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Abstract

Selenium (Se) is an essential micronutrient known to play an important role in the antioxi-

dant system that can potentially influence tumor growth. We aimed to investigate the effects

of dietary Se supplementation after detection of 4T1 mammary tumor growth in BALB/c

mice. Thirty female mice received subcutaneous inoculation of 4T1 cells. After five days, all

animals presenting palpable tumors were randomly assigned to three groups: a control

group (Se-control) receiving a diet with adequate Se (0.15 mg/kg) and two other groups that

received Se-supplemented diets (1.4 mg/kg of total Se) with either Brazilian nuts (Se-Nuts)

or selenomethionine (SeMet). Data were assessed by either One or Two-way ANOVA fol-

lowed by Tukey’s HSD or Bonferroni’s post hoc tests, respectively. Both Se-supplemented

diets reduced tumor volume from the thirteenth day of feeding compared with the Se-ade-

quate (control) diet (p < 0.05). The SeMet group presented a higher Se blood concentration

(p < 0.05) than the Se-control group, with the Se-Nuts group presenting intermediate values.

Selenoprotein P gene expression in the liver was higher in the Se-Nuts group than in the Se-

control group (p < 0.05), while the SeMet group presented intermediate expression. Dietary

Se supplementation, starting after detection of 4T1 palpable lesions, reduced tumor volume

in mice.

Introduction

Cancer is a leading cause of death in countries of all income levels [1]. Breast cancer is consid-

ered the most prevalent type in women, representing almost 12% of all cancer cases of both

genders and 6% of all deaths worldwide [2]. Breast cancer is generally recognized to be a
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multifactorial disease [3] in which oxidative stress has been related to a higher risk of cancer

development and to faster neoplastic progression [4, 5]. The imbalance between antioxidant

systems and the production of reactive oxygen species (ROS), such as superoxide (O2
-) and

hydrogen peroxide (H2O2), characterizes oxidative stress [6]. These molecules can damage

DNA [7, 8] and lead to mutations in tumor-related genes [9, 10]. ROS present a paradox in

their biological function in which low doses can modulate immune system playing an essential

role in apoptosis, whereas higher doses lead to a disbalance in antioxidant status, favoring car-

cinogenesis [11, 12]. In higher concentration ROS can interact with surface and intracellular

receptors, modulating signaling pathways, and disrupt physiological mechanisms related to

proliferation, apoptosis and angiogenesis, that causes a pivotal step in carcinogenesis [13].

Thus, the role of ROS in cell proliferation may be mediated by direct or indirect activation of

signaling pathways related to cell growth, such as p38MAPK, p70S6K and p90Rsk, JAK/STAT,

phospholipase D, JNK and ERK [13, 14]. Furthermore, breast cells are damaged by ROS via

estrogen induced oxidative stress in combination with receptor mediated proliferation of dam-

aged cells [13]. This event causes an imbalance in cellular prooxidant/antioxidant status,

which initiates breast cancer development [13]. Therefore, the concurrent use of antioxidants

to control ROS formation has been proposed [15].

Selenium (Se) is an essential micronutrient [16, 17] known to play an important role in the

antioxidant system [18, 19]. Despite some controversial epidemiological data [20], evidence

suggests that inorganic and organic forms of Se affect cancer initiation and progression [21–

23]. These protective effects, which include decreased mortality in cancer patients [23], have

been associated with different mechanisms [24], especially selenoprotein glutathione peroxi-

dase (GPx) [23, 25] (a family of antioxidant enzymes) [26], and are recognized for having pro-

tective effects against tumor development [27]. In addition, selenium inhibits the cytochrome

P450 system Phase I enzymes, which normally convert chemical carcinogens into reactive

DNA-attacking adducts, besides protecting DNA damage by increasing the activity of DNA

repair enzymes, such as DNA glycosylases, and repair pathways that involve members, such as

p53 and BRCA1 [28]. Furthermore, selenium compounds can inhibit estrogen receptor α
(ERα) signaling in ER-positive MCF-7 breast cancer cells as evidenced by decreased estradiol-

dependent cell growth and gene expression [29]. Selenium is also present in thioredoxin

reductase (TrxR), another enzyme known to protect DNA and other cellular components

against oxidative damage [30].

Dietary Se can be present in organic forms, such as selenocysteine (SeCys) and seleno-

methionine (SeMet), or inorganic forms, such as selenite (SeO(OH)2) and selenate

(SeO2(OH)2) [31]. Natural sources include cereals, nuts, meat, some vegetables, and seafood.

The amount of Se in food is highly variable and can be related to the Se content in the soil, in

addition to other factors [32, 33]. Brazil nuts (Bertholletia excelsa) are known to have high lev-

els of Se, varying from 0.2 to 512 mg Kg-1 [34, 35], with substantial bioavailability [36, 37]. Bra-

zil nuts are known as one of the major food sources of selenium [38], and due to this, it is

important to investigate the effects of supplementation with this compound in an experimental

model of breast cancer.

