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Index (HI) and CC indices were the components of 
the model. We found that the biomass accumulation 
predicted by the model was responsive throughout 
the crop cycle and the grain yield predicted was cor-
related to measured grain yield. The model was able 
to early predict grain yield based on biomass accu-
mulated at anthesis. Evaluation of the model compo-
nents enabled an improved understanding of the main 
factors limiting yield formation throughout the crop 
cycle. The proposed  Yieldp Model explores a new 
concept of yield modelling and can be the starting 
point for the development of cheap and robust, on-
farm, yield prediction during the crop cycle.

Keywords Crop breeding · Early yield prediction · 
Mathematical modelling · On-farm yield · Remote 
sensing · Triticum aestivum

1 Introduction

The increased demand for food motivated by the 
growing world population (Godfray et  al. 2010) and 
changes in food consumption patterns (Pingali 2006) 
has increased the pressure on the agricultural sector. 
Increasing food production in a sustainable way, i.e. 
with minimal to no increases in land and water and 
nutrients inputs, emerges as the main solution for 
ensuring food security in the near future (FAO 2002). 
Improving yields is the main cornerstone for improv-
ing food security, as yield increases are expected to 
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result in up to 77% of the increases in food produc-
tion by 2050 (Alexandratos and Bruinsma 2012), 
while reducing agricultural impacts on the environ-
ment (Tilman and Clark 2015). The understanding of 
the  yield formation and the main limitations to this 
process at the farm level is crucial to the success of 
breeding programs aiming to improve yield potential 
and resilience (Reynolds and Langridge 2016).

Yield potential (Yp) is defined as the yield of a 
cultivar when grown in environments to which it is 
adapted, with nutrients and water non-limiting, with 
pests, diseases, weeds, lodging, and other stresses 
effectively controlled (Evans and Fischer 1999), and 
is theoretically presented as:  Yp = RAD  · εi  ·  εc  ·  εp 
(Long et al. 2015). The equation represents the energy 
transformation process from sunlight to grain matter 
and the efficiencies (ε) involved in this process. The 
radiative energy from sunlight (RAD) is intercepted 
by the canopy (εi) and converted (εc) into chemi-
cal energy, which is stored in the form of biomass. 
This biomass is then partitioned (εp) to the organ of 
interest (e.g. the grain, for the wheat crop) (Monteith 
and Moss 1977). However, the yield potential is not 
achieved at the farm level, mainly due to non-ideal 
growth conditions (Hengsdijk and Langeveld 2009). 
The difference between the yield potential and the 
on-farm yield is defined as the yield gap (Lobell et al. 
2009).

In the past decades, crop breeding programs 
focused mostly the increase of yield potential (as dis-
cussed by Pennacchi et al. 2018b; Fischer et al. 2014), 
but future strategies should maintain the efforts to 
increase the yield potential while decreasing the yield 
gap (Araus et  al. 2008). In breeding programs, the 
detection of high-yielding cultivars early in the crop 
cycle improves the capacity of disregarding genetic 
materials with low yield potential at early stages, 
focusing on more promising genotypes. (Marti et al. 
2007; Prasad et  al. 2007; Becker and Schmidhal-
ter 2017). Early yield prediction is also relevant for 
defining farm practices such as fertilization (Marti 
et al. 2007) and informing the grain market and insur-
ance companies (Balaghi et al. 2008).

To improve early yield prediction, remote sensing 
tools such as passive spectro-radiometers have been 
extensively used. Numerous studies have reported 
significant correlations between various spectral 
reflectance indices (SRIs) derived from spectral 
measurement and wheat grain yield (Raun et al. 2001; 

Babar et  al. 2006; Marti et  al. 2007; Balaghi et  al. 
2008; Peñuelas et al. 2011; Gizaw et al. 2016; Prad-
han et  al. 2014; Pennacchi et  al. 2018a). However, 
their combinations in a mathematical model are not 
frequent, despite the mentions in the literature (Raun 
et  al. 2001; Singh et  al. 2006; Montesinos-López 
et al. 2017).

Certain SRIs reflect different canopy characteris-
tics, which means that  they can be combined into a 
single model to fit the equation of theoretical defi-
nition of yield (Long et  al. 2015). The NDVI (Nor-
malized Difference Vegetation Index) is a vegetation 
index correlated to area cover by green tissues, and 
is related to εi. The PRI (Photochemical Reflectance 
Index) is a pigment-related index correlated to dis-
sipation of excessive radiation and light conversion, 
and thus related to εc; HI (Harvest Index) is directly 
related to εp. Finally, WI (Water Index) correlates to 
the plant water status (Pietragalla et  al. 2012). The 
use of WI in the model includes a term related to the 
general water status of the canopy and plant vigour. 
Changes in water availability, and possibly drought 
and heat stresses, will directly impact on NDVI and 
PRI. Therefore, adding a component related to can-
opy water status may turn the model more representa-
tive to the potential impact of drought to on-farm 
yield. Such a model fitting is associated to the high 
impact of drought in resource use efficiency and crop 
yield (Davies 2014). This may be true mainly consid-
ering the fact that water limitation is one of the key 
constraints of crop productivity (Dodd et  al. 2011), 
and highly impacts yield (Jin et al. 2016; El-Hendawy 
et al. 2017).

