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RESUMO 

 

Desastres naturais são definidos como decorrência de eventos naturais extremos que 

causam impactos significativos no equilíbrio social, econômico e ambiental. Assim, índices 

de alerta para prevenir ou minimizar os impactos causados por desastres naturais têm se 

tornando um dos grandes desafios do século XXI. Nesse contexto, e considerando que alguns 

índices baseados apenas na precipitação têm-se mostrados ineficientes, a erosividade da 

chuva, calculada como função da energia dissipada pelo impacto de gotas sobre a superfície, 

tem grande potencial para aplicação em estudos relacionados a deslizamentos de encostas e 

inundações. Assim, a erosividade de chuvas diárias (Rdia) é um índice promissor de ser 

aplicado como alerta de ocorrência de desastres naturais permitindo também analisar o 

comportamento destes eventos frente às mudanças climáticas. Neste aspecto, os objetivos 

deste estudo foram: i) modelar o Rdia através de um modelo sazonal para a Região Serrana do 

Estado do Rio de Janeiro (RSERJ), que tem sido uma das regiões mais afetadas por desastres 

naturais no Brasil; ii) adequar, com base em eventos catastróficos ocorridos nas últimas duas 

décadas, limiares do índice Rdia que classificam os eventos de acordo com os respectivos 

impactos observados; iii) aplicar o modelo sazonal ajustado para a estimativa de Rdia 

considerando dois cenários de emissão de gases de efeito estufa (RCP 4.5 e 8.5) e o modelo 

climático HadGEM2-ES regionalizado para a escala de 5 km ao longo do século XXI; iv) 

mapear a erosividade máxima diária (Rmaxdia) para avaliar a susceptibilidade da região, 

conforme os limiares estabelecidos, ao longo do século e; v) analisar espacialmente a 

frequência de ocorrência dos valores de Rdia causadores de desastres naturais considerando as 

projeções futuras. O modelo ajustado apresentou resultado satisfatório, permitindo sua 

aplicação como estimador da sazonalidade do Rdia na RSERJ. Eventos que resultaram em Rdia 

> 1.500 MJ.ha-1.mm.h-1.dia-1 foram aqueles com o maior número de óbitos nesta região. O 

mapeamento do Rmaxdia demonstrou que toda a RSERJ apresentou nos últimos 30 anos valores 

classificados como causadores de grandes desastres naturais e ainda é altamente susceptível à 

ocorrência destes grandes desastres ao longo do século XXI, com intensificação no período de 

2040-2071. As áreas urbanas de Nova Friburgo e Petrópolis foram as que apresentaram maior 

frequência de eventos na faixa 1.000 < Rmaxdia < 1.500 MJ.ha-1.mm.h-1.dia-1. O período de 

2011-2040 é o que apresentou a menor frequência de eventos, com concentração de Rmaxdia < 

1.000 MJ.ha-1.mm.h-1.dia-1. Os índices Rdia se mostraram promissores como indicadores de 

desastres naturais, sendo mais efetivo do que os usualmente utilizados, os quais são baseados 

somente em quantidade (mm) e intensidade (mm.h-1) da chuva. 

 

 

Palavras-chave: Erosividade diária. Desastres naturais. Regiões serranas brasileiras. Índices 

de alertas de precipitação. Mudanças climáticas. 

 

 



 

ABSTRACT 

 

Natural disasters result from extreme natural events that cause significant impacts on 

the social, economic, and environmental balance. Thus, alert indices to prevent or minimize 

the impacts caused by natural disasters have become one of the most significant challenges of 

the twenty-first century. In this context and considering that some indices based only on 

precipitation have been shown to be inefficient, the rainfall erosivity, calculated as a function 

of the energy dissipated by the impact of drops on the surface, has great potential for 

application in studies related to landslides and floods. Thus, daily rainfall erosivity (Rday) are 

promising indices to be applied as alerts of the occurrence of natural disasters, also allowing 

us to analyze the behavior of these events in the face of climate change. Therefore, this study 

aimed to i) model the Rday through a seasonal model for the mountainous region of the state of 

Rio de Janeiro (RSERJ), one of the regions most affected by natural disasters in Brazil; ii) 

adapt thresholds of the Rday indices that classify the events according to their observed 

impacts based on catastrophic events that have occurred in the last two decades; iii) apply the 

adjusted seasonal model to calculate Rday considering two greenhouse gas emission scenarios 

(RCP 4.5 and 8.5) and the regionalized HadGEM2-ES climate model for the 5 km scale 

throughout the twenty-first century; iv) map the maximum daily rainfall erosivity (Rmaxdia) to 

evaluate the susceptibility of the region, according to the established thresholds throughout 

the century; and v) spatially analyze the frequency of occurrence of Rday values causes of 

natural disasters considering future projections. The adjusted model showed a satisfactory 

result, allowing its application as an estimator of the seasonality of the Rday at RSERJ. Events 

that resulted in Rday > 1,500 MJ.ha-1. mm. h-1. day-1 presented this region's highest number of 

deaths. The mapping of Rmaxdia showed that the entire RSERJ presented values classified as 

causing major natural disasters in the last 30 years and is still highly susceptible to the 

occurrence of major natural disasters throughout the twenty-first century, with intensification 

from 2040 to 2071. The urban areas of Nova Friburgo and Petrópolis showed the highest 

frequency of events in the range 1,000 < Rmaxdia < 1,500 MJ.ha-1.mm.h-1.day-1. The period 

between 2011 and 2040 presented the lowest frequency of events, with a concentration of 

Rmaxdia < 1,000 MJ.ha-1.mm.h-1.day-1. The Rday indices were promising indicators of natural 

disasters, being more effective than those generally used, based only on rainfall quantity (mm) 

and intensity (mm.h-1). 

 

 

Keywords: Daily rainfall erosivity. Natural disasters. Brazilian mountainous regions. Rainfall 

warning system. Climate change. 
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1ST CHAPTER – GENERAL INTRODUCTION 

1  GENERAL INTRODUCTION 

Natural disasters are defined as the result of extreme natural events which cause 

negative impacts on the society, economy, and environment (ALEXANDER, 2018). Among 

the natural disasters that most affect the people, floods and landslides caused by intense 

rainfall are responsible for thousands of deaths worldwide. 

The increase in the frequency and intensity of extreme rainfall in Brazil, combined 

with the high degree of susceptibility of the population in risk areas has triggered disasters, 

such as landslides and floods (FERNANDES and RODRIGUES, 2018; AMORIM and 

CHAFFE, 2019; MELLO et al., 2020). Within this context, one of the regions more affected 

by landslides and floods is the mountainous region of the state of Rio de Janeiro (MRRJ), 

which is one of the most vulnerable areas to the natural disasters in Brazil (BRASIL, 2012; 

FREITAS et al., 2012; BITAR, 2014; OLIVEIRA et al., 2016). In addition, in this region the 

influence of the South Atlantic Convergence Zone (SACZ) and the orographic influence 

coexist, resulting in frequent extreme rainfall events (BRITO et al., 2016; ANDRÉ et al., 

2008). Thus, it can be said that, besides the higher frequency of extreme events, they can 

potentially affect regions more vulnerable to these natural disasters, leading to more 

significant consequences. 

Landslides were triggered by extreme rainfall events between January 11 and 12, 

2011, causing the so-called “mega disaster” in the MRRJ, where seven municipalities 

declared situation of public emergency (VASSOLER, 2013; CARDOZO and MONTEIRO, 

2019). This event is considered the worst natural disaster in Brazil’s history (CASTILHO et 

al., 2012; CARDOZO and MONTEIRO, 2019), not only because of the number of deaths, but 

also the significant damages in the economy and infrastructure. In Nova Friburgo, for 

example, the total number of fatalities related to landslides was 434 (205 women and 228 

men) (CARDOZO et al., 2018; CARDOZO and MONTEIRO, 2019; OLIVEIRA et al., 2016). 

This represents more than 47% of the fatalities in the “mega disaster”. 

Although the “mega disaster” generated the most destructive landslides ever observed 

in Brazil, events with similar characteristics have already occurred at Rio de Janeiro state in 

the years of 1966, 1967, 1988 and 1996 (MEIS and SILVA, 1968; BARATA, 1969; JONES, 

1973; LACERDA, 1997, 2007). 
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In view of the above-mentioned, some authors have assessed the efficiency of Early 

Warning System (EWS) indicators in reducing risks in the region, mainly related to economic 

impacts and fatalities (WEBSTER, 2013; ALVALÁ et al., 2019). Guzzetti et al. (2007) 

studied indicators that identify vulnerability to natural disasters, claiming that a good indicator 

should be based on the total precipitation amount, the rainfall intensity, the antecedent soil 

moisture, and the characteristics of the slopes. 

However, despite the difficulty in obtaining all the above-mentioned variables 

(geological, geomorphological, climatic and hydrological) and gathering them in a single 

value as an alert index that can be used as an EWS, indexes have been applied to relate 

extreme precipitation events (accumulated and intensity) with the human and material 

damages caused (XU et al., 2014; CALVELLO et al., 2015; OLIVEIRA et al., 2016) since it 

is known that precipitation is the factor that triggers the most of natural disasters (GUZZETTI 

et al., 2007). In addition, the forecasting of precipitation can be made 48 or even 72 hours 

before the occurrence of the event (OLIVEIRA et al., 2016), which is enough time for the 

authorities to assess the characteristics of the event and warn the population of imminent 

risks. 

Some indexes have been widely used in Brazil and in the world, such as the 

accumulated precipitation in the last 24, 48, 72 and 96 hours (SILVA et al., 2020), the 

precipitation intensity (mm/h), or even such variables evaluated simultaneously. However, 

some of these indicators have shown to be inefficient. 

In this context, rainfall erosivity when applied in a daily scale, seems to be a good 

index for natural disasters as it encompasses the impacts caused by the impact of raindrops 

and the energy dissipated by them on the soil surface (MELLO et al. 2020).  It was proposed 

and defined by Wischmeier and Smith (1958) as the product between the kinetic energy of 

raindrops and the maximum rainfall intensity in 30 consecutive minutes (I30), designated as 

EI30. 

The original method for calculating EI30 for a given rainfall event (Ec x I30) requires 

rainfall records with a temporal resolution ≤ 15-min (WISCHMEIER and SMITH, 1978). 

However, such records are difficult to access and obtain, usually due to an insufficient 

number of stations (MELLO et al., 2020; XIE et al., 2016). 

To apply a model for estimating daily rainfall erosivity based on daily rainfall data 

(since is much more accessible and spatially distributed) is essential to better understand the 

role of extreme precipitation events on natural disasters (MELLO et al., 2020). Therefore, Yu 

and Rosewell (1996) proposed a mathematically approach to estimate daily rainfall erosivity. 
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This approach is capable of estimating the daily erosivity considering the seasonality of the 

rainfall erosivity throughout the year. Furthermore, this approach using daily rainfall data 

makes it possible to evaluate the behavior of daily erosivity influenced by climate change, 

since the regionalized data by Eta model is capable of estimate rainfall in daily time 

resolution.  

Climate change and its impacts on the magnitude and frequency of natural disasters 

are still uncertain, especially in regions with significant orographic influences (CHOU et al. 

2014). In the last decades, it has been observed that natural disasters mostly landslides and 

floods have become more frequent and severe (CEPED, 2013), mainly in mountainous 

regions of Brazil (MELLO et al. 2020). These impacts are due to the evident increase in the 

intensity and frequency of extreme rainfall events (IPCC, 2013), together with the rapid 

population, economic and disordered urban growth. 

The most important factor influenced by climate change which will affect a region's 

vulnerability to the natural disasters, are changes in the rainfall pattern. In tropical and 

subtropical regions, for example, a possible increase in the amount of precipitation is expected 

for specific periods of the year throughout the 21st century (MELLO et al. 2015). 

Some studies have assessed the influence of climate change in erosivity on monthly 

and annual scales (NEARING 2001; ZHANG et al., 2010; SEGURA et al., 2014; MELLO et 

al., 2015; RIQUETTI et al., 2020), but none has evaluated these changes based on daily scale 

(Rday). 

Therefore, two articles were developed to compose the present thesis that has as 

general objective to study the daily rainfall erosivity as a tool for natural disasters in mountain 

regions. 

