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Abstract 

Background:  The allocation of non-structural carbohydrates (NSCs) plays a critical role in the physiology and 
metabolism of tree growth and survival defense. However, little is known about the allocation of NSC after continuous 
mechanical wounding of pine by resin tapping during tree growth.

Results:  Here, we examine the NSC allocation in plant tissues after 3 year lasting resin tapping, and also investi-
gate the use of near-infrared reflectance (NIR) spectroscopy to quantify the NSC, starch and free sugar (e.g., sucrose, 
glucose, and fructose) concentrations in different plant tissues of slash pine. Spectral measurements on pine needle, 
branch, trunk phloem, and root were obtained before starch and free sugar concentrations were measured in the lab-
oratory. The variation of NSC, starch and free sugars in different plant tissues after resin tapping was analyzed. Partial 
least squares regression was applied to calibrate prediction models, models were simulated 100 times for model per-
formance and error estimation. More NSC, starch and free sugars were stored in winter than summer both in tapped 
and control trees. The position of resin tapping significantly influenced the NSCs allocation in plant tissues: more 
NSCs were transformed into free sugars for defensive resin synthesis close to the tapping wound rather than induced 
distal systemic responses. Models for predicting NSC and free sugars of plant tissues showed promising results for the 
whole tree for fructose (R2

CV = 0.72), glucose (R2
CV = 0.67), NSCs (R2

CV = 0.66) and starch (R2
CV = 0.58) estimates based 

on NIR models. Models for individual plant tissues also showed reasonable predictive ability: the best model for NSCs 
and starch prediction was found in root. The significance multivariate correlation algorithm for variable selection sig-
nificantly reduced the number of variables. Important variables were identified, including features at 1021–1290 nm, 
1480, 1748, 1941, 2020, 2123 and 2355 nm, which are highly related to NSC, starch, fructose, glucose and sucrose.

Conclusions:  NIR spectroscopy provided a rapid and cost-effective method to monitor NSC, starch and free sugar 
concentrations after continuous resin tapping. It can be used for studying the trade-off between growth and produc-
tion of defensive metabolites.
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Background
Asynchronization of carbon gain through photosynthesis 
with carbon demand for growth, respiration, reproduc-
tion and defense determines the strategy for allocation 
of non-structural carbohydrates (NSCs) in woody plants 
[1, 2]. NSC reserves are versatile resources for  meta-
bolic  processes, particularly when mobile carbon gain 
is limited under unfavorable environmental conditions 
[3]. Stored carbohydrates in all plant species comprise 
structural carbohydrates (SCs) and NSCs. SCs include 
celluloses and hemicelluloses(holocellulose) which are 
essential components for plant morphological construc-
tion, and these compounds are not available to the plant 
for future use because plants lack enzymes for cellulose 
degradation [4]. NSCs are accumulated and stored as 
starch and free sugars (e.g., glucose, sucrose and fruc-
tose) that support primary metabolism and growth [1, 
5, 6]. NSCs can undergo frequent transformations, as 
the current assimilation is inadequate to meet the car-
bon requirement for physiological maintenance and 
growth under the current scenario of season variation 
[7]. In addition to these roles, NSCs are also the original 
sources of secondary metabolites with defensive func-
tions [8]. Under external stress or stimulus in a short 
time, like insect attack, tree defensive systems are acti-
vated and secondary defensive chemicals are produced 
through specialized biosynthetic pathways; correspond-
ingly, NSCs that might otherwise have been allocated 
to growth and reproduction will be diverted to produce 
defensive exudates [9].

Slash pine is an important species originating from 
the North America and introduced to southern Europe, 
southeast Asia, and south America [10, 11]. Owing to its 
remarkable characteristics, i.e., rapid growth, wide adapt-
ability, and high resin yield [12], it is thus a major tim-
ber and resin tapping species in China which the current 
plantation area and oleoresin exceeds 1.2 million ha and 
1.3 × 106 metric ton in 2018 [13]. Pine resin mainly con-
sisted of monoterpene rich turpentine and diterpenoid 
resin acids or rosin has a wide range of industrial uses 
[14]. However, resin tapping year after year may aggra-
vate the risk of broken stems at the resin tapping posi-
tion [15], inhibit growth processes [16, 17], decrease 
germination success [18] and increase susceptibility to 
attack by insects and their fungal associates [19]. Better 
understanding of NSC allocation patterns, particularly 
seasonal patterns after resin tapping can provide valuable 
information on defense, trade-off between growth and 
survival, and give advice for forest management [18, 20].