Dietary Se supplementation has been associated with a reduced incidence of breast cancer

[39]. However, the efficacy of Se supplementation depends on the dose and chemical form of

Se [20] and the onset of administration: before tumor detection (preventive measure) or after

tumor detection (adjunct therapy). However, the effects of Se supplementation after tumor

detection have not yet been well elucidated in the literature, requiring further investigation.

Distinct forms of Se at various concentrations can induce dramatically different biological

effects [8, 40]. Although scientific reports have shown encouraging results with Se as a thera-

peutic agent in vitro [41], this response may depend on the stage of carcinogenesis in which
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administration begins [42, 43]. Thus, we aimed to evaluate the effects of dietary Se supplemen-

tation (SeMet and Brazilian nuts) on tumor growth, blood Se levels, hepatic GPx activity,

SELENOP expression, and tumor and metastatic histomorphology in a 4T1 mouse breast can-

cer model starting consumption after tumor detection.

Materials and methods

Experimental animals

Seven-week-old female BALB/c mice (Mus musculus) weighing 20 to 24 g were provided by

the Central Animal Bioterium of Universidade Federal de Lavras, Brazil. The animals were dis-

tributed into collective boxes (five animals per box) with dimensions of 410 x 340 x 175 mm.

The room had a constant temperature of 25 ± 2˚C and 12-hour light-dark cycles.

Previously, the animals underwent an adaptation period of seven days receiving deionized

water and commercial feeding. Mice had food and water ad libitum, and their weight was

determined periodically. This study was carried out in strict accordance with the recommen-

dations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of

Health. The animal study was approved by the UFLA’s Ethical Committee in Animal Use

(CEUA/UFLA) under protocol number 079/16. After the acclimation period, the animals were

randomly divided into three groups (n = 7–9). A power calculation was performed to deter-

mine the sample size. The animal was considered the study unit. The sample size was deter-

mined to provide 80% power to recognize a significant difference of 20% among groups and a

standard deviation of 15% with a 95% confidence interval (α = 0.05).

Cell culture

The 4T1 cell line was obtained from the American Type Culture Collection (ATCC, USA) and

was routinely cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with

1% penicillin/streptomycin and 10% fetal bovine serum (FBS; Thermo Fisher Scientific) at

37˚C in a humidified 5% CO2 atmosphere. Cultures were tested for mycoplasma contamina-

tion by immunofluorescence staining with a 1 μg/mL solution of 4’,6-diamino-2-phenilindole

(DAPI; Sigma-Aldrich).

Experimental design

On the inoculation day, each animal received a subcutaneous injection of 0.1 mL containing 1

x 106 tumoral cells diluted in phosphate buffered saline (PBS; Sigma). The solution was

injected into the mouse flank, and tumors were measured daily until all animals presented pal-

pable tumors.

All animals presented detectable tumors on the 5th day after inoculation, and then, the

tumor was measured every 48 hours (see below). On the sixth day, the animals were randomly

distributed into one of three experimental diets (Se-adequate–control group; Se-supple-

mented–Se-Met; Se-Nut–Brazil nut), as shown in Fig 1.

Measurement of Tumor Volume

Tumor diameters were measured using a caliper (Western, measurement 0.05 mm, ref. 1944).

Cumulative tumor volume was estimated according to previous studies [44, 45] using the fol-

lowing formula: tumor volume = (length x width2)/2, in which “length” is the longer diameter

and “width” is the shorter diameter. Cumulative tumor volume along the experiment was cal-

culated based on four measurements over a total of 29 days, as described further.
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The first tumor measurement occurred on D0, which was five days after 4T1 cell inocula-

tion and one day before initiating the experimental diets (D1). The animals were randomly

distributed into three treatment groups with similar initial tumor volumes (p> 0.05). Cumula-

tive tumor volume was compared among the groups each two days along the experimental

period (29 days–from D1 to D29) considering the interaction time�treatment (diet).

Experimental diets

Mice received experimental diets for 29 complete days, with Se-adequate (0.15 ppm total Se)

or Se-supplemented (1.4 mg kg-1 total Se) levels. Adequate levels were based on AIN-93 M

feed for laboratory rodents, and supplementary levels were based on previous reports [45, 46].

The total Se amount in the diets was analytically determined by atomic absorption spectrome-

try with a graphite furnace (GF-AAS) [33]. The Se-adequate diet contained sodium selenate,

while the Se-supplemented diets contained either SeMet (Selisseo 2%, Adisseo1, Brazil) or

Brazil nuts (B. excelsa) provided by Aruanã Farm (Itacoatira, AM, Brazil) (Table 1).

