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ABSTRACT

By 2050, the world’s population is expected to reach 9.8 billion people. This will result
in significant challenges related to housing, infrastructure, basic services, food security,
health, education, employment, safety and natural resources at all urban levels. Faced
with this alarming scenario, there is an urgent need to understand how cities work. This
knowledge can greatly assist public agents in making decisions. However, the literature
widely recognizes that cities are complex systems with many interacting components. How
can we bridge the gap between decision-making and the complexity of cities? To address
this question, we examined Brazil’s 15 largest cities in 2010 using fractal geometry, urban
scaling and network science. We sought to demonstrate that both the street network
and the population show multifractal patterns, indicating the existence of a non-linear
dynamic governing the behavior of these patterns, which we suspect is closely related to
their multifractal spectra. We believe that the shape of these spectra is closely linked
to the geography and natural elements that make up the city. Furthermore, this study
suggests that some urban laws of scale can be described in terms of endogenous variables
such as population, area and fractal dimension by maximizing Shannon entropy, which is
used to obtain the probability of interaction between two regions of the city. In addition,
the generalized dimensions of the city can be considered to extend the scaling laws that
take into account the notion of fractal dimension, in order to investigate which region
or regions contribute most to the prediction of gross domestic product (GDP) and total
street length. In addition, we sought to demonstrate that models which take endogenous
factors into account to explain the economy and returns to scale can be simplified us-
ing only macroscopic quantities such as population, total street length and urban area.
This simplification was applied to the set of 5523 Brazilian cities. Finally, the data indi-
cates that the fractal dimensions of the nodes, links and cyclomatic number of the street
networks analyzed are equal to the fractal dimension of Bonacich’s centrality measure.
Furthermore, the relationship between the topological quantities of this type of network
remains constant, regardless of its size. In addition, there must be a close relationship be-
tween decision-makers and the knowledge generated. Therefore, we believe that in order
to promote quality of life in urban environments, it is important to understand how cities
work. This can be achieved through the use of computational tools and a theoretical basis
derived from various complex systems topics.

Keywords: Multifractal Analysis; Urban Scaling; Science of Cities.



RESUMO

Prevé-se que, em 2050, a populacao mundial atinja 9,8 mil milhoes de pessoas. Isto re-
sultaréd em desafios significativos relacionados com a habitagao, infra-estruturas, servigos
bésicos, seguranca alimentar, satude, educagao, emprego, seguranga e recursos naturais a
todos os niveis urbanos. Diante desse cenario alarmante, é urgente entender o funciona-
mento das cidades. Esse conhecimento pode auxiliar muito os agentes piiblicos na tomada
de decisoes. No entanto, a literatura reconhece amplamente que as cidades sao sistemas
complexos com muitos componentes que interagem entre si. Como podemos fazer a ponte
entre a tomada de decisoes e a complexidade das cidades? Para abordar essa questao,
examinamos as 15 maiores cidades do Brasil em 2010 usando geometria fractal, leis de
escala urbana e ciéncia de redes. Buscamos demonstrar que tanto a rede de ruas quanto a
populacao apresentam padroes multifractais, indicando a existéncia de dindmica nao lin-
ear governando o comportamento destes padroes, a qual suspeitamos estar intimamente
relacionada com os seus espectros multifractais. Acreditamos que a forma destes espec-
tros esta intimamente ligada & geografia e aos elementos naturais que compoem a cidade.
Além disso, este estudo apresenta indicativos de que as leis da escala urbana podem ser
descritas em termos de variaveis endégenas como a populagao, a area e a dimensao fractal
partindo da maximizagao da entropia de Shannon, utilizada para obter a probabilidade de
interacao entre duas regices da cidade. Adicionalmente, o espetro multifractal das cidades
pode ser considerado para alargar estas leis, afim de investigar qual ou quais regioes con-
tribuem mais para a predi¢ao do produto interno bruto (GDP) e do comprimento total de
ruas. No entanto, é necessaria mais investigagao. Buscou-se demonstrar que os modelos
que consideram fatores enddgenos para explicar a economia e o rendimento de escala po-
dem ser simplificados utilizando apenas quantidades macroscopicas como a populagao, o
comprimento total das ruas e a area urbana. Essa simplificagao foi aplicada ao conjunto
de 5523 cidades brasileiras. Finalmente, os dados indicam que as dimensoes fractais dos
nos, ligagoes e niimero ciclomético das redes de ruas analisadas sao iguais a dimensao
fractal da medida de centralidade de Bonacich. Além disso, a relagao entre as grandezas
topologicas desse tipo de rede permanece constante, independentemente do seu tamanho.
Para além disso, deve existir uma relagao estreita entre os decisores e o conhecimento ger-
ado. Portanto, para promover a qualidade de vida em ambientes urbanos, é importante
entender como as cidades funcionam. Isto pode ser conseguido através da utilizacao de
ferramentas computacionais e de uma base tedrica derivada de varios topicos de sistemas
complexos.