Empirical models may not be particularly informa-
tive if their parameters have no intrinsic biological 
meaning (Adams et al. 2017). Simplicity and ease of 
application are also desirable characteristics of yield 
prediction models (Hoefsloot et al. 2012). Modelling 
crop yields in a single environment may prove chal-
lenging, mainly in conditions where treatment fac-
tors are absent. For instance, crop yield modelling for 
germplasm growing under different nitrogen concen-
trations or water regimes tends to present higher pre-
dictive power, as the additional factors may increase 
observation number and increase the spread of the 
data (Hernandez et al. 2015; Montesinos-López et al. 
2017). Working with germplasm in a single environ-
ment and in the absence of treatments relies solely on 
genetic variability.
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In this study, the efficiency of multiple composi-
tions of yield prediction models based on wheat 
canopy traits, such as reflectance parameters and CC 
indices was evaluated and compared to alternative 
statistical modelling methods. The model proposed 
was based on the yield formation equation and the 
underlying processes associated with the three effi-
ciencies, εi, εc and εp (Long et  al. 2015), and was 
applied to a wheat population grown in the field for 
two seasons. The dataset presented herein is part of a 
larger dataset already exploited for analysis of wheat 
yield drivers in the same population (Pennacchi et al. 
2018a).

2  Material and methods

2.1  Plant material and field experiments

A wheat population comprised of double-haploid 
lines (DHL) generated by Syngenta (Cambridge, 
UK) was used (Pennacchi et  al. 2018a). The popu-
lation  was composed by the two parents and 119 
lines, grown at the Rothamsted Research farm in 
Harpenden, UK, for two consecutive season. The first 
sowing was in October 2014 and harvested in August 
2015, and the second in October 2015 and harvested 
in August 2016. Each experiment was identified by 
the year of harvest and their details are presented in 
the sequence.

The 2015 experiment was planted at the Pastures 
field  after oilseed rape crop in a Typical Batcombe 
soil (Avery and Catt 1995) in 2 × 1  m (2  m2) plots 
of 6 rows, with a sowing rate of 350 seeds  m−2, in 
three randomized blocks (sown on 20/10/2014 and 
harvested on 23/08/2015). The 2016 experiment was 
planted at the Delafield field, in a Batcombe soil 
(Avery and Catt 1995) after oilseed rape crop, in 
4 × 1 m (4  m2) plots of 6 rows, with a sowing rate of 
350 seeds  m−2, in three randomized blocks (sown on 
12/10/2015 and harvested on 24/08/2016).

Application of fungicides, insecticides and herbi-
cides, as well as fertilizers, followed Rothamsted farm 
practices.

2.2  Meteorological data

The meteorological data was acquired from the 
Rothamsted Meteorological Station at the Rothamsted 

Farm. The distance from the station to the experi-
ments in a straight line was: 1 km for the 2015 experi-
ment and 1.6 km for the 2016 experiment. The daily 
radiation (MJ  m−2) was recorded and the accumulated 
radiation (RAD) over a specific period was calculated 
as the sum of the daily value from the first to the last 
day in the considered period.

2.3  Crop development

The date at which half of the plants in a plot reached 
a given growth stage was monitored throughout the 
growing season using the Zadoks scale (Zadoks et al. 
1974). The scale is based on scores relative to crop 
development stages: tillering, stem elongation, boot-
ing, flag leaf expansion, ear emergence, flowering, 
grain filling and maturation. The frequency of crop 
development monitoring depended on the crop stage, 
being less frequent when crop development was 
at early stages (from tillering (Z2) to booting (Z4) 
stages) and more frequent from booting (Z4) to dough 
development (Z8) as the crop development was faster. 
Leaf senescence was measured from anthesis to the 
end of the season using the wheat senescence scale 
(Pask and Pietragalla 2012).

2.4  Phenotyping

Measurements were taken over the crop growing sea-
son as described below. For CC, horizontal photo-
graphs of the canopy from above, parallel to the soil 
surface of the plot, were taken weekly from March 
(Z2.4) to August (Senescence score 10, S10) using a 
digital camera. The pictures were analysed using the 
BreedPix open access software that outputs the area 
covered by green tissue as a percentage of the total 
area, i.e. the CC (Casadesus et  al. 2007). From this 
data, the following indices were calculated (Fig. 1):

Early vigour (EV): based on Rebetzke and Rich-
ards (1999) and calculated as the sum of the 
weekly single measurements of leaf cover from 
Z2.4 and the date when plots reached an average of 
90% of area covered by leaves (90C) (Eq. 1):

(1)EV =
(

∑90C

Z2.4
CC

)

.
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Accumulated green area (AGA): calculated as the 
sum of the weekly single measurements of CC 
from Z2.4 to Z6.5 (Eq. 2):

Stay green (SG): based on Thomas and Smart 
(1993) and calculated as the sum of the weekly sin-
gle measurements of CC from Z6.5 to S10 (Eq. 3):

Reflectance was measured 75 cm above the canopy 
using a HandySpec System (TEC5, Oberursel, 
Germany) spectroradiometer. From the reflectance 
measurements, the following traits were calculated 
using the software accompanying the HandySpec 
System and according to Pietragalla et al. (2012):
Normalized Difference Vegetation Index (NDVI) 
(Eq. 4):

Photochemical Reflectance Index (Eq. 5):

(2)AGA =
(

∑Z6.5

Z2.4
CC

)

.

(3)SG =
(

∑S10

Z6.5
CC

)

.

(4)NDVI =
(

R900 − R680)∕(R900 + R680

)

.

(5)PRI =
(

R530 − R570)∕(R530 + R570

)

.

Water Index (WI) (Eq. 6):

where Rλ is the reflectance measured at the wave-
length λ (nm).