The Se content and centesimal composition of Brazil nut samples were analyzed to calculate

the necessary amount of material to reach 1.4 mg kg-1 in the diet. Experimental diets were bal-

anced with similar calorie and macronutrient proportions. Nuts were evaluated for dry matter,

humidity, oil, protein, mineral residues and crude fiber according to AOAC (2005) [47] and

were also submitted to α and γ tocopherol quantifications.

For Se content analysis of the Brazil nuts, five small paper bags containing four nuts each

were dried using an oven at 60˚C until they reached a constant weight (~72 h). Then, the sam-

ples were shelled and ground with a portable electrical mill (A11 basic analytical mill, IKA1,

Staufen, Germany). The digestion process started when the samples in glass tubes received 6

mL of nitroperchloric acid at a proportion of 2:1 (v/v). Extracts were left overnight (~12 h),

and then, the batch was digested.

The digestion procedure was initiated at 50˚C and increased 50 ºC every 30 minutes until

200˚C was reached. Analytical determination of total Se in the samples was performed using

an atomic absorption spectrophotometer with a graphite furnace (GF-AAS). For quality con-

trol, for each batch, a standard reference material (White Clover—BCR 402, Institute for Ref-

erence Materials and Measurements, Geel, Belgium) containing 6.70 mg kg-1 Se was included.

The average recovery rate for the SRM (n = 2) was 78.38%.

Selisseo 2% Se (Adisseo1, Brazil) was added to the SeMet diet as a source of hydroxy-

SeMet (CH3Se-(CH2)2-CH(OH)-COOH). It is a white powder containing 5% of SeMet. Diets

Fig 1. Fluxogram representing the experimental design over time. Animals started experimental diets six days after 4T1 inoculation to characterize a

treatment study. After 29 complete feeding days all animals were euthanized for blood, tumor, liver and lung sampling/extraction.

https://doi.org/10.1371/journal.pone.0278088.g001
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were mixed in special bowls previously cleaned with 10% nitric acid solution (HNO3), and

staff manipulated all ingredients with nitrile gloves.

Blood, tumor, liver and pulmonary sampling, preparation, storage and

analysis

After twenty-nine complete days of receiving experimental diets, and fasting for eight hours,

all animals were anesthetized using intraperitoneal injections of ketamine (90 mg kg-1) and

thiopental sodium (60 mg kg-1) and then euthanized by cervical displacement. None of the ani-

mals was excluded throughout the experiment. All materials were manipulated with nitrile

gloves previously washed with 10% nitric acid cleaning solution (HNO3).

Blood was collected by intracardiac puncture and immediately stored on ice using heparin-

ized tubes. Samples were analyzed by the Chemical Analyzes Laboratory (LACHEM, RS, Bra-

zil) for whole blood total Se quantification. The samples were digested through the acid

method (USEPA 3050B) and submitted to hydride generation atomic absorption spectrometry

(HG-AAS), as described by Olson et al. [48].

Table 1. Ingredients of the experimental diets.

Se-adequate

(0.15 mg kg-1 Se)

Se-supplemented

(1.4 mg kg-1 Se)

Sodium selenate SeMet Se-Nuts

Starch (g) 609.8 609.8 609.8

Casein (g) 200 200 197.5

Cellulose (g) 50 50 49.2

Sucrose (g) 50 50 48

Soybean oil (mL) 40 40 30.5

AIN-93 M Mineral Mix�1 (g) 35 35 35

AIN-93 M Vitamin Mix�2 (g) 10 10 10

Methionine (g) 3 3 3

Choline (g) 2 2 2

BHT (g) 0.2 0.2 0.2

Selisseo1 2% Se (g) - 0.0035 -

Brazil nut (g) - - 14.8

kcal/kg diet 3759.2 3759.2 3753.8

�1 Mix by Rhoster1 Co. Mineral element content (g/kg mix): 357 g of calcium carbonate, anhydrous (40.04% Ca);

250 g of potassium phosphate, monobasic (22.76% P; 28.73% K); 209.806 g of powdered sucrose; 74 g of sodium

chloride (39.34% Na; 60.66% Cl); 46.6 g of potassium sulfate (44.87% K; 18.39% S); 28 g of potassium citrate, tri-

potassium, monohydrate (36.16% K); 24 g of magnesium oxide (60.32% Mg); 6.06 g of ferric citrate (16.5% Fe); 1.65 g

of zinc carbonate (52.14% Zn); 1.45 g of sodium meta-silicate, 9 hydrate (9.88% Si); 0.63 g of manganous carbonate

(47.79% Mn); 0.30 g of cupric carbonate (57.47% Cu); 0.275 g of chromium potassium sulfate, 12 hydrate (10.42%

Cr); 0.0815 g of boric acid (17.5% B); 0.0635 g of sodium fluoride (45.24% F); 0.0318 g of nickel carbonate (45% Ni);

0.0174 g of lithium chloride (16.38% Li); 0.01025 g of sodium selenate, anhydrous (41.79% Se); 0.01 g of potassium

iodate (59.3% I); 0.00795 g of ammonium paramolybdate, 4 hydrate (4.34% Mo); 0.0066 g of ammonium vanadate

(43.55% V).

