.06 ± 0.03 0.07 ± 0.03 0.64 ± 0.03 0.54 ± 0.03 

M5 0.07 ± 0.03 0.07 ± 0.03 0.66 ± 0.03 0.58 ± 0.03 

b1 

M0 0.01 ± 0.03 0.01 ± 0.02 -0.02 ± 0.03 0.00 ± 0.03 

M1 0.13 ± 0.03 0.15 ± 0.02 0.43 ± 0.03 0.34 ± 0.03 

M2 0.16 ± 0.03 0.20 ± 0.02 0.56 ± 0.03 0.45 ± 0.04 

M3 0.16 ± 0.03 0.20 ± 0.02 0.54 ± 0.03 0.46 ± 0.04 

M4 -0.03 ± 0.02 -0.01 ± 0.02 0.58 ± 0.03 0.29 ± 0.04 

M5 -0.03 ± 0.02 -0.02 ± 0.02 0.56 ± 0.03 0.44 ± 0.04 

R2 

M0 0.00 ± 0.03 0.01 ± 0.02 0.00 ± 0.03 0.01 ± 0.01 

M1 0.02 ± 0.03 0.04 ± 0.02 0.11 ± 0.01 0.04 ± 0.01 

M2 0.02 ± 0.03 0.08 ± 0.03 0.22 ± 0.04 0.16 ± 0.05 

M3 0.02 ± 0.03 0.08 ± 0.03 0.24 ± 0.04 0.18 ± 0.05 

M4 -0.06 ± 0.03 -0.08 ± 0.03 0.24 ± 0.03 0.12 ± 0.03 

M5 -0.04 ± 0.02 -0.07 ± 0.03 0.17 ± 0.03 0.13 ± 0.03 

 

3.2.1 CV2: predicting untested families in observed harvests 

 

The CV2 scenario imposes imbalanced data that may occur in repeated measures trials 

for perennial crops (missing data in some harvests for certain plots) to infer if the enviromic 

information can improve the PA. For this, 30% of the genotype-harvest combinations were 

withdraw and 70% of whole data were used as training population, and this was done by 

increasing the number of harvests in the training set. For this scenario, the PA for all the 

parameters increased as data from more harvests were included in the training population until 

reaching a plateau for all models, except for R2 for all models, and for b0 and b1 for model M0 

(Figure 5). When comparing the models M0 and M1, the inclusion of the G×E term led to higher 

PA for b0 and b1. Models that accounted for the enviromic information (M2, M3, M4 and M5) 
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had higher PA when compared to the model M1, and this was more evident for R2 (Figure 5 and 

Table S1).  

 

Figure 5 - Predictive ability for families GEBVs for DMY, and regression parameters of 

adaptability (b0), persistence (b1) and stability (R2) by increasing the number of 

harvests in the training data set for the CV2.  

 

 

 

The mean PA varied from 0.01 for M0 model (R2) to 0.63 for M2, M3 and M5 (Table 

S1). The inclusion of the G×E effects in the model improved the PA for b0 and b1, and the 

improvement was more evident for b1 where the estimated PA increased from 0.00 (M0) to 0.34 

(M1). Models that accounted for enviromic information (M2, M3, M4 and M5) improved the 

PAs by 19, 24, 17 and 73% for GEBVs, b0, b1 and R2, respectively when compared to the model 

M1. Families’ GEBVs, b0 and b1 had a good adjustment to the asymptotic regression, since most 

of the non-linear regression parameters (a, b and c) were significant for all models, except for 

b0 and b1 for model M0 (Table 3, Figure 6A, 6B and 6C). For model M0, only PAs for GEBVs 

showed an asymptotic behavior since this model ignores the G×E effects (Table S1 and Figure 

6). The PAs for M1 reached the asymptotic point with less harvests and four, three and six 

harvests were needed for GEBV, b0 and b1, respectively (Table S1). However, models that 

included enviromic information had higher PA with the same number of harvests than the model 
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M1, except for M4 (b1), even though the enviromic based models did not reach the asymptotic 

point (Figure 6A, 6B and 6C). The models M2 and M3 performed better than the models M4 

and M5 by reaching the asymptotic with less harvests in the training population with the similar 

PA for GEBV, b0 and b1 (Table S1). By comparing different enviromic kernels (M2 and M3; 

M4 and M5), both kernels yielded similar results based on the asymptotic point (a) (Table S1). 

