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The renormalization of quantum field theories usually assumes Lorentz and gauge symmetries, besides
the general restrictions imposed by unitarity and causality. However, the set of renormalizable theories
can be enlarged by relaxing some of these assumptions. In this work, we consider the particular case of a
CPT-preserving but Lorentz-breaking extension of scalar QED. For this theory, we calculate the one-loop
radiative corrections to the three- and four-point scalar-vector vertex functions, at the lowest order in the
Lorentz-violation parameters, and we explicitly verify that the resulting low-energy effective action is
compatible with the usual gauge invariance requirements. With these results, we complete the one-loop
renormalization of the model at the leading order in the Lorentz-violating parameters.
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I. INTRODUCTION

Studies of Lorentz symmetry breaking represent an
important line of research within the quantum field theory.
The modern starting point of this line has been given by the
foundational papers, Refs. [1,2], in which the Lorentz-
violating (LV) standard model extension (SME) was
formulated. In Ref. [2], the complete action of the minimal
SME, which is an effective field theory that includes gauge,
spinor, and scalar sectors, is written down, and some of the
first examples of perturbative calculations are presented.
The SME Lagrange density includes vector- and tensor-
valued objects constructed out of existing quantum fields,
which are contracted with background objects that re-
present favored spacetime direction structures. However,
since the development of the theory, radiative corrections to

the tree-level SME have been considered mostly in the
context of spinorial quantum electrodynamics (QED) and
its non-Abelian generalizations. (The results for lower-
order radiative corrections in the minimal spinorial LV
QED can be found in Ref. [3]; for a general review on
radiative corrections in spinorial LV QED, see also Ref. [4]
and references therein.)
There have been relatively few papers treating perturba-

tive aspects of Lorentz violation in scalar field theories,
including LV scalar QED. Among the key papers in the
development of the scalar sector of the SME, we point
especially to Ref. [5], which examines the modifications to
the LVAbelian Higgs model; Ref. [6], in which the Higgs
mechanism in LV scalar QED is further studied, with the
additional inclusion of a CPT-violating Carroll-Field-
Jackiw (CFJ) term and an analysis of the one-loop cor-
ections; Ref. [7], which looks at tree-level corrections to
fermion scattering in LV Yukawa theory; Ref. [8], in which
one-loop corrections in a scalar field theory with additional
higher-derivative Myers-Pospelov-like LV terms are evalu-
ated; Ref. [9], in which perturbative calculations in a
simplified extension of the scalar QED sector of the SME
are performed; and Ref. [10], in which one-loop effective
potentials for various LV scalar field theories are calculated.
The study of field theories with broken Lorentz sym-

metry is not merely a subject of abstract theoretical interest.
The real possibility that there could be tiny deviations from
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perfect Lorentz invariance has been examined experimen-
tally, in a wide variety of physical systems and using a
remarkable array of different experimental techniques [11].
Active areas of experimental interest include measurements
with gravitational waves [12–14], cosmic rays [15,16],
neutrinos, and gamma-ray burst photons [17]. In the
context of multimessenger astronomy, for example, we
may have exciting new possibilities for testing and dis-
criminating different models with Lorentz violation in the
near future [18]. Because of the interest in these experi-
mental tests, having a complete and accurate understanding
of the relevant sectors of the SME is quite important, and a
key part of understanding the theory is understanding the
consequences of quantum corrections. Calculations of
radiative corrections can play important roles in setting
strong, reliable limits on LV background tensors or in
interpreting evidence of physical Lorentz violation if it is
ever uncovered.
In this paper, wewill be looking at the scalar QED sector of

the SME, including LV modifications not only in the scalar
sector as has been done in Ref. [9] but also in the gauge sector
aswell. In both sectors, theLV terms areCPT even, having the
standard SME forms cμνðDμϕÞ�Dνϕ and 1

4
κμνρσFμνFρσ [2].

It is interesting to note that, if the constant tensors cμν and
κμνρσ are characterized by only a single constant background
vector uμ, we recover an aetherlike theory [19]. This will be a
continuation of the previous work [20], in which the one-loop
corrections to the gauge and scalar two-point functions were
explicitly evaluated. However, here, one of ourmain aimswill
be to check the gauge invariance of the quantum corrections in
the scalar sector.
The structure of the paper is as follows. In Sec. II, we

formulate the CPT-even LV scalar QED and write down
the free propagators. In Sec. III, we calculate the one-loop
corrections to the three-point correlation functions, and in
Sec. IV, we give the four-point functions. In Sec. V, the final
results are collected, and in Sec. VI, we look at renorm-
alization group (RG) issues and explicitly evaluate the β-
functions for the LV parameters. Finally, our results are
summarized in Sec. VII.