The first article is entitled “Natural disaster in the mountainous region of Rio de 

Janeiro state, Brazil: Assessment of the daily rainfall erosivity as an early warning index”, 

and its purpose is to model the daily rainfall erosivity index (Rday) using a seasonal model for 

the MRRJ. Based on this index, the other objective was to improve an indicator, which could 

be applied as an Early Warning System (EWS) for natural disasters in this region. This index 

is capable of to identify areas that are vulnerable to natural disasters, being more sensitive 

than others that are associate with only the total precipitation and the mean rainfall intensity. 

Finally, it was compared to other indexes that have been used by government warning 

systems aiming to demonstrate that Rday has great potential to be applied instead.  

The second article, entitled " Rainfall disasters under the changing climate: a case 

study for the Rio de Janeiro mountainous region", objectives: i) to apply a Rday seasonal 
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model for the Mountain Region of Rio de Janeiro (MRRJ) throughout the 21st century, 

applying data simulated by the MCG HadGEM2-ES, regionalized by the ETA-CPTEC model 

on the spatial scale of 5 km, considering the RCP4.5 and 8.5 IPCC (2013) scenarios; ii) map 

the maximum daily rainfall erosivity (Rmaxday) to assess, based on the Rday indice, the most 

vulnerable regions throughout the present century and; iii) spatially the frequency of 

occurrence of Rmaxday values throughout the 21st century. 

Thus, it is essential to note that this study highlights two pioneer aspects: i) the study 

of climate change and its influence on the values of Rday; and ii) use of the rainfall erosivity as 

an index of extreme events and their variations due to climate changes throughout the 21st 

century. 
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Natural disaster in the mountainous region of Rio de Janeiro state, Brazil: assessment of 1 

the daily rainfall erosivity as an early warning index 2 

 3 

Abstract  4 

Rainfall erosivity is defined as the potential of rain to cause erosion. It has great 5 

potential for application in studies related to natural disasters, in addition to water erosion. 6 

The objectives of this study were: i) to model the Rday using a seasonal model for the 7 

Mountainous Region of the State of Rio de Janeiro (MRRJ); ii) to adjust thresholds of the Rday 8 

index based on catastrophic events which occurred in the last two decades; and iii) to map the 9 

maximum daily rainfall erosivity (Rmaxday) to assess the region’s susceptibility to rainfall 10 

hazards according to the established Rday limits. The fitted Rday model presented a satisfactory 11 

result, thereby enabling its application as a Rday estimate in MRRJ. Events that resulted in Rday 12 

> 1,500 MJ.ha-1.mm.h-1.day-1 were those with the highest number of fatalities. The spatial 13 

distribution of Rmaxday showed that the entire MRRJ has presented values that can cause major 14 

rainfall. The Rday index proved to be a promising indicator of rainfall disasters, which is more 15 

effective than those normally used that are only based on quantity (mm) and/or intensity 16 

(mm.h-1) of the rain. 17 

Keywords: Daily rainfall erosivity; rainfall hazards; Brazilian mountainous regions; rainfall 18 

warning system. 19 

20 



17 

 

1 INTRODUCTION 21 

Rainfall erosivity is an index that encompasses the impacts caused by the raindrops 22 

impact and the energy dissipated on the soil surface. It was proposed and defined by 23 

Wischmeier and Smith (1958) as the product between the kinetic energy of raindrops and the 24 

maximum rainfall intensity in 30 consecutive minutes (I30), designated as EI30. Its calculation 25 

requires rainfall data recorded with a temporal resolution  ≤ 15-min. However, such records 26 

are difficult to access and obtain, usually due to an insufficient number of stations in 27 

developing countries (Mello et al., 2015). 28 

To develop a model for estimating daily rainfall erosivity (Rday) based on daily rainfall 29 

data is essential to better understand the role of extreme rainfall on natural disasters (Mello et 30 

al., 2020) since daily rainfall data is much more accessible and spatially distributed than those 31 

with temporal resolutions ≤ 15-minute. Therefore, a model to estimate Rday was initially 32 

proposed by Richardson et al. (1983), with the inconvenience of having to fit different models 33 

for each month. In addition, these models tend to underestimate the Rday (Angulo-Martinez 34 

and Beguería, 2009). To overcome these limitations, Yu and Rosewell (1996) proposed a 35 

mathematically more advanced approach by introducing a sinusoidal function to model the 36 

seasonality of rainfall erosivity. This approach can estimate Rday considering the period of the 37 

year (biweekly or monthly periods). This is a hypothesis that considers that the same 38 

precipitation can generate different Rday according to the period of year, which is relevant in 39 

regions with a seasonal climate. 40 

The increase in the frequency and intensity of extreme rainfall in Brazil, combined 41 

with the high degree of susceptibility of the population in risk areas has triggered rainfall 42 

disasters (Fernandes and Rodrigues, 2018; Amorim and Chaffe, 2019; Mello et al., 2020), 43 

with a high number of fatalities (CEPED, 2013). The geomorphological and pedological 44 

characteristics associated with changes in land use (especially deforestation of the Atlantic 45 
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Forest) (Freitas et al., 2012) and the high intensity of the rainfall (Brito et al., 2016) are the 46 

key factors to rainfall disasters in mountainous regions in Brazil (Mello et al., 2020).  47 

One of the regions most affected by rainfall disasters is the mountainous region of the 48 

Rio de Janeiro state (MRRJ) (Brasil, 2012; Freitas et al., 2012; Oliveira et al., 2016). In 49 

January/2011, landslides were triggered by extreme rainfalls, causing the so-called “mega-50 

disaster” in this region. A total of 23 municipalities were affected, and seven of these were 51 

declared in a emergency situation (Cardozo and Monteiro, 2019). Petrópolis, Teresópolis, and 52 

Nova Friburgo municipalities recorded the highest number of victims. The most significant 53 

impacts in Nova Friburgo occurred in the urban area, whereas the rural areas were the most 54 

affected in the other two municipalities (Busch and Amorim, 2011; Cardozo and Monteiro, 55 

2019). Official reports indicated 918 fatalities, 22,604 displaced, and 8,795 homeless across 56 

the region (Freitas et al., 2012). This event was the worst natural disaster in Brazil’s history 57 

(Cardozo and Monteiro, 2019).  58 

Some authors have assessed the efficiency of the early warning system (EWS) indexes 59 

in reducing risks from rainfall. However, due to the difficulty in obtaining and combine all the 60 

variables involved with landslides in an index that can be used as an early warning, indexes 61 

have been applied focusing on the extreme rainfall and the human and material damages (Xu 62 

et al., 2014; Calvello et al., 2015; Oliveira et al., 2016). Some indexes have been widely used 63 

in Brazil and the world, such as the accumulated rainfall in the last 24, 48, 72, and 96 hours, 64 

rainfall intensity (mm h-1), or even such variables evaluated simultaneously. Nevertheless, 65 

some of these indexes have shown to be inefficient. An example of this was the rainfall 66 

disasters in Campus do Jordão county in Serra da Mantiqueira (southeastern Brazil) in the 67 

year 2000. This event was caused by an accumulation of rain below the limit previously 68 

established in 72 hours (Mendes et al., 2018). Another example, it was the index used by the 69 
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Alerta-Rio, as 20 false alerts were issued for the four warning zones of the city between 2010 70 

and 2013.  71 

Mello et al. (2020) proposed the use of Rday as a rainfall index as EWS for the Serra da 72 

Mantiqueira region (SMR), in Minas Gerais state (Southeast Brazil). Although this index has 73 

shown efficiency, it lacks a complementary spatial analysis using data from several stations 74 

with rain records every 15-minute, as they used data from only one station with this 75 

characteristic. This aspect makes it possible to better understand the genesis of extreme events 76 

in regions with a strong orographic influence, which the researchers did not properly 77 

characterize. In this direction, the purpose of this study is to fit a seasonal Rday model for the 78 

MRRJ. Based on this index, the main objective was to improve Rday as an index, which could 79 

be applied coupled with the EWS for rainfall disasters in this region in Brazil.  80 

 81 

2. MATERIAL AND METHODS 82 

2.1 The mountainous region of Rio de Janeiro state (MRRJ) 83 

 The MRRJ is located in Serra do Mar region, in southeast Brazil. In geomorphological 84 

terms, it is inserted in the Reverse Plateau unit (Garcia and Francisco, 2013), characterized by 85 

mountainous and steep relief, with altitudes ranging from 400 to 2350 meters (Figure 1). The 86 

predominant soils are the Cambisols, which are shallow, moderately permeable, with a high 87 

silt/clay ratio, low natural fertility, and with the formation of crusts that constraints the 88 

infiltration if the vegetation cover is scarce or absent (Pinto et al., 2018).  89 

The geographical location of the three municipalities severely impacted by rainfall 90 

hazards is in Figure 1, as well as the location of the Brazilian National Water Agency (ANA) 91 

rain gauge stations and the National Center for Monitoring and Early Warning of Natural 92 

Disasters (CEMADEN) automatic rain gauges used in this study. 93 
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 94 

Figure 1. Geograpical location of MRRJ, highlighting Nova Friburgo, Petrópolis, and 95 

Teresópolis municipalities, the CEMADEN automatic rain gauges, and the ANA rain gauges.   96 

The municipalities of Petrópolis (792 km²), Teresópolis (773 km²) and Nova Friburgo 97 

(936 km²) were focused in this study because they are the most representative municipalities 98 

in the population, and they were more prone to rainfall hazards in recent decades (Coelho 99 

Netto et al., 2013). The population of these three municipalities is predominantly urban 100 

(approximately 90%), totaling approximately 645,000 inhabitants (296,000, 166,000 and 101 

183,000 in Petrópolis, Teresópolis, and Nova Friburgo, respectively) (IBGE, 2010; Coelho 102 

Netto et al., 2013; Cardozo and Monteiro, 2019). Its economy is geared towards industry, 103 

agriculture, and tourism (Coelho Netto et al., 2013). 104 

The MRRJ climate is generally characterized as Cwb (according to the Köppen 105 

climate classification), with dry winters and rainy summers. The annual average temperatures 106 

are around 16°C (Coelho Netto et al., 2013) and the summer accounts for 70% of the rainfall 107 

between October and March. The winters are cool and dry (Dourado et al., 2012). The rainfall 108 
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pattern in the MRRJ is driven by frontal systems; convective rains in the summer; South 109 

Atlantic Convergence Zone (SACZ); orographic effects; tropical and subtropical cyclones; 110 

surface water temperature of the Subtropical Atlantic Ocean; and maritimity (Reboita et al., 111 

2010). 112 

Nova Friburgo has been hit by the highest rainfall amount throughout the state of Rio 113 

de Janeiro, with an annual average of 2,500 mm in the highest areas, decreasing progressively 114 

towards the north (N) as the altitudes decrease (Coelho Netto et al., 2013; Cardozo and 115 

Monteiro, 2019). The average annual rainfall in Teresópolis also varies in the North-South 116 

direction (from 2200 to 1500 mm), and in Petrópolis (from 1900 to 1000 mm). The rainiest 117 

period occurs between December and February, when the monthly average rainfall varies 118 

between 340 and 240 mm in the highest altitudes in the southern MRRJ, and between 240 and 119 

150 mm in the northern (Coelho Netto et al., 2013). 120 

 121 

2.2 Rainfall erosivity calculation (EI30) 122 

Datasets of rainfall from 68 automatic rain gauges provided by CEMADEN with a 10-123 

minute temporal resolution (Figure 1) were used to calculate EI30, using the available period 124 

between 2014 and 2020. The following equations were used to calculate EI30: 125 

                                        (1) 126 

                                            (2) 127 

                              (3) 128 

                                                      (4) 129 

Equation 1 allows calculating the kinetic energy per mm of rain (ked) per time interval 130 

“d” (MJ.ha-1.mm-1), in which id is the rainfall intensity (mm.h-1) (McGregor and Mutchler, 131 

1976). In equation 2, Ed is the kinetic energy (MJ.ha-1), and Pd is rainfall depth (mm), both in 132 
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the “d” time interval. Thus, the kinetic energy of the event is obtained by the sum of the 133 

kinetic energy (Ed) calculated for each time interval (KE, MJ.ha-1) (Equation 3), where “n” 134 

corresponds to the number of the time interval “d”. Finally, the EI30 calculation for the event 135 

