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Abstract
Mesoporous carbon (MC) derived from cassava starch was used to remove Acid Blue 113 azo dye from aqueous solutions. 
The influence of temperature, pH, ionic strength, and the adsorbent dose was investigated in a set of batch experiments. 
Experimental data showed that Acid Blue 113 adsorption was higher in the acid pH range than in the alkaline one, that dye 
adsorption increases when the ionic strength and temperature increase, and that adsorption results presented a good correla-
tion with the Langmuir isotherm model. The adsorption capacity of MC was 295 mg g−1, at pH = 7.0 and 298 K, respectively. 
Zeta potential (ζ) showed the compression of the diffuse double layer of adsorbent with an increase in temperature and ionic 
strength, promoting the decrease of electrostatic repulsion between the negatively charged surface of the carbon particles 
and the anionic dye. Thermodynamic results demonstrate that the adsorption process was spontaneous and endothermic. 
Moreover, for the first time, this work has demonstrated that the pH, temperature, and ionic strength of the aqueous medium 
are also able to change the surface charge of carbon-based adsorbents and surely influence the adsorption capacity. Finally, 
the regeneration of the adsorbent by the photo-Fenton reaction regenerated the adsorption capacity of the adsorbent without 
generating secondary pollution to the environment.

Keywords  Mesoporous carbon · Acid Blue 113 · Sacrifice template · Textile dyes · Reusable adsorbent · Electrostatic 
interactions

Introduction

The increase in water pollution by fertilizers, pesticides, 
and industrial chemicals, becomes potable water grows an 
increasingly scarce resource (Hamza et al. 2018; Singh et al. 
2020). Though the earth is covered with plenty of water, the 
amount of drinkable water is finite. Therefore, wastewater 
treatments and water reuse are the best options to minimize 
environmental damage and stress on groundwater resources 
(Luo et al. 2014; Hao et al. 2019). Among various organic 
contaminants discarded in surface waters, the dyes, sur-
factants, and phenolic compounds are the ones that stand 
out the most due to the high concentrations and massive use 
in industrial and commercial processes worldwide (Taffarel 
and Rubio 2010; Luo et al. 2014; dos Santos et al. 2018; 
Zhang et al. 2018; Liu et al. 2020). Besides, they are toxic 
to aquatic fauna and flora and may contribute to important 
water quality parameter changes (Borrely et al. 2018; Xu 
et al. 2020).
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In wastewater treatment, recalcitrant compounds removal 
by adsorption stands out as the main separation technique 
due to features such as lower energy consumption, simplic-
ity of use, and adaptability (Fahel et al. 2016). Among the 
most used adsorbents in the literature, carbonaceous materi-
als such as activated carbon (Tian et al. 2018), mesoporous 
carbon (MC) (Hu et al. 2019; Azam et al. 2020), graphene 
(Rajumon et al. 2019; Cao et al. 2019), and carbon nano-
tubes (Xu et al. 2018) stand out for their low toxicity, high 
porosity, and good performance on organic and inorganic 
contaminants removal from water (Yang et al. 2015; Xu et al. 
2018). As for the application of these materials, many stud-
ies have shown that the presence of large pores improves the 
removal of bulky organic molecules from aqueous solution, 
as the exclusive presence of micropores prevents the entry 
of large molecules such as azo dyes and proteins into the 
pores (Gupta et al. 2011; Qiang et al. 2016; Tokudome et al. 
2016). Thus, predominantly microporous adsorbents such as 
activated carbon have a lower adsorption capacity for large 
molecules than mesoporous carbon materials (Ip et al. 2009; 
Gupta et al. 2011; Parker et al. 2012; Qiang et al. 2016).

Despite their high toxicity, azo dyes are among the bulky 
organic molecules most applied in adsorption science. Due 
to their properties of good adhesion and high stability, these 
molecules stand out for their wide use in the textile industry 
(mainly in wool, polyamide, and plastic productions) (Gupta 
et al. 2011; Samarghandi et al. 2020). These molecules are 
often in an irresponsibly manner thrown into water effluents 
causing problems to aquatic biota and human health because 
they are highly toxic and potentially carcinogenic (Vikrant 
et al. 2018; Lellis et al. 2019). To prevent environmental 
contamination, several studies have been performed using 
adsorbents such as clays, activated carbon, and biochar to 
remove azo dyes such as AB113 from wastewater of tex-
tile industries (Yagub et al. 2014). However, to justify the 
adsorption capacity, these studies do not evaluate what hap-
pens to the surface charge of the adsorbent when the aque-
ous solution medium condition such as ionic strength and 
temperature are changed. Therefore, the performance of this 
study is still required to evaluate the real contributions of the 
superficial charge of adsorbents in the adsorption process.