�2 Mix by Rhoster1 Co. Vitamin content (g/kg mix): 974.655 g of powdered sucrose; 15 g of vitamin E (all-rac-a-

tocopheryl acetate) (500 IU/g); 3 g of nicotinic acid; 2.5 g of vitamin B-12 (cyanocobalamin) (0.1% in mannitol); 1.6 g

of Ca pantothenate; 0.8 g of vitamin A (all-trans-retinyl palmitate) (500,000 IU/g); 0.7 g of pyridoxine-HCl; 0.6 g of

thiamin-HCl; 0.6 g of riboflavin; 0.25 g of vitamin D3 (cholecalciferol) (400,000 IU/g); 0.2 g of folic acid; 0.075 g of

vitamin K (phylloquinone); 0.020 g of D-biotin.

https://doi.org/10.1371/journal.pone.0278088.t001
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The primary tumor, liver and the right lung from each animal were collected for metastatic

histological analysis. The right lung originated from three samples from different anatomic

areas, called the “cranial”, “medial” and “caudal” lobes. Tissues were fixed in 10% buffered

formalin solution and processed using the routine paraffin inclusion technique. Histologic sec-

tions (4 μm) were stained with hematoxylin-eosin techniques for morphologic and morpho-

metric assessments [49]. Liver samples were also immediately stored in liquid nitrogen and

stored in a -80˚C ultra-freezer for further enzymatic and molecular analyses (described

below).

Measurement of hepatic GPx-1 activity

After euthanasia, hepatic samples were homogenized in 1 mL of cold buffer (50 mM Tris-HCl,

pH 7.5, 5 mM EDTA and 1 mM DTT) per 100 milligrams of tissue with 3 cycles of 10 seconds

at 13,000 rpm (T 25 basic Ultra-Turrax, IKA1, Staufen, Germany). Homogenates were then

centrifuged at 17.760 x g for 15 minutes at 4˚C to collect the supernatant, and assay samples

were kept on ice in accordance with the manufacturer’s protocol (Glutathione Peroxidase

Assay Kit, Cayman Chemical Company1, Ann Arbor, USA). Enzymatic activity was measured

every 30 seconds for 6 minutes using a microplate reader with absorbance at 340 nm.

Protein concentrations were measured by an adaptation of the Bradford assay [50]. As a

standard, bovine serum albumin (BSA; Sigma1) was diluted to 10 different concentrations

from 0.3 mg/mL to 3 mg/mL, while samples were diluted at 1:100. Then, 125 μL of Bradford

Reagent (Bio-Rad Protein Assay Dye Reagent Concentrate, Bio-Rad1, Cat #5000006) was

added to every 25 μL of sample and incubated with gentle shaking for 5 minutes. Microplates

were assessed for absorbance at 595 nm using a spectrometer and Gen5 Software.

Analysis of SelP expression by real-time PCR

Hepatic samples were homogenized (T 25 basic Ultra-Turrax, IKA1, Staufen, Germany) with

1 mL of TRIzol Reagent (Thermo Fisher Scientific1). The interphase was collected after cen-

trifugation at 12,000 x g for 10 minutes at 4˚C and then mixed with 200 μL of cold chloroform

for 40 seconds. The samples were left at room temperature for 10 minutes and then centri-

fuged at 12,000 x g for 15 minutes at 4˚C. The aqueous phase was collected, gently mixed with

500 μL of isopropanol and left on ice for 10 minutes for further centrifugation at 12,000 x g for

10 minutes at 4˚C. The precipitate was collected, shaken with 1 mL of 75% ethanol, and centri-

fuged at 12,000 x g for 10 minutes at 4˚C. Resuspension was performed by mixing 40 μL of

Milli-Q water and was kept refrigerated for RNA quantification in a nanospectrophotometer

(NanoDrop1). The integrity of the RNA samples was verified by agarose gel electrophoresis

and spectrophotometry. No signs of degradation were observed, and the absorbance values

were nearly 2.0 at 260/230 and 260/280 nm. cDNA was synthesized using an iScript™ cDNA

Synthesis Kit (Bio-Rad) with 1 μg of RNA, according to the manufacturer’s instructions. RT-

qPCR was performed on a Rotor-Gene Q (Qiagen) apparatus using a QuantiNovaTM SYBR1

Green PCR kit (Qiagen) with 7.5 μl of SYBR, 3 μl of each primer (2 μM final concentration),

and 1.5 μl of cDNA for each reaction.