II. MODEL

Our departure point will be the LV but CPT-even scalar
QED Lagrange density (cf. Ref. [20]),

L ¼ ðημν þ cμνÞðDμϕÞ�ðDνϕÞ −m2ϕ�ϕ −
1

4
FμνFμν

þ 1

4
κμνρσFμνFρσ; ð1Þ

where Dμϕ ¼ ∂μϕþ ieϕAμ is the covariant derivative, the
metric signature is ημν ¼ ð1;−1;−1;−1Þ, m2 > 0 is a
mass-squared parameter, and ϕ is the charged scalar field.
Here, in contrast to Ref. [9], Lorentz symmetry breaking

terms appear in both the scalar and gauge sectors—via the
constant tensors cμν and κμνρσ. As usual, we take both
tensors to be traceless (for κμνρσ, by this we mean
κμνμν ¼ 0), cμν to be symmetric, and κμνρσ to display the
same symmetry as the Riemann curvature tensor. Since cμν

and κμνρσ will generally mix under radiative corrections, we
expect that if one of them is present, they generally both
must appear if the theory is to be strictly renormalizable.
Note that we would also need a term ðϕ�ϕÞ2 in the
Lagrange density (1) to guarantee the full renormalizability
of the model. However, we are omitting this term here
because quantum corrections to it will not be affected by
the Lorentz violation; this is a consequence of the trace-
lessness of the LV tensors.
The propagators of the theory, in momentum space, have

the forms

GðkÞ ¼ hϕðkÞϕ�ð−kÞi ¼ i
k2 −m2 þ iϵ

−
icμνkμkν

ðk2 −m2 þ iϵÞ2
ð2Þ

ΔμνðkÞ ¼hAμðkÞAνð−kÞi ¼ −
iημν

k2 þ iϵ
þ 2iκμρνσkρkσ

ðk2 þ iϵÞ2 : ð3Þ

For convenience, we have employed the Feynman gauge—
adding the usual Lorentz-invariant gauge-fixing term
− 1

2
ð∂μAμÞ2 to (1). We then expanded the gauge propagator

up to the first order in the LV parameters cμν and κμρνσ. As in
Ref. [20] and as is commonplace in the literature,we are only
taking into account the leading-order contributions from the
LV background tensors. This is justified by the physical
observation that Lorentz violation, if it exists, is known to be
a small effect, so it makes sense to treat it as a perturbation on
top of the well-understood Lorentz-invariant theory.
Both of the CPT-even terms with cμν and κμρνσ were

introduced originally in Ref. [2]. Because the coefficients
cμν and κμρνσ are dimensionless, it is expected based on
power counting that the modified, LV scalar QED theory
will continue to be renormalilzable. The tensor cμν of the
present paper should not be confused with the one normally
introduced in the fermionic sector of SME (although the
two affect the dispersion relations for the scalar and
fermion fields in homologous ways). What we are calling
cμν was the kμνϕϕ tensor of Ref. [2], which can, most
generally, possess a symmetric real part and an antisym-
metric imaginary part. However, since we are considering
here only a real cμν, it must necessarily be symmetric.
Along with the modified propagators coming from the

bilinear part of the Lagrange density (1), there are inter-
actions, which are also modified by the presence of the cμν

term. The vertices arise out of the presence of the covariant
derivative Dμϕ (which involves Aμ) in the action. It is a
consequence of gauge invariance that same quantity cμν

must appear in both the free scalar propagator and the
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three- and four-field gauge-scalar vertices. In the next two
sections, we will be evaluating quantum correction involv-
ing the tree-level vertices

V3 ¼ iðημν þ cμνÞAμðϕ∂νϕ� − ϕ�
∂νϕÞ ð4Þ

and

V4 ¼ ðημν þ cμνÞAμAνϕϕ
�: ð5Þ

(We shall generally drop the coupling constant e, although
it will be restored at the end of our analysis.) In order to
evaluate all the relevant Green’s functions, we shall use an
adapted version of a set ofMathematica packages [21–23].