Despite the satisfactory results of removal of the organic 
compounds such as dyes, surfactants, and phenolic com-
pounds (Chiang et  al. 2020), the regeneration/reuse of 
carbonaceous materials remains a great challenge because 
regeneration methods such as solvent extraction, thermal 
regeneration, basic extraction, and chemical oxidation (Chen 
et al. 2011; Vecitis et al. 2011; Pinto et al. 2018; Azha et al. 
2019; Marrakchi et al. 2020; Du et al. 2020) require a lot 
of time, high energy consumption, and large quantities of 
chemical reagents.

Based on the above findings, the objective of this work 
was to study the feasibility of using MC derived from 

cassava starch (Manihot esculenta Crantz) as an adsorbent 
for Acid Blue 113 from aqueous solutions. The influence 
of solution pH, ionic strength, and temperature on AB113 
adsorption were evaluated and correlated with ζ-potential 
of MC. This work also reports the use of advanced oxida-
tion processes (AOPs) as an alternative method for the MC 
regeneration/reuse after adsorption of azo dye Acid Blue 
113 (AB113).

Experimental

Materials

Laponite (sodium hectorite) was obtained from Laporte 
Industry; AB113 was obtained from BASF Industry, and 
the cassava starch was obtained from Amafil Company.

MC preparation was based on an adaptation of the meth-
odology developed previously (Pinto et al. 2016). Briefly, in 
this synthesis, MC was prepared by mixing the Laponite clay 
exfoliated with starch gel. Then the resulting material was 
dried at 338 K and calcined at 1073 K under N2 atmosphere 
for 2 h. Lastly, the calcined material was treated with 0.25 
L of HF solution (20% (v/v)) and 0.25 L of HCl solution 
(6 mol L−1) for 24 h for the dissolution of the clay. After the 
clay removal, the powder was washed and dried at 373 K.

Characterization methods

The material produced was characterized by X-ray dif-
fraction (XRD) using a Shimadzu XRD-6000 diffractom-
eter with graphite crystal as a monochromator to select 
Cu-Kα1 radiation (λ = 1.5406 Å), with a scanning rate of 
0.02° s−1. The morphology of the produced materials was 
analyzed by scanning electron microscopy (SEM), using a 
Quanta 3D FEG microscope. The samples were coated with 
gold before measurements, using a Sputter BALTEC, MED 
0.20, and fixed to the sample holder by conductive, double-
sided tape. The N2 adsorption/desorption isotherms at 77 K 
were obtained in an Autosorb Quantachrome. Energy-dis-
persive X-ray spectroscopy (EDS) was carried out using a 
Jeol Model JXA-8900RL instrument. Raman spectra were 
recorded by FT-Raman Bruker Vertex 70.

Zeta potential analysis

The ZetaSizer analyzer (ZetaSizer Nano SZ Malvern Instru-
ments Ltd., UK, attached to an MPT-2 Autotitrator) was 
used to determine the electrophoretic mobility (μ) of MC 
particles. To determine the influence of pH value, ionic 
strength, and temperature on zeta potential values, 0.005 g 
of MC was dispersed in NaCl solutions (0.001 mol L−1 and 
0.1 mol L−1). The measurements were carried out at different 
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temperatures (273–308 K), and the pH value was adjusted 
using HCl (0.20 mol L−1) or NaOH (0.20 mol L−1) solutions.