The primers targeted an exon-exon region, and the sequences of the oligonucleotides

were as follows: reference genes GAPDH (fw ACGGCCGCATCTTCTTGTGCA) and (rw

CGCCCAAATCCGTTCACACCG) and SELENOP (fw TGTTACAAAGCCCCGGAGTG) and (rw

GGTCTTCCAATCTGGATGCCTG). The diets were analyzed in technical duplicates for each

biological triplicate. The expression analyses were performed using the ddCT method, and the

means were normalized relative to the lowest treatment value for each gene.
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Primary tumor, liver, and lung histology

We evaluated the percentages of neoplasia, necrosis, inflammation, hemorrhage, and normal

tissue areas in histologic tumor sections. Moreover, the mean diameters of nucleus were

obtained by measuring the longitudinal and transverse diameters of 30 neoplastic cell nuclei.

A correction factor obtained by a micrometer slide scale was employed for the means. Histo-

logical images were captured using a digital Spot Insight Color camera adapted to an Olympus

BX-40 microscope. Tumor cell proliferative activity was evaluated by the mitotic index in 10

fields with a 40x objective. SPOT1 software version 3.4.5 and Corel DRAW1 software version

7.468 was used for image analysis.

In histologic lung sections, the presence or absence of metastasis was recorded, as well as

the metastatic pattern (unique node or multiple nodes). Additionally, the intratumoral inflam-

matory infiltrate was evaluated considering two factors: intensity (discrete, light, moderate or

heavy) and profile (mononuclear, polymorphonuclear or mixed–mononuclear and polymor-

phonuclear). All analyses were blindly performed by trained evaluators

Statistical analysis

Data on total Se blood concentration, hepatic GPx activity, SELENOP expression and total

tumor growth were submitted to analysis of variance (one-way ANOVA) [51], and when sig-

nificant, means were compared among treatment groups using Tukey’s HSD test. Cumulative

tumor volume was analyzed over time by two-way ANOVA followed by Bonferroni’s post hoc
test (time�treatment/diet). We used the package Emmeans v2.23 [52] in R 3.4.4 [53] and

GraphPad Prism software (version 5.01, GraphPad Software, San Diego, USA).

The Pearson correlation coefficient was calculated for blood Se concentration, GPx activity,

SelP expression, total tumor growth at 28 days (from D1 to D29), tumor histomorphology and

histomorphometry, and lung metastasis histologic characteristics.

Results

Selenium concentration and centesimal composition of Brazilian nuts

The mean Se concentration in Brazil nuts was 95.403 mg/kg. The centesimal composition of

the analyzed Brazil nuts is shown below in Table 2. Values for α and γ tocopherols are

expressed in mg tocopherol 100 g-1 of nut oil. The average level for α-tocopherol was

0.038 ± 0.007 mg, while for γ-tocopherol, it was 0.320 ± 0.010 mg.

Effects of dietary Se on tumor volume

All animals had palpable tumors by the 5th day after 4T1 inoculation. Diets were initiated on

the 6th day (D1). Tumor volume did not differ among the three groups between D1 to D11

(p> 0.05). However, tumor volume became significantly lower in the Se-supplemented groups

Table 2. Centesimal composition of Brazil nuts (Aruanã Farm Itacoatira, AM, Brazil).

Sample Dry Matter (%) Humidity (%) Fat (%) Protein (%) Mineral Residue (%) Crude Fiber (%)

R1 98.69 1.31 58.68 17.60 3.44 5.27

R2 98.78 1.22 61.03 16.39 3.04 5.04

R3 98.80 1.20 58.70 17.44 3.55 5.43

Mean 98.76 1.24 59.47 17.14 3.34 5.25

Samples of Brazil nuts were divided into triplicates (R1, R2 and R3) for evaluation of dry matter, humidity, fat, protein, mineral residue, and crude fiber.

https://doi.org/10.1371/journal.pone.0278088.t002
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(SeMet and Se-Nuts) in comparison with the Se-adequate diet group from the 13th day until

the end of experiment (p< 0.05—Fig 2).

Effects of dietary Selenium on the blood Se concentration, hepatic SelP

expression, and GPx-1 activity

A significant difference (p< 0.05) in blood Se concentration was observed only between the

Se-adequate (0.15 mg/kg Se) and SeMet (1.4 mg/kg Se) groups (Fig 3). Hepatic SelP expression

was higher (p< 0.05) in the Se-Nuts (1.4 mg/kg Se) group than in the Se-adequate group but

did not differ from that in the SeMet group, which had an intermediate level (Fig 3). No signif-

icant differences were observed among the experimental groups in hepatic GPx-1 activity (Fig

3). There were significant negative correlations among blood Se concentration, GPx activity in

the liver, and tumor volume at 28 days (Table 3).