This disagreement might be attributed to the methods 
of measuring NSC concentrations in plant tissues [6], 
which are time-consuming and expensive and limit the 
scope for NSC research on large numbers of samples. 

Near infrared reflectance (NIR) spectroscopy is a rapid, 
cost-effective and high-throughput technique that can 
be used for measuring organic compounds in plant tis-
sues [21, 22]. For instance, NIR based models yielded 
promising predictions for N, neutral detergent fiber, 
lignin and cellulose concentrations in leaves of 17 dif-
ferent woody species [23]. The starch concentrations in 
Sorghum bicolor (sorghum grain) and Rumex obtusifo-
lius roots have been also successfully predicted by NIR 
[24, 25]. Encouraging results were reported for predic-
tive models to estimate the NSC in Toona ciliata wood 
from NIR spectra directly recorded on wood discs and 
milled wood samples [22]. Furthermore, spectroscopic 
determination of NSC concentration in different tissue 
types with seasonal change of different tree species was 
also achieved [26]. Last years is fast developing methods 
of non-destructive measurements regarding presence 
of specific secondary metabolites and well developed to 
study correlation between results from hyper-spectral 
imaging analysis, fluoresence imaging or near-infrared 
spectroscopy analysis and wet biochemical estimation 
[27–29]. However, little is known on pine trees. There-
fore, we hypothesized that (1) the NSC concentrations in 
pine tissues can be successfully predicted by NIR tech-
nology; (2) the concentration of NSCs in tree leaves, 
branches, trunks and roots would respond differentially 
to resin tapping in different seasons; and (3) the dynamic 
responses of NSC concentrations in plant tissues would 
depend on the position of resin tapping, with stronger 
responses near the resin tapping area.

Materials and methods
Study sites and experimental design
This study was conducted in the Tianmu Mountains in 
Hangzhou, China (30° 42′ N, 120° 30′ E). This region has 
a subtropical monsoon climate with long warm summers 
and short cool winters. Mean annual, mean monthly 
minimum (January) and mean monthly maximum (July) 
temperatures are 16.7 °C, 5.6 °C and 27.3 °C, respectively. 
The average length of the growing season is 246 frost-free 
days, while precipitation, including rain and snow, aver-
ages 1697 mm.

The experimental plantation was established in January 
1993 at three sites (site 1: 20.7 m altitude, eastern slope, 
25% gradient; site 2: 22.0 m altitude, southeast slope, 23% 
gradient; site 3: 23.1 m altitude, southwestern slope, 20% 
gradient). Each site was planted with 2.0 m between rows 
and 2.0  m between trees within a row. Each row con-
tained 6 seedlings and there were 30 rows in each site. A 
3-row buffer zone consisting of similarly planted seed-
lings surrounded each site.

The number of surviving stems and growth vigor 
within each row were observed towards the end of 2013. 
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Both control trees (without tapping) and tapped trees 
were selected randomly in plots site 1, site 2 and site 3, 
and the number of control trees and tapped trees were 
12/42, 10/23 and 11/23, respectively. In total, 121 trees 
were selected.

Sample collection
Tapping was performed from mid-May to mid-October 
(mean monthly air temperature above 10 °C) in 2014 and 
2016 according to the bark chipping method [31, 30]. 
The downward bilateral tapping method was applied to 

Fig. 1  The workflow to collect the data from tree samples and used for NSC modelling using the NIR spectral



Page 4 of 13Li et al. Plant Methods          (2022) 18:107 

obtain crude resin [32]. Resin tapping was conducted in 
the uphill tree face at 2.0 m above the ground and using 
about 40% of the trunk circumference. Tapping was con-
ducted every two days and the length of the tapping face 
was limited to 20–25 cm along the stem in each year. All 
the tapped trees and control trees without tapping were 
sampled for carbohydrate analysis in the summer (mid-
July) and winter (mid-December) 2017. At each sampling 
time, root, trunk phloem, branches and needles were col-
lected. Root samples distance from 10 cm soil depth were 
fully consisted of fine roots with diameter < 2  mm. For 
bole samples, two 8 cm × 3 cm stem phloem strips were 
extracted using chisel and mallet above the tapping face 
and exactly the same on the opposite side. Newly nee-
dle, newly branch, one-year-old needle and one-year-old 
branch without visible insect/pathogen injury were sam-
pled from the middle crowns using a 20-m-high retract-
able pruning shears. All samples were stored on dry ice 
immediately after collection and sent to the laboratory 
to avoid tissue respiration. Samples were dried at 60  °C 
for 72 h to obtain constant weight and then ground into 
powder using a Wiley Mini Mill (Thomas Scientific, 
Swedesboro, NJ, USA) with a 0.5-mm aperture mesh 
sieve.