For the 2015 season, reflectance was measured 
at 3 time points: Z3.4, Z4.5 and Z6.5. For the 2016 
season, the measurements were performed at 10 time 
points: Z3.7, Z5.7, Z6.5, Z7.1, Z7.5, Z7.8, Z7.9, Z9.4, 
Z9.7 and Z9.9.

The analysis of biomass at the end of the grow-
ing was performed at physiological maturity (Z9.9). 
The tillers in a 50  cm (2015) or 30  cm (2016) row 
were manually harvested from the third quarter (mid-
dle section) of the third row in each of the 6-row 
plots. The number of tillers and grains, as well as the 
straw, spike and grain dry mass and grain moisture 
were measured (Pask and Pietragalla 2012). Harvest 
index (HI) was calculated as the ratio between dry 
grain mass (GM) and above ground biomass (AGB, 
consisting of grain and straw mass), all measured in 
grams (g) and at 100% dry matter (Eq. 7):

For the final harvest of the experiments, plants 
were harvested using a Haldrup-C65 (Haldrup, Le 
Mans, France) plot combine. Grain mass for each plot 
was determined by the combine. Grain moisture was 
measured using a sub-sample of grains from each plot 
at harvest time, and grain mass was normalized to 
15% moisture content. Grain mass per plot was cor-
rected for the sections harvested by hand and grain 
yield estimated in tons per hectare at 85% dry matter.

2.5  Grain yield modelling

Models were fit starting from the simplest and pro-
gressing towards increasing complexity with the 
inclusion of additional traits. The simplest model 
(Model 1) to predict wheat grain yield included 
NDVI, PRI and HI. PRI was embedded within the 
calculation of light use efficiency (LUE) using the 
conversion factor defined by Wu et al. (2015) (Eq. 8):

(6)WI =
(

R970)∕(R900

)

,

(7)HI = GM∕AGB.

(8)LUE = (6.6 ⋅ PRI) + 1.1.

Fig. 1  Graphic representation of leaf cover indices in the 
experimental wheat field  calculated from field level. Leaf 
cover is given in  m2 of leaf area per  m2 of soil. Early vigour, as 
accumulated leaf area from Z2.4 to the date when 90% of plot 
area cover by leaves was reached; Accumulated green area, as 
accumulated leaf area from Z2.4 to Z6.5; Stay green, as accu-
mulated leaf area from Z6.5 to S10. Z, Zadoks scale for crop 
development (Zadoks et al. 1974); 90C, 90% of plot area cover 
by leaves; S, senescence scale (Pask and Pietragalla 2012). 
Adapted from Pennacchi et al. (2018a). (Color figure online)
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Thus, Model 1 was defined as:

where  BiomassM1 is the predicted accumulated bio-
mass,  YieldM1 is the predicted yield, RAD is the sun-
light radiation in the given crop growing period, LUE 
is the light use efficiency calculated from PRI, and HI 
is the harvest index; i and f are initial and final meas-
urement points, respectively.

A second model (Model 2) was built from Model 
1 by incorporating a factor related to canopy water. 
The Water Status index (WS) was calculated as the 
inverse of WI (Eq.  11). WI is negatively related to 
canopy water; therefore, higher WI corresponds to 
lower canopy water content:

The Model 2 was defined as:

A third model (Model 3) was built from Model 
1, by using a correction factor for NDVI  (NDVIcor). 
 NDVIcor was calculated from NDVI multiplied by a 
factor related to CC indices (Eq. 14). The correction 
factor for each line was calculated by the chosen CC 
index for the line divided by the average of the index 
for the population. The indices used for each of the 
periods in the season were: EV from Z3.4 to 90C, 
AGA from 90C to Z6.5 and SG from Z6.5 to Z9.9 
(Fig. 1).

where k is the correction factor defined as (Eq. 15):

where l and p are, respectively, the line and popula-
tion mean values for the trait at each time point.

The Model 3 was defined as:

(9)BiomassM1 =
∑f

i
(RAD ⋅ NDVI ⋅ LUE)

(10)YieldM1 = BiomassM1 ⋅ HI,

(11)WS =
1

WI
.

(12)BiomassM2 =
∑f

i
(RAD ⋅ NDVI ⋅ LUE ⋅WS),

(13)YieldM2 = BiomassM2 ⋅ HI.

(14)NDVIcor = NDVI ⋅ k,

(15)k = [(EVl∕EVp)fromZ2.4to90C;(AGAl∕AGAp)from90CtoZ6.5;(SGl∕SGp)fromZ6.5toZ9.9],

The final model (Model 4) was the most complex, 
resulting from a combination of Models 2 and 3. The 
Model 4 was defined as:

The Model 4, from here named  Yieldp Model, can 
also be written as:

As the first measurements were made at stem elon-
gation (Z3.4 for 2015 and Z3.7 for 2016), values for 
NDVI, PRI and WI were estimated for the early stages 
when crop growth restarted after winter (around Z2.4). 
NDVI at Z2.4 was estimated as 35% of the NDVI at 
Z3.4 (or Z3.7 for 2016) (based on unpublished data 
collected by the phenotyping group at Rothamsted 
Research), PRI and WI were estimated as the same val-
ues as at Z3.4 (or Z3.7 for 2016). Biomass accumulated 
at Z2.4 was incipient and considered as zero, being the 
biomass accumulation counted from this stage. For 
2015, the final values for Z9.9 were also estimated, with 
NDVI as 0.13, LUE as 0.30 and WI as 1.1 (according 
to average measured values in 2016 season).