Figure 6 - Non-linear asymptotic regressions fitted for predictive ability by number of harvests 

used in the training set for models M0 (black), M1 (blue), M2 (yellow), M3 (purple), 

M4 (red), and M5 (green) for GEBV (A), b0 (B), b1 (C) and R2 (D) in the scenario 

CV2. 

 

 

 

3.2.2 CV0: predicting tested families in unobserved harvests 

 

The PA increased by increasing the number of harvests in the training data set for all 

models and parameters, except for b1 for model M0 and R2 for model M0 and M1 (Figure 7). 

By including the G×E term in the model, the PA increased (Figure 7 – M0 and M1), and the 

greater difference was observed for b1 where the PA increased from zero (M0) to approximately 

0.50 (M1) when using more than five harvests in the training population (Figure 7). Models 
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that accounted for the enviromic information outperformed model M1 for all parameters and 

number of harvests (Figure 7 and Table S2). The most expressive difference was observed for 

the stability parameter (R2), as PA did not increase for M1 when more harvests were included 

in the training set, while it increased for models M2 to M5 (Figure 7). Furthermore, the number 

harvests increased the PA of models linearly until it reached a plateau for all parameters except 

for R2. For R2, models M2, M3, M4 and M5 resulted in greater PAs after five harvests were 

included in the training set (Figure 7). 

 

Figure 7 - Predictive ability for families GEBVs, and regression parameters of adaptability (b0), 

persistence (b1) and stability (R2) by increasing the number of harvests in the training 

data set for CV0. 

 

 

  

The mean PA through the different number of harvests varied among models and 

parameters, ranging from -0.02 for R2 (M0) to 0.66 for b0 (M2, M3 and M5) (Table S2). Higher 

PAs were observed for GEBV, b0 and b1, whereas for R2 the mean PA ( r ) were lower 

evidencing greater difficulty in predicting the stability parameter. Furthermore, there was a lack 

of adjustment of the PAs to the asymptotic regression equation for R2 (Figure 6D) since most 

of the parameters were not significant (Table S2). For GEBV, b0 and b1 the PAs had good 

adjustment to the asymptotic regression, except for M0 where only for GEBV the asymptotic 

regression had a good adjustment (Figures 8A, 8B and 8C). 
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By including the G×E term in the model the PA increased from 0.53 to 0. 57, 0.42 to 

0.53, -0.02 to 0.43 and 0.00 to 0.11, for GEBV, b0, b1 and R2, respectively (Table S2). By 

using the enviromic information in the model, the models M2, M3, M4 and M5 increased PA 

by 10, 18, 22 and 47% for GEBVs, b0, b1 and R2, respectively (Table S2). When comparing the 

models, minor changes in PAs occurred between the models that accounted for enviromic 

information, and the M0 model had the lowest PA for all parameters (Table S2). However, there 

were changes in the number of harvests to reach the PA asymptotic point (Table S2). 

The reaction norm models (M4 and M5) had the highest asymptotic points, but these 

models needed for more harvests in the training population to reach the plateau, whereas for 

models M2 and M3 similar asymptotic patterns can be reached with less harvests in the training 

set (Table S2 and Figure 8). The KE (M2 and M4) and KEg (M3 and M5) kernels did not change 

the number of harvests to reach the plateau, except for the EMDs models (M2 and M3) for b0 

in which the model M2 reached asymptotic point with seven harvests used in the training set 

whereas for M3 the number of harvests was eight (Table S2). Only for b1, the model M1 reached 

asymptotic point with less harvests (3) in the training set when compared with the models RN 

(M4 and M5) and EMDs (M2 and M3) (Table S2), however with three harvests the models 

EMDs and RN performed better than M1 (Figure 8). The models M2 and M3 had the highest 

values for the c parameter, i.e. these models had better linear gains in PA by increasing the 

number of harvests when compared to other models (Table S2 and Figure 8). 