NIR spectral records
NIR spectra of each sample were recorded in reflectance 
mode using a NIR spectrometer (Analytical Spectral 
Devices, Boulder, CO, USA) equipped with a NIR fiber-
optic probe. NIR signature were recorded from 1100 
to 2500 nm with a spectral resolution of 8 nm (totaling 
175 wavelength), and 32 scans were averaged per spec-
trum. Three spectral measurements were collected for all 
plant samples and were averaged to determine the mean 
spectrum per sample. Each mean spectrum was then 
converted to an absorbance spectrum (log 1/R, where 
R = reflectance) for model use. In total, 1985 samples 
were used. Standard normal variate (SNV) + first deriva-
tive transformation using Savitzky–Golay smoothing 
(13-point filter) was applied on the NIR spectra in order 
to reduce noise and to calibrate and cross-validate NIR 
models.

Analysis of concentrations in plant tissue samples
The details of NSC content measurement was described 
by Hoch, et  al. [33]. About 20  mg (0.1  mg precision) of 
dried plant tissue powder and 2  mL deionized water 
were boiled together for 30 min, and then centrifugated 
for 5 min with 8000 rpm, after that, the supernatant was 

Fig. 2  Distribution of NSC, starch, glucose, fructose and sucrose concentrations in different plant tissues from tapped and control trees in summer 
and winter. CK control tree, value (%): concentrations (based in the dry mass), Tap: tapped tree, black spots: outlier samples. *Represent the 
significant between CK and TAP, *p <  = 0.05, *p <  = 0.01, ***p <  = 0.001
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extracted 500 μL to a new micro tube and treated with 
phosphoglucose-isomerase and invertase (Sinopharm 
Chemical Reagent Co., Ltd, Beijing, China) to convert 
fructose and sucrose into glucose. A microplate photom-
eter (BioTek Epoch; BioTek Instruments, Inc., Winooski, 
VT, USA) was used to measure the total glucose concen-
tration at 340 nm after conversion of glucose to glucose 
6-phosphate with the glucose hexokinase assay (G3 292, 
Sigma), and the rest of water was incubated to a crude 
fungal amylase (Sinopharm Chemical Reagent Co., Ltd, 
Beijing, China) at 40  °C for 15  h to decompose starch 
to glucose, finally, the total glucose concentrations were 
determined.

The difference between the concentration of free sug-
ars (i.e., glucose, fructose and sucrose) and the measured 
total glucose concentration after digestion of starch were 
calculated as the starch concentration. In order to ensure 
reliablity of the measured data in the laboratory, the Cit-
rus leaves (Institute of Geophysical and Geochemical 
Exploration of China, Beijing, China) were analyzed to 
check the replicability of glucose determination and the 
Pure glucose, fructose, and sucrose solutions were used 
for calibrations. NSC concentrations were measured as a 
percentage of dry matter.

NIR modeling of free sugars, starch and total NSC 
in different plant tissues
Differences among plant tissues might influence the 
effectiveness of NIR spectra to calibrate prediction mod-
els for NSC, free sugars and starch. Therefore, samples 
were divided into four groups of plant tissues, namely 
trunk (968 samples), root (286 samples), needle (484 
samples) and whole tree mixed plant tissues. The two 
sides of stem phloem from the trunk, newly branch and 
one-year-old branch were summed to give the trunk 
group, and the newly needle and one-year-old needle 
were considered as the needle group.