(MJ.ha-1.mm.h-1) (Equation 4) is made by multiplying KE by the 30-minute maximum rainfall 136 

intensity (I30) (mm.h-1).   137 

Two conditions were considered to separate individual erosive events: KE > 3.6 138 

MJ.ha-1 (De Maria, 1994); and I30 ≥ 13.3 mm.h-1 (Xie et al., 2002). Nevertheless, EI30 is not 139 

necessarily synonymous with Rday, since a single rain event can have a duration greater than 140 

one day, or more than one erosive event may occur on the same day. Therefore, three 141 

situations are possible to define Rday (Xie et al., 2016; Mello et al., 2020):  142 

Type I: a day with only one rain event (Rday = EI30 of the event);  143 

Type II: a day with multiple rain events separated by > 6 hours (Rday = sum of the EI30 144 

of each event in the day); and 145 

Type III: a day with rainfall event that lasts over 24 hours (Rday = KE considering the 146 

24-hour interval with the highest total rainfall multiplied by the highest I30 for their 147 

calculation).  148 

 149 

2.3 Seasonal model for estimating Rday 150 

 A seasonal Rday model was fitted based on the study by Yu and Rosewell (1996): 151 

                                   (5) 152 

 153 

In which j is the fortnight of the year (ranging from 1 to 24); f = 1/24; η, α, ω and β are 154 

the fitted parameters. The η parameter is related to the amplitude in the variation of the α 155 

parameter; ω is the parameter related to the fortnight with the highest accumulated rainfall 156 

erosivity; β is a parameter considered for modeling the non-linearity of daily rainfall and 157 
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respective erosivity (Richardson et al. 1983). In the MRRJ, the first half of January has the 158 

highest accumulated total erosivity (based on seven years of recording); ω = π/6.  159 

The model parameters were estimated using the least squares method considering the 160 

Rday and the respective daily rainfall observed in the 68 automatic rain gauges. For this, we 161 

split the dataset (rainfall erosive events) into two groups: one for fitting the daily rainfall 162 

erovisity model (equation 5) and the other for analyzing the model’s performance. For the 163 

latter, approximately 37% of the data were used, being randomly chosen according to the 164 

number of erosive events distributed in daily rainfall classes (< 15 mm; 16-20 mm; 21-30; 31-165 

40 mm; 41-50 mm; 51-75 mm; 76-100; > 101 mm). 166 

Two precision statistics were adopted (Angulo-Martinez and Beguería, 2009): 167 

i) Nash-Sutcliffe Efficiency Coefficient (CNS) (Nash and Sutcliffe, 1970): 168 

 169 

                               (6) 170 

ii) Pbias that measures the trend of estimates, and is calculated by: 171 

                         (7) 172 

 173 

2.4 Natural disaster rainfall-based alert indexes 174 

2.4.1 Previous rainfall indexes 175 

Brooks and Stensrud (2000) defined that a rainfall event is classified as intense when 176 

the precipitation intensity is ≥ 25.4 mm/h. Groisman et al. (2001) established that intense and 177 

very intense rainfall can be separated using a fixed threshold of 50.8 and 101.6 mm/day, 178 

respectively, or the values corresponding to the 90th and 99th percentiles. In investigating the 179 

occurrence of extreme events in the United States, Groisman et al. (2012) considered four 180 

classes of precipitation: moderately intense (12.7-25.4 mm/day), intense (25.4-76.2 mm/day), 181 
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very intense (76.2-154.9 mm/day), and extreme intense (> 154.9 mm/day); the latter is related 182 

to floods, property damage, accidents, and fatalities. 183 

Dolif and Nobre (2012) defined an extreme event for the city of Rio de Janeiro as one 184 

that causes a precipitated accumulation > 50 mm in any interval of 24 hours. This threshold is 185 

the one used by the World Meteorological Organization (WMO) in the “Severe Weather 186 

Information Centre” (http://severe.worldweather.org/rain/), applied in intense precipitation 187 

prediction models (Pristo et al., 2018). Still, regarding the city of Rio de Janeiro, a system 188 

called Alerta-Rio has been applied since April/2010. However, despite its good performance 189 

in predicting extreme events and alerting the population to these, its implementation cost is 190 

high since it is based on rain intensity data derived from meteorological radars. 191 

Despite the difficulty of establishing a single value as an alert index, it is known that 192 

precipitation is one of the factors that most triggers natural disasters (Guzzetti et al., 2007). In 193 

addition, the forecast of this variable can be made 48 or even 72 hours in advance (Oliveira et 194 

al., 2016), providing enough time for the authorities to assess the event and warn the 195 

population of imminent risks. Thus, precipitation has been used to compose the majority of 196 

EWS. 197 

 198 

2.4.2 Application of the Rday as an EWS 199 

Rday thresholds are proposed as an index to be used in the EWS. These thresholds were 200 

established through the joint analysis of the Rday values, which concomitantly caused rainfall 201 

hazards with the respective consequences observed in eight events that hit the MRRJ in the 202 

last two decades. 203 

Maximum daily rainfall erosivity (Rmaxday) (Mello et al., 2020) map was developed to 204 

identify areas more vulnerable to rainfall hazards. It is based on the maximum daily rainfall 205 

observed in at least 22 years since it is the minimum period to characterize the rainfall 206 

http://severe.worldweather.org/rain/
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erosivity pattern for a given region (Wischmeier and Smith, 1978). Its mapping was 207 

developed by means kriging techniques, considering the highest rainfall values observed in 208 

the MRRJ in the last three decades (1990-2019).  209 

The Rday index definition is based on (Mello et al., 2020): i) detailed survey of the 210 

events which caused natural disasters, characterizing, in this order, fatalities, homeless, and 211 

damage in the infrastructure; ii) other indexes were used for comparative purposes when 212 

establishing Rday thresholds. Thus, Rday intervals were proposed for MRRJ according to the 213 

occurrences and the respective Rday, linking these intervals to the consequences registered, 214 

and comparing them with other existing indexes.  215 

The indexes used in this study for comparison purposes are those used by Alerta-Rio, 216 

operated by the Geotechnical Foundation of the municipality of Rio de Janeiro (GEO-Rio), 217 

and those presented by Oliveira et al. (2016), who studied the precipitation thresholds that 218 

caused rainfall hazards in the Nova Friburgo municipality (Table 1). The established indexes 219 

can be based on a relationship between rainfall and landslides or through statistical analysis 220 

(Calvello et al., 2015). The intervals that consider a period of 24 and 72 hours is presented in 221 

Table 1. Both indexes consider the rainfall duration; Alerta Rio one hour, 24 hours, and 72 222 

hours, while Oliveira et al. (2006) 24 hours, 48 hours, and 72 hours. Besides, both indexes 223 

proposed a classification warning according to the magnitude of the rain; Alerta Rio defined 224 

“Mean,” “High,” and “Very High” warning, linking them to the respective duration and an 225 

interval of the rainfall depth. Oliveira et al. (2006) created three levels, A, B, and C, which are 226 

associated with the respective duration and rainfall depth. Similar to Alerta Rio, these levels 227 

indicate the concern with the rainfall impact, increasing from A to C.228 
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Table 1. Precipitation limits currently adopted as warning indexes in Rio de Janeiro state. 229 

Duration (hours) 

Alert level according to accumulated rainfall (mm) – Alerta Rio 

Mean High Very high 

1 25-50 50-80 >80 

24 85-140 140-220 >220 

72 140-220 220-300 >300 

Criteria 

Accumulated rainfall (mm) (Oliveira et al. 2016) 

24h 48h 72h 

A 50 60 100 

B 50 75 120 

C 75 120 150 

  230 

3. RESULTS 231 

3.1 Daily rainfall erosivity modeling in the MRRJ 232 

Based on 68 CEMADEN stations, 5,101 rainfall events with I30 ≥ 13.3 mm.h-1 (the 233 

first step for split rainfall erosivity events) were identified between 2014 and 2019 in MRRJ, 234 

with the lowest observed amount of 6.7 mm. However, some of these events are not erosive 235 

according to the kinetic energy (KE > 3.6 MJ ha-1). Therefore, the second step consisted of 236 

separating those that are erosive. From the 5,101 events, 3,698 were classified as erosive 237 

events, i.e., KE > 3.6 MJ.ha-1, corresponding to 72.5% of the studied events. The number of 238 

erosive and non-erosive events and the frequency and respective class of Rday in MRRJ are 239 

presented, respectively, in Figures 2(a) and (b).  240 

 241 
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 242 
Figure 2. The number of erosive and non-erosive events (2014 to 2019) per rainfall classes 243 

(a) and frequency of Rday observed in MRRJ (b). 244 

Table 2 shows the number and percentage of erosive events, the percentage of  245 

observed erosivity, and the average I30 (mm.h-1) for each rainfall class. 246 

 247 

Table 2. Percentage of erosive events and total erosivity for different rainfall classes. 248 

Rainfall 

(mm) No. of events % of Events 

% of accumulated EI30 

(MJ.ha-1.mm.h-1) 

Average I30  

(mm.h-1) 

<15 126 3.4 0.5 26.1 

16-20 629 17.0 5.2 25.6 

21-30 1095 29.6 15.7 29.0 

31-40 679 18.4 16.1 34.5 

41-50 428 11.6 14.9 39.6 

51-75 497 13.4 24.3 42.5 

76-100 125 3.4 10.2 45.6 

>101 119 3.2 13.1 46.2 

 249 

The classification of erosive events in terms of their type is: 83% Type I; 11.6% Type 250 

II; and 5.4% Type III.  251 

To apply the Rday model, it is fundamental to establish a minimum daily rainfall that 252 

potentially can triggers a rainfall erosive event. Figure 2a shows that all 898 events < 13 mm 253 

were not classified as erosive. However, 126 events in the 13 - 15 mm interval (25.2%) were 254 
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erosive, which allows us to infer that the minimum precipitation depth to be considered 255 

erosive is within this interval, bearing in mind that some 13 mm events were erosives.  256 

Erosive events had the following characteristics: i) they are generated by rainfall ≥ 13 257 

mm; ii) all rainfall events  ≥ 22 mm are erosive; iii) approximately half of the erosive events 258 

(1848 out of 3698 events) occur for rainfall ≥ 31 mm; and iv) despite representing 259 

approximately 50% of the total number of erosive events, rainfall ≥ 31 mm corresponds to 260 

78.6% of the total observed rainfall erosivity over MRRJ. 261 

3.2 Seasonal Rday model for MRRJ 262 

The fitted seasonal model for MRRJ presented the following structure: 263 

                (8) 264 

This model describes the inter-daily annual seasonality of Rday by estimating the 265 

parameters “α”, “η” and “ꞵ” (3.3888; 0.4659; 1.2028; respectively). An important detail is 266 

that the fitted parameters spatially represent the MRRJ since it was determined based on data 267 

from 68 rain gauge stations with precipitation data recorded every 10 minutes. 268 

The precision statistics associated with calibration (CNS = 0.51; Pbias = -0.56) and 269 

validation (CNS = 0.50; Pbias = -2.22) demonstrate satisfactory results for the Rday model, 270 

especially when considering that this estimate is made based only on daily rainfall and the 271 

period of the year.  272 

Figures 3a and 3b represent the fitted model applied to the events (1,368 events) 273 

separated exclusively for validation. The regression in Figure 3a means a relationship between 274 

estimated Rday values by the fitted model in function of rainfall depth (red triangles). Through 275 

this fitting, one can observe that the model could capture the seasonality effect on daily 276 

rainfall erosivity, i.e., different Rday values were estimated with the same precipitation depth, 277 

meaning that these events occurred in different seasons of the year. 278 
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In Figure 3b, it is possible to verify that the estimated Rday values fitted reasonably 279 

well to the observed ones. However, overestimation and understation values can be seen, 280 

respectively, for the lowest and the highest values. 281 

 282 

Figure 3. Behavior of the Rday by the seasonal model applied to the validation data. 283 

 284 

Figure 4 shows the model fitting graphs for MRRJ considering different classes of I30. 285 