The unit of calculation of  Yieldp was based on the 
components of the Eqs.  18 and 19.  NDVIcor and WI 
were measured in percentage and have no unit. RAD 
was measured in MJ  m−2 and LUE was measured in g 
C  MJ−2 (grams of Carbon per square meter). As HI is 
also unitless, Biomass and  Yieldp are given in g C  m−2 
or converted to t C  ha−1.

2.6  Model sensitivity evaluation

Each of the models was evaluated using the Pearson 
Product Moment (PPM) correlation coefficients (r) 
and the root mean square error (RMSE). The PPM 

(16)BiomassM3 =
∑f

i

(

RAD ⋅ NDVIcor ⋅ LUE
)

,

(17)YieldM3 = BiomassM3 ⋅ HI.

(18)
BiomassM4 =

∑f

i

(

RAD ⋅ NDVIcor ⋅ LUE ⋅WS
)

,

(19)YieldM4 = BiomassM4 ⋅ HI.

(20)
Yieldp =

[

∑f

i

(

RAD ⋅ NDVIcor ⋅ LUE ⋅WS
)

]

⋅ HI.
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coefficient represented the correlation between grain 
yield predicted by each model and measured grain 
yield. The same approach was used to evaluate the 
correlation between single traits and measured grain 
yield. The traits used in the model and the model 
output (predicted biomass and predicted yield at 
the end of the season) were compared to measured 
yield at each of the evaluation time points in 2015 
and 2016. The RMSE is defined as the square root 
of the sum of the squared difference between pre-
dicted and measured yield for each observation 
(line). It was calculated for all the models as:

where n is the number of lines in the experiment 
(n = 121) and  Yieldm the measured yield for each line.

The use of the two methods of evaluation (PPM 
and RMSE) results in  an integrated and robust 
analysis of model fitting. The Pearson correlation 
coefficients (r) are related to the model capacity to 
distinguish the phenotypic response of the cultivars 
in terms of their grain yield. However, it does not 
account for the amplitude of the predicted values. 
The RMSE values accounted for the difference in 
amplitude between predicted and measured values. 
An ideal model would present high Pearson correla-
tion coefficient and low RMSE values.

To evaluate the impact of εi, εc and εp in the pre-
diction of yield, each of the terms  (NDVIcor, LUE 
and HI) was individually taken out of  Yieldp Model 
(Eq.  20) and the output was compared to  Yieldm 
using PPM correlation coefficient (r) and RMSE. 
These models are referred as Reduced Models 
 (YieldpR1 to  YieldpR3).

To evaluate the impact of increasing the pheno-
typing frequency, especially after anthesis, a short 
model was run for 2016 using only the initial pre-
dicted time point (Z2.4), three middle time points 
(Z3.7, Z5.7 and Z6.5) and the last time point (Z9.9). 
The output was compared to measured grain yield 
using PPM correlation coefficient (r) and RMSE. 
This model is referred as Short Model and is only 
presented for 2016 season.

2.7  Multiple linear regression analysis

A multiple linear regression was independently fit for 
each of the seasons based in the same traits included 

(21)RMSE =

√

[
∑n

1
(Yieldp − Yieldm)

2],

in the previous presented model: NDVI, PRI, WI, HI, 
EV, AGA and SG. Initially, we performed the For-
ward and Backward Stepwise methods which resulted 
in a list of parameters to be included in a further 
model. A final multiple linear regression was fit using 
a combination of multiple modelling methods (Accu-
mulated, Pooled, Forward Selection, Backward Selec-
tion, Forward Stepwise and Backward Stepwise). The 
final multiple linear regression fitting process was 
based on fixed and random terms. Fixed terms (terms 
always present in the model) were the traits which 
were coincident in both, the Forward and Backward 
Stepwise methods; random terms (that can be pre-
sent or absent from the model) were traits which were 
present in one of the methods but not in the other. 
Regression fitting was analysed based on the adjusted 
R-square  (Radj

2) and the Mallows Cp coefficient. 
These models are referred as Multiple Linear Regres-
sion (MLR). The GenStat  17th Edition (VSN Interna-
tional Ltd., Hemel Hampstead, UK) was used for all 
the statistical analysis presented in this paper.

2.8  Data analysis

The method of residual maximum likelihood (REML) 
was used to evaluate spatial trends over the rows and 
columns in the field design by fitting a linear mixed 
model to each measured trait to test for any statisti-
cally significant (p < 0.05, Chi-squared test) variation. 
Predicted means from the model fitted to each trait 
were used in subsequent modelling.

3  Results

3.1  Canopy cover and plant water status indices 
improve the predictive power of grain yield 
models

Amongst the four tested approaches to describe the 
wheat yield from remote sense reflectance indices, 
from low to high complexity, Model 1 presented a 
correlation to measured yield of 0.50 and 0.57 for 
2015 and 2016, respectively (Table  1). The use of 
CC corrections to NDVI  (NDVIcor) generated an 
improvement in the fitting of the model from 0.50 
(p < 0.001) to 0.57 (p < 0.001) in 2015 and from 0.57 
(p < 0.001) to 0.60 (p < 0.001) in 2016 (comparison 
between Model 1 and 3, Table 1). The improvement 



543Theor. Exp. Plant Physiol. (2022) 34:537–550 

1 3
Vol.: (0123456789)

was evident in 2015, which suggests that inclusion 
of the CC indices is most important when reflectance 
measurements were less frequent.