 

Figure 8 - Non-linear asymptotic regressions fitted for predictive ability by number of harvests 

used in the training set for models M0 (black), M1 (blue), M2 (yellow), M3 (purple), 

M4 (red) and M5 (green) for GEBV (A), b0 (B), b1 (C) and R2 (D) in the scenario CV0. 
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3.2.3 CV1: predicting untested families in observed harvests 

 

The mean predictive ability for the CV1 ranged from -0.08 (M4 for R2) to 0.24 (M1, M2 

and M3 for GEBVs), and PA was significantly lower than for CV0 and CV2 scenarios (Table 

3). The increasing number of harvests in the training population led to a slightly increase in PA 

only for b1 and R2 for the models M2 and M3, where PA stabilized with five harvests in the 

training population (Figure 7). When including the G x E term in the model there is an increase 

in the PA from 0.08 (M0) to 0.11 (M1) and 0.01 (M0) to 0.15 (M1) for b0 and b1, respectively 

(Table 3). There were non-significant differences for PA between M1 and models with 

enviromic information for b0 and GEBVs (Figure 9). However, for b1 there was a significant 

increase in PA when accounting for enviromic information in the models, as PA increased from 

0.15 (M1) to 0.20 (M2 and M3) (Table 3). The models M4 and M5 had lower PA compared to 

the model M1 for b0 and b1 (Figure 9). 

 

Figure 9 - Predictive ability for predicting untested families GEBVs in observed harvests 

(CV1), and predicting regression parameters of adaptability (b0), persistence (b1) 

and stability (R2) by increasing the number of harvests in the training data set. 
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3.2.4 CV00: predicting untested families in observed harvests 

 

The CV00 is the most challenging breeding scenario, where information for genotypes 

and harvests are missing. The lowest PA were observed for CV00 when comparing to other CV 

scenarios. The PA ranged from -0.06 (R2 – M4) to 0.21 (GEBVs – M0 and M1), and the R2 was 

the most difficult parameter to predict for all models (Table 3). The number of harvests used in 

the training population did not significantly increase PA for most parameters and models. 

Except for b1 with the M1, M2 and M3 models, where an increase in the PAs was observed 

when at least five harvests were included in the training set (Figure 8). When comparing M0 

and M1, there was an increase in the PA for b1 by the inclusion of the G×E effects (Figure 8). 

In this scenario the differences between the models that used the enviromic information and the 

M1 model were not significant, except for b1 where the RN models (M4 and M5) had the lowest 

PA (Figure 10).  

 

Figure 10 - Predictive ability for predicting untested families GEBVs in untested harvests 

(CV00), and predicting regression parameters of adaptability (b0), persistence (b1) 

and stability (R2) by increasing the number of tested harvests. 
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4 DISCUSSION 

Alfalfa breeding programs target the improvement of DMY, quality, persistence, and 

tolerance to biotic and abiotic stresses. As a perennial species, the phenotypic selection process 

for alfalfa can take several years, as traits must be evaluated under multi-harvests to find out 

which genotypes can maintain yield and quality over time. Therefore, genetic gain is lower 

compared to annual crops.  Furthermore, due to the perennial behavior alfalfa breeders have to 

handle with G×E interaction from the beginning of the selection cycle. This can lead to lower 

heritability estimates when cross-over interactions are predominant across harvests. In addition, 

multi-harvest field trials are costly, forcing breeders to reduce the number of tested genotypes. 

Since whole-genome prediction was proposed (MEUWISSEN et al., 2001), genomic selection 

models became widely used in plant and animal breeding, aiming in accelerate the breeding 

process and increase genetic gains. Envirotyping has been incorporated in to whole-genome 

prediction aiming to better G×E modeling, enabling the prediction of novel genotypes in 

untested environments (Xu, 2016). In this study, we computed PAs based in breeding values 

for DMY (GEBVs), persistence (b1), broad adaptability (b0) and stability (R2) for G-BLUP and 

for models that account for enviromic information through environmental relatedness kernel. 