Palavras-chave: Anélise Multifractal; Escala Urbana; Ciéncia das Cidades.
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18
1 INTRODUCTION

Experts project that the world’s population (Pop) will reach 9.8 billion people by
2050, see Figure 1.1, and the effects of climate change are already being felt by 75% of
cities, which contribute 70% of greenhouse gas emissions! (NATTONS, 2017). This brings
enormous challenges in terms of sustainability, significantly affecting issues related to
adequate housing, infrastructure, basic services, food security, health, education, decent
jobs, safety and natural resources, among others, at all urban scales (NATIONS, 2016).

Faced with this alarming scenario, it is extremely urgent to understand how cities
work, both from a practical and theoretical point of view (BETTENCOURT; WEST,
2010; BETTENCOURT, 2013; BARTHELEMY, 2019b; RIBEIRO; RYBSKI, 2023). The
knowledge generated in this process can be of great help in decision-making by public
agents, especially in the creation of public policies focused on sustainability, with the
aim of mitigating the effects of climate change and solving directly or indirectly related
problems (WOODCOCK et al., 2009; SALLIS et al., 2016).

An interdisciplinary approach that has proved effective in understanding urban
processes involves considering that cities are complex systems (RYBSKI; GONZALEZ,
2022). A complex system is made up of numerous elements interconnected locally in
a non-trivial way, whose dynamics evolve in space and time, resulting in patterns of
self-organization and emergent behaviour (SAYAMA, 2015; SIEGENFELD; BAR-YAM,
2020; BIANCONT et al., 2023). For example, ant colonies, brain, global financial markets,
weather, traffic, and cities are examples of complex systems (THERAULAZ et al., 2002;
BASSETT; GAZZANIGA, 2011; JOHNSON; JEFFERIES; HUI, 2003; LOVEJOY, 2022;
DING et al., 2019; JOHNSON, 2009). These systems? have the remarkable ability to
adapt to external effects, which makes them particularly relevant for the analysis and
management of cities in a context of climate change and Pop growth.

With the aim of understanding cities in the light of complex systems, a group of

researchers have dedicated their efforts to establishing a new field of science known as the

Science of Cities (BATTY, 2012; BATTY, 2013). In short, this new field stands out for

1 <https:/ /www.citiesalliance.org /newsroom /news /results/climate-change-and-cities-infographic>.
2 See some examples in <http://www.complexity-explorables.org/>.


https://www.citiesalliance.org/newsroom/news/results/climate-change-and-cities-infographic
http://www.complexity-explorables.org/
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bringing together scientific methodology, a multidisciplinary® approach and the analysis
of real data in the search for solutions to urgent problems such as climate change, ur-
banization and transport, among other crucial challenges (ALBERTI, 2017; LOBO et al.,
2020). Allied to this, the development of mathematical models plays a fundamental role
in this process, although there are some caveats*. Various models have been proposed
in this context (BATTY; LONGLEY, 1994; FRANKHAUSER, 2008; BETTENCOURT;
WEST, 2010; BARTHELEMY, 2019a; BARTHELEMY, 2019b; KEUSCHNIGG, 2019;
MOLINERO; THURNER, 2021; MOLINERO, 2022; ARCAUTE; RAMASCO, 2022;
RIBEIRO; RYBSKI, 2023), but models that consider the multifractal nature of cities,
considering both the road network, the Pop pattern and the urban scaling, have still been
little explored. In this work we chose to explore these topics using concepts involving
fractal geometry, urban scaling laws and network science. In particular, we focus on the

15 largest Brazilian cities in 2010.
Figure 1.1 — World population (Pop) projections from historical editions of the United
Nations Population Prospects. Data available: <https://ourworldindata.org/

population-projections>.
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Source: United Nations, World Population Prospects (various years).

