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ABSTRACT. The selection of superior sweet potato genotypes using Bayesian inference is an important 

strategy for genetic improvement. Sweet potatoes are of social and economic importance, being the 

material for ethanol production. The estimation of variance components and genetic parameters using 

Bayesian inference is more accurate than that using the frequently used statistical methodologies. This is 

because the former allows for using a priori knowledge from previous research. Therefore, the present study 

estimated genetic parameters and selection gains, predicted genetic values, and selected sweet potato 

genotypes using a Bayesian approach with a priori information. Root shape, soil insect resistance, and root 

and shoot productivity of 24 sweet potato genotypes were measured. Heritability, genotypic variation 

coefficient, residual variation coefficient, relative variation index, and selection gains direct, indirect and 

simultaneous were estimated, and the data were analyzed using Bayesian inference. Data from 11 

experiments were used to obtain a priori information. Bayesian inference was a useful tool for decision-

making, and significant genetic gains could be achieved with the selection of the evaluated genotypes. Root 

shape, soil insect resistance, commercial root productivity, and total root productivity showed higher 

heritability values. Clones UFVJM06, UFVJM40, UFVJM54, UFVJM09, and CAMBRAIA can be used as parents 

in future breeding programs. 

Keywords: Ipomoea batatas (L.) Lam; genetical enhancement; bayes' theorem; biometry; experimental statistics. 

Received on October 9, 2020. 

Accepted on October 13, 2021. 

Introduction 

Genetic improvement increases crop productivity and quality, ensuring food security. The selection of superior 

genotypes is the first step in establishing a breeding program for sweet potatoes (Ipomoea batatas (L.) Lam.). 

Variance components must be estimated to select superior genotypes, predict genetic values (Oliveira, Santana, 

Oliveira, & Santos, 2014), and estimate selection gains. Several studies have already been conducted using the 

frequentist approach (Kalkmann, Peixoto, & Nóbrega, 2013; Borges, Ferreira, Soares, Santos, & Santos, 2010), 

however, a Bayesian approach is more advantageous for such estimations (Azevedo et al., 2017). 

Bayesian inference is based on a posteriori distribution obtained from a priori information and likelihood 

function according to the Bayes’ theorem (Oliveira, Malhado, Barbosa, Martins Filho, & Carneiro, 2015). The 

advantage of this is the use of a priori information, which results from the researcher's experience and /or 

experimental data. A more accurate and robust evaluation is possible with the use of this information 

(Klauenberg, Wübbeler, Mickan, Harris, & Elster, 2015).  

Furthermore, the obtained asymmetric credibility intervals for variance components, genetic parameters, 

and breeding values are a peculiarity of Bayesian inference, which make this approach notably informative 

(Mathew et al., 2012) and facilitate hypothesis testing. According to Apiolaza, Chauhan, and Walker (2011), 

asymmetric credibility intervals obtained based on posterior distribution make the conclusions more realistic 

than symmetric credibility intervals of frequentist statistics. Additionally, Bayesian inference allows for the 

evaluation of unbalanced experiments and study of highly complex statistical models (Bink et al., 2007). 

Consequently, this approach is increasingly being used by breeders for the analysis of both molecular and 

phenotypic data (Azevedo et al., 2017). 
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The interest of public institutions in the genetic improvement of sweet potatoes has increased. This is due 

to the rusticity, drought tolerance, and adaptability of this crop to different types of soil and climate (Andrade 

Júnior et al., 2012). These characteristics make the culture of great importance for family farming. In addition, 

sweet potatoes can be used for ethanol production (Martins, Peluzio, Coimbra, & Oliveira Junior, 2012) and 

as animal feed (Valadares, Andrade Júnior, Pereira, Fialho, & Ferreira, 2019). However, private companies do 

not work with genetic improvement of this crop because it has a lower commercial value compared to others 

culture. 

To this end, the present study estimated genetic parameters and selection gains, predicted genetic values, 

and selected sweet potato genotypes using a Bayesian approach with a priori information. 