 

4.1 Variance components 

 

Genotype by environment effects can be divided into complex and simple interactions 

effects. In this study, both simple and complex G×E were observed. The simple G×E occurs 

when there is heterogeneity of variances (CROSSA et al., 2004), and complex interaction is 

observed when there is a lack of genetic correlation between environments (VAN EEWIJK et 

al., 2016). However, the predominance of simple interaction was observed in this study where 

small amount of variance can be attributed to the G×E effects (𝜎𝐴𝐸
2 , Table 2). Our results showed 

that the inclusion of enviromic information decreased the residual variance component, and the 

environment accounted for most of the phenotypic variance, and similar results were reported 

by Jarquín et al (2014), Jarquín et al. (2017) and Costa-Neto et al. (2021a). In addition, as 

pointed out by Costa-Neto et al. (2021a), the use of enviromic information impacts the model’s 

ability in explaining phenotypic records, increasing the genomic variance, and the same pattern 

was found in our study (𝜎𝐴
2, Table 2). 
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4.2 Predictive ability through cross-validation scenarios 

 

The PAs ranged from low (-0.09) to high (0.63), depending on the used model, cross-

validation scenario, and parameter. As expected, higher PAs were observed for CV0 and CV2 

because the genotypes/families were already observed in any other harvest, whereas lower PAs 

were computed for CV00 and CV1. These results are in agreement with reports by Jarquín et 

al. (2017), by performing the same cross-validation scenarios in wheat (Triticum aestivum) for 

multi-environment trials. Therefore, these results evidenced that the phenotypic records in the 

training population for a given genotype has an important role improving the PAs. The RN 

models (M4 and M5) resulted in lower PAs under more unbalanced scenarios (CV00 and CV1) 

for all predicted parameters and had better results than M0 and M1 models when phenotypic 

records were available. This fact indicates an over fit from RN models to the data set, as they 

are more parametrized and can handle more complex G×E. For this dataset, we observed a 

predominance of non-crossover G×E, with a small proportion of variance captured by the 

interaction term (Table 2). The M1, M2 and M3 models resulted in similar PAs under CV00 

and CV1 scenarios, but M2 and M3 models had better performance when phenotypic records 

were available (CV0 and CV2), therefore these model also can be implemented when non 

crossover G×E is predominant. 

 

4.3 Enviromic-based models can improve accuracy under unbalanced multi-harvest 

trials 

 

In early generation trials, a large number of families is evaluated in alfalfa field trials. 

Due to the large number of families, the use of incomplete block designs such as augmented 

block (FEDERER, 1956), p-rep (CULLIS et al., 2006) and row-column augmented block 

design (FEDERER; RAGHAVARAO, 1975) are used in order to evaluate the largest number 

of families as possible without increasing the number of plots. However, due to the lack of 

replication in those designs when a plot is lost in a given harvest, the information about that 

family will be missed, causing an imbalance at the subplot level (harvests), which can lead to a 

lower experimental precision. In this study, we simulated 30% of missing genotype-harvest 

combination (CV2) to assess if the enviromic information can help to improve accuracy under 

unbalanced multi-harvest trials. Our results showed that the incorporation of enviromic 
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information into genomic models increased the PA of predicted GEBV for DMY from 0.51 to 

0.63 (Table 3). 

Our results from CV2 opens the possibility in designing sparse multi-harvest trials, 

where not all genotypes are evaluated at each harvest, or even at each location (GONZÁLEZ-

BARRIOS et al., 2018). This strategy makes feasible the evaluation of more families per 

breeding cycle. Jarquín et al. (2017) emphasized that the CV2 strategy can reduce the workload 

per harvest and increases the efficiency per plot. Although the accuracy can be lower in sparse 

multi-environment trials, the predictive ability can be recovered when more genotypes are 

tested across harvests (JARQUÍN et al., 2020; CRESPO-HERRERA et al., 2021). Montesinos-

Lopez et al. (2022) proposed the use of incomplete block design to allocate wheat lines across 

the environments, and the authors reported an improvement on the PAs when compared to the 

random allocation of lines across the environment. Therefore, the approach proposed by 

Montesinos-Lopez et al. (2022) can be applied in alfalfa multi-harvest trials, in which the 

families to be harvested would be selected according to an incomplete block design. 

