
Citation: Ogobuchi Okey, D.; Sarah

Maidin, S.; Adasme, P.; Lopes Rosa,

R.; Saadi, M.; Carrillo Melgarejo, D.;

Zegarra Rodríguez, D. BoostedEnML:

Efficient Technique for Detecting

Cyberattacks in IoT Systems Using

Boosted Ensemble Machine Learning.

Sensors 2022, 22, 7409. https://

doi.org/10.3390/s22197409

Academic Editor: Jiankun Hu

Received: 8 August 2022

Accepted: 22 September 2022

Published: 29 September 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

BoostedEnML: Efficient Technique for Detecting Cyberattacks
in IoT Systems Using Boosted Ensemble Machine Learning
Ogobuchi Daniel Okey 1 , Siti Sarah Maidin 2,* , Pablo Adasme 3 , Renata Lopes Rosa 4 ,
Muhammad Saadi 5 , Dick Carrillo Melgarejo 6 and Demóstenes Zegarra Rodríguez 4

1 Department of Systems Engineering and Automation, Federal University of Lavras,
Lavras 37203-202, MG, Brazil

2 Faculty of Data Science and Information Technology (FDSIT), INTI International University,
Nilai 71800, Malaysia

3 Department of Electrical Engineering, University of Santiago de Chile, Santiago 9170124, Chile
4 Department of Computer Science, Federal University of Lavras, Lavras 37200-000, MG, Brazil
5 Department of Electrical Engineering, University of Central Punjab, Lahore 54000, Pakistan
6 Department of Electrical Engineering, School of Energy Systems, Lappeenranta-Lahti University

of Technology, FI-53851 Lappeenranta, Finland
* Correspondence: sitisarah.maidin@newinti.edu.my

Abstract: Following the recent advances in wireless communication leading to increased Internet
of Things (IoT) systems, many security threats are currently ravaging IoT systems, causing harm
to information. Considering the vast application areas of IoT systems, ensuring that cyberattacks
are holistically detected to avoid harm is paramount. Machine learning (ML) algorithms have
demonstrated high capacity in helping to mitigate attacks on IoT devices and other edge systems
with reasonable accuracy. However, the dynamics of operation of intruders in IoT networks require
more improved IDS models capable of detecting multiple attacks with a higher detection rate
and lower computational resource requirement, which is one of the challenges of IoT systems.
Many ensemble methods have been used with different ML classifiers, including decision trees
and random forests, to propose IDS models for IoT environments. The boosting method is one of
the approaches used to design an ensemble classifier. This paper proposes an efficient method for
detecting cyberattacks and network intrusions based on boosted ML classifiers. Our proposed model
is named BoostedEnML. First, we train six different ML classifiers (DT, RF, ET, LGBM, AD, and XGB)
and obtain an ensemble using the stacking method and another with a majority voting approach.
Two different datasets containing high-profile attacks, including distributed denial of service (DDoS),
denial of service (DoS), botnets, infiltration, web attacks, heartbleed, portscan, and botnets, were
used to train, evaluate, and test the IDS model. To ensure that we obtained a holistic and efficient
model, we performed data balancing with synthetic minority oversampling technique (SMOTE) and
adaptive synthetic (ADASYN) techniques; after that, we used stratified K-fold to split the data into
training, validation, and testing sets. Based on the best two models, we construct our proposed
BoostedEnsML model using LightGBM and XGBoost, as the combination of the two classifiers gives
a lightweight yet efficient model, which is part of the target of this research. Experimental results
show that BoostedEnsML outperformed existing ensemble models in terms of accuracy, precision,
recall, F-score, and area under the curve (AUC), reaching 100% in each case on the selected datasets
for multiclass classification.

Keywords: Internet of Things; ensemble algorithms; cyberattacks; machine learning IDS; data
imbalance; SMOTE; BoostedEnML

1. Introduction

Monitoring computer networks in recent times has become more convenient and
efficient through the use of intrusion detection systems (NIDS) that detect all abnormal

Sensors 2022, 22, 7409. https://doi.org/10.3390/s22197409 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22197409
https://doi.org/10.3390/s22197409
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-0686-2763
https://orcid.org/0000-0003-0714-2186
https://orcid.org/0000-0003-2500-3294
https://orcid.org/0000-0002-5839-0692
https://orcid.org/0000-0001-7901-7435
https://orcid.org/0000-0001-7290-5755
https://orcid.org/0000-0001-5401-7551
https://doi.org/10.3390/s22197409
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22197409?type=check_update&version=1

Sensors 2022, 22, 7409 2 of 26

actions on the network interface and report the same for proper actions. Concerning the
growth in the size of communication networks, the application of NIDS and network
intrusion prevention systems (NIPS) have undoubtedly become crucial in the 21st century
network era. While the former (NIDS) detects intrusion and raises alarms to alert network
experts to possible invasions in the network, the latter ensures that the alerting action does
not harm the target system by preventing the attack. Both are implemented in synergy
to ensure the holistic security of the network. Knowing when a system is under attack is
paramount, as preventing the attack is essential. Hence, it accounts for researchers’ high
interest in the intrusion detection system (IDS) domain. IDS monitors network traffic flow
for possible cyberattacks and privacy violations at different layers of the network and
prevents observed attacks from occurring.

The advance in technology has recently resulted in increased data collection sources
in the IoT network ranging from smart devices, smart homes, and smart grids to network
devices such as routers, hubs, and switches, among others. Data collected from these end
devices or network nodes are based mainly on the modes involved in monitoring the traffic.
In IDS, there are three modes of monitoring network traffic flow: host-based [1,2], network-
based, and hybrid [3] methods. When the IDS is implemented on the network nodes (host
devices) to capture packets in transmission, filter the packets, and define whether they are
real or malicious, the situation is known as host-based IDS (host-IDS). In some scenarios,
the network administrator may decide to monitor the traffic at the network layers without
including the end nodes of the network. Hence, the IDS is installed on the devices in the
network layer or along the network transmission lines, and it is called a network-based IDS
(network-IDS). In contrast to the above scenarios, the IDS is implemented by integrating
the host-based and network-based methods to obtain a hybrid-IDS. Ideally, a network-IDS
achieves a more comprehensive security advantage over other forms of IDS implementation
modes because of a network-IDS interface with host systems and intermediate devices that
allows it to prevent attacks on the lower interface at a quicker instance. Regarding network
architecture, requirements, and specifications, multiple IDS systems or even hybrid can be
used in a single network to track traffic in different end devices. IDs can also be categorized
into misuse-based IDS, anomaly-based IDS, and hybrid, according to the nature of the
network profile monitored by design. While the former works on the principle of known
attacks, the latter is based on traffic flow patterns.

Internet of Things (IoT) systems are increasingly proliferating in every aspect of
human existence, including finance, government, military, agriculture, and other industrial
establishments. This increase has resulted due to the recent use of technologies such as
Internet of Multimedia Things (IoMT), Industrial Internet of Things (IIoT), smart grids,
smart and precision agriculture, Industry 4.0, and others [4]. Following this expansion
in IoT application domains, a large volume of data is generated and transmitted over
the Internet, resulting in more cybersecurity concerns to avert constant threats to IoT
systems from individuals with malicious intentions. Many threat attempts, including
DDoS, denial of service (DoS), web attacks, infiltration, and man-in-the-middle attacks, are
some of the prevailing intrusive cyberattacks on IoT systems. In [5], the authors presented a
comprehensive review of the different proposed models for IoT intrusion detection with ML
classifiers, suggesting the high demand for highly efficient, effective, and accurate models
developed with a machine and deep learning algorithms for IDS in IoT networks. An IDS
deployed for an IoT system should be able to analyze data packets and produce real-time
responses, obtain and critically evaluate data packets transmitted between multiple layers
of the IoT network, and adapt to a variety of technologies in the IoT environment. This
ideology serves as a principle for the development of IoT-based IDS models [6,7]. Operating
in a constrained environment of low processing capabilities, dealing with fast response,
and high-volume data processing should always be considered when designing IDS for
IoT systems.

In the flow of events during IDS implementation, the IDS generates alerts when any
suspicious activity is observed in the network. These alerts generated by the IDS at every

Sensors 2022, 22, 7409 3 of 26

entry point in the network are transmitted to the network monitoring expert (NME), which
can either be a human or intelligent system, for analysis and consequently take possible
actions. One of the current challenges with this scenario is the rate of false alarms generated
by the IDS that may result in alert fatigue and failure in the system. In a case where there is
a prevalence of alert fatigue, the network experts may spend unnecessary time investigating
many false alarms and less time responding to realistic attacks. Hence, the need to reduce
false-alarm rates has been studied in the literature [8,9]. In the case of a botnet attack that
floods the entire IoT network with streams of bots causing resource depletion and network
service interception, artificial intelligence (AI) devices are necessary to detect such floods.

The traditional method in monitoring network flows is the use of human experts
who can easily become overwhelmed with false-alarm fatigue. Intelligent machine experts
can overcome this problem. ML approaches to monitor both misuse and anomaly-based
network traffic have been investigated with different performances in terms of accuracy,
precision, recall, and F1-score. In [10], an expanded survey on the various implementation
of ML in NIDS relating to IoT environment was presented.

According to [11], authors proposed an IDS based on ensemble ML. The system
achieved an accuracy of 99.3% during testing. Other authors also achieved high degrees
of accuracy in their proposals [12–14]. One major problem in the domain of IDS models
using ML has been the rate of false alarms which continues to reduce the practicality rate
of implementation of IDS. When systems are designed for the purpose of recommendation
activities or for filtering emails into spam or not, the impact of false negatives (FNs) and
false positives (FPs) may be neglected [15]. However, when it concerns intrusion whose
effect can be more disastrous, reducing the FPs and FNs to their most feasible minimum is
extremely important.

In this paper, we propose an IDS that uses boosted ensemble ML classifiers (Boost-
edEnML) aimed at enhancing the performance of IDS models in attack detection and
classification with reduced false-alarm rates. Network packets are processed using ML
algorithms to detect, analyze, and classify the traffic into their respective categories so that
triggered alerts can be more reliable, reducing the computational overhead cost of man-
aging false signals in the system. We implement our proposed model based on boosting
algorithms as they showed better performance over other algorithms tested in this paper in
model complexity, accuracy, and time function. Furthermore, the use of BoostedEnML in
this work demonstrates that boosting classifiers such as LGBM and XGB can be combined
to significantly improve the detection rate of ML IDS models in classifying attacks in an
IoT environment as opposed to existing ML IDS models, which did not implement the
combination of these two algorithms.

In the proposed IDS, we train, validate, and test different models based on random
forest (RF) [16], AdaBoost [17], XGBoost [18], LightGBM [19], extra tree (ET), and decision
tree (DT) [20] classifiers. Except for the DT, other algorithms already exist as ensemble
classifiers based on the aggregation of various DT algorithms. A combination of these
using a new method usually results in improved performance, in our case, for research. We
develop the proposed model on the CSE-CIC-IDS2018 and CIC-IDS2017 datasets, which
are the most comprehensive datasets for IDS development [21] currently available. IDS
models and, generally, ML algorithms generalize better on balanced data by learning the
same features from each class in the dataset. The two datasets used for this work contain
imbalance; therefore, we handle the imbalance in our dataset using two main oversam-
pling techniques, which are synthetic minority oversampling technique (SMOTE) [22] and
adaptive synthetic sampling (ADASYN) [23,24]. In the NIDS domain, several ensemble ML
approaches have been discussed [25–31], but none have used these classifier combinations
to the best of our knowledge. Our proposed approach detects intrusion more accurately
and precisely compared to existing systems [25–27,29].

The key contribution of this research are outlined as follows:

Sensors 2022, 22, 7409 4 of 26

1. A search algorithm based on GridSearchCV was implemented to select the most
fundamental parameters necessary to obtain a high-performing IDS model. This
ensures that the model learns holistically on the dataset.