Material and methods 

Twenty-four sweet potato clones (UFVJM25, Brazlândia Roxa - BZROXA, UFVJM07, BELGARD, UFVJM28, 

CAMBRAIA, ARRUBA, UFVJM05, UFVJM44, UFVJM40, UFVJM01, UFVJM15, Cariru Vermelha - CARIRUVERM, 

UFVJM09, UFVJM31, Tomba Carro 1 - TCARRO01, PRINCESA, UFVJM37, UFVJM41, UFVJM06, UFVJM56, 

UFVJM29, UFVJM54, and UFVJM21) were evaluated at the Institute of Agricultural Sciences (ICA) - Federal 

University of Minas Gerais (UFMG), Campus of Montes Claros, Minas Gerais State, Brazil (16°40′58.16″ S and 

43°50′20.15″ W). These clones were selected in previous experiments carried out at Federal University of 

Jequitinhonha and Mucuri Valleys (UFVJM). 

For the production of seedlings, 20 cm fragments of the branches were obtained. For rooting, these 

branches were kept in polyethylene pots (5 liters) with commercial substrate for 15 days. Subsequently, the 

seedlings were planted in the field. A randomized block design with four replications was used, each plot had 

10 plants. The plots consisted of comprised 2.4 m long planting rows, with 1 m spacing between rows and 0.3 

m spacing between plants (Azevedo, Andrade Júnior, Fernandes, Pedrosa, & Oliveira, 2015). During the initial 

15 days, the seedlings were irrigated daily to ensure high survival. Subsequently, the seedlings were irrigated 

twice a week. 

The experiment was performed using the Haplic Cambisol soil. Fertilization was performed based on the 

chemical analysis of soil and recommendations for the crop (Filgueira, 2008). Specifically, 180 kg ha-1 

phosphorus and 30 kg ha-1 nitrogen were applied. Potassium fertilization was not necessary according to its 

level detected in soil chemical analysis. 

Harvesting was performed at 165 days after planting. The shoots were cut close to the ground using 

pruning shears. Roots were manually harvested using hoes. After harvesting, the shoots and roots were 

weighed and separated to obtain the following variables: productivity of the fresh mass of branches (PFMB), 

total root productivity (TRP), commercial root productivity (CRP), average weight of commercial roots 

(AWCR), root shape (RS), and resistance to soil insects (RSI). 

PFMB was calculated as the total weight of branches per plot, expressed in tons per hectare. TRP was 

estimated as the total weight of roots per plot, expressed in tons per hectare. For obtaining CRP, roots 

weighing 0.1-0.8 kg and without cracks, deformation, greening, insect damage, or veins were considered 

marketable, and the results were expressed in tons per hectare (Andrade Júnior, Elsayed, Azevedo, Santos, & 

Ferreira, 2018). The AWCR was obtained by the ratio between CRP and the number of commercial roots, 

expressed in grams. 

RS was determined according to the following scale: grade 1, fusiform roots (excellent); grade 2, near 

fusiform roots (good); grade 3, irregular but not fusiform roots (acceptable); grade 4, highly irregular roots 

(bad); and grade 5, deformed roots (very bad) (Azevedo, Maluf, Silveira, & Freitas, 2002). RSI was determined 

according to the following scale: grade 1, roots free of insect damage; grade 2, roots with little but observable 

damage; grade 3, root with obviously visible damage; grade 4, roots with damage covering most of the surface; 

and grade 5, roots with damage covering the entire surface (Azevedo et al., 2002). 

RS and RSI were determined by three trained evaluators. As these are qualitative ordinal variables, the 

average of scores assigned to each plot by the three evaluators was obtained. According to Pimentel-Gomes 

(2009), data obtained by averaging the measurements from three or more evaluations for qualitative ordinal 

variables can be analyzed statistically using the same techniques as that used for quantitative variables. 