 

4.4 Reducing the number of harvests evaluation in alfalfa breeding trials 

 

A concern among forage breeders is the number of harvests needed to select superior 

genotypes by keeping a good balance between precision and resources allocated 

(FIGUEIREDO et al., 2019). Therefore, reducing the number of harvests is crucial to accelerate 

alfalfa breeding cycle, as well as increasing the number of families to be evaluated in early 

generation cycles. Resende et al. (2002) suggested the use of the repeatability coefficient as a 

parameter to infer about the optimal number of harvests, in which repeatability above 0.80 

should be the ideal for phenotypic selection. By using repeatability coefficient, Souza Sobrinho 

et al. (2010) estimated the optimal number of harvests for DMY for Urochloa ruziziensis L., 

where the authors concluded that 7 to 8 harvests are sufficient for phenotypic selection. We 

suggested a genomic prediction approach based on cross-validation to determine the optimal 

number of harvests to predict GEBV for DMY for tested genotypes in untested harvests (CV0). 

Our study showed that the amount of information (phenotypic records) in the model followed 

an asymptotic trend. Costa-Neto et al. (2021b) pointed out that more phenotypic records do not 

always lead to better accuracies. Therefore, the optimal number of harvests would be the point 

in which the PA do not significantly increase on the asymptotic regression. The best models 

(M2 and M3) reached the asymptotic point by using two fewer harvests than M1 model, and 
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the PA increased from 0.62 to 0.68 for DMY. For b0 and b1, the M1 model reached the 

asymptotic point by using fewer harvests (six harvests for b0 and three for b1) in the training 

population. However, despite that M1 reached the asymptotic point using fewer harvests, the 

models M2 and M3 had higher PA with the same number of harvests in the training population 

(Figure 8), and at the asymptotic point the M2 and M3 models reached PA of 0.77 (seven 

harvests) and 0.70 (seven harvests) for b0 and b1, respectively.  

 

4.5 Multi-harvest genomic selection 

 

Genomic selection has been successfully applied in alfalfa breeding programs 

(ANNICHIARICO et al., 2015; LI et al., 2015; ANDRADE et al., 2022). Neglecting the 

genotype by harvest interaction in alfalfa can lead to bias prediction, as PA varies across 

harvests (ANDRADE et al., 2022). As described by Gauch and Zobel (1996) the G×E 

interaction can be explained as the expression of different traits across environment, where the 

correlation indicates if the same genes are being expressed or not. Therefore, different PAs 

across harvests indicates the presence of G×E.  

By modeling the interaction using a heterogeneous autoregressive covariance structure 

for G×E, Andrade et al. (2022) reported moderate PA by using five cumulated harvests in a 

CV1 cross-validation scheme. As opposed to Andrade et al. (2022), we did not observe an 

increase in the PA by increasing the number of harvests in the training population. By using a 

Bayesian approach, we were able to include all the harvests in the model, in which some 

harvests were used as training and other as testing sets. Since we used all harvests, the models 

were able to capture the G×E even when only one harvest was used as the training population. 

For the CV00 and CV1 scenarios, the best enviromic-based models (M2 and M3) yielded 

similar results than M1, for predicting GEBVs and moderate PAs were observed (0.20 for CV00 

and 0.24 for CV1). Moderate PA for DMY were also observed by Annichiarico et al. (2015), 

Li et al. (2015) and Andrade et al. (2022). The results found in our study can serve to optimize 

the alfalfa breeding program by reducing the time and resources necessary in the evaluation of 

training populations. 
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4.6 Persistence, broad adaptability and stability  

 

There are three possible ways of dealing with the presence of G×E in plant breeding: to 

ignore it, to avoid it or to explore it (EISEMANN et al., 1990). By ignoring the G×E (M0), the 

selection for alfalfa adaptation can potentially be lost and might compromise yield potential in 

specific environments (Yan, 2016). By exploring the G×E, the target environments are grouped 

into mega-environments blocking the G×E effects, and selection is done within mega-

environments allowing the maximum expression of yield potential for the selected genotypes 

(GAUCH, 1988; YAN et al., 2000; SMITH et al., 2001; CULLIS et al., 2014; DIAS et al., 

2022). To avoid G×E, the selection of the genotypes has two components, high mean trait 

performance and high stability across environments (FINLAY; WILKINSON, 1963; 

EBERHART; RUSSELL, 1966). By the nature of the G×E in this study, the best strategy to 

deal with G×E is avoiding it as the harvests (time) are not repeatable (Yan, 2016).  