The use of the WS index (inverse of WI) as an 
indicator of canopy water status also improved the 
correlation between predicted and measured yield. 
For 2015, including WS increased the fitting from 
0.50 (p < 0.001) to 0.52 (p < 0.001), and for 2016 
from 0.57 (p < 0.001) to 0.62 (p < 0.001) (comparison 
between Model 1 and 2, Table 1).

The combined insertion of both  NDVIcor and WS 
improved the correlation between the predicted and 
measured yields to 0.59 (p < 0.001) in 2015 and to 
0.64 (p < 0.001) in 2016 (comparison between Model 
1 and  Yieldp Model, Table 1).

The inclusion of  NDVIcor did not change the 
RMSE as it did not affect the amplitude of the pre-
dicted values from Model 1 to Model 3. On the other 
hand, the inclusion of WS impacted the RMSE as it 
changed not just the predicted value for each line, 
but also the general amplitude of the model output. 
For 2015, the inclusion of WS reduced the amplitude 
between the predicted and measured values (RMSE 
from 1.66 to 0.97). For 2016, RMSE changed from 
0.42 to 1.75 (Table  1). This contrasting response is 
associated with the underestimation of predicted yield 
in 2015 and overestimation in 2016 (Fig. 2). Overall, 
the  Yieldp Model indicated an improved fitting for 
both years, while it presented an increased RMSE in 
2016 (Table 1). The  Yieldp Model will be used as the 
basis for the further analysis presented in the manu-
script, unless otherwise stated.

3.2  The wheat yield prediction model and grain yield 
formation

Table 1  Evaluation indices for wheat yield prediction models (Model 1 to 4) in relation to measured grain yield, in two years (2015 
and 2016)

Significance levels for correlations are given by an F-test on 1 and 120 degrees of freedom: p < 0.001. r, Pearson correlation coef-
ficient between predicted and measured yield for each proposed model; RMSE, Root Mean Square Error for each proposed model
Yieldp# yield predicted by the proposed Model #, HI harvest index, NDVIcor corrected Normalized Difference Vegetation Index, LUE 
light use efficiency WS Water Status index, RAD sunlight radiation

Models Model description 2015 2016

r RMSE r RMSE

Model 1 YieldM1 = RAD·NDVI·LUE·HI 0.50 1.66 0.57 0.42
Model 2 YieldM2 = RAD·NDVI·LUE·WS·HI 0.52 0.97 0.62 1.75
Model 3 YieldM3 = RAD·NDVIcor·LUE·HI 0.57 1.66 0.60 0.43
Yieldp Model (Model 

4)
Yieldp = RAD·NDVIcor·LUE·WS·HI 0.59 0.99 0.64 1.75

Fig. 2  Yield prediction model for a wheat population grown 
in the UK in 2015 and 2016. Measured Grain Yield represents 
grain mass per area determined at full maturity and at 85% 
dry matter; Predicted Grain Yield represents the output of the 
proposed  Yieldp Model (Eq. 20) based on the yield formation 
equation. Pearson Product Moment correlation coefficients 
(r) were calculated to evaluate the correlation between meas-
ured and predicted yield at a significance level of 5% (F-tests). 
Dashed lines represent the 1:1 identity line
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The proposed  Yieldp Model presented higher corre-
lation to measured grain yield than any other single 
trait along the crop cycle in both seasons (Table 2). 
For the 2015 season, the predicted  Yieldp and pre-
dicted Biomass presented, respectively, a correla-
tion of 0.59 (p < 0.001) and 0.56 (p < 0.001), which 
was higher than the maximum correlations of any 
measured and/or calculated traits (NDVI (Z3.4), 
r = 0.48, p < 0.001; LUE (Z3.4), r = 0.47, p < 0.001; 
respectively) (Table  2). For 2016,  Yieldp (r = 0.64, 
p < 0.001) presented higher correlation to grain 
yield than the measured and calculated traits, WI 
(Z7.4) (r = −  0.59, p < 0.001) and LUE (Z3.7 and 
Z5.7) (r = 0.44, p < 0.001), respectively (Table  2). 
The use of the model improved the capacity of 

predicting yield if compared to single traits by 11% 
(0.59–0.48 = 0.11) and 5% (0.64–0.59 = 0.05), in 
2015 and 2016, respectively.

The correlation between predicted biomass and 
yield increased along the crop cycle reaching its 
maximum value around flowering and grain devel-
opment stages. For 2015, the maximum value was 
at anthesis (Z6.5; r = 0.54, p < 0.001), but was also 
high at booting (Z4.5; r = 0.53, p < 0.001). For 2016, 
the maximum correlation was at grain development 
(Z7.1, Z7.5 and Z7.9; r = 0.50, p < 0.001) but was 
close to that at anthesis (Z6.5; r = 0.48, p < 0.001) 
and ear emergence (Z5.7; r = 0.47, p < 0.001) 
(Table 2).