2. We performed feature selection to obtain the most predominant features of the datasets
and used an ensemble technique to combine the features to obtain a comprehensive
array of best performing features.

3. We implemented oversampling techniques, such as SMOTE and ADASYN, to handle
data imbalance in our two datasets, thereby obtaining a highly accurate classification
model. These datasets are widely used in similar and recent research.

4. We implemented several ensemble models and selected the best models depending on
time-cost function and overall accuracy. Models based on boosting algorithm showed
better performance; hence, they were used to develop the BoostedEnML as proposed.
In each step, the resulting model was validated for a multiclass classification task.

5. We evaluated the model performance on two robust datasets having various intrusion
attempts and used the AUC to validate the performance accuracy.

On evaluation, experimental results show that the proposed BoostedEnML IDS model
accurately classified the network traffic flows in the used datasets with reduced FN, FP,
and FAR, and maintained a high detection rate for packets of data on the IoT network. Our
IDS model for IoT systems showed improved performance over existing models discussed
in the literature. In addition, the proposed approach helps to reduce the model complexity
by using lightweight algorithms to develop the ensemble model. With the grid search
cross-validation applied, we ensured that the proposed model learns from the most relevant
network traffic features and uses the algorithm’s best parameters to save training time.

The rest of the paper is organized in the following pattern. Section 2 presents the
background of ML in IDs, selected algorithms, and related propose works. Our approach
to achieving the proposed model is presented in Section 3. In Section 4, we present, analyze,
and interpret our research findings, and then we conclude our paper in Section 5.

2. Background and Related Work

Currently, many research breakthroughs exist in the IDS for network security applied
to IoT systems. Notwithstanding, there still exist significant challenges, some of which
include a lack of a consistent understanding of normality introduced by network unpre-
dictability, heterogeneous nature of network traffic, unavailability of appropriate public
IDS datasets, and vulnerable environments and loopholes that grant access to attackers
who actively search for and exploit security flaws. Some security researchers have opined
that these challenges are uniquely inherent in IDS in networks and may not be observed
in other domains [32]. IoT system security challenges are evolving with the expansion
of the application domain of the technology. The IoT layers comprising the perception,
the network, and application layers continuously face different threats. The application
layer sitting at the topmost part of the network transmits information between the network
and other services and tends to face most of the threats due to the connection interface
established between other devices [5]. In [33], authors proposed an ensemble IDS model
for the IoT environment using gradient boosting algorithm for a binary class classification
task. The proposed model reached an accuracy of 98.27% and a precision of 96.40% using
XGBoost for feature selection.

Data generation in IoT systems has witnessed a great expansion in the last decades,
and transmitting such a volume of data over a regular network has been challenged with
high computational resource requirements, low bandwidth, and advanced network attacks.
One approach to overcoming the resource constraint and increased cyberattacks is using a
cloud computing environment with massive storage capacity, high computational power,
and configurable resources integrated with virtualization capabilities for data storage [34].
Flooding the IoT network at all layers with DDoS attacks such as UDP flood, ICMP/Ping
flood, SYN flood, ping of death, and zero-day DDoS attacks have resulted in high data

Sensors 2022, 22, 7409 5 of 26

loss. Nie et al. in [35] proposed a novel intrusion detection system in the IoT domain to
deal with such intrusive attacks as distributed denial of service (DDoS), packet-sniffing,
and man-in-the-middle attacks. The authors used the GAN method to train an IDS model
using the CSE-CICIDS2018 and CICDDoS2019 datasets, the most recent and complete
datasets for training and testing IDSs. The research showed that the models achieved about
97% accuracy in both datasets in the training and evaluation phases. Mitigating DDoS,
DoS, botnet, and infiltration attacks on the IoT networks has recently been a challenging
task [36].

In [37], authors proposed many IDS models based on machine learning to mitigate
attacks on IoT devices in the smart city setting. Different ML algorithms and ensemble
methods, such as the stacking, bagging, and boosting methods, were used to develop the
ensemble model. On evaluation, the proposed ensemble models reached an accuracy and
recall of 0.999. Several Ml algorithms were used by [38] to propose the IDS model for
IoT networks. In the work, the authors used K-nearest neighbor (KNN), support vector
machine (SVM), artificial neural network (ANN), and other ML algorithms in their work.
The models were trained using the train–test split method at an 80:20 ratio; the resulting
models were evaluated on the BoT-IoT dataset and achieved an accuracy of 99% with the
KNN. Furthermore, Ref. [39] proposed an IDS model for cyberattack monitoring based on
the bagging ensemble method with an accuracy of 99.67% on the NSL-KDD dataset.

Currently, several open-source network monitoring solutions are leveraged to pro-
vide network security by capturing the TCP/IP packets in the networks. Suricata [40]
and Snort [41] are the most commonly used open-source traffic monitoring software. Both
have shown some limitations in recording attacks during operation. Suricata and Snort
work based on predefined rules to detect malicious attacks [42,43]. One of the major draw-
backs of these systems is that any deviation from the predetermined rules would result
in a false alarm. Again, it requires that a security expert study both existing attacks and
novel network deviations under defined conditions that define the database’s signatures.
Attackers exploit the vulnerabilities regularly discovered in IoT networks and use the same
to tamper with the events protocol. Since this process is dynamic, using a manual approach
to define attack features can be ineffective and burdensome to handle.

In addition, considering the extensive data generated by the IoT systems, manually
searching for attacks in the dataset can be a hassle. An attempt to proffer a solution is
the application of machine learning, which today has gained exceptional popularity in
industries and the scientific community in IoT cybersecurity [44–48]. The machine learning
technique primarily used in IDS systems is supervised learning, where the database is
provided with features and labels to classify the network traffic. Ensemble learning defines
an approach where several base learners, referred to as weak learners, are aggregated
based on specific rules to form a stronger classifier algorithm [49]. With ensemble methods,
models achieve better performance in predicting the nature of the traffic flow, as overfitting
and class imbalance are handled with a better approach [50]. In a nutshell, many of the
existing ensemble models implement DT architecture in a bagged or boosted manner,
leading to improved results.

The bagging method uses different samples of the train data on the algorithms at differ-
ent times and rates, resulting in different submodels whose average is the desired output of
the training. The voting ensemble uses majority voting (soft or hard) for classification tasks,
as used in [51] with an accuracy of 99%, and averaging for regression tasks to combine the
outputs of the base learners. Bagged DT and RF models are the most widely used bagging
ensemble models [50]. On the contrary, the boosting algorithm forces each weak classifier
to concentrate on a specific component of the data in the training distribution, thereby
transforming groups of weak classifiers into strong ones with improved accuracy. Through
this approach, later learners are pressed to concentrate on the mistakes made by earlier
learners. Hence, the later classifiers are trained to overcome the mistakes of the earlier
classifiers. As a result, each baseline learner in the boosting ensemble can concentrate

Sensors 2022, 22, 7409 6 of 26

more on the data points that the other learners misunderstood. When the data are pooled,
boosting produces a more precise prediction [17].

2.1. Machine Learning Models

In this section, an overview of the selected ML algorithms used in this work is pre-
sented. For simplicity, we discuss the decision tree, AdaBoost, extra tree, random forest,
LightGBM and XGBoost.

1. Decision Tree (DT): Decision trees (DTs) are data structures composed of elements
called nodes. Following a hierarchical model, the tree has a root node, where the tree
begins; sequentially, the tree is composed of child nodes, where each node can have
other children or subtrees. A leaf or terminal node is a node that has no offspring.
The initial data enters the tree’s root and passes through the decision nodes until
reaching the leaf node, which presents the result of the processing. Usually, three
main variations of DT are prominent in use for IDS designs: ID3 [52], C4.5 [53], and
CART [54].

2. Adaptive Gradient Boosting (AdaBoost): Freund et al. [17] proposed the AdaBoost
as a boosting learner that creates a chain of classifiers in succession on the same
dataset in such a manner that subsequent classification improves on the errors of
the earlier classification. The algorithm achieves this by assigning higher weights to
the incorrectly classified classes and lower weights to the correctly classified classes,
thereby ensuring that the incorrectly classified instances gain priority during the next
phase. The exact process repeats until the best possible result is achieved and the
algorithm has used all the instances in the data. As implemented in [55], authors
proposed an IDS based on AdaBoost using the CIC-IDS2017 dataset as a training
dataset. Applying SMOTE, an accuracy of 81.31% and an F-score of 81.31% were
achieved during testing. Although achieving good accuracy, this resulted in a lot of
false predictions that need to be improved.

3. Extra Tree (ET) Classifier: This algorithm improves the performance of DT and RF by
incorporating a more significant number of trees into its network. As a result, com-
pared with other ML algorithms, it has the highest number of trees and computational
resource requirements. This algorithm works on the principle of meta-estimator and
applies an averaging rule to increase predicted accuracy and reduce overfitting. First,
the meta-estimator fits several randomized decision trees on different subsamples of
the same dataset. Then, it aggregates the results of multiple decorrelated decision
trees collected in a forest to output a classification result. The package is available in
the sklearn.ensemble.ExtraTreesClassifier library for use in any ML tasks [56].

4. Random Forest: This algorithm, proposed by Breiman [16], has shown great results
in both classification and regression problems, making it the most used ensemble
algorithm. By constructing component trees, the algorithm reduces the connection of
different decision trees. It extends the attributes of bagged decision trees by inculcating
randomized attributes. More importantly, the performance gains observed in RF are
achieved through the randomness in the attribute selection process, not from the splits
in the decision trees which are created based on a subset of the data attributes [15].
As a popular ensemble algorithm, several authors have used it in IDS [57–59]. In [58],
authors proposed an IDS model which used principal component analysis (PCA) for
dimensionality reduction and random forest classifier for classification. The result was
compared with support vector machines (SVM), naive Bayes, and classical decision
trees. On testing, authors claimed that the model achieved an accuracy of 96.78%,
making it preferable over the others, which achieved less accuracy.

5. Extreme Gradient Boosting (XGBoost): Extreme gradient boosting (XGBoost) [60]
is an extension of the implementation of gradient boosting tree proposed by Fried-
man et al. [61]. Because it offers parallel computation, cache awareness, a built-in
regularization strategy to avoid overfitting, and tree optimization by a split-finding
algorithm, XGBoost generally outperforms gradient boosting in terms of performance

Sensors 2022, 22, 7409 7 of 26

as it has a quick training and inference time. In [62], an efficient IDS model based on
XGBoost was proposed for computer networks. The model was trained and evaluated
on the network socket layer–knowledge discovery in databases (NSL-KDD) dataset
with an accuracy of 98.70%.

6. Light Gradient Boosting Machine (LightGBM): Observing the high training time
requirement for gradient boosting decision trees (GBDT), Ke et al. [19] proposed
two novel techniques to overcome the challenge based on Gradient-based One-Side
Sampling (GOSS) and Exclusive Feature Bundling (EFB). This new implementation
was named LightGBM, and it improved training and inference time of GBDT by 20%.
Since its development, it has shown highly impressive results even in IDS systems, as
shown in [63,64].