These three topics are some of the most important branches in the study of com-
plexity science (SAYAMA, 2015). We will see that fractal geometry deals with abstract
geometric objects that need to be described in terms of a different kind of geometry in

which irregularity is inherent in the scales of nature. This is due to the first observations,

3 Network and data sciences, business intelligence, artificial intelligence algorithms, internet of
thing, blockchain, quantum computation, advanced robotics, renewable energy, 5G internet,
to cite a few.

4 <https://www.wired.com /2008/06/pb-theory/>.


https://ourworldindata.org/population-projections
https://ourworldindata.org/population-projections
https://www.wired.com/2008/06/pb-theory/
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mainly by Mandelbrot and others, that natural processes are irregular and repeat them-
selves on different scales of length and time (MANDELBROT, 1995; MANDELBROT;
FREEMAN; COMPANY, 1983; MANDELBROT, 1986).

Figure 1.2 — Spatial pattern of the population (Pop ) of Lavras in its street network (SN). We
can see that the probability p in some radius (e.g 500 m) of meeting people is
distributed in a multivariate normal way.
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Source: Own authorship.

We show that the Pop and the street network (SN) of the largest Brazilian are
multifractal structures. This means that both have local and global variability in their
spatial patterns, resulting from non-linear dynamics that occur on the most varied size
scales as well as in the most concentrated and rarefied parts. To capture these properties
we use the multifractal spectrum and define rates (CHEN, 2018). With the spectrum
it is possible to infer aggregation and diffusion processes to characterize these patterns
(CHANUI et al., 2022; LONG; CHEN, 2021). An aggregation process means that both
the SN and the Pop tend to concentrate in sites which are relatively larger than those
occupying peripheral regions. The diffusion process tells us that peripheral places are

denser in terms of people and streets than central ones.
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Although it is not easy to know the dynamics of the irregularities observed in
nature, it is possible to use some mathematical models to try to capture some of these
processes. We will see that socio-economic activities, infrastructure resources and indi-
vidual needs in cities tend to behave differently as the Pop grows. The difference between
the three can be seen by measuring characteristic scaling exponents (BETTENCOURT;
WEST, 2010).

In particular, the laws that describe the first two can be obtained by maximiz-
ing Shannon entropy — a quantity used in statistical physics to quantify uncertainty in
stochastic processes — providing a general law for the probability of interaction between
individuals or elements separated by a given distance, an idea first considered by Wilson
(1967) to extend models of the spatial location of activities between areas of a region, and
recently simplified by Batty (2021).

In addition, we will show that the model proposed by Molinero & Thurner (M&T),
which allows inferring the wealth and efficiency, terms of the transport network, in the
city via geometry, can be simplified heuristically considering only macroscopic variables
such as area urban area, Pop, gross domestic product (GDP) and total street length.
With such simplification it is possible to show two regimes, one linear and the other non-
linear, for the scale exponent - ratio between the fractal dimensions of street network and
population - that characterizes the relative spatial complexity between SN and Pop.

On the other hand, we will see that the street network of cities, indispensable for
transporting information, goods and access to different regions, has very similar char-
acteristics to a group of computers connected to the internet network, but that both
can exhibit non-trivial properties of their own, allowing us to classify and character-
ize them (ERDOS; RENYI, 1959; WATTS; STROGATZ, 1998; BARABASI; ALBERT,
1999; NEWMAN; WATTS; STROGATZ, 2002; MATA, 2020). In fact, some networks
can exhibit properties very similar to the distribution of wealth and the irregular pattern
of Pop occupation, that is, they have a power law behavior.

Therefore, fractal geometry, scaling laws and network science can help us to gen-
erate knowledge in order to guide decision-making in solving problems that can be found
both in central regions - where the probability of finding people, stores, markets, hospitals,
bakeries, bars, restaurants is higher and there are relatively few of them - and in the pe-

ripheral regions - where the probability of finding people is lower, the basic infrastructure
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conditions is inadequate and where the majority of residents are partially excluded from
the socio-economic benefits of growing cities (ARVIDSSON; LOVSJO; KEUSCHNIGG,
2013). See Fig. 1.2 for illustration.