We investigated the PA for the regression parameters over time, in which the parameters 

b0 and R2 can be interpreted as proposed by Eberhat and Russel (1966), b0 as broad adaptability 

and R2 as stability. In this study, we regressed the predicted GEBVs for DMY over time, 

therefore b1 is not the genotypes’ plasticity to the improved environmental quality as originally 

proposed by Eberhat and Russel (1966). As suggested by De Assis et al. (2010), the b1 

coefficient is the genotype’s persistence, and genotypes with good persistence must have values 

close to zero. When ignoring G×E (M0), the PAs for b0, b1 and R2 were lower, and the results 

showed the importance of considering G×E in the genomic prediction models even when there 

is predominance of simple G×E. As expected, our results showed that the stability parameter 

(R2) was the most difficult parameter to be predicted. PAs closer to zero can be observed for all 

models in the CV00 and CV1 scenarios, whereas b0 and b1 had PA greater than zero under 

CV00 and CV1. Under CV0 and CV2, R2 needed more harvests to have reasonable PAs for the 

enviromic-based models, whereas PAs were low for the M0 model even with the increasing 

number of harvests in the training population. These results are aligned with reports by Mendes 

and Ramalho (2018), where the authors studied the repeatability coefficient of adaptability and 

stability parameters for 26 common beans assessed in 36 environments, and the authors reported 

greater repeatability estimates for b0 and b1 and very low repeatability for stability parameter.  

The authors also reported that selection based on stability should be done in a greater 

number of environments.  These results indicate the possibility of using genomic selection for 

persistence in alfalfa breeding programs with reduced number of harvests.  
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4.7 Differences between KE and KEg on predictive ability 

 

Our study showed that the use of historical data in computing the environmental 

relatedness kernel did not change PAs for the enviromic-based models in all CV scenarios and 

predicted parameters. Since breeders do not have weather data for the year in which the trials 

will be conducted, historical data can be used in genomic prediction models to predict new 

genotypes. The use of historical data has the advantage of being updated every year and can 

capture environmental trends driven by climate change. 

 

5 CONCLUSION 

 

Our findings suggest that G×E term must be taking into account in genomic prediction 

models and enviromic-based models can improve efficiency of alfalfa breeding programs, by 

reducing the number of harvests in the selection cycle (CV0) and increasing the experimental 

precision under unbalanced multi-harvest trials (CV2) for DMY and persistence. The weather 

historical data to compute environmental relatedness kernel can be used in enviromic-based 

model.  

Furthermore, the use of a Bayesian regression kernels allowed moderate predictive 

ability in genomic predictions (CV1 and CV00) even when only one harvest was used in the 

training data set, and also when increasing the number of harvests in the training set the 

predictive abilities did not change.  
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SUPPLEMENTARY MATERIAL 

 

Table S1 - Parameter estimations from fitting asymptotic regression to mean cross validation predictive ability by number of harvests in the training 

population for breeding values in each untested harvest (GEBV), broad adaptability (b0), persistence (b1) and stability (R2) for CV2. 

 

Predicted 
Regression 

Parameter 

M0 
M1 M2 M3 M4 M5 

GEBV 

a 0.64* 0.70* 0.67* 0.67* 0.66* 0.71* 

b 0.23* 0.24* 0.01ns 0.01ns 0.13ns 0.15ns 

c 0.19ns 0.12ns 0.52* 0.51* 0.38* 0.31* 
 

0.52 0.51 0.63 0.63 0.61 0.63 

95% asymptotic 

point 

0.48 (5) 
0.43 (4) 0.65 (7) 0.65 (7) 0.64 (7) 0.63 (6) 

b0 

a 2.15ns 0.97* 0.77* 0.77* 0.77* 0.88* 

b 0.21* 0.22* 0.08ns 0.07ns 0.15ns 0.16ns 

c 0.01ns 0.06ns 0.31* 0.32* 0.20* 0.18* 
 

0.37 0.45 0.60 0.56 0.54 0.58 

95% asymptotic 

point 

 - 
0.55 (3) 0.73 (9) 0.73 (9) 0.69 (10) 0.79 (11) 