2.2. SMOTE and ADASYN for Imbalanced Dataset

One of the many challenges affecting the efficiency of ML models is the inadequacy
of data points in the dataset used to train the models. Hence, the model cannot learn
comprehensively from the available data, creating room for incomplete knowledge in
some instances. In the case of our dataset, there are over 13 million benign traffic in the
CSE-CIC-IDS2018, with some attacks such as SQL injection having only 87 data instances.
In addition, in the CIC-IDS2017, the heartbleed attack has only 11 instances compared with
the benign instances with 2 million data points. Some techniques have been proposed
to solve this problem, usually based on either oversampling or undersampling methods.
In undersampling, the majority class is reduced to be suitable to the minority classes,
which leads to the loss of vital information, while in oversampling, the minority classes are
increased to be equal or approximate to the majority classes. SMOTE [22] and ADASYN [23]
are two of the many oversampling techniques used in handling data imbalance. SMOTE
first selects a minority class instance r randomly and finds its K-nearest minority class
neighbors. The synthetic instance is then created by choosing one of the K-nearest neighbors
p at random and connecting r and p to form a line segment in the feature space. Finally,
the synthetic instances are generated as a convex combination of the two chosen instances,
r and p. ADASYN is based on the idea of adaptively generating minority data samples
according to their distributions: more synthetic data are generated for minority class
samples that are harder to learn compared to those minority samples that are easier to
learn. Other derivatives of the SMOTE method include borderline-SMOTE [65], borderline-
SMOTE SVM, SMOTEN, SMOTENC, and KmeansSMOTE, which are all available in the
Imblearn-learn library [66].

2.3. Ensemble Machine Learning

Ensemble learning in ML aggregates the results of different ML classifications aimed
at achieving better performances in accuracy and attack classification detection rate. In en-
semble learning (EL), homogeneous and sometimes heterogeneous algorithmic classifiers
can be combined to build an improved predictive model with better inference time [67].
The applicability of ML techniques differs between use cases and the characteristics of the
dataset on which it is built. This implies that the technique used for one project dataset
might not be applicable to another of the same or similar domain [68]. Hence, EL tries to
achieve a model that can be used in the application domain with better results. Different
EL models perform differently from each other in the IDS domain based on the dataset
used to develop the model. Usually, three main classes/methods of EL exist, including
bagging, stacking, and boosting.

Bagging entails averaging the predictions from many decision trees that have been
fitted to various samples of the same dataset. It usually incorporates three main approaches,
including bootstrapping samples of the train dataset, fitting unpruned DTs on each sample,
and use of simple voting or averaging of predictions to obtain the final results. Some
known examples of this include bagged decision tree (BDT), random forest (RF), and extra
tree (ET) [69]. Given a training set T = t1, . . . , tn with responses L = l1, . . . , ln, the bagging

Sensors 2022, 22, 7409 8 of 26

algorithm repeatedly (P times) selects a random sample accompanied by replacement of
the training set, then fits trees of different sizes to these samples. This can be achieved
using the procedure shown in Algorithm 1.

f̂ =
1
P

P

∑
b=1

fb(x′) (1)

Algorithm 1 The algorithm for bagging classifier

1: for b = 1, . . . P : do
2: Sample, with replacement, n training examples from T, L; call these Tb, Lb.
3: Train a classification tree, fb on Tb, Lb.
4: After training, predictions for unseen samples x′

5: obtain the final predictions from all the individual fb on x′ by taking the average of
all predictions for regression or taking the majority vote for a classification problem
using Equation (1).

6: end for

This approach leads to a better model with reduced variance of the IDS model without
increasing the bias. This shows that in a case where the predictions of a single tree are
extremely noise-sensitive on the training set, as long as the trees are not correlated, the av-
erage of the trees is insensitive to noise. Hence, bagging yields reliable IDS models for IoT
environment. When we train many trees on a single dataset (training data), the trees would
produce strongly correlated trees (even with the same tree many times not considering
whether the training algorithm is deterministic or nondeterministic), which tends to cause
overfitting and bias; bagging or bootstrapping the samples in the datasets is a measure to
ensuring decorrelation in the trees by showing them different samples of data during the
training process in the training sample [70]. More specifically, we calculate an estimate of
the uncertainty of the prediction as the standard deviation, σ of the predictions from all the
individual regression or classification trees on x′ according to Equation (2):

σ =

√
∑P

b=1(fb(x′)− f̂)2

P− 1
(2)

Stacking, also known as stacked generalization, is an ensemble modeling technique
that includes using data from many models’ predictions as features to construct a new
model and make predictions. In other words, during stacking, we fit different models on the
same train data, obtain the results of the predictions, and use another algorithm to combine
the predictions for improved results. This approach ensures that the learned features from
the first model are maintained by the second model, thereby showing improved results
compared to the single model. By using heterogeneous weak models trained on the same
data sample, more robust IDS models are obtained [71,72]. Popular EL algorithms based
on stacking are blending and super ensemble.

When boosting is implemented, there is sequential addition of the members of the
ensemble algorithms which corrects the predictions of the previous classifier and generates
a weighted average of the predictions as the output. This feature of boosting algorithm ac-
counts for their better performances over stacked and bagged ensemble classifier. Common
examples include AdaBoost, XGB, LGBM, and GBDT [50,73]. Assuming that the boosting
ensemble is defined in terms of weighted sum of L weak learners, we obtain the function
shown in Equation (3) where cl are coefficients and wl are weak learners.

sL(.) =
L

∑
l=1

clXwl(.) (3)

Sensors 2022, 22, 7409 9 of 26

One drawback of this approach is the difficulty to achieve faster optimization conver-
gence. To arrest this challenge, instead of solving for the coefficients and the weak learners
in one try, we implement an iterative optimization approach that is more cost-efficient and
tractable. In this scenario, each weak learner is added one by one, checking the iteration
for the best possible pair that it gives (coefficient and weak learner) to update the current
ensemble model. Hence, we define recurrently the value of sl in a way such that

sl(.) = sl−1 + clwl(.) (4)

In which case the values of cl and wl are selected such that sl is the model which has
the best fit on the train data, therefore it presents the best possible improvement over s(l−1)
according to Equation (4). If we define E(.) as fitting error of the given model and e(.,.) to
be the loss/error function, we denote the following:

(cl , wl(.)) = argmin
c,w(.)

E(sl−1(.) + cw(.)) = argmin
c,w(.)

N

∑
n=1

e(yn, sl−1(xn) + cw(xn)) (5)

As a result, rather than optimizing “globally” over all of the L models in the total, we
approach the optimum by optimizing “locally” creating and gradually adding the learning
algorithm to the strong model. Hence, Equation (5) presents a comprehensive approach to
the design of highly optimized ensemble classifier based on booting technique. A typical
algorithmic representation of the procedure for implementing the boosting algorithm is
shown in Algorithm 2 with primary focus on the AdaBoost classifier upon which other
boosting classifiers are built. A summary of related literature reviewed in this section is
presented in Table 1.

Table 1. Outline of related works that implement machine learning and deep learning in both single
and ensemble scenarios for intrusion detection in IoT systems.

Author Dataset Used Classification
Domain Imbalance Method Evaluation Metric

Rashid et al. [37] UNSW-NB15,
CICIDS2017 Binary Not specified Acc = 99.9,

Recall = 99.9 Ensemble

Verma et al. [33]
CSE-CICIDS2018-v2,

UNSW-NB15-V2,
BoT-IoT-V2

Binary x Acc = 98.27,
Recall = 96.40 Ensemble

Churcher et al. [38] BoT-IoT Binary and multiclass x Acc = 99 -

Gaikwad and
Thool [39] NSL-KDD Multiclass x Acc = 99.67 Ensemble

Yulianto et al. [55] CICIDS2017 Multiclass Implemented Acc = 81.83,
F-score = 90.01 AdaBoost

Waskle et al. [58] KDD Cup’99 Not specified x Acc = 96.78 Random forest

Dhaliwal et al. [62] NSL-KDD Multiclass x Acc = 98.70,
Recall = 99.11 XGBoost

Dutta et al. [74] IoT-23, LITNET-2020,
NetML-2020 Multiclass Implemented

Acc = 99.7,
Precision = 100,

Recall = 95

DL
Ensemble stacking

Kim et al. [75] N-BaIoT Binary and multiclass x
Acc = 99.9,

Recall = 99.9,
Precision = 99.9

ML
Ensemble stacking

Das et al. [11]
NSL-KDD,

UNSW-NB15,
CICIDS2017

Binary x
Acc NSL-KDD: 88.1,
UNSW-NB15: 85.7,
CICIDS2017: 99.5

Ensemble ML

Sensors 2022, 22, 7409 10 of 26

Algorithm 2 The algorithm for boosting classifier

1: Form a large set of sample features
2: Initialize the weights of training samples
3: for T rounds do:
4: Normalize the weights of the samples
5: For available features from the set, train a classifier using a single feature and

evaluate the training error
6: Choose the classifier with the lowest error
7: Update the weights of the training samples: increase if classified wrongly by this

classifier, decrease if correctly
8: end for
9: Form the final strong classifier as the linear combination of the T classifiers.

3. Materials and Methods

The materials used for this research and the method are discussed in detail in this
section. The well-elaborated architecture describing the process flow is given in Figure 1.
The methodology is specifically divided into five different phases, namely, (a) data collec-
tion, (b) data preprocessing, (c) ensemble feature selection, (d) model classification, and (e)
anomaly detection (classification). We begin the proposed IDS model design by checking
the database for important datasets that best meet the specific objectives of this paper. Data
in raw format are composed of irregularities and misinformation that must be preprocessed.
We perform feature engineering to remove redundant features, then develop the IDS model,
as shown in Figure 1. In the end, the final model proposed in this work is implemented
using the pseudocode presented in Algorithm 3.

Figure 1. Design architecture of BoostedEnML for IDS in IoT systems.

3.1. Data Collection

The performance of the ML model is as important as the data used in the training
process. For this reason, in our work, we searched through the available datasets to select
the most wide and comprehensive datasets upon which we could build our IDS model.
Two recent datasets were selected which are publicly available for research purposes:
CICIDS2017 (http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/, accessed on 7
February 2022), consisting of over 2 million instances among which 83% are benign and 17%
are attack classes, and CSE-CIC-IDS2018 (https://registry.opendata.aws/cse-cic-ids2018/,
accessed on 7 February 2022), comprising 83% benign and 17% attack, were used in this
paper. The datasets collected from these sources are contained in different folders in CSV
format. To obtain a robust dataset, we first aggregated all the different CSV files into a single

http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/
https://registry.opendata.aws/cse-cic-ids2018/

Sensors 2022, 22, 7409 11 of 26

file for each of the selected datasets. The data contain relevant information of the problem
domain and needed to be cleaned for further analysis. The selected datasets are maintained
by the Canadian Institute of Cybersecurity and the University of New South Wales [76].
Other commonly used datasets include KDD Cup’99, NSL-KDD, UNSW-NB15, Bot-IoT,
CICDDoS2019. Usually, the dataset is divided into train and test portions. The collected
dataset contains information about network flows recorded in forward and backward order.
Some of the features of the datasets include source IP, destination IP, timestamp, flow
duration, flow bytes, etc.

Algorithm 3 The algorithm for the BoostedEnsML

1: Define the number of folds in the split, s
2: Initialize s = 0
3: while s 6 10 do:
4: Train the selected classifier (LGBM or XGB) using 9 parts of the 10 folds and perform

prediction on the other part
5: XGB and LGBM are used for predictions on the train set and test data.
6: s += 1
7: end while
8: Using Stacking Classifier to combine the predictions from the two base models.
9: BoostedEnsML is applied to the test data to make final predictions.

3.2. Data Preprocessing

The raw datasets shown in Tables 2 and 3 consist of 15 different classes each and one
benign class. There are different web, DDoS, and DoS attacks in the datasets. We merged
these related attacks into their respective classes. For instance, the DoS GoldenEye, DoS
slowloris, and DoS Slowhttptest in the CSE-CIC-IDS2018 dataset were merged into the
DoS attack, while in the CICIDS2017, the DoS Hulk, DoS SlowHTTPTest, DoS GoldenEye,
and DoS Slowloris were also merged. Similarly, the same approach was used to merge the
DDoS flows in both datasets. Usually, data come in raw form and cannot be implemented
in that form in ML algorithms. It is important that the crude datasets are cleaned, sanitized,
transformed, and features reduced to ensure that attack features used in the ML classifier
are the best features. In cleaning and sanitizing the datasets, we removed duplicate rows
and columns; rows containing special characters (@,#,%) were checked, and such special
characters were deleted. We noticed that some instances in the dataset were ’inf’ and NULL
values, so the null value rows and columns were deleted. This cleaning was performed
on both datasets. ML classifiers can correctly handle all numeric inputs; we converted all
non-numeric data into numeric using the LabelEncoder. LabelEncoder is used in ML to
encode the y-label into numeric values in the range of 0 to n_classes-1.