This work attempts to unite these three topics and is divided as follows: in Chap-
ter 2 we discuss the theoretical foundations involving fractal geometry, urban scale laws
and network science. In particular, we will focus on the dimensions of capacity, informa-
tion, correlation and the corresponding generalized dimensions. Also in this Chapter, we
present the definition of skewness and aggregation-diffusion index, as well as spatial filling
rates, where the above dimensions are extremely relevant. We will present the main cen-
tralities and topological measures associated to networks, in particular we will highlight
some models and their properties. We end this Chapter by presenting some of the most
important intra-city models recovered from the definition of the interaction probability,
which in turn can be obtained via entropy maximization; in Chapter 3 we present the
objectives that motivated the research and the justification; in Chapter 4, we present
the materials and methods used in the work; in Chapter 5, we present the results of the
research and discuss the findings; Chapter 6 presents the conclusions. Next, we present
the bibliography consulted throughout the work. Finally, we present the appendices with

information that complements the text.
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2 THEORETICAL FOUNDATIONS

In this Chapter, we will provide a brief overview of fractal geometry and focus
particularly on the main fractal dimensions used in the analysis of complex systems. These
dimensions include the capacity dimension or box-counting dimension dg, information
dimension dj, correlation dimension d¢, and generalized dimensions D, of order ¢. It is
possible to establish equivalences between the first three dimensions and the generalized
dimensions for values of ¢ equal to 0, 1, and 2, respectively. Details can be found in
Appendix D.

We will also discuss the basics of multifractal theory and explain how the sandbox
method can be used to approximate generalized dimensions. Additionally, we will intro-
duce the concepts of skewness and aggregation-diffusion index and define terms such as
spatial filling, redundancy, and correlation rates.

Furthermore, we will demonstrate how intra-city models can be deduced from
entropy maximization and give an overview of the primary intra-city models that take
fractal dimension into account.

Finally, we will review the three primary models used in network science: the
random or Erdés-Rényi model (ER), Barabasi-Albert (BA), and Watts-Strogatz (WS).

We will also discuss several centrality and topological measures.

2.1 Fractal Geometry

Fractal geometry is the study of fractal or fractal structures that exhibit the re-
markable property of being self-similar at different lengths and time scales — for example,
landscape, rivers, earthquakes, lungs, blood vessels, distribution of asteroids, turbulence
in fluid dynamics, percolation structures, the surface of solids, street networks (SN),
population (Pop), etc (STANLEY; MEAKIN, 1988; TAKAYASU, 1990; SCHROEDER,
1991; APPLEBY, 1996; HARTE, 2001; ROSENBERG, 2021).

Howeever, the study of fractal structures is closely linked to the idea of scale in-
variance, a concept that will be discussed in detail in the next section. Researches in this
topic dates back to Bachelier, Frish, Kolmogorov, and Mandelbrot (LOPES; BETROUNI,
2009). Zmeskal et al. (2013) note that the foundations of fractal geometry can be traced
back to Leibniz in the 17th century, who studied the concept of recursive self-similarity.

These authors, as well as Falconer (2013), agree that the first fractal structure was pro-
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posed by Karl Weierstrass in 1872, a curve that is impossible to tangent and has a fractal
dimension equal to 1!, but according to Schroeder (1991), the first real fractal structure
was generated by Lichtenberg in 1777 using electrical discharges in an insulator.

A fractal structure stands out for having a non-integer dimension, which may
initially seem surprising. How is it possible for an object to occupy a certain space if
its dimension, say, is 0.631 or 1.2637. The dimension of a fractal structure is a measure
that quantifies the degree of complexity of patterns that repeat from the smallest to the
largest scale. This dimension is greater than the dimension of the topological space and
less than the dimension of the Euclidean space underlying the fractal structure in question
(FALCONER, 2004).

As an illustration, consider that an object has b similar shapes of size 1/a, then is

possible to define it’s similarity dimension by (TAKAYASU, 1990)

g log b

S

= 2.1.1
oga’ (2.1.1)

If we consider the Cantor set, see Figure 2.1, obtained by removing the middle
third of a unit line segment at each iteration, and the Koch curve, obtained by removing
the middle third and replacing it with an equilateral triangle of the same size, then the
similarity dimension of the Cantor set can be obtained when b = 2 and a = 3. Analogously,
for the Koch curve we have b = 4 and a = 3.