To calculate the zeta potential (ζ) values of MC parti-
cles, the Helmholtz-Smoluchowski equation was used. This 
equation is the most widely used relationship for relating 
the electrophoretic mobility of a colloidal particle its zeta 
potential (Agnihotri et al. 2009),

where �r and � are, respectively, the relative permittivity and 
viscosity of the electrolyte solution and �

0
 is the permittivity 

of vacuum. This equation is valid when � a is sufficiently 
large ( � a ≫ 1), where a is the hydrodynamic radius of the 
particle and � is the Debye-Hückel parameter. The reciprocal 
of k (1/� ) which is called the Debye length corresponds to 
the thickness of the diffuse double layer

where T is the absolute temperature, k is the Boltzmann’s 
constant, zi is the valence of ions, e is the elementary electric 
charge, and n∞

i
 is the bulk concentration (number density).

Adsorption experiments

Dye concentration was determined to a UV–Vis spectro-
photometer (Evolution 300, Thermo) using the maximum 
absorbance of AB113 dye (λmax = 581  nm). The pH of 
AB113 solution was adjusted with HCl (0.1 and 0.01 mol 
L−1) or NaOH (0.1 and 0.01 mol L−1). All adsorption experi-
ments were conducted in duplicate under 300 rpm stirring 
using a thermostatic bath.

Adsorption kinetics

To perform the adsorption kinetics, 50 mg of MC was added 
to 100 mL of AB113 (150 mg L−1, at 298 K and pH = 7.0). 
Aliquots at different time intervals (0–300 min) were col-
lected to determine the residue concentration of dye in the 
solution. Models used to simulate kinetic data are supplied 
in the Supplementary Information.

Adsorbent dosage

To investigate the effect of adsorbent dosage, different MC 
mass dosage (5 to 75 mg) was added to 100 mL of AB113 
(150 mg L−1, at 298 K and pH = 7.0). After 300 min, ali-
quots were collected and analyzed.
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Effect of pH value and ionic strength for AB113 adsorption 
onto MC

The effect of the initial pH value on AB113 adsorption on 
MC was evaluated by adding 50 mg of MC to 100 mL of 
AB113 (150 mg L−1, at 298 K) with different pH values 
(from 3 to 11).

To investigate the effect of ionic strength, 50 mg of MC 
was added to 100 mL of AB113 (150 mg L−1, at 298 K 
and pH = 7.0) with different NaCl concentrations (from 0 
to 0.5 mol L−1).

Adsorption isotherms

The adsorption isotherms were performed at 288, 298, and 
308 K by adding 50 mg of MC to 100 mL of AB113 at 
pH = 7.0 with concentrations ranging from 25 to 250 mg 
L−1. After 300 min, aliquots were collected and analyzed.

The amount of dye adsorbed qe (mg g−1) was given 
according to Eq. 3:

where C0 (mg L−1) is the initial adsorbate concentration, Ct 
(mg L−1) is the concentration of adsorbate at time t (min), 
V (L) is the solution volume, m (g) is the mass of the adsor-
bent, and qe (mg g−1) is the adsorbed amount at time t (min). 
Models used to simulate the adsorption isotherms data are 
supplied in the Supplementary Information.

Thermodynamic study

Based on the adsorption isotherms, the thermodynamic 
parameters enthalpy (∆H), entropy (∆S), and Gibbs free 
energy (∆G) were determined by the following equations:

where kad is the Langmuir constant (L mg−1) obtained in 
each adsorption isotherm multiplied by the density of water 
(106 mg L−1) (Yu et al. 2015).

Regeneration and reuse of MC

After the first adsorption cycle using 75  mg of MC to 
150 mL of AB113 (150 mg L−1, at 298 K and pH 7.0), the 
spent adsorbent was separated and dispersed into 10 mL of 
Fe(NO3)0.6H2O aqueous solution (0.00011 mol L−1) and 
0.00097 mol L−1 of H2O2 under sunlight. After 1 h of reac-
tion, MC was separated, dried at 353 K, and then reused. 
The Fe(NO3) 6H2O solution was reused in all recycles. To 

(3)qe =

(

Co − Ct

)

× V

m

(4)ΔG◦ = −RTlnKad

(5)lnkad = −ΔH◦∕RT + ΔS◦∕R
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compare the regeneration of MC by photo-Fenton proposed 
here, the reuse study of the adsorbent was also carried out 
without the regeneration process. In this case, the adsorbent 
was only separated and dried at 353 K.