For better understanding of the correlation between the traffic features in the dataset,
we performed statistical analysis including univariate, bivariate, and multivariate analysis
using data visualization tools such as Matplotlib, Seaborn, and Plotly. We observed in the
dataset during exploratory data analysis (EDA) that most of the numeric data are of higher
values than others. For this reason, we used MaxAbsScaler (Maximum Absolute Scaler) to
transform the data into the range of zero and one (0 and 1). There exist the standard scaler,
min max scaler, and robust scaler. One advantage of the Max Absolute Scaler over other
feature transformation techniques is that it estimates, scales, and transforms each feature
one by one in such a way that the maximum value of each feature in the train dataset will
be 1.0; hence, the center of the data is maintained and sparsity is not destroyed.

As shown in Tables 2 and 3, our datasets contain severe data imbalances, having be-
nign features in millions and attacks in thousands and hundreds. To handle the imbalance,
we used two different sampling techniques to reduce the dataset size without affecting
the model’s performance. We first oversampled the minority classes using SMOTE and
ADASYN. These data sampling techniques generate synthetic instances for the minority
class using its features. They ensure that the original information contained in the dataset

Sensors 2022, 22, 7409 12 of 26

is maintained. Next, we reduced the benign class using a random undersampling tech-
nique, which randomly removes some samples of the benign class without affecting its
contribution to the model performance. Similar attack types were merged to obtain seven
labels for CSE-CICIDS2018 (consisting of six attacks and one benign feature) and nine for
CIC-IDS2017 (consisting of eight attacks and one benign feature).

Table 2. Distribution of stream records in CICIDS2017 dataset.

Label Name Value Percentage Contribution (%)

BENIGN 2,359,289 83.3452
DoS Hulk 231,073 8.1630
PortScan 158,930 5.6144

DDoS 41,835 1.4779
DoS GoldenEye 10,293 0.3636

FTP-Patator 7938 0.2804
SSH-Patator 5897 0.2083

DoS slowloris 5796 0.2048
DoS Slowhttptest 5499 0.1943

Bot 1966 0.0695
Web Attack-Brute Force 1507 0.0532

Web Attack-XSS 652 0.0230
Infiltration 36 0.0013

Web Attack-Sql Injection 21 0.0007
Heartbleed 11 0.0004

Table 3. Distribution of stream records in CICIDS2018 dataset.

Label Name Value Percentage Contribution (%)

Benign 13,484,708 83.07001
DDOS attack-HOIC 686,012 4.22605

DDoS attacks-LOIC-HTTP 576,191 3.54952
DoS attacks-Hulk 461,912 2.84552

Bot 286,191 1.76303
FTP-BruteForce 193,360 1.19116
SSH-Bruteforce 187,589 1.15561

Infiltration 161,934 0.99756
DoS attacks-SlowHTTPTest 139,890 0.86177

DoS attacks-GoldenEye 41,508 0.25570
DoS attacks-Slowloris 10,990 0.06770

DDOS attack-LOIC-UDP 1730 0.01066
Brute Force-Web 611 0.00376
Brute Force-XSS 230 0.00142

SQL Injection 87 0.00054

Next, we needed the training, validation, and test datasets. The Sklearn library
provides the train–test split function for splitting the dataset, while the Keras module
provides the train-test–validation split option. In this research, we used the StratifiedKFold
cross-validation split function to achieve better performance. StratifiedKFold was used
to split the data into ten different subsets or folds, and in each training iteration, nine
different subsets were used for the training and validation, while one was used for testing
the performance of the model. The process was repeated ten times until all the samples in
the folds were used, thus ensuring that each data point participated in the model training.
By using this method, data leaking, which occurs when some test data are visible during
training and causes the model to be biased toward the test data, may be avoided.

3.3. Hyperparameter Optimization and Ensemble Feature Selection

Hyperparameter optimization (HPO) is an automated method for picking classifier
parameters to train the model. While model parameters (MPs) are learned and updated

Sensors 2022, 22, 7409 13 of 26

by the model during training, ML programmers define the hyperparameters for the clas-
sifier. This paper employed two search strategies to find the optimal hyperparameters
for improving model performance. The RomandomizedSearchCV and GridSearchCV were
used. While the RandomSearch algorithm randomly selects parameters based on the search
space provided to each holding other parameters constant, the GridSearch CV exhaustively
searches the grid of parameters and reports the best candidate parameters. Depending on
the number of iterations (n_iter) defined, the RandomSearch can be faster than the Grid-
Search. Usually, the parameters to be tuned are defined based on the ML algorithm being
implemented. For instance, in RF, the parameters tuned are max_features, n_estimators
and oob_score, whereas the max_depth, n_estimators and learning_rate are tuned for the
XGBoost classifier. When we compared the tuning results, we discovered that the param-
eters produced with GridSearchCV improved the model’s performance more than those
obtained with RandomSearchCV; thus, all future training of all models was based on the
GridSearchCV-tuned parameters. As previously indicated, some variables in the dataset
are unimportant because they have little influence on the traffic flow characteristics. Hence,
we used feature selection to determine which features contribute the most to determining
network flow characteristics. Therefore, the random forest algorithm for feature importance
was implemented, and the first 64 most important features, evaluated by the RF feature
importance method, were chosen. Thus, our models were developed based on the chosen
64 features. Reducing these features helps to lower the model complexity and improve
training cost while achieving the same performance output. The selected feature map is
shown in Table 4.

3.4. Model Selection and Training

In IDS implementation, detecting various forms of network intrusion requires IDS
to be capable of functioning in multiclass mode. Hence, our task is a multiclass task. ML
algorithms are widely used in this domain [77,78]. In this paper, decision tree (DT), extra
tree (ET), random forest (RF), AdaBoost (AD), XGBoost (XGB), and LightGBM (LGBM)
are the selected algorithms. In research on boosted algorithms, DT, ET, and RF were used
as a baseline to evaluate the computational complexity of the boosted algorithms and the
resulting BoostedEnML. First, six different models were developed individually for each
of the algorithms; and their performances were evaluated. In the ensemble model design,
each of the classifiers, DT, RF, XGB, LGBM, were aggregated. Then, to obtain an ensemble
IDS model based on DT, other models were used as estimators while DT was used as
the meta-learner. This approach was repeated for all the classifiers to obtain the desired
results: ensemble decision tree (Ens_DT), ensemble random forest (Ens_RF), ensemble
AdaBoost (Ens_AD), ensemble XGBoost (Ens_XGB), ensemble LightGBM (Ens_LGBM). We
compared the different ensemble methods by implementing an ensemble using voting and
stacking classifiers. These two are called the ensemble hard majority voting (Ens_HMV)
and ensemble stacking model (EnSM). Finally, we used the two boosting classifiers (XGB
and LGBM) to develop the BoostedEnML which is proposed in this paper. The algorithm
presented in Algorithm 3 helps in implemented the BoostedEnML IDS model. We began by
defining and initializing the number of splits we wanted each of the folds to have. We used
10 K-folds in each split during which training was performed on 9 folds; the remaining 1
fold was used to validate the model performance. This process was repeated until the 10
folds were completed, thereby using all the data in the train set. Although other approaches
show similar or related performances, we demonstrated that BoostedEnML can be used to
achieve network traffic classification with high accuracy and reduced computational cost.

3.5. Evaluation Metrics

The metrics accuracy, precision, recall, F-score, area under the curve (AUC), con-
fusion matrix, and receiver operating curve (ROC) were used to check how the model
performed on the test data. In the field of ML, these metrics are highly used in evaluating
the performances of trained models. While the accuracy is a very good evaluation metric

Sensors 2022, 22, 7409 14 of 26

for ML tasks, it is not highly recommended for multiclass classification tasks involving
imbalanced datasets. This is because high accuracy on imbalanced data may not have
resulted from a generalized learning attribute of the model. Hence, other metrics were
combined in this work. Given that TP_os, TN_eg, FP_os, and FN_eg are the definition
for true positive, true negative, false positive, and false negative outcomes of the models,
respectively, the evaluation metrics can be defined by Equations (6)–(10) for the weighted
macro performance of the model in terms of the accuracy, precision, recall, and F-score.
TP_os represents the samples in our dataset that were correctly classified as positive, TN_eg
are samples that were correctly identified as negative, FP_os represents the instances that
were negative but were mistakenly identified as positive by the model, and FN_eg repre-
sents the positive instances that were classified as negative by the model. The confusion
matrix shows the model’s performance in classifying each sample correctly or wrongly on a
graph. The AUC–ROC curve was originally designed for binary problems; however, it can
be adapted for multiclass problems using the OneVersesRest (OVR) or OneVerseOne (OVO)
and ’multiclass’ arguments. The one-vs.-one algorithm is used to calculate the average of
the ROC–AUC scores in pairs, and the one-vs.-rest algorithm calculates the average scores
of the ROC–AUC for each network flow label against all other class labels, as shown in
Equation (11). We can set the multiclass keyword argument in the function to ’ovo or OVR’
while the average is set to ’macro’. This way, we can use the AUC–ROC curve function for
multiclass problems.

Accuracymacro =
TP_os + TN_eg

TP_os + TN_eg + FP_os + FN_eg
(6)

Precisionmacro =
TP_os

TP_os + FP_eg
(7)

Recallmacro =
TP_os

TP_os + FN_eg
(8)

F−measuremacro =
2× (precision× recall)

precision + recall
(9)

FPR =
FP_os

FP_os + FN_eg
(10)

AUC =
1

c(c− 1)

c

∑
j=1

c

∑
k>j

(AUC(j | k) + AUC(k | j)) (11)

where c is the total number of classes and AUC(j | k) is the AUC with class j as the positive
class and class k as the negative class. In general, AUC(j | k) 6= AUC(k | j) in the multiclass
case [79].

Equation (12) extends Equation (11) for weighted ROC–AUC curves. The modification
is to change the value for the average to ’weighted’ and other arguments are retained.
The ’weighted’ [80] returns the prevalent weighted average for each of the class in the
dataset.

AUC =
1

c(c− 1)

c

∑
j=1

c

∑
k>j

p(j ∪ k)(AUC(j | k) + AUC(k | j)) (12)

In the experimental setup for this task, we used Python Numpy, Pandas, Matplotlib,
and the machine learning library Scikit-learn for the software. The code was executed on
a computer running on Intel(R) Core(TM) i7-7700 CPU @ 3.60 GHz, 3600 Mhz, 4 Core(s),
16 GB (15.9 GB usable), Windows 10 Home Single Language 64-bit and NVIDIA GeForce
GTX 1050 Ti GPU.

Sensors 2022, 22, 7409 15 of 26

4. Results and Discussion

In this section, we present and discuss the results obtained from the experiment.
As earlier stated, we performed the experiment using two well-known datasets: CIC-
IDS2017 and CSE-CICIDS2018, which are publicly available for research purposes [76].
First, we oversampled the data points such that there were almost the same values for
each of the samples. For instance, bot, which has 286,191 samples against the benign
traffic, with 12,484,708 instances, in Table 2 needed to be increased, otherwise the model
would only learn the features of the benign traffic since it would see more of the packets
injected as benign. The datasets obtained for the training, validation, and testing after
handling imbalances with SMOTE and ADASYN, and splitting using StratifiedKfold cross-
validation, are presented in Table 5. For each of the nine class labels in CICIDS2017, there
are 606,812 instances for training and 67,242 instances for testing. The same applied to the
CSE-CIC-IDS2018 dataset.