NIR spectra and the measured values of free sugars, 
starch and NSC in plant tissues were used to develop the 
predictive models. In each group, samples were separated 
into a calibration set (80%) and validation set (20%) by 
random sampling and testing the model with 100 simu-
lations to evaluate the model performance, including 
the overall model stability and the uncertainty of predic-
tions [31]. Partial least squares regression (PLSR), using 
leave-one-out cross-validation and a variable selection 
algorithm called the significance multivariate correla-
tion (sMC) filter method, was used to calibrate mod-
els and to find the most important spectral variables 
[34, 35]. The coefficient of determination (R2) and the 

Fig. 3  Distribution of NSC, starch, glucose, fructose and sucrose in trunk phloem from tapping trees in summer and winter. NTS non-tapping side, 
TS tapping side, value (%): concentrations (based in the dry mass), black spots: outlier samples. *Represent the significant between NTS and TS, 
*p <  = 0.05, *p <  = 0.01, ***p <  = 0.001



Page 6 of 13Li et al. Plant Methods          (2022) 18:107 

root-mean-squared error (RMSE) were used to estab-
lish the best sMC-PLSR model for end use. Statistical 
analyses were performed in R software (version 3.1.2) 
[36] using the following packages: pls [37] for PLSR 
model calibration, prospectr [38] for the pre-processing 
method, plsVarSel [34] for selection of sMC variables, 
ggplot2 [39] for graph plots and asreml-R package [40] 
for statistical analyses.

The framework follow chart were plotted in Fig. 1.

Results
NSC distribution after resin tapping
In summer, the trunk phloem and one-year-old branch 
had the highest starch concentration (mean of 11.05% 
and 9.03%) and total NSC concentration (mean of 14.40% 
and 9.68%) among the various plant tissues. Resin tap-
ping trees showed lower starch concentration and NSC 
concentration than control trees in the trunk phloem 
(mean of 10.7%, 14% vs mean of 12.6%, 16.2%), but sim-
ilar in root (mean of 9.64%, 10.2% vs mean of 9.51%, 
10.1%), one-year-old branch (mean of 9.03%, 9.70% vs 

mean of 8.97%, 9.63%). In winter, the starch concentra-
tion and total NSC concentration were highest in the 
trunk phloem (mean of 13.50% and 15.91%) and root 
(mean of 12.73% and 13.56%); the trunk stored less in 
resin tapping trees than in control trees but the root 
showed the opposite patterns. The sucrose concentra-
tion did not show a large variation between tapping and 
control trees in summer or winter (Fig. 2). Trees stored 
the highest NSC concentration (mean of 14.4%) in the 
trunk phloem, containing the highest amounts of starch 
(mean of 11.1%), fructose (mean of 1.93%), glucose (mean 
of 1.03%) and sucrose (mean of 0.63%). In tapping trees, 
the tapping side stored less NSC (mean of 14.1%) and 
starch (mean of 10.5%) than the non-tapping (mean of 
14.7% and 11.6%) side in both summer and winter; fruc-
tose and glucose were slightly higher on the tapping side 
than the non-tapping side in summer, but similar in win-
ter (Fig. 3). All the different do not significantly between 
season and type of NSCs.

Correlation among NSC, starch and free sugars in plant 
tissues
Glucose, sucrose and fructose were highly positively cor-
related with each other in the trunk and newly branch. 
Strong positive correlation was found between NSC and 
starch and between glucose and sucrose in every plant 
tissue respectively (Table  1). There was a significantly 
negative correlation between starch, glucose and fructose 
in trunk phloem and 1-year old branch but not signifi-
cant in other plant tissues. NSC presents a highly positive 
correlation with glucose, fructose and sucrose in newly 
branch and with glucose and fructose in needles but not 
found significance in trunk phloem and root (Table 1).

Prediction of NSCs by mixed tissues model
The mixed tissues prediction model was found to be the 
highest-performing for predicting fructose concentra-
tion, with a mean R2

CV of 0.72 and RMSECV of 0.49%, 
followed by predictions for glucose, NSC, starch and 
sucrose (Fig.  4). NSC was moderately accurately pre-
dicted by the mixed tissues model, with a mean R2

CV of 
0.66 and RMSECV of 2.12% and RMSEV of 2.05% for vali-
dation. When predicting starch, the mixed tissues model 
produced a mean R2

CV of 0.58, RMSECV of 2.09% and 
RMSEV of 2.05% for external validation. The mixed tis-
sues model showed the worst accuracy for sucrose pre-
diction, with a mean R2

CV of 0.38 and RMSECV of 0.11%.