Table 2  Pearson coefficients (r) for correlation with grain yield for measured and predicted traits (based on the  Yieldp Model) in a 
wheat population grown in the UK in 2015 and 2016

Significance levels for correlations are given by an F-test on 1 and 120 degrees of freedom: * p < 0.05; ** p < 0.01, *** p < 0.001, NS 
not significant.  Yieldp, yield predicted by the proposed  Yieldp Model; HI, harvest index; Biomass, accumulated biomass at the end of 
the cycle predicted by the  Yieldp Model. EV early vigour; AGA , accumulated green area; SG, stay green. Biomass (Z), accumulated 
biomass at the Z stage predicted by the proposed  Yieldp Model. NDVI (Z), Normalized Difference Vegetation Index at the Z stage; 
LUE (Z), Light Use Efficiency at the Z stage; WI (Z), Water Index at the Z stage. Z is the Zadoks scale value for the plant develop-
ment stage. Traits in italic were predicted by the model, those underlined were calculated and those in bold, measured

2015 2016 2015 2016

Yieldp 0.59*** Yieldp 0.64*** EV 0.26** EV 0.30***
HI 0.07NS HI 0.36*** AGA 0.42*** AGA 0.23**
Biomass 0.56*** Biomass 0.48*** SG 0.25** SG 0.25**
Biomass (Z3.4) 0.45*** Biomass (Z3.7) 0.44*** LUE (Z3.4) 0.47*** LUE (Z3.7) 0.44***
Biomass (Z4.5) 0.53*** – LUE (Z4.5) 0.42*** –
– Biomass (Z5.7) 0.47*** – LUE (Z5.7) 0.44***
Biomass (Z6.5) 0.54*** Biomass (Z6.5) 0.48*** LUE (Z6.5) 0.33*** LUE (Z6.5) 0.37***
– Biomass (Z7.1) 0.50*** – LUE (Z7.1) 0.37***
– Biomass (Z7.5) 0.50*** – LUE (Z7.5) 0.22*
– Biomass (Z7.8) 0.50*** – LUE (Z7.8) 0.17NS

– Biomass (Z7.9) 0.49*** – LUE (Z7.9) 0.19*
– Biomass (Z9.4) 0.48*** – LUE (Z9.4) 0.01NS

– Biomass (Z9.7) 0.48*** – LUE (Z9.7) 0.01NS

NDVI (Z3.4) 0.48*** NDVI (Z3.7) 0.35*** WI (Z3.4) − 0.38*** WI (Z3.7) − 0.31***
NDVI (Z4.5) 0.28** – WI (Z4.5) − 0.22* –
– NDVI (Z5.7) 0.37*** – WI (Z5.7) − 0.22*
NDVI (Z6.5) 0.18* NDVI (Z6.5) 0.33*** WI (Z6.5) − 0.42*** WI (Z6.5) − 0.38***
– NDVI (Z7.1) 0.40*** – WI (Z7.1) − 0.49***
– NDVI (Z7.5) 0.48*** – WI (Z7.5) − 0.55***
– NDVI (Z7.8) 0.41*** – WI (Z7.8) − 0.55***
– NDVI (Z7.9) 0.41*** – WI (Z7.9) − 0.59***
– NDVI (Z9.4) 0.19* – WI (Z9.4) − 0.32***
– NDVI (Z9.7) − 0.08NS – WI (Z9.7) − 0.17NS
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3.3  Sensitivity analysis did not reveal a main 
influencer for yield prediction

The sensitivity analysis of the  Yieldp Model, through 
the evaluation of the Reduced Models, did not reveal 
a main influencer for yield prediction. In 2015, the 
 NDVIcor presented the highest influence to the model, 
followed by LUE and HI. In 2016, HI had a higher 
influence to yield prediction, followed by  NDVIcor 
and LUE. This lack of a consistent pattern for the 
influence of individual terms to the final model high-
lights the flexible response of the model to different 
seasons (Table  3). Importantly, removing  NDVIcor 
and, especially HI of the model had a large impact on 
the RMSE value (Table  3), demonstrating that both 
terms cause a large change in the amplitude of pre-
dicted values, which is not observed for LUE. For 
instance, a HI of 0.5 means that half of the above 
ground biomass was stored in the grain. A model 
without HI would generate predicted yield values of 
an amplitude of the double of the measured value, 
thus increasing RMSE.

3.4  Increased phenotyping frequency, especially at 
post-anthesis, improved model fitting

The comparison between  Yieldp Model and the Short 
Model for 2016 allowed an analysis of the impact of 
the phenotyping frequency in the model fitting, as fol-
low: the  Yieldp Model, for 2016, presented a corre-
lation of 0.64 (p < 0.001) with a RMSE of 1.75; for 
the Short model, the correlation was reduced to 0.31 
(p < 0.001) and the RMSE to 1.54. The increased phe-
notyping frequency, mainly at post-anthesis, enhanced 
the fitting of the model for 2016. The improvement of 

the model fitting promoted by the intensification of 
phenotyping at post-anthesis cannot be pointed as a 
general conclusion, as it should be tested for different 
seasons. The fact that the modelling for 2015, using 
the same number of time points as the short model for 
2016, presented a higher fitting, suggesting the need 
of evaluating the impact of post-anthesis phenotyping 
for more years, in repeated experiments.

3.5  The  Yieldp model highlights the limitations to 
yield formation throughout the crop cycle

For the 2016 season, the high frequency of meas-
urements enabled an evaluation of the factors limit-
ing yield formation (Fig.  3). Biomass accumulation 
was responsive to high NDVI and LUE, until ear 
emergence (Z5.7). Maintenance of NDVI and an 
increase in WS, as well as higher solar radiation, kept 
the biomass accumulation rate until Z7.5, despite a 
decreased LUE. From Z7.5, biomass accumulation 
rate decreased with the decrease of NDVI, WS and 
LUE (Fig. 3). 