For statistical analysis, the following model was considered: 

 𝑦 = 𝑋𝑟 + 𝐵𝑐𝑜𝑣 + 𝑍𝑔 + 𝑒 
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where y is the vector of data, r is the vector of the repetition effects plus the general average, g is the vector of the 

genetic effects, and e is the vector of errors. The coefficient cov refers to the regression coefficient associated with 

the covariate (number of plants per plot). Capital letters represent the incidence matrix for each effect. 

Assuming 𝑒|𝜎𝑒
2~ 𝑁(0, 𝐼𝜎𝑒

2), the distribution of the observed data (likelihood function) can be given as follows: 

𝑦 |𝑟, 𝑐𝑜𝑣, 𝑔, 𝜎𝑔
2

, 𝜎𝑒
2~𝑁(𝑋𝑟 + 𝐵𝑐𝑜𝑣 + 𝑍𝑔, 𝐼𝜎𝑒

2) 

where I is an identity matrix and 𝜎𝑔
2

 and 𝜎𝑒
2 are the components of variance associated with the genotypic and 

residual effects, respectively. 

The a priori distribution for the location parameters (systematic and random effects) of the model can be 

given as follows: 

𝑟 | µ𝑟, 𝐼𝑟, 𝜎𝑟
2~𝑁 (µ𝑟, 𝐼𝑟 𝜎𝑟

2) 

𝑐𝑜𝑣 |µ𝑐𝑜𝑣, 𝐼𝑐𝑜𝑣, 𝜎𝑐𝑜𝑣
2 ~𝑁 (µ𝑐𝑜𝑣, 𝐼𝑐𝑜𝑣 𝜎𝑐𝑜𝑣

2 ) 

𝑔 | 𝐼𝑔 𝜎𝑔
2~𝑁 (0, 𝐼𝑔 𝜎𝑔

2) 

where µ𝑟  and 𝜎𝑟
2

 are the known parameters (hyperparameters) of the multivariate normal distribution 

associated with the block effect, with the covariance matrix given as 𝐼𝑟𝜎𝑟
2 (𝐼𝑟 is the identity matrix), and µ𝑐𝑜𝑣 

and 𝜎𝑐𝑜𝑣
2

 are the hyperparameters of the multivariate normal distribution associated with the covariate effect, 

with the covariance matrix given as 𝐼𝑐𝑜𝑣𝜎𝑐𝑜𝑣
2  (𝐼𝑐𝑜𝑣 is the identity matrix). For the variance components 𝜎𝑔

2 and 

𝜎𝑒
2, the following inverted-scaled chi-square distributions were assumed a priori: 

𝜎𝑔
2 | 𝑉𝑔, 𝑆𝑔~𝑉𝑔𝑆𝑔𝜒𝑔

−2
 

𝜎𝑒
2 | 𝑉𝑒, 𝑆𝑒~𝑉𝑒𝑆𝑒𝜒𝑒

−2
 

A priori distributions for the variance components (𝜎𝑔
2 and 𝜎𝑒

2) were used to reparametrize the original-

scaled inverted chi-square (Scale χ-2) distribution, because the rjags package does not work directly with this 

distribution. This distribution is a special case of the inverse gamma distribution (inv gamma). Thus, assuming 

that 𝜎2~𝑆𝑐𝑎𝑙𝑒 χ-2 (v,S), where S is equal to ν𝜎2* and 𝜎2* is the most probable a priori value of 𝜎2, the equivalent 

distribution is 𝜎2~𝑖𝑛𝑣 𝐺𝑎𝑚𝑚𝑎(𝑣/2, 𝑆/2), which allows using 𝜏̅ = 1 𝜎2⁄ ~𝑔𝑎𝑚𝑚𝑎(𝑣/2, 𝑆/2) (Silva, Viana, Faria, 

& Resende, 2013). 