Prediction of NSCs by separate tissue models
Data from three types of plant tissue, namely trunk, root 
and needle, were separated and considered as single-tis-
sue models for NSC prediction. The best model for NSC 
and starch prediction was found in the root, with a mean 

Table 1  Correlation matrix describing relationships among NSC, 
starch and free sugars in plant tissues of resin tapping slash pine 
trees

Bolded values are statistically significant at P < 0.05

Glucose Sucrose Fructose Starch

Trunk phloem Sucrose 0.13
Fructose 0.96 0.14
Starch − 0.48 0.01 − 0.48
NSC − 0.06 0.08 − 0.06 0.9

Newly branch Sucrose 0.42
Fructose 0.85 0.34
Starch 0.23 0.23 0.11

NSC 0.45 0.31 0.34 0.97
Newly needle Sucrose –

Fructose 0.91 –

Starch 0.42 – 0.52
NSC 0.71 – 0.79 0.93

1 yr branch Sucrose − 0.06

Fructose 0.9 − 0.13

Starch − 0.18 − 0.03 − 0.29
NSC 0.01 − 0.07 − 0.1 0.98

1 yr needle Sucrose –

Fructose 0.95 –

Starch − 0.12 – − 0.13
NSC 0.64 – 0.64 0.67

Root Sucrose –

Fructose 0.85 –

Starch 0.03 – 0.01

NSC 0.12 – 0.1 0.98
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R2
CV of 0.91 and 0.90, RMSECV of 1.25% and 1.28%, and 

RMSEV of 1.23% and 1.22%, respectively, followed by the 
trunk and needle models. Sucrose prediction was not 
considered in the root and needle models because only 
trace amounts of sucrose were found. Starch showed 
a poor prediction in the needle model, with mean R2

CV 
and R2

V of only 0.41 and 0.48 respectively. The trunk 
and needle models showed satisfactory results for glu-
cose and fructose predictions, with R2

CV of 0.83 and 0.79, 
respectively, in the trunk and 0.73 and 0.83 in the needle 
(Fig. 4).

Variable selection and model optimization
The significance multivariate correlation (sMC) algo-
rithm was applied to all PLSR models for variable selec-
tion. The number of variables was significantly reduced 
by the sMC algorithm for all PLSR models, while the 
optimal number of components remained the same as 
for the models based on the full spectra (Fig. 5). Similar 
important variables were selected for the four models: 
seven most important spectral regions, namely 1021–
1290  nm, 1480, 1748, 1941, 2020, 2123 and 2355  nm, 
were chosen as related to NSC, starch, fructose, glucose 
and sucrose. NSC and starch shared similar important 

regions (1480, 1640, 2020, and 2123 nm) while fructose, 
glucose and sucrose shared the same selected regions 
(1021–1290, 1748 and 2355 nm) (Fig. 6).

The sMC-PLSR models based on the modified NIR 
spectra showed better results on both the calibration 
and validation sets with similar components (Fig.  7). 
The four different sMC-PLSR models each yielded a 
satisfactory result to predict NSC in the validation set 
(Fig. 8).

Discussion
NSC allocation
Resin tapping has been applied widely in mature slash 
pine plantations in China, and we aimed to investi-
gate its influence on NSC allocation in plant tissues. In 
our study, we found that both tapped and control trees 
stored more NSC, starch and free sugars in winter than 
summer: it is likely that trees need more NSC to support 
growth and metabolism during the growing season and 
will store more NSC in winter as a resource for future use 
[41]. The concentrations of NSC, starch and free sugars 
in trunk phloem and root were reduced after resin tap-
ping in summer, but the concentrations in root were 
lower in winter in tapped compared to control trees. 

Fig. 4  Distribution (95% confidence intervals) of calibration and validation statistics from 100 simulations for models predicting NSC, starch, glucose, 
fructose and sucrose in plant tissues. Each model permutation included 80% of the data for calibration and the remaining 20% for validation. R2