3.6  Multiple linear regressions were dependent on 
phenotyping capacity

The use of MLR to predict grain yield using the same 
traits presented in the  Yieldp Model allowed a com-
parison between the methods, as presented in the 
sequence. For 2015, the MLR, composed of 7 terms 
presented  Radj

2 = 37.9% (r = 0.62). For 2016, the Mul-
tiple Linear Regression composed of 9 terms pre-
sented  Radj

2 = 67.3% (r = 0.82). Although the MLR 
presented higher correlations to measured grain yield 
in both seasons, a high variation in the model fitting 

Table 3  Evaluation indices for reduced models from  Yieldp model

Significance levels for correlations are given by an F-test on 1 and 120 degrees of freedom: p < 0.001. r Pearson correlation coeffi-
cient between predicted and measured yield for each model, RMSE Root Mean Square Error for each proposed model, YieldpR# yield 
predicted by the proposed Reduced Model (from 1 to 3), HI harvest index, NDVIcor corrected Normalized Difference Vegetation 
Index, LUE light use efficiency, WS Water Status index, RAD sunlight radiation

Reduced models Model description 2015 2016

r RMSE r RMSE

Yieldp Model w/o  NDVIcor YieldpR1 = RAD·LUE·WS·HI 0.49 2.49 0.57 4.89
Yieldp Model w/o LUE YieldpR2 = RAD·NDVIcor·WS·HI 0.50 0.50 0.62 1.77
Yieldp Model w/o HI YieldpR3 = RAD·NDVIcor·LUE·WS 0.55 7.62 0.48 10.97
Yieldp Model Yieldp = RAD·NDVIcor·LUE·WS·HI 0.59 0.99 0.64 1.75
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between 2015 and 2016 was observed. The frequency 
of phenotyping impacted greatly the reliability of the 
regressions.

For 2015, the terms presented in the MLR were: 
AGA, SG, NDVI (estimated at Z2.4), PRI (Z6.5), WI 
(Z6.5) and HI. For 2016, the terms were: SG, NDVI 
(estimated at Z2.4, Z9.9), PRI (Z6.5, Z7.4, Z7.8, 
Z9.9), WI (estimated at Z2.4, Z7.4, Z7.8, Z9.4, Z9.7) 
and HI. Although some terms contribute to the pre-
dictive regressions presented above, they did not pre-
sent biological meaning, as for instance, canopy WI 
at the very late stages in the season (Z9.4 and Z9.7), 
close to harvest. Four terms were presented in the 
regressions for both years: SG, NDVI (estimated at 
Z3.4), PRI (Z6.5) and HI. When the linear regression 
analysis was performed with only these four terms, 
the final fitting was of  Radj

2 = 30.3% (r = 0.55) and 

 Radj
2 = 41.5% (r = 0.64) for 2015 and 2016, respec-

tively. These results were very similar to the general 
fitting of the  Yieldp Model proposed in this article 
(r = 0.59 in 2015 and r = 0.64 in 2016) (Table 2).

4  Discussion

The use of a model to calculate wheat grain yield had 
the main objective of enabling robust predictions of 
final yield. An additional aim was to unravel the fac-
tors contributing for yield formation and the influence 
of particular combinations of traits measured during 
the wheat development cycle to the final productivity. 
Many factors limit biomass accumulation and yield 
formation during the crop cycle, but they will essen-
tially constrain the efficiencies presented in the yield 
formation equation. The use of a simplistic model 
could enhance the understanding of the limitations to 
yield throughout the crop cycle.

The  Yieldp Model, based on the yield formation 
equation, was developed to predict wheat grain yield 
using canopy reflectance indices. The model was 
validated using a wheat population grown and pheno-
typed under UK field conditions, for two consecutive 
seasons. The  Yieldp Model output presented higher 
correlation to measured grain yield than any of the 
single traits measured in the study. Significant cor-
relations between wheat yield and NDVI (Raun et al. 
2001; Gizaw et al. 2016; Pennacchi et al. 2018a), PRI 
(Peñuelas et  al. 2011; Gizaw et  al. 2016; Pennacchi 
et  al. 2018a) or WI (Pradhan et  al. 2014; Pennacchi 
et al. 2018a) have been previously reported. Here, the 
mathematical combination of these parameters and 
CC indices in a simple model has shown an improve-
ment in yield prediction, with correlation coefficients 
of r = 0.59  (R2 = 0.35, p < 0.001) and 0.64  (R2 = 0.41, 
p < 0.001) for 2015 and 2016, respectively.

The correlation between predicted and measured 
yield was intermediate; this may be related to the fact 
that the models were applied to single environment 
conditions with the genotypic composition of the 
lines as the only source of variation. The genetic vari-
ability in a double-haploid population is not expected 
to be as high as in diverse germplasm panels (Gaynor 
et al. 2017).

The inclusion of CC indices correction to NDVI 
improved the  Yieldp Model fitting, mainly for the 

Fig. 3  Graphical representation of the wheat yield prediction 
model components and their progression during the grow-
ing season. Vertical dashed lines represent the measurement 
time points at specific Zadoks (Z) stages. Coloured dashed 
lines represent the trendline between estimated and measured 
points (i.e., before Z3.4/3.7 for both seasons and beyond Z6.5 
for 2015). Solid lines represent the connection between meas-
urement points for: LUE (Light Use Efficiency in g C  MJ−1; 
brown), WS (Water Status index, blue),  NDVIcor (in %; light 
green), RAD (Radiation in MJ  m−2; yellow) and Predicted bio-
mass (in t C  m−2; dark green). (Color figure online)
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2015 season, when the number of measurements was 
lower compared to 2016. This method can be useful 
to improve yield prediction models in field situations 
where reflectance measurements cannot be frequently 
performed. It also highlights the importance of using 
simple tools for obtaining field data (Casadesus et al. 
2007) for farmers with limited access to more modern 
phenotyping equipment. The 2% increase in r when 
WI was included may seem trivial for this study. 
However, the effect of including WI in the model may 
be higher under water deficit. Rather than a canopy 
water status index, WI is important to account for the 
stomata control to the diffusive process and used to 
predict changes in εc (Pietragalla et al. 2012). In com-
bination with NDVI and PRI, WI may also be an indi-
cator of plant vigour and may help to infer about lines 
with increased resilience to drought and heat stresses, 
or even impact on the decision of irrigation practices.