To use a priori information, data from 11 experiments on genotypes in the germplasm bank of UFVJM were 

considered (Table 1). The inverse of the average value of a given variance component (𝜏̅ = 1/ �̅�2) and its 

respective variance (𝑆�̅�
2) were calculated from a set of values reported in these studies and equalized to the 

expectation and variance of the distribution 𝑔𝑎𝑚𝑚𝑎(𝛼, 𝛽): 𝜏̅ = 𝛼 𝛽⁄ , and 𝑆�̅�
2 = 𝛼 𝛽2⁄ . Thus, 𝛼 = 𝜏̅/𝑆�̅�

2 and 𝛽 =

𝜏̅2/𝑆�̅�
2, resulting in 𝜏̅ = 1 𝜎2⁄ ~𝑔𝑎𝑚𝑚𝑎(𝛼, 𝛽), which is an informative priori whose expected value and variance 

are coincident consistent with the observed mean and variance, respectively, of the data set containing the 

reported values. Similar methodology has been applied in previous studies (Silva et al., 2013; Teodoro, 

Nascimento, Torres, Barroso, & Sagrilo, 2015; Euzebio et al., 2018). µ𝑟 and µ𝑐𝑜𝑣 were hyperparameters of 

multivariate normal distribution, with a mean of 100 and standard deviation of 0.00001. 𝜎𝑟
2

 and 𝜎𝑐𝑜𝑣
2  were used 

as the inverse of variance components, defined as 𝜏̅ = 1 𝜎2⁄ ~𝑔𝑎𝑚𝑚𝑎(0.001, 0.001). 

According to the Bayes’ theorem, the joint posteriori distribution of all unknown parameters (𝑟, 𝑐𝑜𝑣, 𝑔, 𝜎𝑔
2 

and 𝜎𝑒
2) is proportional to the product of likelihood function with a priori distribution. Thus, the general 

equation for this theorem is as follows: 

𝑃 (𝑟, 𝑐𝑜𝑣, 𝑔, 𝜎𝑔
2 𝜎𝑒

2 | 𝑦) 𝛼 𝑃(𝑦 | 𝑟, 𝑐𝑜𝑣, 𝑔, 𝜎𝑔
2, 𝜎𝑒

2)𝑥 𝑃 (𝑟 | 𝑢𝑟, 𝐼𝑟, 𝜎𝑟
2) 𝑥 𝑃(𝑐𝑜𝑣 | 𝑢𝑐𝑜𝑣, 𝐼𝑐𝑜𝑣 𝜎𝑐𝑜𝑣

2 ) 𝑥 𝑃(𝑔 | 𝑢𝑔, 𝐼𝜎𝑔
2)𝑥 

𝑃(𝜎𝑔
2| 𝑉𝑔𝑆𝑔)𝑥𝑃(𝜎𝑒

2| 𝑉𝑒𝑆𝑒) 

Using the respective probability density of the a priori distribution, the equation for the joint a posteriori 

distribution is as follows: 

𝑃 (𝑟, 𝑐𝑜𝑣, 𝑔, 𝜎𝑔
2, 𝜎𝑒

2 | 𝑦) 𝛼 (𝜎𝑒
2)−

𝑁

2  𝑒𝑥𝑝 {−
[𝑦−(𝑋𝑟+𝐵𝑐𝑜𝑣+𝑍𝑔+𝑒)]𝑡[𝑦−(𝑋𝑟+ 𝐵𝑐𝑜𝑣+𝑍𝑔+𝑒)]

2𝜎𝑒
2 } 𝑥(𝜎𝑟

2)− 
𝑛𝑟
2  

𝑒𝑥𝑝 [−
(𝑟−𝑢𝑟)𝑡(𝑟−𝑢𝑟)

2𝜎𝑟
2 ] 𝑥(𝜎𝑐𝑜𝑣

2 )− 
1

2 𝑒𝑥𝑝 [−
(𝑐𝑜𝑣−𝑢𝑐𝑜𝑣)𝑡(𝑐𝑜𝑣−𝑢𝑐𝑜𝑣)