CV: 
coefficient of determination of cross-validation; R2

v: coefficient of determination of prediction when the model was applied to the validation data set; 
RMSECV: root-mean-square error of cross-validation; RMSEv: root mean-square error of prediction when the model was applied to the validation data set
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Tapping was conducted every two days during the sum-
mer, and this might have caused increased biosynthe-
sis of resin in existing and newly-induced vertical resin 
ducts as a defense against external attack. Therefore, 
more NSC might be needed near the tapping area to sup-
port resin production and the formation of traumatic 
resin ducts [10]. Furthermore, the NSC and starch con-
centrations in branches and needles of tapping trees were 
slightly higher than in control trees during the grow-
ing season, while older branches and needles contained 
higher NSC and starch concentrations than newly ones. 
During the winter, when tapping was stopped, NSC and 
starch showed similar concentrations in both tapped and 
control trees. Continuous resin tapping might be a trig-
ger for trees to produce methyl jasmonate, which acts 
as a sensory signal and stimulates the plant to produce 
protective compounds. Such metabolism would use 
NSC from needle photosynthesis and might also stimu-
late the roots to absorb more mineral nutrients [41, 42]. 
It was reported that white spruce (Picea glauca) trees 
increased the synthesis of jasmonic acid in roots and 
leaves to promote increased production of soluble car-
bohydrates for defense against spruce budworm [43]. 
However, pine trees, like all plants, usually store NSCs in 

the trunk and root for metabolism [1]. Trees might first 
reallocate the stored NSCs near the tapping area to form 
new defensive structures and synthesize defensive sec-
ondary metabolites if the stored NSC is sufficient supply. 
Any excess newly created NSCs would be stored, which 
might explain why the NSC concentrations in branches 
and needles were higher in tapped trees than in control 
trees. Körner [44] called this response phenomenon sink 
limitation, meaning that when the demand for carbohy-
drates is lower than the supply from gross photosynthetic 
activity, the NSC concentration will increase. Our results 
differ from other studies which reported that trees use 
stored NSCs to fuel growth and respiration only when 
the supply of photoassimilates is insufficient [45–47].

In the tree trunk phloem, resin tapping caused the 
tapped side to need more NSC resources to produce 
resin for resistance; more NSCs were transformed into 
free sugars for reproduction. Therefore, the tapped side 
might have more free sugars than the non-tapped side; 
during the dormant season, the free sugars would return 
to lower levels, and more NSC would be stored in the 
trunk for future use. However, tapping might reduce the 
capacity for NSC storage (Fig.  3). In fact, similar stud-
ies also observed that Pinus species may indicate a more 

Fig. 5  Selected optimal components in each model for NSC, starch, glucose, fructose and sucrose prediction with and without sMC variable 
selection
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localized traumatic resin canal response after NSC is 
rapidly attenuated with distance from the attack posi-
tion [48]. The effects of a localized sink for carbohydrate 
in bark and wood have been observed in tapped rubber 
trees [49].

Predictive models based on NIR signatures
Different data sets were divided into four groups for NIR 
model calibration, based on the plant tissue type, namely 
root, trunk phloem, needle and a mixed tissues model. 
Different ages of needles or branches (newly and one-
year-old) were combined together like needle and trunk 
phloem, respectively. We found we could accurately esti-
mate total NSC and starch distribution in plant tissues 
using NIR spectroscopic models after variable selec-
tion; similar results were reported by Ramirez, Posada, 
Handa, Hoch, Vohland, Messier and Reu [26]. Rosado, 
Takarada, Araújo, Souza, Hein, Rosado and Gon-
çalves [22] also investigated the physiological responses 
of plants to different environmental stresses, but in 
Toona ciliata M. Roemer var. australis wood grown in 
southern Brazil. They reported promising results for 

estimating total sugars (R2 = 0.88, RMSE = 2.76%), total 
NSC (R2 = 0.90, RMSE = 2.58%), sucrose (R2 = 0.82, 
RMSE = 0.06%) and starch (R2 = 0.80, RMSE = 1.03%). 
Our NIR-based model showed a promising and reliable 
result for predicting starch in the root (R2

CV = 0.91 and 
RMSECV = 1.49%, Fig. 8), which was similar to the statis-
tics reported for Rumex obtusifolius roots (R2

CV = 0.98 
and RMSE = 1.85%) [24]. Free sugars, specifically sucrose 
in all plant tissues tested and glucose and fructose in root 
did not yield robust prediction results, which might be 
because the very small amount of the sugars reduced the 
variability in these tissues. Low concentrations and varia-
bility influenced the accuracy in a previous report of NIR 
calibration [50]. Conversely, our results for predicting 
glucose and fructose in the trunk and needle models were 
similar to the results reported in sorghum stalks, which 
yielded R2 of 0.81 for estimating glucose and sucrose [51].