It can be seen in Figure 4a that the model tends to overestimate Rday for I30 < 25 mm.h-1. On 286 

the other hand, the model’s performance is superior for the I30 between 25 and 50 mm.h-1 287 

(Figure 4b), and between 51 and 75 mm.h-1 (Figure 4c), with good precision. However, the 288 

model underestimates Rday for the greatest I30 class (Figure 4d).  289 
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 290 

Figure 4. Model fitting for different I30 classes (a. I30 < 25; b. 25 ≤ I30 ≤ 50; c. 51 ≤ I30 ≤ 75; 291 

and d. I30 > 75). 292 

3.3 Relation between Rday and rainfall hazards in MRRJ 293 

To relate Rday values and the most significant rainfall hazards provoked by rainfall in 294 

MRRJ, maps of it were developed (Figure 5 – left colunm). For comparing purposes, a map 295 

using the EWS developed by Alerta-Rio was also developed (Figure 5 – right column), which 296 

allows observing how Rday is more sensitive and complete than the previous alert index.  297 
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 298 

Figure 5. Maps of the most severe rainfall hazards in MRRJ (see Table 3) and respective Rday 299 

values (maps in left column) and using Alerta-Rio (maps in right column). 300 

 301 

All three municipalities had Rday > 1,500 MJ.ha-1.mm.h-1.day-1 at some point, and 302 

these events have always been linked to disasters that culminated in thousands of people 303 

affected (fatalities, displaced, homeless, injured people), as further depicted in Table 3. This 304 

table has as purpose of presenting the most impacting rainfall hazards in MRRJ between 2001 305 

and 2016, respective impacts and risk classification (EWS) according to Alerta-Rio, taking the 306 

greatest precipitation in 24 hours or 72 hours, i.e., the worst situation (Table 1). Also, the 307 

disasters were presented according to the most affected (urban or rural), and the respective 308 

Rday was calculated using the fitted model.   309 

 310 

 311 
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Table 3. Summary of the rainfall hazards observed in the MRRJ in the last two decades and respective estimated Rday. 312 

Date (DD/MM/Year) Municipality Displaced Fatalities  Number of affected Rday (MJ ha-1 mm.h-1 day-1) Area**  P24(mm) P72(mm) Alerta-Rio 

24/12/2001 Petrópolis 5017 38 10230 3125.4 Urban 220.1 220.1 Very high 

18/12/2002 Teresópolis 253 14 9200 1293.5 Rural 105.7 171.6 Mean 

04/02/2005 Nova Friburgo 249 0 1050 1788.9 Rural 134.6 170 Mean 

29/11/2006 Teresópolis 248 3 1751 1198.7 Urban 110.5 169.6 Mean 

29/11/2006 Nova Friburgo 545 8 6800 2578.2 Rural 208.8 223 High 

04/01/2007 Petrópolis 525 3 30000 1133.9 Rural 92.2 163.6 Mean 

04/01/2007 Nova Friburgo 4196 11 80000 2238.4 Rural 162.3 395.9 High 

04/01/2007 Teresópolis 229 2 1500 1851.3 Rural 138.6 160.1 Mean 

12/01/2011 Petrópolis 7144 71 * 900.1 Rural 76.1 80.3 No hazards 

12/01/2011 Nova Friburgo 5317 429 * 2594.6 Urban 183.5 201.8 High 

12/01/2011 Teresópolis 15837 392 * 1962.8 Rural 145.5 249.8 High 

06/04/2012 Nova Friburgo 2371 5 10162 1875.1 Urban 173 176.5 High 

15/01/2016 Petrópolis 523 34 152277 1682.4 Urban 128.2 221.4 Mean 

15/01/2016 Teresópolis 144 0 102372 1016.7 Rural 84.2 130.5 No hazards 

* Official sources did not account for an approximate number per municipality, but it is known that more than 1,000,000 people were affected across the region. ** Areas more 313 

impacted (urban and rural). 314 



33 

 

The Rday estimates can be useful to analyze whether a given region can be hit by Rday 315 

that causes rainfall hazards. In addition, the development of Rmaxday maps can be used as a tool 316 

to identify the most vulnerable areas to rainfall hazards. These maps can also be helpful in 317 

planning and managing the reduction of impacts caused by very erosive rains, which occur in 318 

mountainous regions of southeastern Brazil. The spatial distribution of Rmaxday in MRRJ is 319 

presented in Figure 6 and was prepared using the maximum daily precipitation observed in 320 

the last 30 years (1990-2019).  321 

 322 

Figure 6. Rmaxday mapping for the MRRJ considering the last three decades. 323 

 324 

The highest Rmaxday values (≥ 2,500 MJ.ha-1.mm.h-1.day-1) were estimated in southern 325 

Petrópolis, eastern Teresópolis, and the largest part of the Nova Friburgo, matching with the 326 

highest altitudes. The urban areas of Petrópolis and Nova Friburgo are inserted in these 327 

regions, and Teresópolis is in a region where 2,000 < Rmaxday < 2,500 MJ.ha-1.mm.h-1.day-1. 328 

These high values are explained based on the combination of the effects of orographic rainfall 329 
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events due to altitude and proximity to the Atlantic Ocean. Therefore, these are the most 330 

vulnerable areas to rainfall hazards in MRRJ. 331 

Nova Friburgo is the municipality with the highest Rmaxday values. Thus, it is the most 332 

vulnerable to fatalities, damage to infrastructure, economy, and society in general. On the 333 

other hand, it is observed that practically all of the MRRJ presented Rmaxday values > 2,000 334 

MJ.ha-1.mm.h-1.day-1, which is higher than the previously established index (1,500 MJ.ha-335 

1.mm.h-1.day-1), allowing classifying this region as very vulnerable to fatalities, homelessness, 336 

and infrastructure damages. 337 

 338 

4. DISCUSSION 339 

4.1 General aspects of Rday in MRRJ 340 

Despite the lower frequency of erosive events in the last three precipitation classes 341 

(Table 2; P ≥ 51 mm), these are the most expressive events in terms of erosivity, representing 342 

47.6% of the total rainfall erosivity for the region. This fact demonstrates that only an erosive 343 

rain event can easily trigger natural disasters in the region. Thus, the study of these events is 344 

essential for analyzing the occurrence of natural disasters and a more practical index for 345 

issuing warning signs for natural disasters. 346 

In MRRJ, there is a predominance of type I events due to the fact that the Serra do 347 

Mar is close to the Atlantic Ocean, increasing the presence of air humidity, leading to 348 

orographic and convective rains, which are generally of short to medium duration. Mello et al. 349 

(2020) for Mantiqueira Range region, southeast Brazil, also observed the dominance of type I, 350 

which is linked with the pattern of rainfall in tropical regions in summer. Most erosive events 351 

are associated with convective rains, characterized as local events of short duration and high 352 

intensity, increasing the KE values, as well as the maximum values for I30. These rains are 353 

common in the summer, justifying the predominance of Type I. Despite the high magnitude of 354 
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the total precipitation, events classified as Type III generally present lower I30 values since 355 

they come from high-duration frontal systems and less intensity than convective rains. 356 

However, several rainfall hazards are associated with this type of event since they are 357 

responsible for soil saturation, increasing the susceptibility to landslides and floods. It is also 358 

known that the variability in precipitation intensity during these frontal events is small, so that 359 

Type III events do not tend to overestimate Rday even with a higher amount of precipitation 360 

(Xie et al., 2016). Also, the South Atlantic Convergence Zone (SACZ) can hit the Southeast 361 

Brazil in summer, being responsible for several consecutive rainy days, and can therefore be 362 

highlighted as a potential source for types II and III.  363 

Because a rainfall of 13 mm generated some erosive rains, this value is considered 364 

more appropriate as a threshold for erosive rainfall in MRRJ. This value is similar to those 365 

suggested by Xie et al. (2002), who conducted a study to characterize the erosive thresholds 366 

of the rains (from 11.9 to 12.8 mm), as well as Xie et al. (2016), who considered 12.0 mm as 367 

the most appropriate for eastern China, and Wischmeier & Smith (1978) suggested 12.7 mm 368 

for the United States. Mello et al. (2020) observed that none of the studied events smaller than 369 

12 mm was erosive, while some events with precipitation equal to 13 mm were classified as 370 

erosive in the Mantiqueira Range region.  371 

 372 

4.2 Seasonal Rday model for MRRJ 373 

Mello et al. (2020) fitted values of “α”, “η” and “ꞵ” for Mantiqueira range region 374 

equal to 1.8524, 0.2827, and 1.2950, respectively. Comparing these values with those fitted 375 

for the MRRJ, it seems that the “α” parameter, which is responsible for the Rday annual 376 

variation, is intrinsic to each region and did not show any similarity. “Ꞵ” models the non-377 

linearity variation between rainfall and rainfall erosivity (Yang and Yu, 2015; Wang et al., 378 

2017), and therefore the value for MRRJ is similar to that for Mantiqueira range region. It is 379 
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directly related to the rainfall patterns. Finally, “η” is the parameter that models the amplitude 380 

of the interannual variation of “α” and is not similar to the value for the Mantiqueira range 381 

region. Yu and Rosewell (1996) and Xie et al. (2016) fitted this model for eastern China and 382 

Australia, respectively, and found values equal to 0.2686, 0.5412 and 1.7265; and 0.535, 383 

0.306 and 1.46 for “α”, “η”  and “ꞵ”, respectively, as mean parameters of the respective 384 

studied regions. Wang et al. (2017) also fitted a similar model in a subtropical region of China 385 

and found  “α” varying from 1.04 to 3.12, “η” from 0.13 to 0.74, and “ꞵ” from 1.16 to 1.46. 386 

Therefore, it is recommended that each geographical region has its own fitted model since the 387 

parameters are associated with the respective rainfall pattern. 388 

The behavior of the fitted model for MRRJ is similar to those found by Xie et al. 389 

(2016) and Mello et al. (2020), who found that this model shows an overestimation behavior 390 

for the lowest Rday values and produces better results for more intense rainfall events, which 391 

generate higher erosivity values. Despite the similarity of the results, Xie et al. (2016) and 392 

Mello et al. (2020) did not relate the model’s performance to I30 behavior. In general, the 393 

model fits reasonably well to MRRJ, since the predominant I30 class in the region is 25 - 75 394 

mm h-1 (Figure 4). 395 

 396 

4.3 Rday and rainfall hazards in MRRJ: application of Rday and comparison with 397 

previous indexes 398 

In this section, it is highlighted the main impacts of the rainfall hazards and respective 399 

Rday, which enable us to propose thresholds for Rday in MRRJ (Table 3), and to compare it 400 

with the previous existent. Petrópolis county was hit by a rainfall event in 2001 (220.1 mm in 401 

24 hours) impacting the urban area, causing 38 fatalities (Rday > 3,000 MJ ha-1 mm h-1 day-1). 402 

Similarly, the Teresópolis county was hit by rainfall in 2002 that resulted in Rday ranging from 403 

500 to 1,000 MJ.ha-1.mm.h-1.day-1 in most part of its area. These events led to 11 fatalities and 404 
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more than 9200 habitants affected. In the northern area, Rday reached 1,500 MJ.ha-1.mm.h-405 

1.day-1 and caused people to be buried by landslides. The Rday values in the urban area of 406 

Nova Friburgo in 2005 ranged from 500 to 1,500 MJ.ha-1.mm.h-1.day-1 affecting 1050 407 

inhabitants, and leaving 249 homeless. The Rday values in the rural area were between 1,500 408 

and 2,000 MJ.ha-1.mm.h-1.day-1. The municipalities of Nova Friburgo (545 homeless and eight 409 

fatalities), and Teresópolis (with 248 homeless and three fatalities) were severely affected 410 

again in 2006. In this year, the Rday values covered all the classes, with the highest values > 411 

2,000 MJ.ha-1.mm.h-1.day-1. The years of 2007 and 2011 had the highest Rday values and the 412 

greatest spatial coverage, resulting in 16 fatalities and 111,500 inhabitants affected. 413 

The rainfall disaster that occurred in 2011 deserves special attention, since it was the 414 

worst observed in Brazil (Cardozo and Monteiro, 2019). This disaster not only caused a high 415 

number of fatalities, but also significant economic losses and damages. Petrópolis, 416 