Table 4. Selected feature for the training of each of the models using random forest feature importance
according to the standard deviation of feature values.

Feature Importance Feature Importance Feature Importance Feature Importance

Timestamp 0.3227 Fwd IAT Std 0.0022 RST Flag Cnt 0.0009 Pkt Len Min 0.0003
Dst Port 0.2302 Pkt Len Mean 0.0021 Fwd IAT Tot 0.0009 Fwd Pkt Len Min 0.0003

Fwd Seg Size Min 0.16 Tot Bwd Pkts 0.0019 Pkt Size Avg 0.0008 Bwd Seg Size Avg 0.0003
Init Fwd Win Byts 0.0971 Bwd IAT Min 0.0019 Bwd IAT Mean 0.0008 TotLen Bwd Pkts 0.0002
TotLen Fwd Pkts 0.0354 Flow IAT Min 0.0017 Pkt Len Var 0.0007 Idle Min 0.0002

Fwd Pkt Len Mean 0.0347 Init Bwd Win Byts 0.0015 Fwd Header Len 0.0007 Bwd Pkt Len Std 0.0002
Pkt Len Max 0.0334 Fwd Pkts/s 0.0015 Bwd IAT Max 0.0006 Active Min 0.0002

Fwd Pkt Len Std 0.0215 Fwd IAT Max 0.0015 Subflow Bwd Pkts 0.0005 Tot Fwd Pkts 0.0001
Flow IAT Max 0.0057 Flow Pkts/s 0.0015 Pkt Len Std 0.0005 Subflow Fwd Pkts 0.0001

Idle Max 0.0048 Flow IAT Std 0.0015 FIN Flag Cnt 0.0005 PSH Flag Cnt 0.0001
Fwd Pkt Len Max 0.0045 Flow Byts/s 0.0014 Bwd IAT Tot 0.0005 Idle Std 0.0001
Fwd Seg Size Avg 0.0035 Flow IAT Mean 0.0011 Bwd IAT Std 0.0005 Idle Mean 0.0001
Bwd Pkt Len Mean 0.0029 Fwd Act Data Pkts 0.001 Subflow Fwd Byts 0.0004 Active Std 0.0001

Bwd Pkts/s 0.0027 Flow Duration 0.001 Subflow Bwd Byts 0.0004 Active Mean 0.0001
Bwd Pkt Len Max 0.0025 ECE Flag Cnt 0.001 Fwd IAT Mean 0.0004 Active Max 0.0001

Fwd IAT Min 0.0023 Bwd Header Len 0.001 Bwd Pkt Len Min 0.0004 ACK Flag Cnt 0.0001

Table 5. Distribution of data for training, validation, and testing of the models.

Labels
CIC-IDS2017 CSE-CICIDS2018

Train Val/Test Train Val/Test

Benign 606,812 67,242 606,812 67,242
Bot 606,812 67,242 606,812 67,242

Brute force 606,812 67,242 606,812 67,242
DDoS 606,812 67,242 606,812 67,242
DoS 606,812 67,242 606,812 67,242

Infiltration 606,812 67,242 606,812 67,242
Web Attacks 606,812 67,242 606,812 67,242

Portscan 606,812 67,242 – –
Heartbleed 606,812 67,242 – –

Total 5,461,308 605,178 4,247,684 470,694

After oversampling the datasets, the resulting data points were very high for the ML
task; so we performed undersampling and selected a total of 5,189,072 (6%) data instances of
the CSE-CICIDS2018, and 30% of the CIC-IDS2017 dataset with a total of 6,671,664 samples.
The two datasets both had a total of 80 features each after preprocessing. A total of 64
features were selected, as shown in Table 4 with the Timestamp, Destination port, Fwd
Seg Size, Min, and Init Fwd Win Bytes being the top four features in the CSE-CICIDS2018
dataset. The features are listed in ascending order with their importance according to
weights attached to each. This helps us to understand the extent to which each feature
is important to the model performance. Features such as ‘Tot Fwd Pkts’, ‘Subflow Fwd
Pkts’, ‘PSH Flag Cnt’, ‘Idle Std’, ‘Idle Mean’, ‘Active Std’, ‘Active Mean’, ‘Active Max’, and

Sensors 2022, 22, 7409 16 of 26

‘ACK Flag Cnt’ are observed to contribute almost one-thousandth (1/1000) to the model
training and testing. This can imply that if these features are removed, the model can still
perform very accurately. With the exception of the Timestamp and Destination Port (Dst
Port), the most important features which contribute almost tens of percentages are the first
four features: Fwd Seg Size, Min, Init Fwd Win Bytes, and TotLen Fwd Pkts. Figure 2 shows
the first 10 important features in the CICIDS2017 dataset as generated with the random
forest feature importance. First, we show the results obtained after training the models
on the CSE-CICIDS2018 dataset. The performance of each model in terms of the accuracy,
precision, recall, F-score, model size, and test time are presented in Table 6. The results
show that the task classifies the labels into their respective seven classes as contained in the
dataset; identifying, at each time, one of the categories of the network traffic. During the
test, the accuracy for each of the ML algorithms, DT, RF, ET, AD, LGBM, and XGB, are
98.7%, 98.4%, 98.3%, 97.8%, 98.8%, and 98.9%, respectively. It can also be observed that
XGB has the highest accuracy, precision, recall, F-score, and AUC, compared with other ML
algorithms. Hence, it achieves the best performance in correctly identifying each network
traffic according to its category. This is expected as it has shown very high accuracy in
previous works, outperforming some deep learning models in some datasets [81].

Figure 2. Feature importance extracted from the CICIDS2017 dataset using RFR.

Furthermore, the LGBM model follows the XGB having obtained accuracy, precision,
recall, F-score and AUC of 98.8%, 98.83%, 98.83%, 98.83%, and 99.96%, respectively. LGBM
is a lightweight version of the XGB algorithm specifically designed for timing optimization
with high accuracy, as seen in this current task. In general, a close look at the evaluation
metrics shows close, and almost the same, values obtained for each of the models for each
metric used. For instance, DT achieved almost 99% for all the metrics, and RF achieved
approximately 98% for all the metrics as well as ET classifier. This is achieved as a result
of the balanced dataset and cross-validation approach used. In all cases, each algorithm
generalizes very well on the traffic, and thereby gains knowledge to identify to which class
the packet belongs. Since all the models trained on the algorithms have almost similar
performances, we measured the train and test time for each model to enable us to select the
most suitable model for further tasks of ensemble design.

As shown in Table 6, ET required the highest amount of time to predict the different
attack classes, using about 15.1 s. This is attributed to the large number of trees in its
architecture, so ET was excluded from being used as a base learner in ensemble models.

Sensors 2022, 22, 7409 17 of 26

DT, RF, LGBM, and XGB had total test times of 0.25 s, 9.98 s, 3.4 s, and 4.25 s, respectively.
Therefore, we chose them as base learners for ensemble models.

Table 6. Performance evaluation of the trained models on CSE-CICIDS2018 dataset, showing the
time for prediction and model size.

Model Metrics Accuracy Precision Recall F-score AUC File Size Test Time (s)

DT 98.7 98.67 98.67 98.67 99.25 10 MB 0.25
RF 98.4 98.43 98.43 98.43 99.93 1200 MB 9.98
ET 98.3 98.35 98.35 98.35 99.85 5500 MB 15.1
AD 97.8 97.74 97.65 97.8 98.8 350 MB 14.2

LGBM 98.8 98.83 98.83 98.83 99.96 2.4 MB 3.4
XGB 98.9 98.97 98.98 98.97 99.9 1500 MB 4.25

The results obtained for the CIC-IDS2017 dataset using the various metrics are shown
in Table 7. On this dataset, the DT, RF, ET, AD, LGBM, and XGB classifiers detected each
class with an accuracy of 99.59%, 99.45%, 99.68%, 69.67%, 99.16%, and 99.51%, respectively.
In terms of the AUC score for each of the classifiers, the DT, RF, ET, AD, LGBM, and XGB
reached 99.76%, 99.98%, 99.97%, 67.9%, 96.81%, and 99.97%, respectively, with ET and XGB
having the same AUC score of 99.97%. Considering the precision and recall performances
of the six models, we observe that each model has high values, which demonstrates
the capacity of each of them to give reliable predictions while detecting network traffic.
In precision, the DT, RF, AD, LGBM, and LGBM classifiers reached precisely 99.59%, 99.48%,
99.68%, 66.76%, 96.96%, and 99.52%. These performances show that ET and XGB can classify
the flow packets with higher precision. In general, ET achieved the best performance in all
metrics, although it had the highest detection or prediction time and memory requirement.
Due to the large memory capacity and training and testing time requirement for the ET
classifier, we selected XGB and LGBM which had similar performance ratings. On the other
hand, DT had a prediction time of 0.18 s. LGBM, being a lightweight model, had the lowest
memory requirement of about 3.1 MB with an accuracy of 99.16%. Therefore, the models
on both datasets detected and classified each traffic with high performances in comparison
with other existing methods [4,12].

Table 7. Performance evaluation of the trained models on the CIC-IDS2017 dataset showing the time
for prediction and model size.

Model Metrics Accuracy Precision Recall F-score AUC File Size Test Time (s)

DT 99.59 99.59 99.59 99.59 99.76 5.7 MB 0.18
RF 99.49 99.48 99.47 99.47 99.98 319 MB 6.83
ET 99.68 99.68 99.67 99.67 99.97 1630 MB 11.09
AD 69.67 66.79 66.78 66.68 67.9 400 MB 12

LGBM 99.16 96.96 96.43 96.43 96.81 3.1 MB 5.49
XGB 99.51 99.52 99.51 99.51 99.97 3.76 MB 3.37

We used a stacking method (StackingClassifier) to combine all the algorithms to
develop ensembles for each classifier. Hence, we obtained Ens_DT (with DT as meta-
learner), Ens_RF (with RF as meta-learner), Ens_LGBM (with LGBM as meta-learner), and
Ens_XGB (XGB as meta-learner). To obtain the classifier based on majority vote, (EnsHMV),
we used the four base classifiers as estimator and hard voting as the argument for the
voting function. BoostedEnML was then developed using LGBM and XGB only.

The results obtained for the ensemble approach are shown in Figure 3 and Figure 4,
respectively, for the CIC-IDS2017 and CSE-CIC-IDS2018 datasets.

Sensors 2022, 22, 7409 18 of 26

Figure 3. Performance evaluation of ensemble models on the CIC-IDS2017 dataset.

Figure 4. Performance evaluation of ensemble models on the CIC-IDS2018 dataset.

From Figures 3 and 4, we can observe that the ensemble ML classifiers outperformed
the single ML classifiers, implying that using the ensemble approach can increase the
performance of ML algorithms in detecting cyberattacks in IoT systems. For instance, on the
CIC-IDS2017 dataset, Ens_DT, Ens_RF, Ens_LGBM, Ens_XGB, EnsHMV, and BoostedEnsML
achieved an accuracy and F1-score of 97.8% and 98%, 98.9% and 99%, 99.7% and 99.9%, 99%
and 99%, 99.99% and 99.99%, and 100% and 100%, respectively. The recall and precision
in each case lies within the same range. In addition, on the CSE-CIC-IDS2018 dataset,
the performance accuracy and recall for each of the ensemble models were, respectively,
98.9% and 98.9%, 99.1% and 99.1%, 99.5% and 99.52%, 99.6% and 99.6%, 99.56% and
99.66%, and 100% and 100% for Ens_DT, Ens_RF, Ens_LGBM, Ens_XGB, EnsHMV, and
BoostedEnsML.