III. RESULTS FOR THE THREE-POINT
FUNCTION

Now, we turn to the Feynman diagrams contributing to
the three-point vertex function hAϕϕ�i, which gives the
quantum corrections to the vertex (4). All internal propa-
gators now are “dressed,” so that they depending on the LV
parameters, given by (2) and (3). We obtain the Feynman
rules for the vertices as usual from (4) and (5). The
corresponding graphs are depicted in Fig. 1.
The contributions from the diagrams numbered 1–7

have the respective forms given by Eqs. (6)–(12) (with
p3 ¼ −p1 − p2 from the conservation of the total incoming
external momentum)

I1 ¼ iϕðp1Þϕ�ðp2ÞAμðp3Þcνρ
Z

d4k
ð2π4ÞGðkÞGðkþ p3ÞΔνσðk − p1Þð2kþ p3Þμðkþ p1Þρðkþ p3 − p2Þσ ð6Þ

I2 ¼ iϕðp1Þϕ�ðp2ÞAμðp3Þcνρ
Z

d4k
ð2π4ÞGðkÞGðkþ p3ÞΔσνðk − p1Þð2kþ p3Þμðkþ p1Þσðkþ p3 − p2Þρ ð7Þ

I3 ¼ iϕðp1Þϕ�ðp2ÞAμðp3Þcμν
Z

d4k
ð2π4ÞGðkÞGðkþ p3ÞΔρσðk − p1Þð2kþ p3Þνðkþ p1Þρðkþ p3 − p2Þσ ð8Þ

I4 ¼ iϕðp1Þϕ�ðp2ÞAμðp3Þ
Z

d4k
ð2π4ÞGðkÞGðkþ p3ÞΔρσðk − p1Þð2kþ p3Þμðkþ p1Þρðkþ p3 − p2Þσ; ð9Þ

for the four diagrams with only three-field vertices internally and, for the last three diagrams (each of which includes a four-
field vertex),

FIG. 1. Contributions to three-point gauge-scalar vertex. The wavy and solid lines represent the photon and scalar propagators,
respectively, and the crosses indicate insertions of LV cμν parameters at the vertices. The usual Lorentz-invariant contributions come
from portions of diagrams 4 and 7.
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I5 ¼ 2i½ϕðp1Þϕ�ðp2Þ − ϕ�ðp1Þϕðp2Þ�Aμðp3Þcμν
Z

d4k
ð2π4ÞΔνρðkþ p2Þðk − p2ÞρGðkÞ ð10Þ

I6 ¼ 2i½ϕðp1Þϕ�ðp2Þ − ϕ�ðp1Þϕðp2Þ�Aμðp3Þcνρ
Z

d4k
ð2π4ÞΔμνðkþ p2Þðk − p2ÞρGðkÞ ð11Þ

I7 ¼ 2i½ϕðp1Þϕ�ðp2Þ − ϕ�ðp1Þϕðp2Þ�Aμðp3Þ
Z

d4k
ð2π4ÞΔμνðkþ p2Þðk − p2ÞνGðkÞ: ð12Þ

The only diagrams that do not involve LV tensors
at the vertices are I4 and I7. So, the Lorentz-violating
contributions for these diagrams arise solely from the
Lorentz-violating dressing of the propagators (2) and (3).
In contrast, in the diagrams I1–I3 and I5–I6, we need
only to keep Lorentz-invariant parts of the propagators,
since the vertices ensure that the diagrams already depend
on cμν.
In order to calculate the vertex contributions I1 through

I7, we may use the Implicit Regularization (IR) framework
to isolate the divergent parts of amplitudes. (See Refs. [24–
26] for general reviews of the method.) Here, we are
interested only in the divergences of the radiative correc-
tions, and thus we shall express the results in terms of the
single logarithmically divergent integral

Ilogðm2Þ ¼
Z

Λ d4k
ð2πÞ4

1

ðk2 −m2Þ2 : ð13Þ

TheΛ annotation indicates that the integral is regularized in
some manner compatible with the gauge symmetry. More
precisely, this assumption is equivalent to adopting αi ¼ 0
(i ¼ 1, 2) in the general relations

Z
Λ d4k
ð2πÞ4

kμkν
ðk2 −m2Þ3 ¼

ημν
4

½Ilogðm2Þ þ α1� ð14Þ

Z
Λ d4k
ð2πÞ4

kμkνkρkσ
ðk2 −m2Þ4 ¼

ημνηρσ þ ημρηνσ þ ημσηνρ
24

× ½Ilogðm2Þ þ α2�: ð15Þ

The IR method may also be applied to the naive quadratic
divergences in scalar QED theories, replacing those for-
mally divergent integrals with alternative expressions, in
such a way that complete cancellation of all potential
quadratic divergences is assured and transversality of the
gauge theory is maintained. This entails setting the analo-
gous α coefficients in the corresponding formal expressions
for the integrals with power-counting quadratic divergences
to be equal to zero.
Evaluating the integrals (6)–(12) is fairly tedious. After a