On the other hand, according to Rosenberg (2021), real fractals have a finite scale
which distinguishes them from artificial fractals and a single fractal dimension is not
sufficient to characterize the complexity of the patterns in a system (FRANKHAUSER,
2008; MURCIO et al., 2015). In this context, it is essential to generalize the notion of
fractal, as certain structures can exhibit completely different patterns depending on the
region of analysis (i.e. there is a local dependency). Therefore, a more comprehensive
analysis of these structures must take into account a spectrum of dimensions that the
system can take on, allowing for the classification of more sparse regions as well as more
densely packed regions of the geometric object under study.

One approach that meets these requirements is known as multifractal analysis, in
which it is possible to generalize the notion of fractal dimension. This approach offers a

deeper and more detailed understanding of complex structures, taking into account their

1" <https:/ /mathworld.wolfram.com /WeierstrassFunction.html >
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Figure 2.1 — The Cantor set a) and the Koch curve b) are sets with fractal dimensions of 0.631
and 1.262, respectively. The Cantor set can be obtained by removing the middle
third of a unit line segment at each iteration and the Koch curve can be obtained by
removing the middle third and replacing it with an equilateral triangle of the same
size. Note that the former has a dimension less than 1 and the latter has a higher
value. This means that the Koch curve is spatially more complex than the Cantor
set, because the former occupies much more two-dimensional space than the latter.

a) b)

Source: Own Authorship.

local variation and allowing for a more precise characterization of their multifaceted com-
plexity (WANG; YU; ANH, 2012; CHEN; WANG, 2013; MURCIO et al., 2015; CHEN,
2016; CHEN, 2018; LONG; CHEN, 2021; SONG; CHEN; BO, 2023).

A simple example that can be used to illustrate the notion of a multifractal struc-
ture is to consider Iteration Function Systems (IFS) with memory in the plane given by
(BARNSLEY; DEMKO, 1985; HARTE, 2001; FALCONER, 2004; FRAME; NEGER,
2022)

To(z,y) :(i 1——y+1)

(2.1.2)
Ty(z,y) = (£x+1 ——y+1)
([ Talz,y) = <—£w+1 —£y+1)

Thus, by assigning a probability p; (i = 1,2,3,4) and a contraction factor (or the size
of the self-similar segment that makes up the fractal) r, = 1/2 (i = 1,2,3,4) to each
transformation, we can use the generalized Moran equation (see Appendix A) to obtain
the multifractal spectrum of the system satisfying (FEDER, 1988; SCHROEDER, 1991;
ROSENBERG, 2021; FRAME; NEGER, 2022)

Zpgrj(‘” =1, (2.1.3)
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a transcendental equation that restricts the orders ¢ € R of the probabilities of each
transformation and their respective contraction factors. The quantity 7(¢) is the mass
exponent which will be discussed in section 2.1.4. Thus, without loss of generality, by
choosing p; = py = p3 = % and py = %, which means that 7T is seven times most frequent

that Ty, Ty and T3. Then, it is possible to obtain the following multifractal spectrum in

terms of the moments of order ¢

3474 3474
log 1/2

(L) log 77 + log ( 107 ) — log 10¢

fl@) = (2.1.4)

The pattern and the multifractal spectrum are presented in the Figure 2.2.

Figure 2.2 — (Top left) Spatial pattern generated by an Iterated Function System (IFS) with
memory with probabilities p; = pa = ps = 1/10, py = 7/10 and shrinkage factor
ri =1/2 (i =1,2,3,4). (Top right) Theoretical multifractal spectrum associated
with the pattern with 50,000 points. (Bottom left) Spatial pattern formed by the
points representing the population of the city of Brasilia, DF, restricted to the
geometries of the census tracts. Each point represents 500 people. (Bottom right)
Empirical multifractal spectrum of this representation. o and f(«) characterize the
local and global complexities of these systems.
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Therefore, one of the first distinctions between a monofractal structure (one di-
mension) and a multifractal structure (many dimensions) is that the latter has an infinity
of dimensions.

In addition, the pattern generated by the IFS with memory is dictated the most
frequent dynamic represented by the transformation 7Ty, which also means that there is a
dynamical process generating the spatial pattern of the fractal.

In this work, we will see that the shape of this special multifractal spectrum is a
consequence of these self-similar dynamics, and the shape of the multifractal spectrum is
the result of microscopic processes (as the nonlinear dynamics represented by the similarity
transformations presented above) that occur in space, particularly in two-dimensional
space. These processes, although difficult to know when considering real systems, e.g.
SN and Pop, are encapsulated in the shape of the spectrum given by its skwennes y or
its aggregation-diffusion index £. Such a shape can appear in different ways. One shape
exhibiting a process of the aggregation type x < 1 (£ > 1), one of the diffusion type
X > 1 (£ < 1) and another exhibiting none of the previous types, or of the symmetric
type x =¢=1.