2𝜎𝑐𝑜𝑣
2 ] 𝑥(𝜎𝑔

2)− 
𝑛𝑟
2  𝑒𝑥𝑝 (−

𝑔𝑡𝑔

2𝜎𝑔
2)  𝑥 (𝜎𝑔

2)− 
𝑉𝑔+1

2  𝑒𝑥𝑝 (−
𝑉𝑔 𝑆𝑔

2𝜎𝑔
2 ) 𝑥 

(𝜎𝑒
2)− 

𝑉𝑒+1

2  𝑒𝑥𝑝 (−
𝑉𝑒 𝑆𝑒

2𝜎𝑒
2 ) 
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Table 1. Year of execution, number of genotypes, number of repetitions, and locations of 11 experiments on sweet potato genotypes 

from the germplasm bank of the Federal University of Jequitinhonha and Mucuri Valleys. 

Experiments Year  N° genotypes N° repetitions Locations 

1 2005 12 4 Diamantina, MG 

2 2005 12 4 Diamantina, MG 

3 2007 6 3 Diamantina, MG 

4 2007/08 65 3 Diamantina, MG 

5 2009 12 4 Diamantina, MG 

6 2009 8 3 Diamantina, MG 

7 2009 15 4 Diamantina, MG 

8 2009 8 3 Diamantina, MG 

9 2010/11 15 4 Couto Magalhães de Minas, MG 

10 2013 72 4 Diamantina, MG 

11 2015/16 10 5 Diamantina, MG 

 

Statistical inference was based on the posterior marginal distribution 𝑃(. |𝑦) for each parameter. The 

necessary integrals to obtain these distributions are intractable, implying the use of numerical evaluation by 

specialized algorithms, such as the Markov chain Monte Carlo (MCMC) algorithm (Silva et al., 2013). These 

algorithms generate random samples from the posterior marginal distribution, that is, indirectly from the full 

conditional posterior distributions (f.c.p.d.), which are the posterior distributions for a given parameter 

conditional on the data and the remaining parameters. In general, when 𝜃 = [𝜃1, 𝜃2. . . , 𝜃𝑝] is the full set of p 

parameters, the f.c.p.d. for a particular parameter 𝜃𝑘 is denoted by 𝑃(𝜃𝑘|𝜃1, … , 𝜃𝑘−1,𝜃𝑘+1,. . . , 𝜃𝑝, 𝑦) Once these 

f.c.p.d.s are characterized as the known families of probability distributions to present closed forms, the Gibbs 

sampler algorithm can be used (Silva et al., 2013).  

All analyses were performed using R. For MCMC analysis, 100,000 iterations were performed. We set the 

burn-in to 10,000 iterations and thinned every 15 iterations using the rjags package (Plummer, 2019). Based 

on the posterior distribution of variance components, the following values were estimated: heritability, 

genotypic variation coefficient, residual variation coefficient, and relative variation index. In addition, direct, 

indirect, and simultaneous selection gains were estimated using the method described by Mulamba and Mock 

(1978), with a selection intensity of 30%. For each parameter, the mean, mode, median, credibility interval 

(95%), and Geweke convergence were estimated using the BOA package (Smith, 2007). 

Results 

For most variables evaluated, the a posteriori and a priori distributions of genetic variance were similar. 

However, the a priori and a posteriori distributions of RSI and RS were different (Figure 1). Similarly, the a priori 

and a posteriori distributions for residual variance were different, with higher estimates for the latter distribution 

(Figure 2). The estimated residual variance coefficient was high for all evaluated variables (Table 2).  

The p-values estimated using Geweke convergence test were greater than 0.05 for all variables, indicating 

convergence in the iterative process. Values close to the mean, median, and mode of the posterior distribution of 

the obtained parameters were calculated (Table 2). The values indicated that the distributions were approximately 

symmetric. 

The highest heritability values were found for RS, RSI, and CRP, but the credibility intervals for these and other 

traits were comparable. CRP, RSI, and TRP showed higher genotypic variance coefficients, but their credibility 

intervals were comparable to those of the remaining traits (Table 2). 