lengthy calculation, we find that

I1¼ I2¼
�
−
2i
3
cμνðp1−p2Þν

�
Ilogðm2Þϕðp1Þϕ�ðp2ÞAμðp3Þ

ð16Þ

I3 ¼ ½−icμνðp1 − p2Þν�Ilogðm2Þϕðp1Þϕ�ðp2ÞAμðp3Þ ð17Þ

I4 ¼
�
2i
3
cμνðp1 − p2Þν

�
Ilogðm2Þϕðp1Þϕ�ðp2ÞAμðp3Þ ð18Þ

I5 ¼ I6 ¼ ½3icμνðp1 − p2Þν�Ilogðm2Þϕðp1Þϕ�ðp2ÞAμðp3Þ
ð19Þ

I7 ¼
�
−i
�
1

3
cμν þ κμρνρ

�
ðp1 − p2Þν

�

× Ilogðm2Þϕðp1Þϕ�ðp2ÞAμðp3Þ: ð20Þ

Each of these expressions has the structure of the momen-
tum transfer at the vertex p1 − p2, contracted with a
two-index symmetric tensor constructed out of the
Lorentz-violating backgrounds. The terms in which the
tensors that appear are simply multiples of cμν will
contribute to the self-renormalization of the cμν tensor.
However, the presence of κμρνρ in (20) demonstrates
explicitly that there is renormalization mixing between
the background tensors from the gauge and scalar sector.
On the other hand, it is interesting to note that the formula
for I4 does not depend on κμνρσ, since this background
tensor is antisymmetric under the exchanges of the first two
and of the last two indices.
In parallel with the Mathematica calculations, we also

verified these expressions by hand. The manual calcula-
tions set the explicit integral expression for each diagram
and used dimensional regularization (DR) to evaluate them.
These results (16)–(20) will be employed as part of the

determination of the full gauge-scalar contribution to the
one-loop effective action in Sec. V. Note that the RG
β-function for the charge Lorentz-violating vertex coeffi-
cient may be determined solely from the leading quantum
correction to the three-field vertex amplitude, in conjunc-
tion with the one-loop gauge and scalar self-energies.
However, in order to confirm that the renormalization-
improved theory remains gauge invariant, we also need to

B. ALTSCHUL et al. PHYS. REV. D 107, 045005 (2023)

045005-4



calculate the lowest-order radiative corrections to the four-
field vertex.

IV. RESULTS FOR THE FOUR-POINT FUNCTION

So, the next step in our analysis will be calculating the
radiative contributions to the four-point function hAAϕϕ�i,
which corrects the vertex (5). Note that the tree-level
version of the vertex does not contain any derivatives.
In this case, the Feynman diagrams are those shown in

Fig. 2. The analytical expressions for the potentially
divergent parts of diagrams A–D are

IA ¼ −2ϕðp1Þϕ�ðp2ÞAμðp3ÞAνðp4Þðημρ þ cμρÞðηνσ þ cνσÞ

×
Z

d4k
ð2πÞ4Δ

ρσðkÞGðkÞ ð21Þ

IB ¼ 2ϕðp1Þϕ�ðp2ÞAμðp3ÞAνðp4Þ
× ðημρ þ cμρÞðηνσ þ cνσÞðηκλ þ cκλÞðητφ þ cτφÞ

×
Z

d4k
ð2πÞ4 ½GðkÞ�

3ΔκτðkÞkρkσkλkφ ð22Þ

IC ¼ −2ϕðp1Þϕ�ðp2ÞAμðp3ÞAνðp4Þ
× ðημν þ cμνÞðηρσ þ cρσÞðηκλ þ cκλÞ

×
Z

d4k
ð2πÞ4 ½GðkÞ�

2ΔρκðkÞkσkλ ð23Þ

ID ¼ 2ϕðp1Þϕ�ðp2ÞAμðp3ÞAνðp4Þ
× ðημρ þ cμρÞðηνσ þ cνσÞðηκλ þ cκλÞ

×
Z

d4k
ð2πÞ4 ½GðkÞ�

2ΔλσðkÞkρkκ: ð24Þ

Note that in obtaining these expressions, we have neglected
all external momenta. They may be freely set to zero in the
determination of the infinite renormalization of (5); this is
related to the fact that the vertex V4 is momentum
independent. The naive degree of divergence of the dia-
grams shown in Fig. 2 is zero, so any appearance of a factor
of an external leg momentum in the numerator of one of the
integrals involved would render the integral involved finite
—and thus negligible, since we are only considering the
effects of the formally divergent radiative corrections.