b1 

a 0.18ns 0.49* 0.63* 0.63* 0.89ns 1.00* 

b -0.02ns  -0.07ns  -0.16ns  -0.13ns  -0.06ns  -0.03* 

c 0.02ns 0.31* 0.36* 0.34* 0.09ns 0.10* 
 0.00 0.34 0.45 0.46 0.29 0.44 

95% asymptotic 

point 

 - 
0.41 (6) 0.59 (8) 0.59 (8) - 0.50 (7) 

R2 

a -0.01ns 0.05* 5.1ns 4.47ns 5.81* 6.99ns 

b -0.05ns  -0.03ns  -0.16*  -0.13*  -0.07ns  -0.10* 

c 0.62ns 0.37ns 0.01ns 0.01ns 0.006ns 0.006ns 
 

0.01 0.04 0.16 0.18 0.12 0.13 

95% asymptotic 

point 

 - 
 -  -  -  -  - 
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a is the asymptotic predictive ability; b is the predictive ability with number of harvests in the training set equals zero; c is the linear 

predictive ability by the number of harvests in the training set; r represents the mean predictive ability through the increasing number of harvests 

in the training set. *Significant by the t-test at 5% of probability. The numbers between parentheses represent the number of harvest estimates at 

95% of asymptotic predictive ability. 

 

Table S2 - Parameter estimations from fitting asymptotic regression equation 
)(

*)(
Xc

iiiij
iebaar

−
−−=  to mean cross validation predictive ability by 

number of harvests in the training population for breeding values in each untested harvest (GEBV), broad adaptability (b0), persistence 

(b1) and stability (R2). 

 

Predicted 
Regression 

Parameter M0 M1 M2 M3 M4 M5 

GEBV 

a 0.74* 0.72* 0.70* 0.70* 0.74* 0.74* 

b 0.37* 0.38* 0.23ns 0.25ns 0.17* 0.18* 

c 0.16 ns 0.18ns 0.61* 0.60* 0.46* 0.44* 

r  0.53 0.57 0.64 0.63 0.64 0.64 

95% asymptotic 

point 

 

0.62 (7) 0.68 (5) 0. 68 (5) 0.70 (6) 0.70 (6) 

b0 

a 2.1ns 0.82* 0.81* 0.81* 0.87* 0.92* 

b 0.26ns 0.24* 0.09ns 0.10* 0.18ns 0.18ns 

c 0.01 ns 0.15* 0.38* 0.38* 0.25* 0.23* 

r  0.42 0.53 0.66 0.66 0.64 0.66 

95% asymptotic 

point 

 - 

 0.58 (6)  0.77 (8)  0.77(8)  0.81 (10)  0.84 (10) 

b1 

a 0.21ns 0.60* 0.74* 0.73* 0.97* 1.00* 

b 0.01ns -0.20* -0.09* -0.25* -0.13ns -0.08* 

c -0.02ns 0.38* 0.36* 0.42* 0.23* 0.18* 

r  -0.02 0.43 0.56 0.54 0.58 0.56 
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95% asymptotic 

point 

 - 

 0.54 (3) 0.68 (7)   0.69 (8) 0.79 (8)   0.72 (8) 

R2 

a -0.10ns 0.59ns 6.80ns 4.17ns 10.68ns 9.35ns 

b 0.02ns 0.00ns  -0.20*  -0.17ns  -0.16*  -0.14* 

c 0.05ns 0.03ns 0.01ns 0.01ns 0.00ns 0.00ns 

r  0.00 0.11 0.21 0.23 0.23 0.17 

95% asymptotic 

point 

 - 

 -  -  -  -  - 

 

a is the asymptotic predictive ability; b is the predictive ability with number of harvests in the training set equals zero; c is the linear 

predictive ability by the number of harvests in the training set; r represents the mean predictive ability through the increasing number of harvests 

in the training set. *Significant by the t-test at 5% of probability. The numbers between parentheses represent the number of harvest estimates at 

95% of asymptotic predictive ability. 

 

 

 

 