Since a multifractal structure has an infinite number of dimensions, it is possible
to define filling rates, redundancy, and correlation in relation to two-dimensional space.
These quantities inform us about how much the structure under study fills the space, how

much its elements repeat, and how much they repeat across scales.
2.1.1 Capacity Dimension

In this section, we will define the capacity dimension, which will be useful for
defining the spatial filling rate that we will use to know how much the SN and the Pop
fill the space in two dimensions.

First, let N(e) be the number of boxes of side € needed to perfectly cover a line
of length L. The number of boxes in this case can be shown to be given by the product
between L and the scale of the boxes 1/¢, that is, N(¢) = L(1/€). Now let N(¢) be the
number of boxes, at a given scale, needed to cover a plane. It can be shown that this
quantity is given by N(e) = L?(1/¢)%. Analogously, the number of boxes, at a given scale,

needed to cover a cube is given by N(e) = L3(1/¢)3. In this sense, the number of boxes



needed to cover an object in a space of dimension d is given by
N(e) = LU (1/e)".

Applying the natural logarithm to both sides of the above equation results in

~ InN(e)
- InL+1In(1/e)

so that for L > € it is possible to define (BAKER; GOLLUB, 1996)

. InN(e)
fry 1 _—
o = 070

as the box-counting or capacity dimension, see Figure 2.3.
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(2.1.5)

(2.1.6)

(2.1.7)

Figure 2.3 — Illustration of a square lattice of side L overlapping the street network (SN) of the
city of Lavras, MG. a) 4 filled boxes of size L/2' overlapping the street grid. b)
13 filled boxes of size L/2% overlapping the street grid. c) 34 filled boxes of size
L/2* overlapping the street grid. d) 108 filled boxes of size L/25 overlapping the
SN. Choosing L = 50 units of length, it is not difficult to show that the box-count

dimension of Lavras’ SN is dg = 1.46.

b)

1111

Source: Own authorship.
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Although the box-counting dimension has many applications in the literature
(MANDELBROT, 1986; MOORE; DASI, 2013; ABID; TORTUM; ATALAY, 2021; FER-
NANDES; FILHO; LOPES, 2020; CHEN, 2020; NATALIA et al., 2023; WEN; ZHANG;
DENG, 2023; MARTINEZ; SEPULVEDA; MANRIQUEZ, 2023), it is unfeasible when the
measurement scale of the system is very small and when the system has a large number
of components (e.g. dynamic processes occurring in spaces with dimensions greater than
3) (ROSENBERG, 2021). This is because it counts the number of boxes needed to cover
the fractal structure at various scales of measurement, but does not provide information
on the spatial distribution of the system’s elements. In fact, we will see in the following
sections that the information and correlation dimensions overcome this problem, allow-
ing us to study systems in which the spatial distribution of points is asymmetrical or

non-uniform.
2.1.2 Information Dimension

In this section, we will define the information dimension, which will be useful for
defining the spatial redundancy index that we will use to find out to what extent the SN
and Pop repeat in space in two dimensions.

According to Hidalgo (2015), cities, firms, and teams are the embodiment of pock-
ets where species accumulate the capacity to produce information, which is highly uneven.
In the context of dynamical systems and chaos, this property of highly uneven behav-
ior leads to some asymmetries reflected in a chaotic attractor with fractal measurement
(FARMER, 1982).

If we consider, for instance, a traveler who must go from node A to node D, but
does not know which way to go, that is, he does not have any information available, Figure
2.4, but if someone advises him to go up (Top = 0) or go down (Down = 1) he acquires a
little information in each instruction received. So, if someone instructed him to follow the
path A-B-C-D, the amount of information he received was 3 bits. In general, the number
of destinations is m = 2", where n is the number of bits of information needed to cross
the m branches.

On the other hand, if we need to specify a point in a unit length line segment with
some precision € = 27%  the number of bits of information needed is k. In general, the

number of bits to specify a point in a d dimensional space is S(¢) = dlog, €, where € is
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the accuracy of the measurement. If we consider S(e) as the entropy associated with the
precision €, then 2° is the number of states available in the system and a positive metric
entropy can be considered as a definition of chaos (FARMER, 1982).