These contributions must be expanded up to first orders
in SME parameters. That is, we must again use the
propagators expanded up to the first order in cμν and
κμνρσ . Proceeding in the same fashion as for the three-point
functions, we have found the following results for the four-
point vertex corrections:

IA ¼ ð4cμν þ κμρνρÞIlogðm2Þ ð25Þ

IB ¼ −
5

6
cμνIlogðm2Þ ð26Þ

IC ¼ 2cμνIlogðm2Þ ð27Þ

ID ¼ −
7

6
cμνIlogðm2Þ: ð28Þ

(Note that the contributions from diagrams B–D actually
sum to zero, leaving IA as the sole contributor to the
renormalization of the four-field vertex. However, while
this observation seems potentially suggestive, it is actually
specific to the Feynman gauge and does not hold more
generally.) With these expressions, we have all we need to
verify the gauge invariance of the model at the one-
loop level.

V. FINAL RESULTS FOR THE LOW-ENERGY
EFFECTIVE ACTION

In this section, we shall put together the results for the
theory’s two-point (hϕϕ�i), three-point (hAϕϕ�i), and four-
point (hAAϕϕ�i) correlation functions. This will enable us
to perform an explicit verification of the gauge invariance
of the renormalized effective action, at first order in the
loop expansion and likewise first order in the Lorentz-
violating parameters cμν and κμνρσ. The expression for the
two-point function was previously derived in Ref. [20],
whereas the results for the three- and four-point functions
have been calculated in the two preceding sections; the
ultimate contributions from the diagrams in Figs. 1 and 2
are given by (16)–(20) and (25)–(28).
In order to maintain gauge invariance (and thus renor-

malizability and unitarity) at the perturbative order that we
are interested in, the infinite parts of hϕϕ�i, hAϕϕ�i, and
hAAϕϕ�i need to satisfy certain relations. The radiatively
generated contributions to the effective action must, when
taken together, have the same structure as the covariant

FIG. 2. Contributions to four-point gauge-scalar functions.

THREE- AND FOUR-POINT FUNCTIONS IN CPT-EVEN … PHYS. REV. D 107, 045005 (2023)

045005-5



derivative term in the original action. The net contributions
must assemble to form an expression of the form
kμνðDμϕÞ�ðDνϕÞ, with some (logarithmically divergent)
constant tensor kμν. In momentum space, this kind of term
takes the form

kμν½−p1μp2ν − iðp1 − p2ÞμAνðp3Þ
þ Aμðp3ÞAνðp4Þ�ϕðp1Þϕ�ðp2Þ: ð29Þ

In fact, the sum of all diagrams in Figs. 1 and 2, as well as
the scalar self-energy diagrams [20], takes precisely this
form. The divergent part Γdiv of the resulting sum looks like

Γdiv¼ð4cμνþκμρνρÞIlogðm2Þ½−p1μp2ν− iðp1−p2ÞνAμðp3Þ
þAμðp3ÞAνðp4Þ�ϕðp1Þϕ�ðp2Þ; ð30Þ

which clearly matches (29).

VI. RENORMALIZATION GROUP FUNCTIONS

So far, we have derived the divergent part of the effective
action for the model (1). In this section, we shall compute
the RG functions associated with the theory, in particular
the β-functions that describe the dependences of the SME
terms on the interaction scale. For clarity, we shall take the
cμν and κμνρσ tensors to have particularly simple forms, so
that the RG scaling for each of them may be reduced to the
behavior of a single scalar quantity. However, it would be a
completely straightforward generalization to separate out
the individual β-functions for the individual Lorentz
components of the tensors.
The specific form we shall assume for the matter-sector

SME coefficients is

cμν ¼ Qcuμuν; ð31Þ

where uμ is a fixed unit(like) dimensionless four-vector. A
theory in which all the LV backgrounds depend on just a
single such four-vector are (especially when the vector in
question is purely timelike) often referred to as “aetherlike”
LV theories. In the context of spontaneous breaking of
Lorentz symmetry, models with just a single preferred four-
vector background are “bumblebee” models [27]. The
bumblebee framework involves a single dynamical four-
vector field acquiring a vacuum expectation value, which
sets the spacetime direction of uμ. In principle, the field
could be timelike, spacelike, or lightlike (depending, for
example, on the structure of the potential responsible for
spontaneous Lorentz symmetry breaking). However, the
expression (31) is subtly defective if u2 ≠ 0, since in that

case the trace cμμ is nonzero, contrary to standard con-
ventions. It would be quite straightforward to rectify this
problem by subtracting an additional diagonal tensor from
(31). However, in the interest of maintaining maximal
simplicity in our calculations, we shall instead assume
that uμ is simply lightlike—u2 ¼ 0 implying that cμν is
traceless.
The Lorentz violation coefficient κμνρσ in the pure

electromagnetic sector will also be taken to depend on
just the lightlike uμ and an overall normalization constant.
The specific form is