Since our task is based on multiclass classification, we show the confusion matrix
for Ens_RF and Ens_LGBM classifiers in Figure 5. Almost all the various network traffic
types were correctly classified. From the confusion matrix, we can see that during the test
for brute force, DDoS, and DOS with the Ens_RF model, all the 67,424 data points in the
dataset were correctly identified as either brute force, DDoS, or DoS with 100% accuracy.
On the other hand, 64,071 instances were identified as benign, 1 instance was misclassified

Sensors 2022, 22, 7409 19 of 26

as DDoS, 3344 were misclassified as infiltration attacks, and 7 were misclassified as web
attacks while detecting benign traffic on the CSE-CICIDS2018 dataset. Similarly, on the
CICIDS2017 dataset, the Ens_LGBM had only 1, 1, 3342, and 8 misclassifications of bot,
DDoS, infiltration, and web attacks, respectively, while detecting benign flows, showing an
FNR of 0.05%.

Figure 5. Confusion matrix for (a) Ens_RF and (b) ENs_LGBM on 2018 dataset.

However, our proposed BoostedEnsML model outperformed all other ensemble mod-
els achieving 100% accuracy, precision, recall, F-score, and AUC for all the different attacks
in both datasets, as can be seen in the confusion matrix in Figures 6 and 7. Although
other IDS models for IoT scenarios have achieved almost the same accuracy [75], our
work demonstrates that using only algorithms based on boosting techniques with balanced
datasets can present an improvement on existing works. The model based on the HMV tech-
nique, called Ens_HMV, also outperformed other models, reaching high accuracy in both
models. Notably, Ens_HMV on the two datasets achieved almost the same performance
with the BoostedEnsML model but with regards to memory capacity, the BoostedEnsML
(200 MB) is preferred as it has lower computational power than the Ens_HMV (500 MB).

Firefox file:///E:/Latex-layout/9/9.22/2-sensors-1864499/sensors-1864499-done/svgimages/...

1 of 1 9/22/2022, 3:37 PM

Figure 6. Confusion matrix for EnsHMV.

Sensors 2022, 22, 7409 20 of 26
Firefox file:///E:/Latex-layout/9/9.22/2-sensors-1864499/sensors-1864499-done/svgimages/...

1 of 1 9/22/2022, 3:34 PM

Figure 7. Confusion matix for proposed BoostedEnsML.

The ROC curve shows the relationship between the true positive rate (TPR) and false
positive rate (FPR) for the model performance in detection and classification of each attack.
The ROC curve obtained on the CSE-CICIDS2018 dataset for LGBM, RF, DT, and ET is
presented in Figure 8. In each case, the AUC score is nearly 1.0, which indicates that the
model has high accuracy in correctly classifying the various attacks and benign labels. In
addition, the FPR is nearly zero for each of the models, showing a high rate of reduction
in false alarms which have been a serious issue in ML used for IDS. Hence, our model
outperforms most of the state-of-the-art models [25–27] through the methodology adopted
for the research. With high detection rate, the proposed model correctly classifies the
various network traffic passing through the IoT environment, thereby helping to reduce
exposure to cyberattacks.

We applied the ensemble model developed using voting technique (EnsHMV) that is
based on bagging classifier for a classification task and the IDS model based on stacked
boosting algorithms (BoostedEnML) on each of the datasets to identify how each of them
performs in detecting and classifying the network packets into their respective classes. We
considered each class as a separate entity to evaluate the classifier’s ability to differentiate
it from the normal traffic (benign). The result for this experiment is shown in Table 8. The
results illustrate that for the various attack in the two datasets, both IDS models showed
high precision, recall, and F-score, reaching 100% in correctly classifying the classes. More
specifically, while EnsHMV and BoostedEnML performed similarly on the 2018 dataset,
BoostedEnML outperformed EnsHMV on both datasets. In detecting infiltration attacks
on the CSE-CICIDS2018 dataset, the two models report that the attack is infiltration with
100% recall, while on CICIDS2017, the EnsHMV detected an infiltration attack with a recall
of 99.67% against BoostedEnML that reached 100%. The results generally show a low
possibility of false alarms in both scenarios.

In terms of the F-score, which is the weighted mean of the recall and precision of the
model behavior, Table 8 demonstrates that the EnsHMV reached 0.9636%, 0.9984%, 0.9999%,
0.9989%, 0.9890%, 0.9969%, 1.00%, 0.995%, 0.9992%, and 0.9988% in classifying the benign,
botnet, brute force, DDoS, DoS, heartbleed, infiltration, portscan, and web attack traffics in
the CICIDS2017 dataset, respectively; while on the CSE-CICIDS2018 dataset, the EnsHMV
attained an F-score performance of 0.9978%, 1.000%, 1.000%, 1.000%, 0.9999%, 0.9999%,
and 1.000% in classifying the benign, botnet, brute force, DDoS, DoS, infiltration, and
web attack flows, respectively. Similarly, the BoostedEnML showed higher performance
than the EnsHMV in relation to the F-score measure on both datasets. Specifically, on the
CICIDS2017, the BoostedEnML showed an F-score of 1.000%, 0.9999%, 0.9999%, 0.9980%,

Sensors 2022, 22, 7409 21 of 26

1.000%, 1.000%, 1.000%, 0.9999%, and 1.000%, respectively, in the classification of the benign,
botnet, brute Force, DDoS, Dos, heartbleed, infiltration, portscan, and web attack flows. It
also achieved 0.9998%, 1.000%, 0.9999%, 1.000%, 0.9999%, 1.000%, and 1.0000% in detecting
the benign, botnet, brute force, DDoS, DoS, infiltration, and web attack packets in the
CSE-CICIDS2018 dataset.

Firefox file:///E:/Latex-layout/9/9.22/2-sensors-1864499/sensors-1864499-done/svgimages/...

1 of 1 9/22/2022, 3:39 PM

Figure 8. ROC curve for selected models trained on the CSE-CICIDS2018 dataset.

Table 8. Performance of the IDS models (EnsHMV and BoostedEnsML) in detecting and classifying
each network traffic class in the two datasets.

EnsHMV BoostedEnML

Dataset Class Precision Recall F-score Precision Recall F-Score

CICIDS2017

Benign 0.9795 0.9945 0.9636 0.9989 0.9995 1.0000
Bot 0.9977 0.9992 0.9984 0.9997 0.9999 0.9999

Brute Force 0.9998 0.9999 0.9999 1.0000 1.0000 0.9999
DDoS 0.9880 0.9989 0.9889 0.9890 0.9965 0.9980
DoS 0.9968 0.9890 0.9969 1.0000 1.0000 1.0000

Hearbleed 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Infiltration 0.9989 0.9967 0.9969 1.0000 1.0000 1.0000
PortScan 0.9993 0.9992 0.9995 0.9999 0.9999 0.9999

Web Attack 0.9966 0.9966 0.9988 1.0000 1.0000 1.0000

Precision Recall F-score Precision Recall F-Score

CICIDS2018

Benign 0.9966 0.9990 0.9978 0.9999 0.9999 0.9998
Bot 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Brute Force 0.9999 1.0000 1.0000 1.0000 0.9999 0.9999
DDoS 0.9999 1.0000 1.0000 1.0000 0.9999 1.0000
DoS 0.9999 0.9999 0.9999 0.9999 1.0000 0.9999

Infiltration 0.9999 1.0000 0.9999 1.0000 1.0000 1.0000
Web Attack 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

We compared the performance of our models with those of existing models in the
literature, as presented in Table 9. In the work of Das et al. [11], the proposed model
achieved an accuracy of 92% for the ensemble decision tree, and our En_DT achieved 97.8%,
which is about a 5.8% improvement. In addition, while the ensemble based on the neural

Sensors 2022, 22, 7409 22 of 26

network (NN), a deep learning model, achieved 99.5%, our BoostedEnsML achieved 100%
in all evaluation metrics, showing that the proposed approach is better. On the same dataset
as used in our work, the ensemble model based on stacking RF and KNN with DT used
as meta-learner in Kim et al. [75] detected the attacks and benign traffic with the accuracy
of 99.9%, while our work detected each traffic with 100%, showing 0.1% improvement
after handling data imbalance which was not stated in the work of Kim et al. [75]. This
indicates that with a balanced dataset integrated with feature selection, the performance of
IDS models can be enhanced. There is also a need to evaluate the effect of different feature
selection techniques and data imbalance methods on the general behavior of IDS models in
detecting and classifying network flows in IoT systems. Our work will try to investigate
this idea in future studies.

Table 9. Comparison of our ensemble models with other state-of-the-art ensembles.

Model Metrics Accuracy Precision Recall F-score AUC

Ens_DT [11] 92 92 94.4 89.8 96.9
Ens_SVM [11] 94 93.5 90.4 97.8 95.3
Ens_NN [11] 99.5 99.5 99.6 99.6 99.8

Ensemble Bagging [75] 99.7 99.7 99.8 99.8 -
Ensemble Boosting [75] 99.8 99.8 99.9 99.9 -
Ensemble Stacking [75] 99.9 99.9 99.9 99.9 -

DNN [74] 98.4 92 89 87.6 -
LSTM [74] 99.1 100 92 95 -

Ensemble DL Stacking [74] 99.7 100 95 98 -
En_DT 97.8 97.8 97.5 98.0 98.6

Ens_LGBM 99.7 99.6 99.8 99.9 99.5
Ens_XGB 99.0 99.1 98.9 99.0 99.6
Ens_HMV 99.99 100 100 100 99.99

BoostedEnsML Proposed 100 100 100 100 100

5. Conclusions

IoT devices are being used in different facets of human endeavors today, leading to the
creation of extensive networks and, consequently, a tremendous amount of network data
transmission. In addition to this, cyberattacks are witnessed in IoT systems exponentially,
prompting the urgency to develop approaches capable of mitigating these attacks. In this
paper, we proposed an ensemble model based on boosting algorithms such as XGB and
LGBM. First, we solved the data imbalance problem by using two methods of oversam-
pling technique (ADASYN and SMOTE) and compared the results obtained. A balanced
dataset obtained with SMOTE showed better performance than that of ADASYN. This case,
notwithstanding, can be relative. We performed several experiments on different ML algo-
rithms, including DT, RF, ET, AD, XGB, and LGBM, and developed an ensemble classifier
for each model. In the end, the proposed BoostedEnsML model was developed using the
best-performing boosting classifiers (XGB and LGBM), achieving the best performance of
100% in the classification of the various attacks in IoT networks, including DDoS, DoS, web
attacks, infiltration, portscan, heartbleed, and botnets. BoostedEnsML outperformed all
other ensemble models discussed in the literature. Hence, we obtained a highly efficient,
reliable, and accurate IDS model for detecting cyberattacks in IoT networks. In this current
work, two ensemble models based on boosting techniques (XGB and LGBM) were used to
propose an ensemble model using the stacking technique. Future work will explore more
ensemble model approaches and deep learning algorithms to further improve IoT intrusion
detection. In addition, we hope to integrate more feature selection techniques to evaluate
the effects of different network features on the performance of an ensemble IDS model in
preventing IoT-based network intrusion, as well as evaluate more boosting algorithms such
as Catboost and GBDT, to develop an ensemble of four boosting classifiers.

Sensors 2022, 22, 7409 23 of 26

Author Contributions: Project conceptualization, S.S.M., P.A., O.D.O. and D.Z.R.; methodology,
S.S.M., P.A., O.D.O. and D.Z.R.; software, O.D.O.; validation, O.D.O., R.L.R., M.S. and D.C.M.; formal
analysis, R.L.R., M.S. and D.C.M.; investigation, S.S.M., P.A., O.D.O. and D.Z.R.; resources, S.S.M.
and D.Z.R.; data curation, R.L.R., M.S. and D.C.M.; writing—original draft preparation, S.S.M., P.A.,
O.D.O. and D.Z.R.; writing—review and editing, M.S. and D.C.M.; visualization, R.L.R. and M.S.;
supervision, S.S.M., P.A., D.C.M. and D.Z.R.; project administration, S.S.M. and D.Z.R.; funding
acquisition, S.S.M. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the INTI International University, Negeri Sembilan, Malaysia;
and by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Data Availability Statement: The datasets used in this work are publicly available and can be
accessed through CIC-IDS2017: http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/ and
CSE-CICIDS2018: https://registry.opendata.aws/cse-cic-ids2018/ accessed on 2 February 2022.