Results and discussion

Characterization of mesoporous carbon

XRD patterns of Laponite/starch composite and MC are 
shown in Fig. 1a. For the Laponite/starch composite, the 
XRD pattern shows peaks with several orders of basal reflec-
tion (00 l), evidencing the presence of an ordered layered 
structure (Perotti et al. 2014; Pinto et al. 2016). The basal 
spacing of Laponite with starch was calculated with the 
Bragg equation, using the peak position (001). According 
to the result obtained, the basal spacing was 2.26 nm indi-
cating the incorporation of multiple chains of amylose/amy-
lopectin molecules between the Laponite layers. A similar 
arrangement was previously observed for other biopolymers 
intercalated in different clays, such as chitosan in montmoril-
lonite (Tan et al. 2008; Li et al. 2019) and starch in Laponite 
(Perotti et al. 2014; Pinto et al. 2016).

The graphitization degree of the MC was determined 
by XRD and Raman spectroscopy. XRD pattern (Fig. 1a) 
shows one broad peak around at 2θ = 24.3° assigned to the 
(002) plane of the turbostratic carbon structure (a disordered 
form of the graphitic structure) with the distance between 
graphene layers of 3.66 Å (Li et al. 2007; Song et al. 2015).

To evaluate the ordering level (crystallinity and defect/
disorder) of MC, Raman spectroscopy analysis was per-
formed (Fig.  1b). The Raman spectra show that the D 
band (ca. 1327 cm−1) is more intense than the G band (ca. 
1587 cm−1), indicating the presence of disordered carbon 

in the MC, confirming indications from the XRD analysis. 
Besides, the intensity ratio of the D and G bands showed a 
1.12 ratio, which indicates that this material has amorphous 
carbon and/or structural defects because materials with a 
low-intensity ratio (ID/IG < 0.8) such as carbon nanotube or 
graphite has a tiny amount of amorphous carbon or structural 
defects (Pimenta et al. 2007; Lucchese et al. 2010). Thus, the 
lower the ratio, the higher the graphitization. These results 
(XRD and Raman) reveal that the MC contains crystalline 
carbon of turbostratic structure with some amount of highly 
disordered amorphous carbon.

Figure 2 presents the N2 physisorption isotherm and 
the BJH pore size distribution curve for MC. According to 
IUPAC classification, the MC isotherm is classified as type 
IV with a hysteresis of type H1, characteristic of mesoporous 
solids with uniform pore size. The MC specific area, pore 
volume, and average pore size were 1008 m2  g−1, 1.67 
cm3 g−1, and 5 nm, respectively.

When the textural properties, like surface area and pore 
volume of MC, are compared with other mesoporous car-
bons reported in the scientific literature (Table S1), the MC 
generally presents higher porosity values. Materials such 
as ordered mesoporous carbon (MCS/C), which present 
higher or similar porosity to MC, are disadvantaged over MC 
because of the high costs of their precursors and complex 
methods of preparation (Teng et al. 2013). Furthermore, MC 
presents a carbon source of renewable origin.

The SEM images (Fig. 3) reveal that the presence of 
Laponite contributed to defining MC shape and texture. As 
discussed in the XRD analysis, the intercalation has been 
noted for the composite, which allows for predicting the 
occurrence of alternation in the overlap of layers of clay and 
the polymer. After the pyrolysis and acid washing, the over-
lapping of carbon layers was observed, with empty spaces 
referring to the removal of Laponite. Such information and 

Fig. 1   a XRD patterns of 
Laponite/starch composite and 
MC (● Al from sample holder) 
and b Raman spectrum of MC
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the SEM image demonstrate that the pores of this material 
are between the carbon layers.

AB113 adsorption

The effect of contact time on the AB113 adsorption (Fig. 4a) 
shows that the time required for adsorption to reach equilib-
rium was 1.5 h and that most of the adsorption took place 
during the first 30 min after the addition of MC. Based on 
the obtained results, 1.5 h was selected as the equilibrium 
time for the rest of the experiments.

The adsorption rate and the expression that describes the 
adsorption mechanism were determined using pseudo–first-
order, pseudo–second-order, and intraparticle diffusion mod-
els (Table 1). According to the results, the experimental data 
was best fitted using the pseudo–second-order model, show-
ing that the process is controlled by chemical adsorption.