κμνρσ ¼Qκðuμuρηνσ−uμuσηνρþuνuσημρ−uνuρημσÞ: ð32Þ

Like Qc, Qκ is dimensionless. When we need to denote the
bare versions of quantities, we shall include an additional
subscript 0, so that Qκ0 and Qc0 stand for the bare
parameters which appear in bare version of the Lagrange
density (1).
Although it is possible to calculate the RG functions

using the IR formalism directly [28], in this section, we will
express our results in the more commonly used language of
DR. It is actually simple to carry expressions over from IR
to DR. In IR, the RG scale μ is introduced via the identity

Ilogðm2Þ − Ilogðμ2Þ ¼
i

16π2
ln

�
μ2

m2

�
: ð33Þ

To obtain the same results as in conventional DR, we may
just set all the αi parameters to zero in (14) and (15), use the
identity (33) to write the Green’s functions as a function of
μ, and substitute for the Ilogðμ2Þ defined in (13) the DR
formula

μD−4
Z

dDk
ð2πÞD

1

ðk2 − μ2Þ2 ¼
i

16π2

�
1

ϵ
þ ln4π − γ

�
þOðϵÞ:

ð34Þ

Here, we defined as usual ϵ ¼ D−4
2
, where D is the

analytically continued dimension of spacetime. In what
follows, we will be interested only in the singular term
containing 1=ϵ in (34).
We define the renormalized fields ϕ0 ¼ Z1=2

2 ϕ and Aμ
0 ¼

Z1=2
3 Aμ and rewrite the Lagrangian (1)—taken to depend on

the bare fields—in terms of the renormalized fields (and at
this stage, we also restore the previously omitted coupling
constant e, which is equivalent to taking the bare charge to
be e0 ¼ 1)
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L ¼ Z2ð∂μϕ�Þð∂μϕÞ −m2Zmϕ
�ϕ −

1

4
Z3FμνFμν þ ieZ1Aμðϕ�

∂μϕ − ϕ∂μϕ
�Þ

þ e2Z4AμAμϕ
�ϕþ uμuν½QcZ5ð∂μϕ�Þð∂νϕÞ þQκZ6FμαFν

α�
þ uμuν½ieQcZ7Aνðϕ�

∂μϕ − ϕ∂μϕ
�Þ þ e2QcZ8ϕ

�ϕAμAν� þ LGF: ð35Þ

Here, LGF is the gauge-fixing term, and the relations
among the renormalization constants are

m2Zm ¼ μ−2ϵm2
0Z2 ð36Þ

eZ1 ¼ μ−2ϵZ2Z
1=2
3 ð37Þ

e2Z4 ¼ μ−2ϵZ2Z3 ð38Þ

QcZ5 ¼ μ−2ϵQc0Z2 ð39Þ

QκZ6 ¼ μ−2ϵQκ0Z3 ð40Þ

eQcZ7 ¼ μ−2ϵQc0Z2Z
1=2
3 ð41Þ

e2QcZ8 ¼ μ−2ϵQc0Z2Z3: ð42Þ

The definitions of the renormalization constants account for
the fact that the bare Lagrangian effectively had e0 ¼ 1.
Each of the renormalization constants Zi may be expanded
as a power series in the coupling constants and determined
sequentially, order by order in the perturbative expansion—
that is,

Zi ¼ 1þ Zð1Þ
i þ Zð2Þ

i þ � � � : ð43Þ

We now need to evaluate the counterterms corresponding
to the ultraviolet-divergent parts of the one-loop corrections
to the scalar and photon self-energies (for Feynman
diagrams calculated in Ref. [20]) and the vertex functions
(given by Figs. 1 and 2 of this paper) in the scalar QED

model. We start with the one-loop scalar self-energy. The
insertion of the LV parameters at the first order is
considered in Ref. [20]. The resulting expression is

Σ1ðpÞ ¼
λm2 − e2ðm2 þ 2p2Þ

16π2ϵ

−
e2ð4Qc þQκÞðu · pÞ2

16π2ϵ

þ Zð1Þ
2 p2 −m2Zð1Þ

m þQcZ
ð1Þ
5 ðu · pÞ2; ð44Þ

from which it is possible to read off what the leading
contributions to the renormalization constants must be,