Teresópolis and Nova Friburgo recorded the highest number of victims in MRRJ. The greatest 417 

impact in Nova Friburgo was observed predominantly in the urban area, while in the other 418 

two municipalities were on the rural areas (Busch and Amorim, 2011; Cardozo and Monteiro, 419 

2019).  The Rday values in Nova Friburgo exceeded 2,500 MJ.ha-1.mm.h-1.day-1, and the entire 420 

urban area presented values varying from 1,500 to > 2,000 MJ.ha-1.mm.h-1.day-1, which 421 

resulted in 434 fatalities (47% overall) (Cardozo et al., 2017, 2018; Cardozo and Monteiro, 422 

2019). On the same day, the total number of homeless in Teresópolis reached 15,837 423 

inhabitants, and it is estimated that more than 1 million people were affected in the three 424 

municipalities.  425 

Nova Friburgo was again affected by similar natural disasters in 2012, however, unlike 426 

in 2011, they impacted the region in a more isolated way. Rday values ranged from 500 to 427 

2,000 MJ.ha-1.mm.h-1.day-1, resulting in five fatalities, 2,371 homeless and more than 10,000 428 

affected inhabitants. In analyzing the year 2016 (Figure 5), it is observed that there was a 429 
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considerable spatial range of the Rday values, with emphasis on the municipality of Petrópolis 430 

(34 fatalities, 523 displaced people, and 152,277 inhabitants affected). The fact that the 431 

number of victims decreased after the 2011 disaster compared to the number of victims in the 432 

years 2012 and 2016 indicates that the public policies, mainly the creation of structures such 433 

as CEMADEN, the Technical Support and Emergency Task Force at the National Secretariat 434 

for Civil Defense and the National Force of Brazilian Health System (SUS) had a positive 435 

effect on the protocols associated with natural disaster management. 436 

Based on these data, it is possible to suggest some thresholds and possible impacts 437 

related to them. However, such thresholds do not necessarily mean that impacts, especially 438 

fatalities, may occur, since the system for protecting the population from these events is 439 

currently more structured than in the past. Therefore, we have: (i) Rday > 1,500 MJ.ha-1.mm.h-440 

1.day-1 presents a “very high” possibility of fatalities; “very high” number of homeless people; 441 

and “very high” possibility of social, economic and infrastructure damages. In these cases, the 442 

alert system must be activated immediately and the rescue teams must be properly prepared; 443 

(ii) 1,000 < Rday <1,500 MJ.ha-1.mm.h-1.day-1 shows “high” possibility of fatalities, “very 444 

high” possibility for homeless people, and “high” possibility of causing damage to 445 

infrastructure and economy; (iii) 500 < Rday <1,000 MJ.ha-1.mm.h-1.day-1 “medium” 446 

possibility of fatalities in the urban area and “low” possibility in the rural area, “medium” 447 

impact in terms of homelessness, and “medium to low” possibility of causing damage to the 448 

infrastructure and economy; (iv) Rday < 500 MJ.ha-1.mm.h-1.day-1 shows “very low” 449 

possibility of fatalities, “low” number of homeless people, and “low” possibility of economic 450 

and infrastructure losses. 451 

According to the classification presented by Alerta-Rio, only one event of all the eight 452 

extreme events which caused great human and economic losses, or 14 if the municipalities are 453 

considered separately (Table 3), could be classified as “very high” risk, five as “high”, six as 454 
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“medium” and two were not classified, meaning they were not considered as causing natural 455 

disasters. 456 

Among these events, the 3rd largest rainfall accumulated in 24 hours (183.5 mm) was 457 

the cause of the “mega-disaster” observed in MRRJ. According to the Alerta-Rio 458 

classification, this event would be classified as “high” risk (not “very high” risk as Rday). 459 

Although this event was the 3rd largest in terms of precipitation accumulated in 24 hours, it 460 

presented the 2nd highest Rday value (2,594 MJ.ha-1.mm.h-1.day-1). This demonstrates how the 461 

proposed index is more comprehensive as a warning of natural disasters. 462 

Considering the two events that were not classified by the Alerta-Rio since the 463 

accumulated precipitation in 24 hours was below 85 mm, it is observed that these events had 464 

Rday values close to 1,000 MJ.ha-1.mm.h-1.day-1, which caused 71 fatalities. The other event, 465 

although no fatality was observed, affected more than 100 thousand inhabitants and left 144 466 

families homeless. The alert system would have been triggered when applying Rday, and much 467 

of the impact would have been minimized. 468 

Among the three criteria studied by Oliveira et al. (2016), criterion A is the least 469 

restrictive. Of the events presented in Table 3, only one (occurred on Jan-12, 2011) in the 470 

municipality of Petrópolis is not considered to cause landslides, when the precipitation 471 

accumulated in 72 hours is analyzed. The same result is obtained for criterion B.  472 

Criterion C constraints the occurrence of landslides. The event that hit Petrópolis in 473 

12/01/2011 was discarded as a cause of landslides in criteria A and B, as well as the event of 474 

Jan-15, 2016) in Teresópolis. These two events are the same that are not classified by Alerta-475 

Rio, and together they affected thousands of people. Oliveira et al. (2016) emphasize that 476 

thresholds established for the most restrictive criteria do not separate events with landslides 477 

from those without landslides but are identified together with multiple disasters. 478 
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Comparing both early warning indexes (Figure 5) spatially, one can observe a 479 

sensitivity of the Rday index, especially in the rainfall hazards in which fatalities were 480 

observed. Examples are the events of 2001, 2006, 2007, 2011, and 2016. The Alerta-481 

Rio index would emit a “high” warning in all these years, while Rday displays an “every 482 

high” warning for fatalities. Call attention 2011 event, the most severe rainfall hazard in 483 

Brazil. In this case, only a tiny spot would be warned as a “very high” warning, being the 484 

most significant part of the most affected area receiving a “high” warning. Otherwise, Rday 485 

would emit a “very high” possibility for fatalities in most of this area. We can see that more 486 

than 400 people died because of this event. In this direction, the event of 2016 would be 487 

understood as a “mean” warning using Alerta-Rio, whereas Rday would emit a “very high” 488 

warning (34 fatalities + more than 150,000 people displaced). Therefore, proposing Rday as a 489 

new early warning index proved to be more sensitive and more accurate with the impacts 490 

provoked by the rainfall because this index encompasses more information regarding the 491 

nature of heavy rainfall. Besides, it is easy to calculate and apply as a warning index for the 492 

MRRJ.  493 

It should be noted that the occurrence of natural disasters in a region is inevitable since 494 

they depend on climatic variables. However, the consequences caused by these events not 495 

only depend on climatic factors, but also on political, social, and economic factors. Thus, an 496 

effective EWS must comprise four main components: knowledge of risk, monitoring, 497 

communication structures and efficient alerts, and lastly precautions, all of which need 498 

application of efficient public policies. 499 

 500 

5. CONCLUSIONS 501 

Rday addresses fundamental physical aspects associated with precipitation, its energy, 502 

as well as the mean and maximum intensities over a 30-minute time interval, being more 503 
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sensitive than those which have been used in Brazil. Considering warning indices based only 504 

on the total rainfall or intensity of rainfall has not been shown to be sufficient to understand 505 

the complex dynamics of an extreme rainfall event, as its consequences are not only caused 506 

by water accumulation, but mainly by the dissipation of accumulated energy. Rday values can 507 

integrate national databases on the most vulnerable areas and specify risk management 508 

strategies and disaster response approaches, especially in places with the highest 509 

concentrations of exposed people. Further conclusions are: 510 

a) The Rday model had superior performance of other studies with the same model 511 

and can be applied to additional studies related to rainfall  disasters in Brazil.  512 

b) All events with Rday > 1,500 MJ.ha-1.mm.h-1.day-1 would fatally impact the region, 513 

and therefore areas historically affected by these events should be considered more 514 

prone to natural disasters. 515 

c) Using the fitted model for Rday estimates, it was found that the municipality of 516 

Nova Friburgo, and the south of the municipality of Petrópolis are very vulnerable 517 

to natural disasters from the climatic point of view, with the highest  Rmaxday 518 

values. 519 

d) January was historically the period with the highest daily erosivity values, in 520 

which all precipitation events used for developing the Rmaxday map occurred in the 521 

first or second half of this month. 522 
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Rainfall disasters under the changing climate: a case study for the Rio de Janeiro mountainous region 1 

 2 

Abstract 3 

Climate change impacts the erosive power of rain, influencing mountainous landscapes' vulnerability to 4 

natural disasters. This study evaluated the spatiotemporal projections of daily rainfall erosivity (Rday), an 5 

efficient warning index for rainfall disasters, under climate change. The objectives of this study were to project 6 

spatially Rday across the Mountain Region of the Rio de Janeiro State (MRRJ), one of the most vulnerable 7 

regions to rainfall disasters in Brazil, and to analyze the frequencies of Rday values throughout the 21st century. 8 

Two greenhouse gas emission scenarios (RCP 4.5 and 8.5), approximating the current status in South America, 9 

and a high-resolution climate model (the HadGEM2-ES physically downscaled to 5 km resolution by the 10 

Eta/CPTEC model) were applied to estimate daily rainfall values over the MRRJ. The mapping of the maximum 11 

Rday values in 30 years (Rmaxday) showed that the entire MRRJ is highly susceptible to rainfall disasters 12 

throughout the 21st century, with intensification around 2040-2071. Urban areas, where fatalities have been 13 

recorded, have been the most vulnerable due to the high frequency of heavy rainfall. The projections for the 21 st 14 

century indicated that 17 (under RCP4.5) and 15 (under RCP8.5) events like the "mega-disaster" could hit the 15 

study region. Thus, public policy efforts should focus on effective stormwater management actions to mitigate 16 

the impacts caused by such disastrous events in this century. 17 

Keywords: daily rainfall erosivity; natural disasters; mountainous region; climate change Brazil. 18 

 19 

Introduction 20 

Natural disasters are the consequences of extreme events that cause significant impacts on the social, 21 

economic, environmental, or even psychological balance of people (Alexander et al., 2021). For example, floods 22 

and landslides caused by heavy rainfall are the most frequent natural disasters that affect humanity, causing 23 

thousands of deaths annually worldwide (Alexander et al., 2021).  24 

Based on several studies worldwide, Lukic et al. (2013) reported that natural hazards have increased 25 

over time. From an economic point of view, the damages caused by natural hazards increased from several tens 26 

of billion dollars in the first seven decades of the last century to 380 billion dollars in 2011. The same was 27 

observed for fatalities, which globally impacted more than 24,000 lives per year between 1977 and 1997 to over 28 

70,000 in 2011. Analyzing statistics published by Lukic et al. (2013), in America continent, 63% of the hazards 29 

are due to hydrological and meteorological events, such as severe storms, floods, and landslides. In Asia and 30 

Africa, 80% and 36% of natural hazards have occurred because of hydrological and meteorological events. In 31 

Europe and Oceania, natural hazards are considerably lower, 12% and 8%, from hydrological and meteorological 32 

causes. 33 

Significant impacts of climate change have been observed in extreme heat, droughts, coastal flooding, 34 

erosion, wildfires, floods, and landslides. In South America, these drivers impact agricultural production, water 35 

availability, desertification of tropical biomes, and mass change in glaciers, which increase floods, soil erosion, 36 

and landslides (IPCC, 2022).    37 

Natural disasters have hit South America, increasing the trends in climatic variability and extreme 38 

events, such as rainfall and droughts. In some regions of South America, especially in the southeast, a trend in 39 

precipitation has been observed. Projects from RCP4.5 and RCP8.4 scenarios indicate an increase of 25% in this 40 
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region of South America (IPCC, 2022), which can potentially increase the occurrence of rainfall hazards in 41 

several regions, like the mountains of southeast Brazil, where Rio de Janeiro is located. It is essential to highlight 42 

the magnitude and frequency of extreme rainfall in South America and its projections. Chou et al. (2014a) 43 

projected a decrease in heavy rainfall considering an increase of 1.5oC; however, Imbach et al. (2018) projected 44 

an increase in the frequency of the R50mm, i.e., an increase in the number of days with rainfall greater than 50 45 

mm for global warming of 2oC and 4oC.  46 

In Brazil, landslides and floods are the main ones responsible for the greatest impacts from natural 47 

hazards with a number of fatalities (CEPED, 2012). These hazards are triggered by extreme rainfall, leading to 48 

many fatalities in this country every year, especially in areas geomorphological prone to landslides, such as the 49 

mountains region of southeast Brazil. Thus, the increase in the frequency and intensity of extreme rainfall, in 50 

combination with the high degree of susceptibility of the population in risk areas, has triggered these disasters in 51 

the country, especially in mountainous regions with high geological risk (Fernandes and Rodrigues, 2018; 52 