The use of WI as part of the model during the 
whole crop development may be subject to further 
investigation as, at the later stages of the cycle, a 
rapid decrease in canopy water status may be favour-
able to grain maturation and prevention of diseases 
(AHDB 2016).

One of the strengths of the proposed yield predic-
tion model is the capacity to predict grain yields as 
early as at the anthesis. In both growing seasons stud-
ied, the  Yieldp Model predicted biomass accumulated 
at anthesis (Z6.5) was correlated to measured grain 
yield. The detection of early predictors of grain yield 
is a major challenge to plant breeding; the proposed 
model can decrease the plant selection time, reduc-
ing costs and speeding up the release of high yielding 
cultivars (Becker and Schmidhalter 2017). Anothert 
contribution of the present study is the capacity to 
inform the main yield limitation in specific crop 
stage, which could improve to the understanding of 
climatic constrains to grain yield. For instance, in 
2016, LUE appeared to be the main limitation after 
ear emergence (Fig.  3), which could be minimized 
by the maintenance of photosynthetic response from 
booting to anthesis, as reported by Carmo-Silva et al. 
(2017).

The comparison of the  Yieldp Model with MLR 
methods allowed to list its advantages and disadvan-
tages, by comparing their specific fittings. Although 
the MLR methods presented higher correlation to 
measured yield, they presented different conforma-
tions for each of the analysed seasons. The advantage 

of the  Yieldp Model in relation to MLRis is that it 
responded positively for both seasons with the same 
conformation, showing its robustness and capacity of 
application on-farm. The  Yieldp Model also estimated 
yield before the end of the season, being more effi-
cient as a predictive model. The capacity of predict-
ing final yield at early stages in the crop cycle is help-
ful to inform farmers about crop practices such as late 
fertilization or crop protection. Contrastingly, MLR 
methods is recommended for a post-harvest analysis 
of the main yield drivers in a specific season.

In this study, some factors had to be considered 
when phenotyping with the aim of yield prediction. 
NDVI, PRI and WI are influenced by the canopy 
albedo, which can have diurnal and seasonal varia-
tions in wheat (Zhang et al. 2013). SRIs, in general, 
are affected by external factors as light conditions 
(overcast), sun position, and also wind. The change 
in canopy structure caused by the emergence of the 
ears, as well as its flowers, may have affected the 
reflectance signal measured. An index like PRI can 
also present rapid variation according to the light 
intensity, as well as the air temperature (Gamon et al. 
1997; Dobrowski et al. 2005), mainly considering the 
normal spatial–temporal variation of photosynthe-
sis (Neto et  al. 2021). Pennacchi et  al. (2018a) also 
reported high variability for PRI values in the 2015 
experiment with the same wheat population. Start-
ing reflectance measurements at early developmen-
tal stages, taking measurements at similar weather 
conditions and time of day, and reducing the time to 
cover the whole experimental field could potentially 
improve model fitting by reducing experimental error.

High-throughput methods including phenotyping 
platforms (Virlet et  al. 2017) and unmanned aerial 
vehicles (UAVs) (Yang et al. 2017) with multi-spec-
tral cameras could improve the data acquisition, the 
understanding of space–time plant adaption (Galviz 
et  al. 2022) and consequently the model fitting. An 
increased phenotyping frequency could reduce the 
influence of each single time point on the final predic-
tion of the model, mainly considering the uncertainty 
on predicting canopy characteristics in the interval 
between measurements. The use of SRI calculated 
from satellite images may be of great advance to 
yield modelling at field level (Hoefsloot et al. 2012), 
mainly due to the availability of free-source data 
as the Landsat database (Wulder et  al. 2012). The 
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adaption of the  Yieldp Model to satellite imaging data 
may allow a further step ahead in yield prediction.

Further improvements to the  Yieldp Model could 
be achieved by the insertion of components that 
could help explain the main efficiencies involved in 
the yield formation equation (Long et  al. 2015) and 
the impact of non-ideal growth conditions at the farm 
level. Moreover, the use of genetic data, related to the 
traits in the model, could be informative of the gen-
otype-phenotype-environment multiple interactions 
(Yin and Struik 2010) and improve yield modelling 
under drought and heat conditions (Parent and Tar-
dieu 2014).

The  Yieldp Model was responsive to crop growth 
and development and capable of predicting biomass 
and grain yield early in the season with an interme-
diate fit. Advantages of the proposed model include 
simplicity, ease of use and low cost of the phenotyp-
ing and modelling techniques. Finally, the model pre-
sents biological meaning as it is based on the yield 
formation equation. The application of the model to 
multiple datasets in different locations and contrast-
ing climatic conditions warrants further study and is 
likely to reveal new potential for improvement and 
expanding its practical applications.
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