Acknowledgments: We wish to acknowledge the efforts of the Forum for Agricultural Research
in Africa (FARA) and the Tertiary Education Trust Fund (TETFund) Nigeria who, through the
Agricultural Research Initiative for Africa (ARIFA), in collaboration with Universidade Federal de
Vicosa (UFV), sponsored the Master’s degree program through which this manuscript was produced.

Conflicts of Interest: The authors declare no conflict of interest in this research.

References
1. Ou, Y.J.; Lin, Y.; Zhang, Y. The design and implementation of host-based intrusion detection system. In Proceedings of the 2010

Third International Symposium on Intelligent Information Technology and Security Informatics, Jian, China, 2–4 April 2010;
pp. 595–598.

2. Liu, M.; Xue, Z.; Xu, X.; Zhong, C.; Chen, J. Host-based intrusion detection system with system calls: Review and future trends.
ACM Comput. Surv. (CSUR) 2018, 51, 1–36. [CrossRef]

3. Pharate, A.; Bhat, H.; Shilimkar, V.; Mhetre, N. Classification of intrusion detection system. Int. J. Comput. Appl. 2015, 118.
[CrossRef]

4. Mendonça, R.V.; Silva, J.C.; Rosa, R.L.; Saadi, M.; Rodriguez, D.Z.; Farouk, A. A lightweight intelligent intrusion detection system
for industrial internet of things using deep learning algorithms. Expert Syst. 2022, 39, e12917. [CrossRef]

5. Thakkar, A.; Lohiya, R. A review on machine learning and deep learning perspectives of IDS for IoT: Recent updates, security
issues, and challenges. Arch. Comput. Methods Eng. 2021, 28, 3211–3243. [CrossRef]

6. Gendreau, A.A.; Moorman, M. Survey of intrusion detection systems towards an end to end secure internet of things. In
Proceedings of the 2016 IEEE 4th International Conference on Future Internet of Things and Cloud (FiCloud), Vienna, Austria,
22–24 August 2016; pp. 84–90.

7. Teodoro, A.A.; Gomes, O.S.; Saadi, M.; Silva, B.A.; Rosa, R.L.; Rodríguez, D.Z. An FPGA-based performance evaluation of
artificial neural network architecture algorithm for IoT. Wirel. Pers. Commun. 2021, 1–32. [CrossRef]

8. Aminanto, M.E.; Ban, T.; Isawa, R.; Takahashi, T.; Inoue, D. Threat alert prioritization using isolation forest and stacked auto
encoder with day-forward-chaining analysis. IEEE Access 2020, 8, 217977–217986. [CrossRef]

9. Ban, T.; Samuel, N.; Takahashi, T.; Inoue, D. Combat security alert fatigue with AI-assisted techniques. In Proceedings of the
Cyber Security Experimentation and Test Workshop, Virtual, 9 August 2021; pp. 9–16.

10. Chapaneri, R.; Shah, S. A comprehensive survey of machine learning-based network intrusion detection. Smart Intell. Comput.
Appl. 2019, 104, 345–356.

11. Das, S.; Saha, S.; Priyoti, A.T.; Roy, E.K.; Sheldon, F.T.; Haque, A.; Shiva, S. Network Intrusion Detection and Comparative
Analysis using Ensemble Machine Learning and Feature Selection. IEEE Trans. Netw. Serv. Manag. 2021. [CrossRef]

12. Jamadar, R.A. Network intrusion detection system using machine learning. Indian J. Sci. Technol. 2018, 7, 1–6. [CrossRef]
13. Mendonça, R.V.; Teodoro, A.A.M.; Rosa, R.L.; Saadi, M.; Melgarejo, D.C.; Nardelli, P.H.J.; Rodríguez, D.Z. Intrusion Detection

System Based on Fast Hierarchical Deep Convolutional Neural Network. IEEE Access 2021, 9, 61024–61034. [CrossRef]
14. Stiawan, D.; Heryanto, A.; Bardadi, A.; Rini, D.P.; Subroto, I.M.I.; Idris, M.Y.B.; Abdullah, A.H.; Kerim, B.; Budiarto, R. An

approach for optimizing ensemble intrusion detection systems. IEEE Access 2020, 9, 6930–6947. [CrossRef]
15. Kiflay, A.Z.; Tsokanos, A.; Kirner, R. A Network Intrusion Detection System Using Ensemble Machine Learning. In Proceedings

of the 2021 International Carnahan Conference on Security Technology (ICCST), Hatfield, UK, 1–15 October 2021; pp. 1–6.
[CrossRef]

16. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
17. Ying, C.; Qi-Guang, M.; Jia-Chen, L.; Lin, G. Advance and prospects of AdaBoost algorithm. Acta Autom. Sin. 2013, 39, 745–758.
18. Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference

on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794.
19. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. Lightgbm: A highly efficient gradient boosting decision

tree. Adv. Neural Inf. Process. Syst. 2017, 30, 1–9.

http://205.174.165.80/CICDataset/CIC-IDS-2017/Dataset/
https://registry.opendata.aws/cse-cic-ids2018/
http://doi.org/10.1145/3214304
http://dx.doi.org/10.5120/20758-3163
http://dx.doi.org/10.1111/exsy.12917
http://dx.doi.org/10.1007/s11831-020-09496-0
http://dx.doi.org/10.1007/s11277-021-08566-1
http://dx.doi.org/10.1109/ACCESS.2020.3041837
http://dx.doi.org/10.1109/TNSM.2021.3138457
http://dx.doi.org/10.17485/ijst/2018/v11i48/139802
http://dx.doi.org/10.1109/ACCESS.2021.3074664
http://dx.doi.org/10.1109/ACCESS.2020.3046246
http://dx.doi.org/10.1109/ICCST49569.2021.9717397
http://dx.doi.org/10.1023/A:1010933404324

Sensors 2022, 22, 7409 24 of 26

20. Quinlan, J.R. Learning decision tree classifiers. ACM Comput. Surv. (CSUR) 1996, 28, 71–72. [CrossRef]
21. Leevy, J.L.; Khoshgoftaar, T.M. A survey and analysis of intrusion detection models based on cse-cic-ids2018 big data. J. Big Data

2020, 7, 1–19. [CrossRef]
22. Fernández, A.; Garcia, S.; Herrera, F.; Chawla, N.V. SMOTE for learning from imbalanced data: Progress and challenges, marking

the 15-year anniversary. J. Artif. Intell. Res. 2018, 61, 863–905. [CrossRef]
23. He, H.; Bai, Y.; Garcia, E.A.; Li, S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning. In Proceedings

of the 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence),
Hong Kong, China, 1–8 June 2008; pp. 1322–1328.

24. Chen, Z.; Zhou, L.; Yu, W. ADASYN-Random Forest Based Intrusion Detection Model. In Proceedings of the 2021 4th International
Conference on Signal Processing and Machine Learning, Beijing, China, 18–20 August 2021; pp. 152–159.

25. Zhou, Y.; Cheng, G.; Jiang, S.; Dai, M. Building an efficient intrusion detection system based on feature selection and ensemble
classifier. Comput. Netw. 2020, 174, 107247. [CrossRef]

26. Kumar Singh Gautam, R.; Doegar, E.A. An Ensemble Approach for Intrusion Detection System Using Machine Learning
Algorithms. In Proceedings of the 2018 8th International Conference on Cloud Computing, Data Science & Engineering
(Confluence), Noida, India, 11–12 January 2018; pp. 14–15. [CrossRef]

27. Acharya, T.; Khatri, I.; Annamalai, A.; Chouikha, M.F. Efficacy of Heterogeneous Ensemble Assisted Machine Learning Model for
Binary and Multi-Class Network Intrusion Detection. In Proceedings of the 2021 IEEE International Conference on Automatic
Control & Intelligent Systems (I2CACIS), Shah Alam, Malaysia, 26 June 2021; pp. 408–413. [CrossRef]

28. Raihan-Al-Masud, M.; Mustafa, H.A. Network Intrusion Detection System Using Voting Ensemble Machine Learning. In
Proceedings of the 2019 IEEE International Conference on Telecommunications and Photonics (ICTP), Dhaka, Bangladesh, 28–30
December 2019; pp. 1–4. [CrossRef]

29. Nzuva, S.M.; Nderu, L.; Mwalili, T. Ensemble Model for Enhancing Classification Accuracy in Intrusion Detection Systems.
In Proceedings of the 2021 International Conference on Electrical, Computer and Energy Technologies (ICECET), Cape Town,
South Africa, 9–10 December 2021; pp. 1–7. [CrossRef]

30. Liang, D.; Liu, Q.; Zhao, B.; Zhu, Z.; Liu, D. A Clustering-SVM Ensemble Method for Intrusion Detection System. In Proceedings
of the 2019 8th International Symposium on Next Generation Electronics (ISNE), Zhengzhou, China, 9–10 October 2019; pp. 1–3.
[CrossRef]

31. Das, S.; Mahfouz, A.M.; Venugopal, D.; Shiva, S. DDoS Intrusion Detection Through Machine Learning Ensemble. In Proceedings
of the 2019 IEEE 19th International Conference on Software Quality, Reliability and Security Companion (QRS-C), Sofia, Bulgaria,
22–26 July 2019; pp. 471–477. [CrossRef]

32. Sommer, R.; Paxson, V. Outside the closed world: On using machine learning for network intrusion detection. In Proceedings of
the 2010 IEEE Symposium on Security and Privacy, Oakland, CA, USA, 16–19 May 2010; pp. 305–316.

33. Verma, P.; Dumka, A.; Singh, R.; Ashok, A.; Gehlot, A.; Malik, P.K.; Gaba, G.S.; Hedabou, M. A Novel Intrusion Detection
Approach Using Machine Learning Ensemble for IoT Environments. Appl. Sci. 2021, 11, 10268. [CrossRef]

34. Elrawy, M.F.; Awad, A.I.; Hamed, H.F. Intrusion detection systems for IoT-based smart environments: A survey. J. Cloud Comput.
2018, 7, 21. [CrossRef]

35. Nie, L.; Wu, Y.; Wang, X.; Guo, L.; Wang, G.; Gao, X.; Li, S. Intrusion Detection for Secure Social Internet of Things Based on
Collaborative Edge Computing: A Generative Adversarial Network-Based Approach. IEEE Trans. Comput. Soc. Syst. 2022,
9, 134–145. [CrossRef]

36. Al-Hadhrami, Y.; Hussain, F.K. DDoS attacks in IoT networks: A comprehensive systematic literature review. World Wide Web
2021, 24, 971–1001. [CrossRef]

37. Rashid, M.M.; Kamruzzaman, J.; Hassan, M.M.; Imam, T.; Gordon, S. Cyberattacks detection in iot-based smart city applications
using machine learning techniques. Int. J. Environ. Res. Public Health 2020, 17, 9347. [CrossRef]

38. Churcher, A.; Ullah, R.; Ahmad, J.; Ur Rehman, S.; Masood, F.; Gogate, M.; Alqahtani, F.; Nour, B.; Buchanan, W.J. An experimental
analysis of attack classification using machine learning in IoT networks. Sensors 2021, 21, 446. [CrossRef]

39. Gaikwad, D.; Thool, R.C. Intrusion detection system using bagging ensemble method of machine learning. In Proceedings of
the 2015 International Conference on Computing Communication Control and Automation, Pune, India, 26–27 February 2015;
pp. 291–295.