The effect of ionic strength was evaluated by adding dif-
ferent concentrations of NaCl (Fig. 4b). As can be seen, an 
increase in ionic strength provides an increase in the AB113 
adsorption. This effect promoted by NaCl addition can be 
explained by Fig. 4c, which shows the influence of pH on 
the ζ-potential values of MC particles at different ionic 
strengths. It is observed that the surface of MC has a nega-
tive charge at neutral pH. The ζ-potential values change from 

negative to positive at pH = 3.9, indicating the presence of 
an isoelectric point. The pH at which ζ = 0 mV is called 
the isoelectric point (I.Z.P) (Hunter and Hunter 1981a). 
The I.Z.P of MC particles is not affected by the increase 
in ionic strength. The fact that I.Z.P is independent of the 
electrolyte concentration suggests that (I) the I.Z.P is, in 
this case, the same as the zero charge point (P.Z.C) and (II) 
NaCl is an indifferent electrolyte for MC particles (Hunter 
and Hunter 1981a). An important effect of the indifferent 
electrolyte is that it strongly influences the magnitude of the 
ζ-potential values. The electrolyte concentration increases 
cause an increase in the Debye-Hückel parameter, because 
of which the electrical potential falls off more rapidly at the 
surface (Hunter and Hunter 1981b). This effect is referred to 
as “compression of the diffuse double layer.” Therefore, the 
addition of salt decreases the electrostatic repulsion of the 
negatively charged surface of MC particles and the anionic 
dye AB113. At the same time, the increase in the concentra-
tion of NaCl may also have promoted the dimerization of the 
dye, contributing to the increase in the adsorption capacity 
(Al-Degs et al. 2008).

The effect of pH on the AB113 removal (Fig.  4d) 
shows that the adsorption capacity decreases from 335.0 
to 150 mg g−1 with the pH increases. This effect on the 
variation of the adsorption capacity can be explained by 

Fig. 2   a N2 adsorption/desorp-
tion isotherm of MC; b pore 
size distribution of the materials 
from N2 adsorption branch by 
the BJH method

Fig. 3   SEM images at different 
magnifications (10,000 and 
50,000 times) of MC
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the surface charge of MC, as the molecules of AB113 dye 
(pKa = 0.5) are in anionic form in the studied pH range 
(Mohammadzadeh et al. 2015). Thus the surface of MC at 
low pH values is positively charged (pH < pHI.Z.P) which 
favors the electrostatic attractions between the anionic 
dye and the surface of MC particles; already at pH values 
greater than 3.9 (pH > pHI.Z.P), the material is negatively 
charged.

After adsorption of dye AB113, the I.Z.P of MC particles 
changes from 3.9 to 3.3 (Fig. 4c). The change in I.Z.P is 
caused by ions or molecules that have a chemical or spe-
cific affinity for the surface, in addition to purely Coulomb 
interactions (Hunter and Hunter 1981a). Based on these 
results, it can be concluded that as well as to the π-type 
interactions that occur between carbon-based materials and 
organic molecules, electrostatic interactions also influence 

Fig. 4   a Effect of contact time 
(AB113 concentration = 150 mg 
L−1, MC = 0.50 g L−1, and 
T = 298 K), b effect of ionic 
strength (AB113 concentra-
tion = 150 mg L−1, MC = 0.50 g 
L−1, and T = 298 K), c zeta 
potential of MC particles as a 
function of pH at different NaCl 
concentrations, d effect of pH 
(AB113 concentration = 150 mg 
L−1, MC = 0.50 g L−1, and 
T = 298 K), and e effect of 
MC dosage for dye adsorption 
(AB113 concentration = 150 mg 
L.−1 and T = 298 K)
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Table 1   Kinetic parameters for 
the adsorption of AB113 on MC

Pseudo–first order Pseudo–second order Intraparticle diffusion

k1 (h−1) qe (mg/g) R2 k2 (g/mg h) 10−3 qe (mg/g) R2 Ki (mg/g h) C (mg/g) R2

27.5 143.9 0.60 21.9 193.7 0.988 6.00 82.11 0.577
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the adsorption mechanism (Ma et al. 2012; Gupta and Khatri 
2019).