The posterior distribution of residual variance coefficient ranged from 17.34 to 47.94 for CRP. CRP showed a 

higher residual variance coefficient than AWCR, RS, and RSI (Table 2). Mean, mode, and median of the posterior 

distribution of relative variance coefficient were greater than 1 for RS alone; for IR, the value of 1.00 fell within the 

credibility interval (Table 2). 

CRP, RSI, TRP, and PFMB showed the greatest direct selection gains, with estimates of 32%, |-24%|, 22%, and 

21%, respectively (Table 3). The remaining characteristics showed lower selection gains, although no value was 

below 15% (Figure 3). 
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Figure 1. A priori (---) and a posteriori (__) distributions of genetic variance in total root productivity (TRP), commercial root 

productivity (CRP), productivity of the fresh mass of branches (PFMB), average weight of commercial roots (AWCR), resistance to soil 

insects (RSI), and root shape (RS) in the tested sweet potato clones. 

 
Figure 2. A priori (---) and a posteriori (__) distributions of residual variance in total root productivity (TRP), commercial root 

productivity (CRP), productivity of the fresh mass of branches (PFMB), average weight of commercial roots (AWCR), resistance to soil 

insects (RSI), and root shape (RS) evaluated in sweet potato clones. 
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Table 2. Mean (Me), median (Md), mode (Mo), credibility intervals of posterior densities (HPD), and p-value of Geweke convergence for 

the estimates of heritability, genotypic variance coefficient (%), residual variance coefficient (%), and relative variance coefficient the 

in tested sweet potato clones. 

Variables 

Descriptive Analysis HPD (95%) p-valor 

Me Md Mo low upper (Geweke) 

Heritability 

TRP 0.20 0.18 0.15 0.06 0.36 0.93 

CRP 0.30 0.30 0.29 0.15 0.48 0.81 

PFMB 0.22 0.20 0.16 0.05 0.44 0.69 

AWCR 0.19 0.17 0.13 0.07 0.34 0.23 

RS 0.51 0.51 0.54 0.33 0.68 0.63 

RSI 0.46 0.45 0.41 0.29 0.63 0.85 

  Genotypic variance coefficient (%) 

TRP 21.26 20.41 17.71 11.99 30.54 0.94 

CRP 31.60 30.82 30.20 21.18 44.44 0.33 

PFMB 18.99 18.06 17.00 8.11 29.62 0.71 

AWCR 14.87 14.41 13.20 9.02 21.24 0.28 

RS 18.33 17.95 17.42 13.04 25.04 0.45 

RSI 22.90 22.68 22.74 16.76 29.96 0.34 

  Residual variance coefficient (%) 

TRP 43.16 43.05 41.52 36.36 51.18 0.91 

CRP 47.92 47.60 47.94 39.78 55.87 0.14 

PFMB 36.05 35.65 35.57 29.62 42.21 0.91 

AWCR 31.58 31.50 30.14 26.92 37.50 0.92 

RS 17.83 17.70 17.34 15.57 20.58 0.78 

RSI 24.85 24.61 23.18 20.57 28.91 0.06 

  Relative variance coefficient 

TRP 0.50 0.48 0.42 0.26 0.74 0.94 

CRP 0.66 0.65 0.64 0.42 0.96 0.78 

PFMB 0.54 0.50 0.43 0.23 0.90 0.72 

AWCR 0.48 0.46 0.39 0.27 0.73 0.24 

RS 1.03 1.01 1.08 0.69 1.44 0.50 

RSI 0.93 0.91 0.83 0.61 1.26 0.84 

Note: Total root productivity = TRP, commercial root productivity = CRP, productivity of the fresh mass of branches = PFMB, average weight of commercial 

roots = AWCR, resistance to soil insects = RSI, and root shape = RS. 

Table 3. Direct (main diagonal), indirect (outside the diagonal), and simultaneous (MM, Mulamba & Mock, 1978) selection gains for 

the tested sweet potato clones. 