If we consider the Shannon entropy
S(e) ==Y _pi(e) Inp;(e), (2.1.8)

where p;(€) is the probability associated to the measurement in the i-th box of size € in a

square lattice, then we can define the information dimension by

. S(e)
d; = lim n/d (2.1.9)

Figure 2.4 — Consider a traveler who must go from node A to node D, but does not know which
way to go, that is, he does not have any information available. If someone advises
him to go up (Top = 0) or go down (Down = 1) he acquires a little information. So,
if someone instructed him to follow the path A-B-C-D, the amount of information
he received was 3 bits. In general, if n represents the number of branches and m
the number of destinations, then m = 2", because each branch requires 1 bit of
information and n branches require n bits.

Source: Own authorship.

This dimension was introduced by Balatoni and Renyi in 1956 and the idea behind
of this quantity is it allows an observer to estimate the information gained when a mea-
surement is made at a given level of precision (FARMER, 1982; KAK, 2020). It counts

the number of points within circles with radii smaller than or equal to the threshold and is
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related to the spectral dimension, which counts the number of sites in a fractal structure
with a certain number of visitors after infinite steps (PITSTANIS; BLERIS; ARGYRAKIS,
1989).

This quantity is important in the study of dissipative dynamic systems and chaos
(dynamic processes occurring in spaces in dimensions greater than 3) which have non-
trivial probability measures. It depends on the metric properties of a set and allows
characterize the asymmetry of the probability distribution associated with the fractal
measure. When this measure is evenly distributed the information dimension converges
to the box-counting dimension, otherwise we have d; < dg. An interesting interpretation
of the information dimension it’s an box-counting dimension of the smallest set which

contains the most part of the fractal structure or attractor (OTT, 2002).
2.1.3 Correlation Dimension

In this section, we will define the correlation dimension, which will be useful for
defining the spatial correlation index that we will use to find out to what extent the SN

and the Pop are correlated in space in two dimensions.

Defining the correlation integral by (ROSENBERG, 2021)

Clr) = chm,m (2.1.10)
where N
Clzir)= Y H(r—dy) (2.1.11)
J=1,j#i

gives the number of different points of z; at a distance d;; less than or equal to ~ and H (-)
is the Heaviside step function equal to 1 if r — d;; < 0 and zero otherwise.

With this, it is possible to define the correlation dimension using

... InC(r)
do = T 2442

The correlation dimension is one of the most commonly used dimensions in the
study of dissipative dynamical systems and chaos theory, see Figure 2.5. It is important

because it characterizes the degree of correlation between neighbouring points in the
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system and in estimating the size of isolated and sparsely distributed points in a given
region (systems like these are called dusts) (ROSENBERG, 2021).

Among other properties of the correlation dimension is that it can capture vari-
ations in the density of points on small scales (BAKER; GOLLUB, 1996). The inter-
pretation of positively correlated points means that the increase in the intensity of the
dynamics occurring in the vicinity of a point A is directly proportional to the intensity
of the dynamics in the vicinity of a point B with A # B. On the other hand, negatively
correlated points mean that the increase in the intensity of the dynamics occurring in
the vicinity of a point A is inversely proportional to the intensity of the dynamics in the
vicinity of a point B.

Another interpretation is that it is related to the probability of pairs of independent
events occurring in the same box and measures the dispersion of the data, (SALAT;
MURCIO; ARCAUTE, 2017). dp, d; and d¢ satisfy the relation do < d;y < dp, i.e. d¢ is
a lower limit for d; and dg, while dg is an upper limit for d; and dc.

In addition, it is interesting to highlight that the dimensions d; and d- have a strict
relationship with the Kaplan-Yorke conjecture (still open), which suggests relating the
dynamics of non-linear systems exhibiting chaotic behaviors to the geometric properties
of the system via Lyapunov exponents A. This quantities permits to known in which
regime the system has periodic A < 0, chaotic behaviour A > 0 or exhibits both in the
critical value A = 0, see for example (CHLOUVERAKIS; SPROTT, 2005; NICHOLS et
al., 2003; TEL; GRUIZ, 2006).

2.1.4 Generalized Dimensions

In this section, we will define the concept of generalized dimensions of ¢ order,
which are extremely important in the study of multifractal structures. They will be
useful in trying to generalize, eve