Figure 5 shows the AB113 adsorption as a function of 
MC mass (5–72 mg). As can be seen, the increase of the 
amount of MC increased the removal percent (10% to 50%) 
and decreased the amount of adsorbed dye (qe) (200 to 
90 mg g−1). This behavior is consistent with the increase in 
the number of adsorption sites; thus the increase in removal 
percent can be explained by the amount increase of adsorp-
tion sites with the increase in MC mass, while that the qe 
decreases due to the unsaturation of available adsorption 
sites, leading to a lower amount of dye adsorbed per unit 
weight of MC (Eq. 3). Similar trends are reported (Silva 
et al. 2018; Arabkhani and Asfaram 2020).

Adsorption isotherms

To provide information about the surface properties of 
MC, adsorption mechanisms, the affinity, and estimate of 
the adsorption capacity were performed by the equilibrium 
adsorption isotherm. In this study, the experimental data 
were fitted by the nonlinear Langmuir and Freundlich equa-
tion. The adsorption behavior of AB113 onto MC at 288 K, 
298 K, and 308 K is shown in Fig. 5a.

As shown in Fig. 5a and Table 2, the Langmuir model 
yielded the best fit, thus indicating the existence of homo-
geneity of the surface of MC and that adsorption of each 
dye molecule has equal adsorption activation energy. The 
maximum adsorption capacity (qmax) and Langmuir constant 
(KL) calculated based on adsorption isotherm are listed in 

Table 2. These results showed which AB113 adsorption 
increase with an increase in temperature, indicating that the 
affinity between the adsorbent and adsorbate grows (Chowd-
hury et al. 2011; Wu et al. 2014).

One evidence that explained the increase of adsorption 
capacity with the temperature increase is based on the elec-
trostatic interactions between the surface of MC and the 
AB113. Figure 5b shows the behavior of the ζ-potential 
and the thickness of the diffuse double layer as a function 
of temperature. The MC particles present negative values 
of ζ-potential in the temperature range from 288 to 308 K. 
The ζ-potential ranges from − 28 mV at low temperatures 
to − 15 mV at higher temperatures. This behavior is attrib-
uted to the variation in the thickness of the double layer. The 
increase in temperature compresses the double layer formed 
around the particles of the MC, reducing the magnitude 
of the ζ-potential values, promoting a greater interaction 
between AB113 and MC, which end up favoring increased 
adsorption with an increase in temperature.

The effect of temperature for AB113 adsorption onto MC 
showed that a higher quantity of the dye is adsorbed with an 
increase of temperature, indicating an endothermic process. 
The plot of ln Kad versus 1/T shown in the Supplementary 
Information (Fig. S1) follows a straight line, and the slope 
and intercept coefficient values allow obtaining the values of 
∆H° and ∆S°, respectively. The thermodynamic properties 
evaluated from the Van’t Hoff plot are reported in Table 3.

The negative values of ∆G° confirm that the adsorption 
of AB113 onto MC was spontaneous and thermodynami-
cally favorable and that temperature increase favors the 

Fig. 5   a Equilibrium adsorption 
isotherms of AB113 onto MC, 
at 288, 298, and 308 K (AB113 
concentration = 50–250 mg 
L−1, MC = 0.50 g L.−1). b Effect 
of the temperature on the zeta 
potential and in the thickness of 
the diffuse double-layer ( 1

�
 ) of 

MC particles

Table 2   Isotherm model 
parameters for the adsorption of 
AB113 onto MC

Temperature Langmuir Freundlich

qmax (mg/g) KL (L m/g) R2 KF N R2

288 K 277 0.00707 0.998 31.01 2.30 0.989
298 K 295 0.0158 0.997 22.49 2.28 0.987
308 K 360 0.0201 0.999 7.20 1.70 0.988
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adsorption. The positive value of ∆H° is related to the endo-
thermic nature of the process, while the positive value of 
∆S° suggests an increase in the disorder at the solid-solution 
interface.