Variable 
Selection criteria 

TRP CRP PFMB AWCR RS RSI MM 

TRP 21.91 17.41 6.33 2.85 0.37 -4.02 7.36 

CRP 8.67 32.34 4.07 -4.62 -0.68 -6.24 9.63 

PFMB 6.77 6.00 20.57 8.78 0.97 6.59 12.04 

AWCR -3.70 1.84 -9.56 -15.81 -1.49 -3.12 -5.29 

RS -2.59 -7.62 -1.98 -3.38 -16.62 -15.24 -7.98 

RSI 3.45 1.59 -3.27 -4.3 -11.58 -24.12 -9.82 

Note: Total root productivity = TRP, commercial root productivity = CRP, productivity of the fresh mass of branches = PFMB, average weight of commercial 

roots = AWCR, resistance to soil insects = RSI, and root shape = RS. 

In the selection of TRP, favorable indirect gains were observed (Table 3) for all variables, except AWCR 

and RSI. In the selection of CRP, indirect unfavorable effects were observed for AWCR and RSI. In the selection 

of PFMB, indirect favorable effects were observed for all variables. In the selection for AWCR, RS, and RSI, 

indirect unfavorable effects were observed for CRP (Table 3). In simultaneous selection (MM), favorable gains 

were observed for all variables (Table 3). 

The credibility intervals for genetic variance in TRP and PFMB overlapped (Figure 4). UFVJM40 and 

BELGARD showed the highest and lowest CRP, respectively. UFVJM28 and BELGARD showed the highest and 

lowest AWCR, respectively (Figure 4). 

BELGARD, CAMBRAIA, UFVJM40, and UFVJM06 showed significantly lower RSI than UFVJM28. UFVJM06, 

UFVJM40, CAMBRAIA, and BELGARD showed significantly lower RS than UFVJM28 (Figure 4). 
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Figure 3. A posteriori distribution for the estimated selection gain (%) in total root productivity (TRP), commercial root productivity 

(CRP), productivity of the fresh mass of branches (PFMB), average weight of commercial roots (AWCR), resistance to soil insects (RSI), 

and root shape (RS) in the tested sweet potato clones. 

 
Figure 4. Representation of the mode of genetic parameters within credibility  intervals obtained based on the posterior distribution 

(95%) of total root productivity (TRP), commercial root productivity (CRP), productivity of the fresh mass of branches (PFMB), average 

weight of commercial roots (AWCR), resistance to soil insects (RSI), and root shape (RS) in the tested sweet potato clones. 

Discussion 

The possibility of estimating the posterior distribution of parameters is one of the greatest advantages of 

Bayesian inference (Torres et al., 2018). This approach can be used in plant breeding, allowing us to obtain 

credibility intervals, which are important for understanding the genetic nature of variables of interest (Silva 

et al., 2013). For these variables, we can estimate genetic parameters, such as heritability, and variance 

components, such as genotypic, residual, and relative variance coefficients (Waldmann & Ericsson, 2006). 

The proximity between a priori and a posteriori distributions of genetic variance for most variables in this 

study indicates that genetic variability was maintained relative to the previous experiments. Values of the a 

posteriori distribution of residual variance were the highest for AWCR, TRP, CRP, RS, and RSI. These 

characteristics are influenced by soil type. In sandy soils, as in the case of previous experiments, the lateral 
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growth of roots is greater and fewer deformed roots are formed. Sandy soil also facilitates sweet potato harvest 

with less physical damage and greater yield (Silva, Lopes, & Magalhães, 2008). The present experiment was 

performed in Haplic Cambisol soil, which has a clayey texture, rendering the root harvest difficult. In terms 

of RSI, clayey soils are more conducive to the development of sweet potato borer (Euscepes postfasci), one of 

the major pests of the crop (Kuriwada, Kumano, Shiromoto, Haraguchi, & Kohama, 2012), as the insects can 

use cracks in the soil to reach the roots. Sweet potato borer infestation leads to substantial productivity losses. 