Effects of dietary Se on tumor histomorphology and metastatic

histomorphology

The main tumor characteristics were similar among the groups regarding mitosis, nucleus

diameter, and proportions of hemorrhage, inflammation, neoplasia, and necrosis (p> 0.05,

Table 4; Fig 4A–4F). The pulmonary (Table 5; Fig 4G–4L) and hepatic (Fig 4M and 4N) meta-

static characteristics were also similar regardless of dietary treatment.

Discussion

The present study aimed to investigate whether dietary Se supplementation affected 4T1

tumoral volume associated with blood Se concentration, hepatic GPx-1 activity and SelP

expression, and tumor and metastatic histomorphology. We observed that from the 13th day of

dietary treatment, cumulative tumor volume was significantly lower in both Se-supplemented

groups (SeMet and Se-Nuts) than in the Se-adequate (control group). Tumor growth inhibi-

tion provided by SeMet can be due to SelP antioxidant activity in the plasma [54–56] since this

group presented the highest blood Se concentration [57]. Other possible mechanisms previ-

ously associated with the anticancer effects of selenium include modulation of the p53 tumor-

suppressor protein [58], SBP1 [59, 60], plasma GPx activity [61], Wnt signaling [62], induction

of cancer cell apoptosis [63] and inhibition of tumor angiogenesis [64].

In human plasma samples, approximately 60% of Se is found as SelP and 3% in the form of

GPx-3, with differences in these values compared to those in other animal species [65]. In

whole blood, in addition to these selenoproteins, GPx-1 is deposited in erythrocytes and at

lower concentrations in the form of SeMet, trimethylselenonium ions and selenosugar in red

blood cells [66]. However, the Se forms found in blood may depend on the Se dietary source

[67]. Women who ingested SeMet in a supplemental dose presented most of the blood Se in

Hb, while blood Se was equally distributed between GPx and Hb in women ingesting selenate

[68]. Similarly, rats fed selenite or SeCys had the majority of erythrocyte Se in the form of GPx,

while mice that ingested SeMet, yeast or wheat had more Se deposited in hemoglobin (Hb)

than in GPx [69]. In addition, Se from SeMet, unlike selenate and SeCys, can be incorporated

into albumin [70]. Thus, the evaluation of the specific effect of the different sources of Se is

necessary to understand which selenoprotein(s) show the greatest stimulation in each situa-

tion. For analysis of the status of Se, there is no single test, and the combination of several tech-

niques is ideal [71]. The SelP concentration reflects the short-term status [72], as well as the

level of Se in plasma or serum.
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Fig 2. Tumor volume (mean ± SEM), body weight (mean ± SEM) and feed intake (mean ± SEM) over 28 days

(from D1 to D29) in three experimental groups: Se-adequate (0.15 mg/kg total Se) and Se-supplemented diets (1.4

mg/kg total Se): SeMet and Se-Nuts (n = 7–9 for each group). �Statistically different by the Bonferroni’ test at

p< 0.05.

https://doi.org/10.1371/journal.pone.0278088.g002
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Fig 3. Mean (± SEM) blood Se concentration (μg mL-1). Hepatic SELENOP expression by real-time PCR and hepatic

GPx-1 activity among different dietary groups: Se-adequate (0.15 mg kg-1 total Se), SeMet (1.4 mg kg-1 total Se) and Se-

Nuts (1.4 mg kg-1 total Se) (n = 7–9). Average values followed by the same letters do not differ statistically by the Tukey

test at p< 0.05 (a = a; a6¼b).

https://doi.org/10.1371/journal.pone.0278088.g003
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Table 3. Pearson correlation analysis among blood Se concentration, GPx activity in liver, real-time PCR SELE-

NOP expression and tumoral growth at 28 days.

Variables r p
Blood Se concentration GPx activity 0.126 0.606

Blood Se concentration PCR SELENOP expression -0.345 0.147

GPx activity PCR SELENOP expression 0.172 0.480

Blood Se concentration Tumoral growth (28 days) 0.129 0.599

GPx activity Tumoral growth (28 days) -0.316 0.187

PCR SELENOP expression Tumoral growth (28 days) -0.374 0.115

https://doi.org/10.1371/journal.pone.0278088.t003

Table 4. Histopathological characteristics of the main tumor.