Amorim and Chaffe, 2019). Some mountainous regions of Brazil are places where geomorphological features, 53 

deforestation of the Atlantic Forest, recurrent heavy rainfall (Freitas et al. 2012), and the uncontrolled growth of 54 

urban areas potentiate the consequences arising from natural disasters (Mello et al. 2020). One of the regions 55 

most affected by extreme rainfalls is the Mountain Region of the Rio de Janeiro State (MRRJ), which is one of 56 

the most vulnerable to rainfall disasters in the country (Freitas et al., 2012; Brasil, 2012; Bitar, 2014; Oliveira et 57 

al. 2016). This region suffered many events that resulted in several fatalities, such as the so-called "mega-58 

disaster" in 2011 (Alves et al. 2022). The most recent hit the city of Petropolis in February 2022, causing the 59 

death of 231 people (Alcântara et al., 2022). This event, in meteorological terms, was extraordinary, bringing 60 

252 mm of rain in three hours. 61 

Determining indexes applied to alert/warning systems to mitigate the impacts caused by rainfall 62 

disasters is always challenging. The document of the World Conference for Disaster Reduction in Japan in 2005 63 

warns of the need to develop indicator systems at different levels of scope to enable a better diagnosis and 64 

response to risk situations and vulnerability by decision-makers (Silva et al. 2016). In this sense, some studies 65 

have evaluated the efficiency of the Monitoring and Alert System (MAS) ("Early Warning System") indicators 66 

in reducing risks related to economic impacts, in addition to the risks of fatalities (Webster, 2013; Alvalá et al. 67 

2019). As intense rainfalls trigger these events in Brazil, indexes are used as an early warning based on their 68 

temporal behavior. Weather forecasting can be reliable if made up to 72 hours in advance (Oliveira et al. 2016). 69 

Thus, rainfall (accumulated and its intensity) composes most of the MASs (Calvello et al., 2015; Mello et al., 70 

2020; Alves et al., 2022). 71 

Some indexes are widely used in Brazil and the world, such as the accumulated rainfall in the last 24, 72 

48, 72, and 96 hours, the rainfall intensity (mm/h), or their combinations (Oliveira et al. 2016; Calvello et al. 73 

2015; Silva et al. 2020). Some studies also used rainfall erosivity and other rainfall indexes to identify areas 74 

more prone to landslides in Europe. Lukic et al. (2021) applied the Angot Precipitation Index to study rainfall 75 

erosivity behavior in the Vojvodina region, Serbia and observed a good performance of this index to identify the 76 

aggressiveness of rainfall and its correlation with soil water erosion. Ponjiger et al. (2021) applied the daily 77 

rainfall erosivity and respective density erosivity to identify areas more susceptible to water erosion in the 78 

Pannonian Basin, Central Europe. Although they applied the model and respective parameters proposed by 79 

Zhang et al. (2002) to China, they identified the seasons in which rainfall erosivity has been marked, enhancing 80 
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the assessment of the aggressiveness of rainfall erosivity in southern Europe. Morar et al. (2021) also studied 81 

rainfall erosivity as a predictor for natural hazards in the Ciuperca region, Romania, using monthly rainfall data. 82 

Besides rainfall erosivity, they applied the Precipitation Concentration Index (PCI) and Modified Fournier Index 83 

(MFI), both good indexes related to the aggressiveness of rainfall. In another study carried out in Belgrade, 84 

Serbia, Lukic et al. (2018) also applied the PCI and MFI and observed a moderate aggressiveness of rainfall, 85 

which, together with the geological features, demonstrated the vulnerability of the studied region to natural 86 

hazards triggered by rainfall. 87 

However, these indexes may be inefficient in some cases (Calvello et al., 2015; Mello et al., 2020). 88 

Thus, Mello et al. (2020) established an alert climate index (Rday) related to the maximum daily rainfall erosivity 89 

for the Mantiqueira range region (Southeast Brazil) based on the impact of the rain, rainfall amount, and rainfall 90 

intensity. This index is based on rainfall erosivity, a climatic index that portrays the impacts of energy dissipated 91 

by raindrops on the surface. Thus, it is a more comprehensive index than the others to predict hazards, especially 92 

fatalities. This concept was initially proposed and defined by Wischmeier and Smith (1958) as the product 93 

between the kinetic energy of raindrops (Ek) and the maximum rainfall intensity in 30 consecutive minutes (I30), 94 

designated as EI30. When applied on a daily scale, it can help better understand the role of heavy rainfall in 95 

natural disasters (Alves et al., 2022; Mello et al., 2020).   96 

A rainfall network with a temporal resolution < 15 min for the computation of daily rainfall erosivity 97 

(Rday) is often lacking in Brazil. Thus, applying a model for Rday estimation based on daily rainfall data, which 98 

are more accessible and spatially distributed, is critical to linking heavy rainfall events to natural disasters (Chen 99 

et al., 2020). In this aspect, Alves et al. (2022) developed a similar index for MRRJ. This index is based on Yu 100 

and Rosewell's (1996) study, which proposed a method to estimate the seasonality of Rday, and on the index 101 

established by Mello et al. (2020). 102 

In this context, climate change and its impacts on the magnitude and frequency of rainfall disasters are 103 

uncertain, especially in regions with significant orographic influences (Lyra et al., 2017). Disasters involving 104 

landslides have become more frequent and severe during the last decades (CEPED, 2013), especially in 105 

mountainous regions of Brazil (Mello et al., 2020). Such facts demonstrate evident changes in the heavy rainfall 106 

pattern (IPCC, 2013), and rapid population growth, which result in disorganized urbanization (IPCC, 2022).  107 

It is a fact that climate change has impacted the rainfall pattern in Brazil, with clear changes in rainfall 108 

erosivity. However, most studies have focused on annual rainfall erosivity (or RUSLE's R-factor) (Riquetti et al., 109 

2020; Mello et al., 2015), which needs to be further understood as impacts on extreme rainfall events. This study 110 

brings as novelty an assessment of climate change impacts on daily rainfall erosivity (Rday), being the first 111 

investigation in this regard in Brazil. Studies of climate change impacts on daily rainfall remain little studied in 112 

tropical and mountainous regions, and their contribution to preventing rainfall hazards is essential. Using a daily 113 

rainfall erosivity model, it is possible to assess the frequency of heavy rainfall, respective Rday, and impacts of 114 

rainfall disasters using daily rainfall projections over the century. 115 

The objectives of this study were to i) apply a seasonal model to calculate Rday for the MRRJ throughout 116 

the 21st century, using a high-resolution climate model (HadGEM2-ES physically regionalized by the ETA-117 

CPTEC model in the 5 km spatial scale – the 5-km Eta-HadGEM2-ES), and the RCP4.5 and 8.5 IPCC scenarios, 118 

ii) map the maximum daily rainfall erosivity (Rmaxday) to assess the most vulnerable areas of MRRJ throughout 119 
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the present century, and iii) to project the frequency of Rday > 500 MJ mm (ha h)-1 day-1 (a threshold for the 120 

harmost events) throughout the 21st century. 121 

 122 

Material and Methods 123 

Some aspects of the mountain region of the Rio de Janeiro State (MRRJ) 124 

 The MRRJ is located in the Serra do Mar and is characterized by mountainous to steep relief, with 125 

altitudes ranging from 400 to 2350 meters (Figure 1). It is located in the unit called "Planalto Reverso" (Garcia 126 

and Francisco, 2013), and the soils are predominantly shallow, moderately permeable, and have low natural 127 

fertility (Pinto et al., 2018).  128 

The geographic location of the three most populous municipalities, Petrópolis (792 km²), Teresópolis 129 

(773 km²), and Nova Friburgo (936 km²), and the digital elevation model for the entire region are shown in 130 

Figure 1. The location of the rainfall stations from the National Water and Sanitation Agency (ANA) and the 130 131 

grid points for which the daily rainfall data of the climate projections used in this study are also presented. These 132 

three municipalities represent almost 80% of the entire MRRJ population (IBGE, 2010) and have been the most 133 

affected by rainfall disasters in Brazil (Alves et al., 2022; Coelho Netto et al., 2013). 134 

 135 

Figure 1. The geographical location of MRRJ (a), with emphasis on Nova Friburgo, Petrópolis, and Teresópolis, 136 

annual precipitation map (b), relief (slope) map (c), and the grid points obtained by the 5-km Eta-HadGEM2-ES 137 

model and locations of the ANA rain-gauges (d). 138 

 139 

The entire MRRJ was originally covered by Atlantic Forest, which was removed to make way for 140 

plantations, pastures, and urban centers. Despite currently being fragmented and degraded, especially around 141 

urban areas, the Atlantic Forest still represents more than 50% of the region's vegetation cover (Coelho Netto et 142 

al., 2013; Garcia and Francisco, 2013; Cardozo and Monteiro, 2019). Garcia and Francisco (2013) found that this 143 

biome is present in the steepest and most elevated places. It suffers from fires during the dry period, resulting in 144 

the destruction of its vegetation cover, making the surface more susceptible to landslides caused by rain in the 145 

summer. 146 
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The climate of the MRRJ is Cwb (Köppen climate-type), meaning a mild temperate climate with dry 147 

winters and rainy summers. The average annual temperature is approximately 16°C and the average temperature 148 

of the hottest month is below 22°C (Coelho Netto et al. 2013). Summers are rainy (more than 70% of rainfall 149 

occurs between October and March) (André et al. 2008), and winters are cold and dry (Dourado et al. 2012). The 150 

rainfall pattern in the MRRJ is driven by several climatic phenomena, such as i) frontal systems, which act 151 

throughout the year and which, combined with the humidity of the Atlantic Ocean, bring significant amounts of 152 

rain, ii) convective rains in summer, iii) South Atlantic Convergence Zone (SACZ) during the summer, iv) 153 

orographic effects, v) tropical and subtropical cyclones, and vi) maritimity (Reboita et al. 2010).  154 

 155 

Daily rainfall erosivity (Rday) model to MRRJ 156 

The seasonal model of daily rainfall erosivity fitted by Alves et al. (2022) is based on the studies by Yu 157 

and Rosewell (1996) and was used for this study.  158 

 159 

  (1)          160 

 161 

In which j is the fortnight (ranging from 1 to 24) and P is the daily precipitation in a 24-hour interval (mm). It is 162 

important to highlight that this model represents the MRRJ since it was determined based on data from 68 163 

stations with precipitation data with a temporal resolution of 10 minutes. The precision statistics presented and 164 

discussed by the author showed satisfactory results for estimating the Rday (calibration: CNS = 0.51; Pbias = -0.56) 165 

and (validation: CNS = 0.50; Pbias = -2.22). 166 

Equation 1 was applied to the daily rainfall data obtained from the ANA rain-gauges to the historical 167 

data (baseline) and the climate projections provided by the Global Circulation Climate Model (GCM) 168 

(HadGEM2-ES) downscaled by a physical model, the Eta/CPTEC (5-km Eta-HadGEM2-ES). 169 

Maximum daily rainfall erosivity (Rmaxday) maps were developed considering the highest Rday values 170 

observed at each grid point provided by the 5-km Eta-HadGEM2-ES model (Figure 1) for the historical period 171 

(1961-2005) and three different periods throughout the 21st century (2006-2040, 2041-2070 and 2071-2099). In 172 

addition, percentage variation maps of future periods were prepared and referred to the historical data. These 173 

maps make it possible to detect areas with greater susceptibility to natural disasters caused by extreme 174 

precipitation events throughout the century. 175 

 176 

Climate change projections of Rday using a high-resolution climate model for the MRRJ 177 