Zð1Þ
2 ¼ e2

8π2ϵ
ð45Þ

Zð1Þ
m ¼ ðλ − e2Þ

16π2ϵ
ð46Þ

Zð1Þ
5 ¼ e2ð4Qc þQκÞ

16π2Qcϵ
: ð47Þ

Note that in (44) and (45), we have tacitly added back in the
usual contribution from the four-scalar coupling λ. Due to
the tracelessness of cμν and κμνρσ, the renormalizations of
the usual field strength (Z2) and mass (Zm) terms are not
affected by the Lorentz violation.
The one-loop photon self-energy with the LV parameters

insertions is similarly given by [20]

−iΠμνðpÞ ¼ −ðp2ημν−pμpνÞ
�

e2

48π2ϵ
þZð1Þ

3

�
þfðu ·pÞ½ημνðp ·uÞ−uνpμ�þuμ½uνp2−ðu ·pÞpν�g

�
−
e2Qc

48π2ϵ
þQκZ

ð1Þ
6

2

�
: ð48Þ

The renormalization constants needed to subtract the
divergences are

Zð1Þ
3 ¼ −

e2

48π2ϵ
ð49Þ

Zð1Þ
6 ¼ e2Qc

24π2Qκϵ
; ð50Þ

Zð1Þ
3 naturally being the usual Maxwell field strength

renormalization constant, again because of the traceless-
ness of the SME background tensors.
To the older results for the two-point function counter-

terms, we now add the vertex correction terms, beginning
with the ultraviolet-divergent part of the three-point vertex
function. Using the definition (32) in the results of Sec. III,
and adding the contributions (16)–(20), we obtain
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−iΓμ ¼ eðpμ
2 − pμ

1Þ
�

e2

8π2ϵ
− Zð1Þ

1

�
þ eQcuμ½u · ðp2 − p1Þ�

×

�
e2ð4Qc þQκÞ

16π2Qcϵ
− Zð1Þ

7

�
: ð51Þ

Imposing finiteness, we have

Zð1Þ
1 ¼ e2

8π2ϵ
ð52Þ

Zð1Þ
7 ¼ e2ð4Qc þQκÞ

16π2Qcϵ
: ð53Þ

The expressions derived so far contain enough informa-
tion to determine the β-functions for Qc and Qκ. However,
to verify the gauge invariance of the renormalized theory,
we also need to look at the four-field vertex corrections
(although some of the necessary relations may already be
checked at this stage). Specifically, we need to look at the
radiative corrections to the gauge-scalar four-point func-
tion. [As noted above before, we are not interested in the
quantum corrections to the four-field ðϕ�ϕÞ2 vertex
because these corrections will not be affected by the
Lorentz violation if u2 ¼ 0.] Using (31) and (32) and
adding the results (25)–(28), we find

Γμν ¼ −
e4ημν

4π2ϵ
−
2e4ð4Qc þQκÞuμuν

16π2ϵ

þ 2e2Zð1Þ
4 ημν þ 2e2QcZ

ð1Þ
8 uμuν; ð54Þ

which is rendered finite if

Zð1Þ
4 ¼ e2

8π2ϵ
ð55Þ

Zð1Þ
8 ¼ e2ð4Qc þQκÞ

16π2Qcϵ
: ð56Þ

Since there are supposed to be, according to (36)–(42),
only two underlying divergent renormalization factors in
the theory, we can test the consistency of our calculations
with gauge invariance—for example, by comparing (45)
with (52) and (47) with (53) and (56). The consistency
conditions are indeed satisfied, and, in particular, we have

Zð1Þ
1 ¼ Zð1Þ

2 ð57Þ

Zð1Þ
5 ¼ Zð1Þ

7 ¼ Zð1Þ
8 ; ð58Þ

which are the Ward identities for the theory. In particular,
the identities (58) are directly related to the structure we
found in (30) for the effective action, and thus they are an
explicit manifestations of the gauge-invariant structure of
our result.

Now, we are prepared to compute the RG functions of
the model. Based on the relations defining the Zi factors
and their specific values obtained in this section, we find
the following expressions for the β-functions:

βðeÞ ¼ μ
de
dμ

¼ e3

48π2
ð59Þ

βðλÞ ¼ μ
dλ
dμ

¼ 5λ2 − 12λe2 þ 24e4

16π2
ð60Þ

βðQcÞ ¼ 3βðQκÞ ¼
e2ð2Qc þQκÞ

8π2
: ð61Þ

As expected, βðeÞ and βðλÞ are the same as in standard
scalar QED without LV terms.
It may also be interesting to notice some of the

consequences of relaxing the assumption u2 ¼ 0 in the
calculations of the RG functions. The anomalous dimen-
sions γi ¼ 1