Se-Adequate SeMet Se-Nuts p-value

Mitosis (%) 72.6 67.6 66.9 0.711

Nuclear diameter (μm) 8.17 7.97 8.29 0.363

Hemorrhage (%) 2.23 2.91 2.7 0.786

Inflammation (%) 15.1 16.8 18.3 0.666

Neoplasia (%) 57.5 58.1 58.4 0.995

Necrosis (%) 20.4 22.2 21.2 0.828

(n = 7-9/Group). No significant difference.

https://doi.org/10.1371/journal.pone.0278088.t004

Fig 4. (A-F) Main tumor images: (A) Image (20x) showing a tumor area (bracket), with inflammation (arrows), peritumoral hyperemia (asterisks) and

mild hemorrhage (arrowhead). (B) Greater magnification (40x) showing tumor cells, with apparent mitosis (arrows). (C) Image (20x) showing tumor

cells compromising the upper and deep dermis with a focus of necrosis (asterisks), epidermis (arrow) and hair follicles. (D) Greater magnification (40x)

showing an area of necrosis (cell debris and cells with a nucleus in pycnosis) (arrow). (E) Tumor reaching the epidermis (20x) and presenting an

ulcerated area (discontinuity of the epithelium) (asterisk). (F) Tumor area (40x) showing intense necrosis (arrows) and hemorrhage (asterisks). (G-L)

Lung images: (G) Lung fragment (20x) with metastatic focus (asterisk) and peritumoral polymorphonuclear inflammatory infiltrate (arrows). (H)

Image showing (40x) the pattern of tumor cells (asterisk) and peritumor inflammatory cells (arrows). (I) Lung fragment (20x) with metastasis focus

with moderate area of necrosis (arrows) and discrete hemorrhage foci (arrowhead). (J) Greater magnification (40x) showing an area of necrosis

(arrows) and hemorrhage foci (arrowhead). (K) Lung fragment (20x) with metastatic focus (asterisk) and polymorphonuclear inflammatory infiltrate

(arrows). (L) Image (40x) showing the pattern of tumor cells (asterisk), polymorphonuclear inflammatory cells (arrow) and hyperemia (arrowhead).

(M-N) Liver images: (M) Liver fragment (20x) showing small foci of metastatic cells (arrow). (N) Greater magnification showing small foci of tumor

cells (arrow).

https://doi.org/10.1371/journal.pone.0278088.g004
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The smaller tumor volume observed in the SeMet group corroborates with reports by Chen

et al. [45], who showed, through all 15 days of measurement, significant suppression of pri-

mary tumor growth (p< 0.001) by a SeMet-supplemented diet (3 mg kg-1 L-SeMet from

Sabinsa Corporation, East Windsor, NJ) compared to a Se-deficient diet (< 0.01 mg kg-1 Se).

Additionally, on the 16th day after cancer cell inoculation, tumor volume was already affected

by the Se status. In the present study, diets were introduced after tumor inoculation, while

Chen et al. [45] initiated diets 3 months prior to 4T1 cell inoculation.

The results from another study performed by Song et al. [60] also corroborates with ours,

since SeMet supplementation for 28 days could reduce tumor volume compared with PBS.

Notable differences were observed only after the 19th day of feeding. Mice in the former experi-

ment received individual orally administered SeMet (gavage), while in the present study, Se was

included in the feed. Differences in daily consumption of experimental diets by each animal

may be a possible explanation for these small discrepancies. Although individual doses allow the

exact determination of a dose-response effect relationship, daily injections in the stomach is a

stressful event for long-term experiments involving nutrients. Although, the therapeutic inter-

vention by Song et al. [60] occurred at an earlier stage of carcinogenesis and may have promoted

different anticancer effects through different selenoproteins [42], their results were quite similar

to ours. Conversely, in our experiment, the control group received Se-adequate feed instead of

PBS. This fact highlights the possible influence of the food matrix, which can alter Se bioaccessi-

bility and bioavailability, affecting, therefore, biological effects from dietary intake [73, 74].

Table 5. Pulmonary metastatic characteristics (mean ± standard error) after 4T1 inoculation and 28 days of die-

tary treatment with Se-adequate (0.15 mg/kg total Se) and Se-supplemented diets (1.4 mg/kg total Se), which

included SeMet or Se-Nuts.

Se-Adequate SeMet Se-Nuts P value

Positive metastasis (%)+

Cranial lung lobe (%) 80 (0.18) 83.3 (0.15) 42 (0.19) 0.229

Medial lung lobe (%) 66.6 (0.19) 40 (0.22) 75 (0.15) 0.439

Caudal lung lobe (%) 50 (0.20) 83.3 (0.15) 87.5 (0.12) 0.254

Total (%) 64.7 (0.12) 70.5 (0.11) 69.5 (0.10) 0.924

Metastatic pattern (% of multiple nodules)+

Cranial lung lobe (%) 50 (0.25) 60 (0.22) 66.6 (0.27) 0.902

Medial lung lobe (%) 50 (0.25) 50 (0.35) 50 (0.20) 1.000

Caudal lung lobe (%) 66.6 (0.27) 40 (0.22) 28.5 (0.17) 0.531

Mean (%) 54.5 (0.15) 50 (0.14) 43.75 (0.12) 0.854

Inflammatory infiltrate intensity (1 = absent; 2 = mild; 3 = moderate; 4 = intense)�

Cranial lung lobe 3.60 (0.25) 3.33 (0.21) 3.42 (0.30) 0.724

Medial lung lobe 3.16 (0.40) 3.60 (0.25) 3.00 (0.27) 0.408

Caudal lung lobe 2.66 (0.33) 3.00 (0.37) 2.87 (0.35) 0.806

Mean 3.11 (0.21) 3.29 (0.17) 3.045 (0.18) 0.665

Inflammatory infiltrate intensity pattern (1 = mononuclear; 2 = polymorphonuclear; 3 = mixed)�

Cranial lung lobe 1.80 (0.20) 2.16 (0.17) 1.85 (0.26) 0.452

Medial lung lobe 2.16 (0.31) 2.20 (0.20) 2.00 (0.19) 0.779

Caudal lung lobe 2.33 (0.33) 2.33 (0.21) 2.00 (0.27) 0.593

Mean 2.11 (0.17) 2.23 (0.11) 1.95 (0.13) 0.369

(n = 7-9/group);
+Chi-square test;

� Kruskal-Wallis test

https://doi.org/10.1371/journal.pone.0278088.t005
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The matrix of Brazil nuts is quite complex and, therefore, interferes with the activity of its

Se compounds [75, 76]. According to Dumont et al. [76] the main compounds present in the

matrix after proteolytic digestion of Brazil nuts are Se-(Cys)2 and Se-Met, the latter being the

major compound, which is also supported by recent research [77]. Silva et al. [78] performed

an in vitro bioaccessibility test and observed that only selenomethionine was found to be bioac-

cessible in Brazil nuts, corresponding to 74% of the total selenium present in the sample. This

result is in agreement with others in the literature, which lalso showed this species as the most

abundant in Brazil nuts, with concentrations ranging from 75% to 96% of the total concentra-

tion [34, 79]. The lack of a significant difference in the blood Se levels from animals given Se-

Nuts compared to those of the control group may have two possible explanations: 1) Se pro-

vided by nuts could show poorer absorption than pure SeMet (since SeMet is reported to be

the most bioavailable Se compound) [80]. 2) Considering that tumor volume was significantly

lower in both Se-supplemented groups (than the control group), probably Se from Brazil nuts

shows lower retention by the body tissues than Se from the SeMet group [81, 82]. Vitamin E

can also be present in Brazil nuts [83], and its interaction with Se should be taken into consid-

eration [84] since it can enhance antioxidant defense in organisms [85] parallel to Se.

Brazil nuts contain high levels of unsaturated fatty acids, both monounsaturated (MUFAs)

and polyunsaturated (PUFAs) [34, 86], and changes in the activity of enzymes from the GPx

family have been described during PUFA supplementation [87, 88]. Consumption of Brazil

nuts by obese women for 8 weeks increased GPx-1 erythrocyte activity, but the association

between GPx activity and erythrocyte Se concentration was not the same among different

genotypes [89]. GPx belongs to a group of stress-related selenoproteins [90], and since GPx-1

allelic identity is associated with breast cancer development [91], decreased tumor growth was

expected to be associated with increased hepatic GPx activity in the Se-Nuts group compared

to the control group.

Tumor-bearing mice exhibited lower GPx activity in plasma in a previous study [4], and

the activity of GPx in tissues is more sensitive to dietary Se deficiency than that of other seleno-

proteins [92, 93]. Therefore, we expected a difference between the Se-adequate and SeMet

groups. Although hepatic GPx activity was similar among groups, the hepatic GPx activity in

the control group (0.15 mg kg-1 Se) was similar to that found in a previous study [30].

In summary, organic Se-supplemented diets were effective in suppressing tumor growth.

Additionally, Se supplemented from Brazil nuts did not improve the blood Se concentration as

the SeMet diet did, although there were no differences in hepatic GPx-1 activity. This finding

suggests that SeMet supplementation may not affect hepatic GPx-1 before improving blood

selenoproteins, which involves mainly plasma SelP, extracellular GPx-3, erythrocytes GPx-1,

as well as lower concentrations of SeMet, trimethylselenonium ion, and selenosugar in red

blood cells [65, 66]. More research is needed to elucidate the specific mechanisms of Se com-

pounds to develop therapeutic protocols. Although both Se-supplemented diets (SeMet and

Se-Nuts) contained 1.4 mg/kg of total Se, only the SeMet group showed a higher blood Se con-

centration. Since hepatic GPx-1 activity did not respond to either Se-supplemented diet, evalu-

ation of these parameters (blood Se concentration and hepatic GPx-1 activity) suggests that

SeMet supplementation may not affect hepatic GPx-1 before improving blood selenoproteins.

Conclusions

Selenium-rich Brazilian nuts and selenomethionine dietary supplementation, starting after

detection of 4T1 palpable lesions, reduced tumor volume in mice in comparison to Se-ade-

quate diet.
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Project administration: Luiz Roberto Guimarães Guilherme, Luciano José Pereira.
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