This does not occur in sandy soils, in which no cracks are formed with tuber development, and the insects 

cannot access the roots (Menezes, 2002). 

The credibility intervals for variance components and genetic parameters make Bayesian inference more 

informative (Mathew, Léon, & Sillanpää, 2015) because this approach does not require derivation of complex 

estimators and various assumptions, as does the frequentist approach, to obtain credibility intervals. In this 

study, Geweke test demonstrated the reliability of results for all parameters, proving the convergence of the 

iterative process. 

Heritability estimates showed great potential for selection. Previous studies have shown heritability values 

close to those found in this work (Borges et al., 2010). The high estimates of residual variance coefficients 

(above 20%) for most variables can be justified by difficulties encountered during crop harvest, resulting in 

incomplete root harvest (Azevedo et al., 2015). In studies of crops with underground structures, 

environmental control is difficult, which results in variance coefficients above 30% (Cavalcante et al., 2006). 

This susceptibility of root parameters to environmental factors has been observed in several studies of sweet 

potatoes (Andrade Júnior et al., 2009, Moreira, Queiroga, Sousa Júnior, & Santos, 2011). 

The estimated genetic and relative variance coefficients were promising for all characteristics evaluated, 

specifically RS and RSI. These parameters measure the degree of genetic determination of a trait and also 

indicate genotypes with high genetic variability (Azevedo et al., 2015). Relative variance coefficient and 

heritability indicate the reliability of phenotypic values representing the genotypic values. This increases the 

discriminatory power and expected selection gains (Ivoglo et al., 2008). The mode of relative variance 

coefficient was greater than 1 for RS, and the value of 1 fell within the credibility interval for IR. These results 

indicate favorable experimental conditions for the selection of RS and IR. Therefore, Bayesian inference in 

indeed advantageous for estimating parameters and their reliability, helping decision-making in breeding 

programs. For TRP, CRP, AWCR, and PFMB, relative variance coefficients were smaller than 1, indicating that 

environmental variation exceeds the genetic variation for these traits (Alves, Peixoto, Vieira, & Boiteux, 2006). 

CRP and RSI are fundamental to commercialization. Selection gains greater than 20% were estimated for 

these characteristics, in addition to PMVR. Azevedo et al. (2015) observed values of 68% for CRP; however, 

the authors considered the selection index to be 20%, while we considered it to be 30% in the present study. 

Lower indices of selection provide higher gains; however, this greatly restricts genetic variability, which is 

not reflected at the beginning of genetic improvement programs. Azevedo et al. (2015) observed a selection 

gain of -4.90% for RSI. This estimate is much lower (in module) than our estimate (24%). 

Simultaneous selection maximizes the probability of success in improvement, providing balanced gains 

for all characteristics (Cruz, Regazzi, & Carneiro, 2012). With indirect selection, favorable gains were 

observed for all variables with selection for PFMB. This information is important for breeding program aimed 

at the increasing the yield of shoots as animal feed. 

The UFVJM40 genotype, with higher CRP and lower RSI and RS, was superior to others. UFVJM06 and 

CAMBRAIA also exhibited lower RSI and RS. BELGARD showed lower RS, RSI, and AWCR, resulting in lower 

CRP, which is not desirable. The worst results were observed for UFVJM28, with higher RSI, RS, and AWCR. 

Conclusion 

It is possible to take the advantage of a priori knowledge obtained in previous experiments through 

Bayesian inference, which may serve as an efficient tool assisting with decision-making in sweet potato 

genetic improvement programs. The variables CRP, RS, and RSI showed higher heritability, and substantial 

gains can be achieved with the selection of the genotypes with these traits. Simultaneous selection is an 

important strategy to maximize selection gains for all characteristics in sweet potato. UFVJM40, UFVJM06, 

UFVJM09, and CAMBRAIA are superior to others and can be used as parents in future breeding programs.  
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