Adsorption mechanism

The results obtained in this work indicate that the surface 
charge of the adsorbent can be modified by the conditions 
of the aqueous medium (temperature and ionic strength) and 
that the change of this charge also influences the adsorption 
capacity. Furthermore, it should be stressed, except for the 
study of the pH effect, in which the MC is positively charged 
at pH = 3, the other studies showed that both MC and AB113 
(pKa = 0.5) were negatively charged, which theoretically did 
not favor adsorption. Therefore, the contribution of other 
mechanisms, such as the π-π electron acceptor interac-
tions between MC and AB113 and the interaction via the 
mesopore filling mechanism, may be the main factors for 
explaining the adsorption of AB113, even under unfavorable 
load conditions (Ma et al. 2012; Yang et al. 2015; Asakawa 
et al. 2020; Ansari et al. 2022). The AB113 has single and 
double bonds between the C and contains π electrons; these 
π electrons can easily interact with the π electrons on the 
MC surface through π-π electron coupling (Ma et al. 2012; 
Cazetta et al. 2016). Furthermore, the dimensions of the 
AB113 molecule (2.3 nm × 1.0 nm × 0.48 nm, estimated by 
the Jmol software) are compatible with the average pore 
size of the MC (~ 5 nm), thus allowing wide accessibility of 
AB113 in the mesoporous of the MC.

Regeneration and reuse of MC

Regeneration and reuse of adsorbents are crucial for indus-
trial applications due to the reduction of costs (Charumathi 
and Das 2012). MC regeneration by oxidation of the dye 
adsorbed with radicals (OH•) generated by the photo-Fenton 
reaction (Nogueira et al. 2005; Azha et al. 2019) is shown 
in Fig. 6.

The results obtained show that the maximum adsorption 
capacity after the regeneration process was 90%, 80%, and 
54% concerning the “fresh” adsorbent, while the untreated 
MC has its adsorption capacity considerably reduced to 39%, 
25%, and 10%, probably because of the saturation of the 

adsorption sites. These results show that the regeneration 
process by the photo-Fenton reaction is fast and low cost, 
due to the small amount of peroxide used and the facility 
to reuse the Fe3+ solution. In addition to the homogene-
ous photo-Fenton reaction used in this work to oxidize the 
pre-concentrated dye on the surface of the adsorbent, other 
promising techniques able to generate radicals such as OH• 
could be used in future studies to establish another way 
to the regeneration of the adsorbent. Among the method-
ologies, heterogeneous Fenton or photo-Fenton (Gonçalves 
et al. 2019, 2020) can be performed on carbon materials 
impregnated with oxides (e.g., iron, copper, or manganese). 
Another possible methodology is the sono-catalysis treat-
ment (Amaniampong et al. 2017, 2018, 2019); this treatment 
was given highlighted as a very effective methodology in the 
degradation of organic compounds being able to continu-
ously generate OH• radicals without using H2O2.

Conclusion

The results of AB113 adsorption onto MC showed that 
the adsorption kinetics and adsorption isotherm fit the 
pseudo–second-order kinetic model and Langmuir model 
very well, indicating that the adsorption rate is controlled 
by the chemisorption and that each dye molecule has equal 
adsorption activation energy onto the surface of MC. It is 
also shown that AB113 adsorption onto MC (295 mg g−1 
at pH = 7.0 and 298 K) is significantly higher compared to 
the different types of carbon-based materials reported in the 
literature (Table S2). The higher adsorption capacity of MC 
is probably due to its large surface area and pore volume. 
The AB113 adsorption capacity increases with the increase 

Table 3   Thermodynamic parameters at various temperatures

Temperature Thermodynamic parameters

∆G (kJ mol−1) ∆H (kJ mol−1) ∆S (kJ K−1 mol−1)

288 K  − 21.23 38.78 0.209
298 K  − 23.96
308 K  − 25.38

Fig. 6   Recycling of MC after adsorption (AB113 concentra-
tion = 150 mg L−1, MC = 0.50 g L.−1, and T = 298 K)
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of ionic strength and temperature. Zeta potential values indi-
cated that the change of adsorption capacity of AB113 onto 
MC with the variation of ionic strength and temperature is 
due to the compression of the diffuse double layer of the 
surface of MC, promoting the decrease of electrostatic repul-
sion between MC and AB113. Thermodynamic results dem-
onstrate that the adsorption process was spontaneous and 
endothermic. Moreover, for the first time, this work dem-
onstrates that the temperature and the ionic strength of the 
aqueous medium are also able to change the surface charge 
of carbon-based adsorbents and surely influence the adsorp-
tion capacity. Finally, the regeneration of the adsorbent by 
the photo-Fenton reaction regenerated the adsorption capac-
ity of the absorbent without generating secondary pollution 
to the environment.
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