The Eta Regional Climate Model (RCM) was refined by Chou et al. (2012) and Marengo et al. (2012) to 178 

provide downscaling of climate change projections in South America at a spatial resolution of 0.20° × 0.20° (20 179 

km horizontally and 38 layers vertically) nested to the HadGEM2-ES, MIROC5, BESM and CANESM2 global 180 

climate models (GCMs). Its most recent version was described in detail by Mesinger et al. (2012) and evaluated 181 

for long-term simulations by Pesquero et al. (2010), Flato et al. (2013), and Chou et al. (2012, 2014a, b). 182 

The orographic influence on precipitation should be considered to improve the simulation results (Brito 183 

et al., 2016; André et al., 2008). Therefore, the spatial resolution of 20 km produces insufficient results for 184 

analyzing the frequency of extreme events that cause natural rainfall disasters (Chou et al., 2014a). Thus, a 185 

downscaling process was carried out using the Eta-CPTEC model for a 5-km resolution to overcome the coarse 186 
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resolution (20 km), nesting it to the HadGEM2-ES GCM under the RCP4.5 and RCP8.5 emission scenarios in 187 

the period from 1961 to 2100. However, due to the high computational demand, only the Eta-HadGEM2-ES was 188 

regionalized for the 5 km scale and is only available for Southeastern Brazil (where MRRJ is located). Lyra et al. 189 

(2017) detailed this higher spatial resolution version. 190 

In the Fifth Assessment Report (AR5) of the Intergovernmental Panel on Climate Change (IPCC, 2013), 191 

greenhouse gas concentration scenarios are based on two "Representative Concentration Pathways" (RCP), 192 

which are expressed in terms of radiative forcing to the end of the 21st century. The scenarios used in this study 193 

were RCP8.5 and RCP4.5 (Van Vuuren et al. 2011), the only ones available for South America. RCP4.5 is 194 

considered an intermediate scenario that assumes greenhouse gas emissions stabilization from the middle of the 195 

21st century. This scenario considers a global radiative forcing of approximately 4.5 W.m-2. On the other hand, 196 

RCP8.5 is a scenario that considers an increase in greenhouse gas emissions by the end of the century, meaning 197 

that no implementation of climate policies and continued acceleration of the use of fossil fuels. 198 

Historical (baseline) data (1961-2005) and climate projections (2006-2099) of daily rainfall for 199 

calculating Rday values considering both scenarios were obtained from the Weather Forecast and Studies Center 200 

of the National Institute for Space Research (CPTEC/INPE) on the platform called "PROJETA" (Holbig et al. 201 

2018) (https://projeta.cptec.inpe.br/#/about).  202 

The validation of the 5-km Eta-HadGEM2-ES model to estimate Rday was conducted with the 203 

application of the seasonal model of daily erosivity in the period from 1980 to 2005 (26 years) to calculate the 204 

long-term annual average rainfall erosivity (R-factor) considering the data obtained from three ANA rain-gauge 205 

stations and the 5-km Eta-HadGEM2-ES for the same period. Daily rainfall < 13 mm was not considered 206 

erosive, according to the Alves et al. (2022) study, and thus was not considered in the R-factor calculation.  207 

 208 

Critical thresholds of Rday MRRJ  209 

Rday thresholds are values proposed to identify and alert areas most vulnerable to natural disasters 210 

(Mello et al. 2020). These limits have been established through a joint analysis of Rday values calculated for 211 

rainfall events that caused disasters concomitantly with the consequences observed in recent decades. As a result, 212 

the following values were proposed for the MRRJ by Alves et al. (2022):  213 

i) Rday > 1,500 MJ.ha-1.mm.h-1.day-1: "very high" possibility of fatalities; "very high" number of 214 

homeless; and "very high" possibility of damage in general  215 

ii) ii) Rday between 1,000 and 1,500 MJ.ha-1.mm.h-1.day-1: presents a "high" possibility of 216 

fatalities, a "very high" number of homeless, and a "high" possibility of causing damage to 217 

infrastructure and economy  218 

iii) iii) Rday between 500 and 1,000 MJ.ha-1.mm.h-1.day-1: "medium" possibility of fatalities in 219 

urban areas and "low" in rural areas, "medium" impact in terms of homeless, and "medium" 220 

possibility of causing damage to infrastructure and economy  221 

iv) iv) Rday < 500 MJ.ha-1.mm.h-1.day-1: "very low" possibility of fatalities, a "low" number of 222 

homeless, and a "low" possibility of damage to the economy and infrastructure. 223 

 224 

The established Rday limits were used to classify the Rmaxday maps, and the thresholds 1,000 < Rday < 225 

1,500 MJ.ha-1.mm.h-1.day-1 and Rday > 1,500 MJ.ha-1.mm.h-1.day-1 were also specifically used to analyze the 226 

https://projeta.cptec.inpe.br/#/about
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frequency of events causing natural disasters throughout the 21st century as they imply possible fatalities. 227 

Therefore, the frequency of these events over the baseline and the three periods (1976-2005, 2011-2040, 2041-228 

2070, 2070-2099) was analyzed. It is possible to observe a slight change in the intervals considered to analyze 229 

the frequency of these events used to map the Rmaxday to consider periods of 30 years of data. Thus, 3900 events 230 

were analyzed for each time slice, 30 for each of the 130 grid points generated by the 5-km Eta-HadGEM2-ES 231 

model (Figure 1). 232 

Figure 2 presents a flowchart with the steps to calculate the daily rainfall erosivity for the baseline and 233 

time slices throughout the century and the conversion of these values to assess the rainfall hazards in MRRJ. 234 

 235 

Figure 2. Flowchart with the methodology used to assess the rainfall hazards in MRRJ. 236 

Results and Discussion 237 

 238 

Performance of the high-resolution climate model (5-km Eta-HadGEM2-ES model) to calculate rainfall 239 

erosivity in the MRRJ 240 

 241 

To evaluate the high-resolution climate model in estimating daily rainfall erosivity, we examined its 242 

capability to account for RUSLE's R-factor estimation, i.e., the long-term average annual rainfall erosivity, given 243 

that R-factor values and patterns are well-known in the study region. Therefore, the R-factor for the ANA rain 244 

gauges of Petrópolis, Nova Friburgo, and Teresópolis (Figure 1) was detailed. The R-factor calculated for these 245 

three rain gauges using daily rainfall projected by the high-resolution climate model showed a good agreement 246 

with the R-factor calculated based on the daily rainfall observed in the ANA rain-gauge stations. The R-factor 247 

was 8,537; 10,554 and 7,639 MJ.ha-1.mm.h-1.year-1, respectively, to Petrópolis, Nova Friburgo, and Teresópolis, 248 

using the observed daily rainfall. Considering the daily rainfall from the 5-km Eta-HadGEM2-ES climate model, 249 

R-factor was 9,566 (an overestimate of 10.29%) to Petrópolis, 9,886 (an underestimate of 6.67%) to Nova 250 

Friburgo, and 6,057 MJ.ha-1.mm.h-1.year-1 (an underestimate of 15.82%) to Teresópolis. These results 251 

demonstrate a good correspondence between the R-factor estimated based on the climate model and 252 
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observations. Furthermore, we can state that this model was able to cope with the strong orographic influence on 253 

the rainfall in the region since the ANA rain gauges are located in different locations and altitudes of the MRRJ 254 

(see isohyets contour in Figure 1).  255 

Yin et al. (2013) demonstrated through 11 GCM simulations that the HadGEM2-ES model had the best 256 

performance under surface conditions and atmospheric circulation (Chou et al., 2019). Furthermore, in analyzing 257 

19 global climate models, Gulizia and Camilloni (2015) concluded that HadGEM2-ES presented the highest 258 

spatial correlation between simulated precipitation values and those observed for South America in the baseline. 259 

These studies support the 5-km Eta-HadGEM2-ES model to appraise erosivity events throughout the 21st 260 

century. It is also needed to highlight the relevance of using a physical model for downscaling the outputs from a 261 

GCM in mountainous regions to better capture the orographic effects (Chou et al., 2014a), which is a 262 

considerable aspect of the MRRJ climate pattern.  263 

The estimation of Rday has been useful in identifying the most vulnerable areas to natural disasters and 264 

analyzing the frequency of events associated with these disasters. Although the results of this study were only 265 

applied to the MRRJ, the proposed methodological framework can be transferred to other vulnerable areas in the 266 

country since there are data with a temporal resolution of 15 minutes for modeling Rday. 267 

 268 

Rmaxday mapping in the MRRJ throughout the 21st century 269 

 Figure 3 shows the spatial distribution of Rmaxday and its percentage variation throughout the 21st century 270 

regarding the baseline in MRRJ considering the 5-km Eta-HadGEM2-ES model projections. Rmaxday corresponds 271 

to the maximum value calculated by considering a time series with at least 20 years of daily rainfall erosivity 272 

(Mello et al., 2020). 273 

 274 

 275 

Figure 3. Rmaxday baseline map (a) and maps of the Rmaxday and respective relative changes in relation to the 276 

baseline throughout the 21st century (RCP4.5: b-g; RCP8.5: h-m). 277 

  278 

 Considering the baseline map (3a) and maps for the time slices in the RCP4.5 (3b - 3g), almost the 279 

entire MRRJ is hit by rainfalls that result in Rmaxday values that cause disasters with different consequences. 280 
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However, regardless of the climatic scenarios, the period with the most extensive spatial coverage of Rmaxday 281 

values > 1,500 MJ.ha-1.mm.h-1.d-1 is from 2070 to 2099 (Figures 3f – RCP4.5 and 3l – RCP8.5), especially for 282 

the RCP8.5, where the positive relative changes (Figures 3l and 3m) dominate the north region of the largest 283 

municipalities. Worthwhile that it is essential to highlight the concentration of these events in the urban areas of 284 

Petrópolis and Nova Friburgo, which might result in fatalities.  285 

The 2011-2040 time slice (Figures 3b and 3h, respectively, for RCP4.5 and RCP8.5) presented Rmaxday 286 

values predominantly in the 500 < Rmaxday < 1,000 MJ.ha-1.mm.h-1.d-1 class in Nova Friburgo and Teresópolis, 287 

especially for RCP8.5 (Figure 3h). However, for this same time slice, an increase in Rmaxday in Petrópolis in the 288 

ranges that encompass values > 1,000 MJ.ha-1.mm.h-1.d-1 were detected, meaning an increase in the magnitude of 289 

the events that can potentially cause significant hazards and fatalities. Thus, in this time slice, which we are 290 

crossing now, Petrópolis has been the most vulnerable municipality of the MRRJ to rainfall hazards. This aspect 291 

has been observed recently (Alves et al., 2022). 292 

Maps of the relative changes are also presented for both scenarios and were generated to understand the 293 

spatial variation of Rmaxday values regarding the baseline. Positive values mean an increase in Rmaxday, and 294 

negative values represent a decrease in magnitude. Compared to the baseline, there is a decrease in Rmaxday for 295 

the 2011-2041 time slice (Figures 3c and 3i). Except for the southern of the three municipalities and the 296 

southwest and central region of Petrópolis, negative values were predominant, meaning a decrease in the Rmaxday 297 

values in MRRJ throughout the century. Although this decrease, Rmaxday still represents a very harmful situation 298 

for MRRJ and needs to be considered carefully in the following decades. 299 

The 2011-2040 time slice projections are less uncertain than the other time slices as we are in the 300 

middle of this period, allowing better initial conditions and assumptions for running the model (IPCC, 2022). In 301 

this situation, we can expect an increase in the Rmaxday values for areas of the MMRJ, requiring a careful 302 

implementation of actions to minimize rainfall hazards, especially in the Petrópolis region.      303 

These results imply that further attention to the areas that showed positive changes in Rmaxday must be 304 

implemented by the federal and state governments, focusing on the summer and spring periods as such areas are 305 

the most vulnerable in the present to landslides and will be throughout the century. Actions like improving the 306 

warning systems and meteorological and geological monitoring stations need to be expanded. In contrast, the 307 

municipalities need to plan strategies to minimize fatalities, such as ready emergency staff that can respond 308 

shortly to the crises and rethink the occupation of these areas in the middle term.     309 