40. Park, W.; Ahn, S. Performance comparison and detection analysis in snort and suricata environment. Wirel. Pers. Commun. 2017,
94, 241–252. [CrossRef]

41. Roesch, M. Snort: Lightweight intrusion detection for networks. In Proceedings of the Lisa, Seattle, WA, USA, 7–12 November
1999; Volume 99, pp. 229–238.

42. Murphy, B.R. Comparing the Performance of Intrusion Detection Systems: Snort and Suricata. Ph.D. Thesis, Colorado Technical
University, Colorado Springs, CO, USA, 2019.

43. Albin, E.; Rowe, N.C. A realistic experimental comparison of the Suricata and Snort intrusion-detection systems. In Proceedings
of the 2012 26th International Conference on Advanced Information Networking and Applications Workshops, Fukuoka, Japan,
26–29 March 2012; pp. 122–127.

44. Martínez Torres, J.; Iglesias Comesaña, C.; García-Nieto, P.J. Machine learning techniques applied to cybersecurity. Int. J. Mach.
Learn. Cybern. 2019, 10, 2823–2836. [CrossRef]

http://dx.doi.org/10.1145/234313.234346
http://dx.doi.org/10.1186/s40537-020-00382-x
http://dx.doi.org/10.1613/jair.1.11192
http://dx.doi.org/10.1016/j.comnet.2020.107247
http://dx.doi.org/10.1109/CONFLUENCE.2018.8442693
http://dx.doi.org/10.1109/I2CACIS52118.2021.9495864
http://dx.doi.org/10.1109/ICTP48844.2019.9041736
http://dx.doi.org/10.1109/ICECET52533.2021.9698798
http://dx.doi.org/10.1109/ISNE.2019.8896514
http://dx.doi.org/10.1109/QRS-C.2019.00090
http://dx.doi.org/10.3390/app112110268
http://dx.doi.org/10.1186/s13677-018-0123-6
http://dx.doi.org/10.1109/TCSS.2021.3063538
http://dx.doi.org/10.1007/s11280-020-00855-2
http://dx.doi.org/10.3390/ijerph17249347
http://dx.doi.org/10.3390/s21020446
http://dx.doi.org/10.1007/s11277-016-3209-9
http://dx.doi.org/10.1007/s13042-018-00906-1

Sensors 2022, 22, 7409 25 of 26

45. Rosa, R.L.; De Silva, M.J.; Silva, D.H.; Ayub, M.S.; Carrillo, D.; Nardelli, P.H.J.; Rodríguez, D.Z. Event Detection System Based
on User Behavior Changes in Online Social Networks: Case of the COVID-19 Pandemic. IEEE Access 2020, 8, 158806–158825.
[CrossRef]

46. Verma, A.; Ranga, V. Machine learning based intrusion detection systems for IoT applications. Wirel. Pers. Commun. 2020,
111, 2287–2310. [CrossRef]

47. Carvalho Barbosa, R.; Shoaib Ayub, M.; Lopes Rosa, R.; Zegarra Rodríguez, D.; Wuttisittikulkij, L. Lightweight PVIDNet: A
priority vehicles detection network model based on deep learning for intelligent traffic lights. Sensors 2020, 20, 6218. [CrossRef]

48. da Costa, K.A.; Papa, J.P.; Lisboa, C.O.; Munoz, R.; de Albuquerque, V.H.C. Internet of Things: A survey on machine learning-
based intrusion detection approaches. Comput. Netw. 2019, 151, 147–157. [CrossRef]

49. Dietterich, T.G. Ensemble methods in machine learning. In International Workshop on Multiple Classifier Systems; Springer:
Berlin/Heidelberg, Germany, 2000; pp. 1–15.

50. Sagi, O.; Rokach, L. Ensemble learning: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1249. [CrossRef]
51. Bamhdi, A.M.; Abrar, I.; Masoodi, F. An ensemble based approach for effective intrusion detection using majority voting.

Telkomnika Telecommun. Comput. Electron. Control 2021, 19, 664–671. [CrossRef]
52. Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [CrossRef]
53. Quinlan, R. C4-5 Programs for Machine Learning; Elsevier: Amsterdam, The Netherlands, 2014; Volume 1.
54. Breiman, L. Bagging predictors. Mach. Learn. 1996, 24, 123–140. [CrossRef]
55. Yulianto, A.; Sukarno, P.; Suwastika, N.A. Improving adaboost-based intrusion detection system (IDS) performance on CIC IDS

2017 dataset. J. Phys. Conf. Ser. 2019, 1192, 012018. [CrossRef]
56. Bhati, B.S.; Rai, C.S. Ensemble Based Approach for Intrusion Detection Using Extra Tree Classifier. In Intelligent Computing in

Engineering; Solanki, V.K., Hoang, M.K., Lu, Z.J., Pattnaik, P.K., Eds.; Springer: Singapore, 2020; pp. 213–220.
57. Farnaaz, N.; Jabbar, M. Random forest modeling for network intrusion detection system. Procedia Comput. Sci. 2016, 89, 213–217.

[CrossRef]
58. Waskle, S.; Parashar, L.; Singh, U. Intrusion detection system using PCA with random forest approach. In Proceedings of the

2020 International Conference on Electronics and Sustainable Communication Systems (ICESC), Coimbatore, India, 2–4 July 2020;
pp. 803–808.

59. Primartha, R.; Tama, B.A. Anomaly detection using random forest: A performance revisited. In Proceedings of the 2017
International Conference on Data and Software Engineering (ICoDSE), Palembang, Indonesia, 1–2 November 2017; pp. 1–6.

60. Chen, T.H.; Tong, B.; Michael, K.; Vadim, T.; Yuan, C.; Hyunsu, C.; Kailong, O. Xgboost: extreme gradient boosting. R Package
Version 0.4-2 2015, 1, 1–4.

61. Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [CrossRef]
62. Dhaliwal, S.S.; Nahid, A.A.; Abbas, R. Effective intrusion detection system using XGBoost. Information 2018, 9, 149. [CrossRef]
63. Liu, J.; Gao, Y.; Hu, F. A fast network intrusion detection system using adaptive synthetic oversampling and LightGBM. Comput.

Secur. 2021, 106, 102289. [CrossRef]
64. Yao, R.; Wang, N.; Liu, Z.; Chen, P.; Ma, D.; Sheng, X. Intrusion detection system in the Smart Distribution Network: A feature

engineering based AE-LightGBM approach. Energy Rep. 2021, 7, 353–361. [CrossRef]
65. Han, H.; Wang, W.Y.; Mao, B.H. Borderline-SMOTE: A New Over-Sampling Method in Imbalanced Data Sets Learning. In

Advances in Intelligent Computing; Huang, D.S., Zhang, X.P., Huang, G.B., Eds.; Springer: Berlin/Heidelberg, Germany, 2005;
pp. 878–887.

66. The Imbalanced Learn, D. SMOTE — Version 0.9.1. Available online: https://imbalanced-learn.org/stable/references/generated/
imblearn.over_sampling.SMOTE.html. (accessed on 21 July 2022).

67. Gomes, H.M.; Barddal, J.P.; Enembreck, F.; Bifet, A. A survey on ensemble learning for data stream classification. ACM Comput.
Surv. (CSUR) 2017, 50, 1–36. [CrossRef]

68. Al-Garadi, M. A.; Mohamed, A.; Al-Ali, A. K.; Du, X.; Ali, I.; Guizani, M. A survey of machine and deep learning methods for
internet of things (IoT) security. IEEE Commun. Surveys Tutorials 2020, 22, 3, 1646–1685. [CrossRef]

69. Brownlee, J. Ensemble Machine Learning Algorithms in Python with Scikit-Learn. Available online: https://machinelearningmastery.
com/ensemble-machine-learning-algorithms-python-scikit-learn/ (accessed on 21 July 2022).

70. James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013;
Volume 112.

71. Wolpert, D.H. Stacked generalization. Neural Netw. 1992, 5, 241–259. [CrossRef]
72. Ozay, M.; Vural, F.T.Y. A new fuzzy stacked generalization technique and analysis of its performance. arXiv 2012, arXiv:1204.0171.
73. Giacinto, G.; Perdisci, R.; Del Rio, M.; Roli, F. Intrusion detection in computer networks by a modular ensemble of one-class

classifiers. Inf. Fusion 2008, 9, 69–82. [CrossRef]
74. Dutta, V.; Choraś, M.; Pawlicki, M.; Kozik, R. A deep learning ensemble for network anomaly and cyber-attack detection. Sensors

2020, 20, 4583. [CrossRef]
75. Kim, J.; Shim, M.; Hong, S.; Shin, Y.; Choi, E. Intelligent detection of iot botnets using machine learning and deep learning. Appl.

Sci. 2020, 10, 7009. [CrossRef]
76. Sharafaldin, I.; Lashkari, A.H.; Ghorbani, A.A. Toward generating a new intrusion detection dataset and intrusion traffic

characterization. ICISSp 2018, 1, 108–116.

http://dx.doi.org/10.1109/ACCESS.2020.3020391
http://dx.doi.org/10.1007/s11277-019-06986-8
http://dx.doi.org/10.3390/s20216218
http://dx.doi.org/10.1016/j.comnet.2019.01.023
http://dx.doi.org/10.1002/widm.1249
http://dx.doi.org/10.12928/telkomnika.v19i2.18325
http://dx.doi.org/10.1007/BF00116251
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1088/1742-6596/1192/1/012018
http://dx.doi.org/10.1016/j.procs.2016.06.047
http://dx.doi.org/10.1214/aos/1013203451
http://dx.doi.org/10.3390/info9070149
http://dx.doi.org/10.1016/j.cose.2021.102289
http://dx.doi.org/10.1016/j.egyr.2021.10.024
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
https://imbalanced-learn.org/stable/references/generated/imblearn.over_sampling.SMOTE.html
http://dx.doi.org/10.1145/3054925
http://dx.doi.org/10.1109/COMST.2020.2988293
https://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
https://machinelearningmastery.com/ensemble-machine-learning-algorithms-python-scikit-learn/
http://dx.doi.org/10.1016/S0893-6080(05)80023-1
http://dx.doi.org/10.1016/j.inffus.2006.10.002
http://dx.doi.org/10.3390/s20164583
http://dx.doi.org/10.3390/app10197009

Sensors 2022, 22, 7409 26 of 26

77. Yang, L.; Moubayed, A.; Hamieh, I.; Shami, A. Tree-Based Intelligent Intrusion Detection System in Internet of Vehicles. In
Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 9-13 December 2019;
pp. 1–6. [CrossRef]

78. Yang, L.; Moubayed, A.; Shami, A. MTH-IDS: A Multi-Tiered Hybrid Intrusion Detection System for Internet of Vehicles. IEEE
Internet Things J. 2021, 9, 616–632. [CrossRef]

79. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

80. Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [CrossRef]
81. Giannakas, F.; Troussas, C.; Krouska, A.; Sgouropoulou, C.; Voyiatzis, I., XGBoost and Deep Neural Network Comparison: The

Case of Teams’ Performance. In Proceedings of the 17th International Conference, ITS 2021, Virtual, 7–11 June 2021; pp. 343–349.
[CrossRef]

http://dx.doi.org/10.1109/GLOBECOM38437.2019.9013892
http://dx.doi.org/10.1109/JIOT.2021.3084796
http://dx.doi.org/10.1016/j.patrec.2005.10.010
http://dx.doi.org/10.1007/978-3-030-80421-3_37

	Introduction
	Background and Related Work
	Machine Learning Models
	SMOTE and ADASYN for Imbalanced Dataset
	Ensemble Machine Learning

	Materials and Methods
	Data Collection
	Data Preprocessing
	Hyperparameter Optimization and Ensemble Feature Selection
	Model Selection and Training
	Evaluation Metrics

	Results and Discussion
	Conclusions
	References