2
d lnZi
d ln μ are given by

γ2 ¼
1

2

d lnZ2

d ln μ
¼ −

e2

8π2
þ 3e2u2ðQc −QκÞ

64π2
ð62Þ

γ3 ¼
1

2

d lnZ3

d ln μ
¼ e2

48π2
−
e2u2Qc

64π2
ð63Þ

γm ¼ 1

m
dm
d ln μ

¼ −
2e2 − λ

16π2
þ λu2Qc

16π2
; ð64Þ

corresponding to the fact that if u2 ≠ 0, the scalar field in
the Lagrange density is no longer canonically normalized,
whereas for u2 ¼ 0, these functions are equal to the usual
ones, calculated without Lorentz violation. The conse-
quences of relaxing the tracelessness property of cμν and
κμνρσ are potentially more interesting for βðeÞ, since in that

case we must add the term − e2u2Qc
96π2

to the result (60). For a
timelike aetherlike vector with u2 ¼ 1, along with Qc > 0,
it appears that a nontrivial fixed point for βðeÞmay arise out
of the LV interactions, at e� ¼ Qc

2
. This is suggestive, and it

contrasts sharply with the u2 ¼ 0 case we have mostly
concentrated on—in which the Lorentz violation does not
contribute to the RG running of the electric charge at one-
loop order. In any case, we anticipate that our results may
be useful for more detailed future studies of RG behavior in
the SME gauge and scalar sectors.

VII. CONCLUSION

This work essentially completes the one-loop renorm-
alization of the SME’s scalar QED sector, to first order in
theCPT-even LV terms in the scalar (cμν) and gauge (κμνρσ)
sectors. These results broaden our understanding of the
perturbative structure of a frequently neglected corner of
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the SME. Specifically, we have calculated the three- and
four-point gauge-scalar vertex corrections in this model.
For both functions, we have confirmed that the results,
when combined with previously calculated two-point
functions, yield correctly proportionate contributions to
the gauge-invariant structure kμνðDμϕÞ�ðDνϕÞ in the effec-
tive Lagrange density.
The radiatively generated quantity kμν receives contri-

butions proportional to both cμν and κμρνρ. As expected in a
renormalizable theory with dimensionless couplings, both
sets of radiative corrections are formally logarithmically
divergent, so they must be regulated and renormalized.
(While in theories with fermionic loops, some of the similar
contributions may vanish due to their Dirac matrix struc-
tures forcing certain traces to be zero, such a cancellation
mechanism clearly cannot work in purely bosonic theories.)
Furthermore, using our calculations of the renormalization
constants of the model, we were also able to calculate RG
functions for the LV operators.
It is interesting to note that corrections to the scalar four-

point function hðϕ�ϕÞ2i at first order in cμν and κμνρσ are
actually zero, because the tensors are taken to be traceless.
Moreover, if the background tensors obey a particular
relation, namely 4cμν þ κμρνρ ¼ 0, all the divergent con-
tributions to kμνðDμϕÞ�ðDνϕÞ cancel out. In this case, all
the one-loop radiative corrections to the “covariantized”
kinetic term in the scalar field Lagrange density are finite.
This resembles the situation discussed in Ref. [29], in
which the divergent contributions to an effective CFJ term
also turned out to vanish if the SME parameters involved
satisfied a special relation.

The natural continuations of this study could consist of,
first, a more detailed evaluation of finite radiative correc-
tions, which can contribute to cross sections and similar
quantities in LV scalar QED; second, development of
higher-order calculations, including both higher-loop
Feynman diagrams and calculations at second and higher
orders in cμν and κμνρσ; third, inclusion of the possibility of
spontaneous gauge symmetry breaking; and fourth, exten-
sion of these results to LV theories of non-Abelian gauge
fields coupled to scalar matter. We intend to undertake
further studies in these directions in subsequent papers. In
particular, the non-Abelian version of the theory represents
one of the last remaining components of the minimal SME
whose one-loop renormalization has not yet been com-
pleted, although some of the necessary calculations are
fairly straightforward generalization of ones that have
already been done. For example, to generalize the three-
point scalar-vector diagrams shown in Fig. 1, it is only
necessary to keep track of internal non-Abelian group
generators at the vertices and to include diagrams in which
the external vector line is attached to the internal gauge
propagator with a three-gauge-boson vertex. Ultimately, all
of these quantum correction calculations will enhance our
understanding of possible Lorentz violation in scalar field
dynamics, including elucidating possible experimental
signatures of Higgs-sector Lorentz violation.
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