The accuracy of model predictions for NSC, starch and 
free sugars varied between plant tissues: for example, we 
found relatively poor statistics associated with calibra-
tions/validations for sucrose and starch in the trunk and 
needle models, respectively. Sample types might have a 

Fig. 6  NIR spectra for detection of NSC, starch and free sugars in four slash pine tissue models and the variables selected by the sMC algorithm 
(upper left: mixed tissues model; upper right: needle model; bottom left: trunk model; bottom right: root model)
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major influence on the model calibration; the analysis of 
NSC, starch and free sugars might be influenced by plant 
tissues because of the presence of various primary and 
secondary metabolites [31]. For example, primary metab-
olites might lead to biased measurements in NIR spectral 
collection and secondary metabolites might obscure the 
absorbance of carbohydrates [26, 52]. These findings sug-
gest that specific chemical compounds and plant tissue 
types should be considered in future studies when using 
NIR to predict NSC, starch and free sugars.

The sMC-PLSR models efficiently identified the wave-
lengths with significant coefficient regressions and enabled 
us to select a small set of variables to yield a promising and 
robust predictive model based on NIR data. Our results 
support those reported by Li and Altaner [53], who suc-
cessfully used the sMC variable selection method to 
improve the accuracy of a NIR calibration model to predict 
concentrations in extracts of the heartwood of Eucalyptus 
bosistoana trees. Other studies also showed that signifi-
cance multivariate correlation (sMC) is a useful algorithm 
to remove confounding effects in NIR calibrations [35].

We used a robust statistical methodology for sam-
ple selection, which was first used by Couture, Singh, 
Rubert-Nason, Serbin, Lindroth and Townsend [31] to 
predict plant secondary metabolites using reflectance 
spectroscopy. We conducted 100 randomized simula-
tions for calibrating the models to provide an estimate of 
the model uncertainty and overall stability (Figs. 3, 6, 7). 
Other studies used either random sampling [54] or the 
Kennard-Stone sampling algorithm [55]; such methods 
that sample only once for model calibration may cause 
instability in models for prediction.

Similar important variables which were related to the 
NSC, starch, and free sugars were selected in all the mod-
els, namely spectral regions close to 1021–1290 nm, 1480, 
1640, 1748, 1941, 2020, 2123 and 2355 nm. These regions 
are mostly associated with O–H and C–H stretching 
vibrations, as reported by Ramirez, Posada, Handa, Hoch, 
Vohland, Messier and Reu [26]. For instance, numerous 
key signals have been reported in the range 1021–1290 nm 
that are related to the 1st overtones of C–H combina-
tion bands and 1st and 2nd overtones of O–H and N–H 

Fig. 7  Distribution (95% confidence intervals) of calibration and validation statistics from 100 simulations for models predicting NSC, starch, 
glucose, fructose and sucrose in plant tissues after sMC variable selection. Each model permutation included 80% of the data for calibration and the 
remaining 20% for validation. R2

CV: coefficient of determination of cross-validation; R2
v: coefficient of determination of prediction when the model 

was applied to the validation data set; RMSECV: root-mean-square error of cross-validation; RMSEv: root mean-square error of prediction when the 
model was applied to the validation data set
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stretching vibrations, while peaks close to 1480 nm, which 
are mostly related to the 1st overtones of O–H stretching 
vibration, are associated with NSC, starch and all free sug-
ars (Fig. 6) [56]. Regions close to 2123, 2355 and 1748 nm 
were reported as associated with starch and sugar [24].

Conclusions
In conclusion, in our study, we found that resin tap-
ping induced the production of NSC in plant tissues. 
However, the responses from each plant tissue were dif-
ferent; the position of resin tapping mainly influenced 
the dynamic responses of NSC. The NSC allocation 
and dynamic were strongest close to the tapping posi-
tion. The tapping area will cause the NSC transfer to 
free sugars for reproduction. NIR spectroscopy could 
potentially be used to estimate the NSC and free sug-
ars in trees. However, such studies should concentrate 
on models using data from specific plant tissues. The 
repeated spectral statistical methodology that we used 
provides an efficient way to deal with variation in cali-
bration data and generate information on the responses 
of plant NSC by using NIR spectra.
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