       310 

Frequency of the greatest Rday events in MRRJ throughout the 21st century  311 

Figure 4 shows the frequency of Rday in the 130 grid points (Figure 1d) in MRRJ and another 86 in the 312 

neighborhood, resulting in 216 points from the 5-km Eta-HadGEM2-ES outputs for the RCP4.5 and 8.5 313 

scenarios. The range of the baseline and the climate projection data is 30 years for comparative purposes.  314 
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 315 

Figure 4. The frequency of the Rday projected by the 5-km Eta-HadGEM2-ES model that can result in natural 316 

disasters in the MRRJ in the RCP4.5 (a) and 8.5 (b) scenarios for the baseline and the three different periods 317 

throughout the 21st century. 318 

The class with the highest frequencies, regardless of the RCP scenario and the period considered, is 319 

between 500 and 1000 MJ.ha-1.mm.h-1.d-1 (Figure 4). The events in this class represent 85, 81, and 82% of the 320 

occurrences for the 2011-2040, 2041-2070, and 2070-2099 periods, respectively, for RCP4.5. Considering the 321 

RCP8.5 scenario, 87, 82, and 86% of the events fall in this range, respectively. In the baseline, 72% of the events 322 

were observed in this class. Greater frequencies in the RCP8.5 in relation to the RCP4.5, and for both scenarios, 323 

were projected, i.e., significant increases regarding the baseline for this class. Therefore, climate change is 324 

expected to increase the number of events in this class, highlighting that they can cause several damages, 325 

fatalities included (Alves et al., 2022). Frequencies for this class for RCP8.5 were slightly higher than those for 326 

RCP4.5, meaning a reduction of the events that can potentially cause hazards, following the classification 327 

proposed by Alves et al. (2022) for MRRJ, i.e., a medium possibility to generate homelessly, damages on the 328 

basic infrastructure and fatalities. 329 

Oppositely, for the 1,000 < Rday < 1,500 MJ.ha-1.mm.h-1.d-1 class and RCP4.5 scenario, a higher 330 

frequency throughout the 21st century than the RCP8.5 was projected. These events are related to the occurrence 331 

of disasters with a "high" possibility of fatalities, a "very high" number of homeless people, and a "high" 332 

possibility of causing damage to infrastructure and the economy. However, the behavior considering the three 333 

analyzed periods was similar for the two scenarios, where the highest frequency of events in this class was 334 

verified for the period from 2041 to 2070, being equal to 13% and 11% for the RCP4.5 and 8.5 scenarios, 335 

respectively, and 16% for the historical period. 336 
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The Rday > 1,500 MJ.ha-1.mm.h-1.d-1 class encompasses the harmost events, which have the lowest 337 

frequency. In baseline, it was observed that 12% of these events, and throughout the 21st century, 4, 6, and 8% 338 

for the RCP4.5 scenario in the 2011-2040, 2041-2070, and 2070-2099 time slices, respectively. Contrary to the 339 

tendency observed for RCP4.5, in which there was a progressive increase throughout the 21st century (Figure 340 

4a), the highest frequency observed for the RCP8.5 was in the 2041-2070 time slice, with 459 Rday events > 341 

1,500 MJ.ha-1.mm.h-1.d-1, representing approximately 7% of the total analyzed events. 342 

Concomitantly analyzing the Rday classes related to natural disasters with "medium", "high" and "very 343 

high" possibilities of fatalities and damage to infrastructure (Rday > 500 MJ.ha-1.mm.h-1.d-1), it is observed that 344 

the 2041-2070 time slice was the one with the highest frequencies for both RCP scenarios.  345 

Mello et al. (2021) and Alvarenga et al. (2018) used the Eta-HadGEM2-ES in a resolution of 20 km to 346 

simulate climate change impacts on streamflow in watersheds of the Southern Minas Gerais and Mantiqueira 347 

Range region, which is in neighborhood MRRJ. In both studies, a decrease greater than 40% in the monthly 348 

precipitation of the wet period, i.e., from January to April, was projected. In this study, we obtained a reduction 349 

in the frequencies of the harmost Rday values (> 1,000 MJ.ha-1.mm.h-1.d-1) of approximately 30% across the time 350 

slices and RCP scenarios as a response to the reduction in the amount of monthly rainfall projected. However, 351 

we can infer that there will be an increase in the concentration of rainfall in the wet period since a reduction in 352 

the total monthly values is more significant than the frequency of extreme events. Thus, summer will continue as 353 

the most dangerous rainfall disaster despite the reduced precipitation. 354 

The spatial occurrence of critical Rday events throughout the 21st century considering the most severe 355 

ones, i.e., 1000 < Rday < 1500 MJ.ha-1.mm.h-1.d-1 and Rday > 1500 MJ.ha-1.mm.h-1.d-1 classes are respectively 356 

shown in Figure 5. 357 

 358 

Figure 5. Frequency maps of events in the classes 1,000 < Rday < 1,500 MJ.ha-1.mm.h-1.d-1 and Rday > 1,500 359 

MJ.ha-1.mm.h-1.d-1 projected by the 5-km Eta-HadGEM2-ES model in MRRJ for the baseline and RCP 360 

scenarios. 361 

 362 
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The northern region of Nova Friburgo and the central region of Petrópolis are those with the highest 363 

occurrences of Rday, for both RCP scenarios, in the 1,000 < Rday < 1,500 MJ.ha-1.mm.h-1.d-1 class (Figures 5a – 364 

5g), being greater than 15 occurrences regardless of the time slice. However, between 10 and 15 events were 365 

projected for both regions considering RCP4.5 in the 2011-2040 time slice.  366 

Both scenarios have greater spatial coverage of the highest Rday values in the 2041-2070 time slice. 367 

Compared to the baseline, it is predicted that there will be a decrease in such events in MRRJ in the 21st century. 368 

This decrease is more noticeable for Teresópolis, where there was a greater frequency of events in the 1,000 < 369 

Rday < 1,500 MJ.ha-1.mm.h-1.d-1 class for the baseline, whereas the frequency in this class from projections varies 370 

from five to ten events. 371 

The lowest frequencies were observed in the southern Nova Friburgo and Teresópolis and in the 372 

southwest Petrópolis, where values were predominant between 1 and 5 events in the 1,000 < Rday < 1,500 MJ.ha-373 

1.mm.h-1.d-1 class. This frequency class has a more considerable predominance from 2011 to 2040. The baseline 374 

showed higher frequencies and spatial range of values within this Rday class. It is important to note that this Rday 375 

class is related to rainfall with a "high" possibility of fatalities, a "very high" number of homeless, and a "high" 376 

possibility of damage to infrastructure and the economy. Thus, in the case of Petrópolis and Nova Friburgo, 377 

although a decrease in the frequency of these events throughout the 21st century, it is understood that the highest 378 

occurrences will prevail in urban areas for any period or RCP scenario. Therefore, it is necessary to establish 379 

alert indexes and efficient public policies to mitigate the impacts caused by such events in the future. Although 380 

Teresópolis presented a lower frequency of these events (5 to 10 events) throughout the century, this number of 381 

events is high, meaning that this municipality can be hit by a rainfall event in this class once every three years in 382 

the 2070-2099 time slice. 383 

The frequency maps of events in the Rday > 1,500 MJ.ha-1.mm.h-1.d-1 class showed a decrease regarding 384 

the baseline. For RCP4.5, it is observed that there would be an increase in the occurrences in the 2070-2099 time 385 

slice if compared to the baseline, where the projections for the urban areas of Petrópolis and Nova Friburgo vary 386 

from two to five events. Considering the RCP8.5, this frequency of events was observed for the central region of 387 

Petrópolis in the 2041-2070 time slice. 388 

Based on the data analyzed and maps, Nova Friburgo and Petrópolis are the most vulnerable to natural 389 

disasters with fatalities. However, a significant frequency of events in the 1,000 < Rday < 1,500 MJ.ha-1.mm.h-1.d-390 

1 class may occur in Teresópolis, and events in this class can cause disasters with fatalities. Also, there is an 391 

increase in the frequency of Rday values in the RCP8.5 compared to RCP4.5, except for the 2070-2099 time slice 392 

considering the second Rday class analyzed (Figure 5m). 393 

The Rday values calculated for the "mega-disaster" were equal to 900.1, 1962.8, and 2594.6 MJ.ha-394 

1.mm.h-1.d-1 for Petrópolis, Teresópolis, and Nova Friburgo, respectively, meaning greater impact on the last 395 

municipality. Considering the Rday value >1962.8 MJ.ha-1.mm.h-1.d-1 as the threshold for the "mega-disaster", 396 

their frequency throughout the century was 87, 128, and 145 for RCP4.5, 74, 163, and 94 for RCP8.5, for the 397 

2011-2040, 2041-2070 and 2070-2099 time slice, respectively, considering all grid points (Figure 1d). Thus, 398 

with these events spatially distributed over MRRJ, the northern region of Nova Friburgo and the central region 399 

of Petrópolis (both in their urban areas) will be the ones with the highest frequencies of events like the "mega-400 

disasters". Considering the grid points closest to Nova Friburgo and Petrópolis, five and nine "mega-disasters" 401 

throughout the century for RCP4.5, and four and eight for RCP8.5, respectively, were projected. These "mega-402 
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disasters" in both municipalities were projected for different years. Thus, a projection of 14 or 12 "mega-403 

disasters" occurring throughout the 21st century for the RCP4.5 and 8.5, respectively, could be projected, which 404 

would increase to 17 and 15 when considering Teresópolis. 405 

Our study sheds new insights into the influence of climate change on rainfall disasters. However, we 406 

need to point out the limitations of our study that require future studies. For example, only one climate model, 407 

downscaled by a physical model (ETA/CPTEC), was adopted here. Because the study region is a mountainous 408 

area close to the Atlantic Ocean, i.e., the orographic effect is strong. Although the datasets used in this study are 409 

unique for all of South America (5 km), the outputs downscaled in a more satisfactory resolution are 410 

indispensable. Nevertheless, the uncertainties associated with the climate model exist, which should be 411 

countered using additional models with 5-km resolution and the orographic aspect adequately solved by a 412 

physical model. 413 

 414 

Conclusions and future studies 415 

The studied region is one of Brazil's most vulnerable to extreme rainfall disasters. To overcome the 416 

orographic effect on the rainfall in the region, we used the 5-km ETA/HadGEM2-ES model to analyze the 417 

frequency of events that cause disasters, fatalities included. The datasets used in this study are from only one 418 

global circulation model (GCM) dynamically downscaled to 5 km resolution. This aspect allowed capturing 419 

orographic effects on rainfall spatial and temporal distribution. The Eta-HadGEM2-ES model is the unique 420 

model available with such a resolution. Therefore, we can advance in terms of the uncertainty of the GCMs for 421 

estimating extreme daily rainfall in an acceptable resolution for this purpose. Other GCMs have been considered 422 

in South America but using a resolution of 20 km. Several studies have demonstrated no concordance among 423 

them regarding extreme precipitation patterns over the century.  424 

Another relevant study consists in evaluating how large-scale atmosphere drivers like multivariate 425 

ENSO index, Southern Oscillation Index (SOI), Tropical Southern Atlantic Index (TSA), Pacific Decanal 426 

Oscillation (PDO), Antarctic Oscillation (AAO), Atlantic Multidecadal Oscillation (AMO), and ENSO 427 

precipitation index can impact extreme rainfall events that cause hazards in southeastern Brazil. For that, it is 428 

imperative to expand a broader study regarding Rday modeling to assess statistical analyses, especially 429 

multivariate ones (artificial intelligence, principal components analysis, Bayesian regression analyses, among 430 

others), and establish possible connections.     431 

In terms of conclusions, we can highlight: 432 

e) The MRRJ presents high Rmaxday values throughout the 21st century, showing a large coverage of 433 

the extreme rainfall in MRRJ, especially from the first time slice.  434 

f) The frequency of events in the moderate impact class (500 - 1,000 MJ mm (ha h)-1) tends to 435 

increase throughout the century, meaning fatalities will continue to occur in MRRJ, although in a 436 

lower possibility.  437 

g) The projection along this century is that 17 (RCP4.5) or 15 (RCP8.5) events of the same 438 

magnitude, respectively, as the one that caused the "mega-disaster" in 2011 in MRRJ. 439 

 440 

  441 

 442 
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