
RENAN LUCAS FAGUNDES

MULTIFRACTAL ANALYSIS OF THE STREET
NETWORK AND POPULATION:

15 LARGEST BRAZILIAN CITIES

LAVRAS – MG
2024



RENAN LUCAS FAGUNDES

MULTIFRACTAL ANALYSIS OF THE STREET NETWORK AND
POPULATION:

15 LARGEST BRAZILIAN CITIES

Dissertação apresentada à Universidade
Federal de Lavras, como parte das exigências
do Programa de Pós-Graduação em Física,
área de concentração em Física, para a
obtenção do título de Mestre.

Prof. Dr. Fabiano Lemes Ribeiro
Orientador

LAVRAS – MG
2024



Ficha catalográfica elaborada pelo Sistema de Geração de Ficha Catalográfica da
Biblioteca Universitária da UFLA, com dados informados pelo(a) próprio(a)

autor(a).

Fagundes, Renan Lucas
Multifractal Analysis of the Street Network and Popula-

tion : 15 Largest Brazilian Cities / Renan Lucas Fagundes.
– Lavras : UFLA, 2024.

144 p. : il.

Dissertação(mestrado)–Universidade Federal de Lavras,
2024.

Orientador: Prof. Dr. Fabiano Lemes Ribeiro.
Bibliografia.

1. Multifractal Analysis. 2. Urban Scaling. 3. Sci-
ence of Cities. I. Universidade Federal de Lavras. II. Título.



RENAN LUCAS FAGUNDES

MULTIFRACTAL ANALYSIS OF THE STREET NETWORK AND
POPULATION: 15 LARGEST BRAZILIAN CITIES

ANÁLISE MULTIFRACTAL DA REDE DE RUAS E DA POPULAÇÃO: 15
MAIORES CIDADES BRASILEIRAS

Dissertação apresentada à Universidade
Federal de Lavras, como parte das exigências
do Programa de Pós-Graduação em Física,
área de concentração em Física, para a
obtenção do título de Mestre.

APROVADA em 21 de Fevereiro de 2024.
Profa. Dra. Angélica Sousa da Mata UFLA
Dr. rer. nat. Diego Rybski IOER e CSH Viena
Prof. Dr. Vinícius de Moraes Netto UFF e UP

Prof. Dr. Fabiano Lemes Ribeiro
Orientador

LAVRAS – MG
2024



À minha filha Mariê e à minha esposa Sabrina.
Dedico.



ACKNOWLEDGEMENTS

I would like to thank Prof. Dr. Fabiano for his guidance, the trust he placed in me, the
coffees, the conversations, the inspiration and the encouragement to continue my studies.

To my beloved daughter Mariê, for making me the luckiest father in the world.
To my beloved wife Sabrina, for her patience, consideration, love and for always

believing in me.
To my dear mother Maria Teresa and my stepfather Lourival for their unconditional

support.
To my mother-in-law Eliana and my father-in-law Evaldo for their unconditional

support.
To my younger brothers, Mateus and José.
To my aunts Lúcia, Cristina, Maristela, Luiza, Maria Helena, my uncle Edson, my

aunt Naninha who left us too soon and all my cousins.
To my friends André, Guto and Ícaro.
To the colleagues I made at UFLA, Gabriel, Rômulo, Nathan, Eduardo, Henrique,

Thiago, David and Antônia.
To Prof. Dr. Rodrigo for the learning I brought from my scientific initiation degree

and for encouraging me to continue my studies.
To Profa. Dra. Angélica for her directed studies and encouragement.
To Black Label Society and Ark for the phenomenal compositions, from the oldest

to the newest, making me headband and forget about the difficult task of writing this
work.

To the truck drivers and travelers who gave me rides home and back safely.
To CNPq, CAPES and UFLA.
This work was carried out with the support of FAPEMIG.



Without data you’re just another person with an opinion.
(W. Edwards Deming)



ABSTRACT

By 2050, the world’s population is expected to reach 9.8 billion people. This will result
in significant challenges related to housing, infrastructure, basic services, food security,
health, education, employment, safety and natural resources at all urban levels. Faced
with this alarming scenario, there is an urgent need to understand how cities work. This
knowledge can greatly assist public agents in making decisions. However, the literature
widely recognizes that cities are complex systems with many interacting components. How
can we bridge the gap between decision-making and the complexity of cities? To address
this question, we examined Brazil’s 15 largest cities in 2010 using fractal geometry, urban
scaling and network science. We sought to demonstrate that both the street network
and the population show multifractal patterns, indicating the existence of a non-linear
dynamic governing the behavior of these patterns, which we suspect is closely related to
their multifractal spectra. We believe that the shape of these spectra is closely linked
to the geography and natural elements that make up the city. Furthermore, this study
suggests that some urban laws of scale can be described in terms of endogenous variables
such as population, area and fractal dimension by maximizing Shannon entropy, which is
used to obtain the probability of interaction between two regions of the city. In addition,
the generalized dimensions of the city can be considered to extend the scaling laws that
take into account the notion of fractal dimension, in order to investigate which region
or regions contribute most to the prediction of gross domestic product (GDP) and total
street length. In addition, we sought to demonstrate that models which take endogenous
factors into account to explain the economy and returns to scale can be simplified us-
ing only macroscopic quantities such as population, total street length and urban area.
This simplification was applied to the set of 5523 Brazilian cities. Finally, the data indi-
cates that the fractal dimensions of the nodes, links and cyclomatic number of the street
networks analyzed are equal to the fractal dimension of Bonacich’s centrality measure.
Furthermore, the relationship between the topological quantities of this type of network
remains constant, regardless of its size. In addition, there must be a close relationship be-
tween decision-makers and the knowledge generated. Therefore, we believe that in order
to promote quality of life in urban environments, it is important to understand how cities
work. This can be achieved through the use of computational tools and a theoretical basis
derived from various complex systems topics.

Keywords: Multifractal Analysis; Urban Scaling; Science of Cities.



RESUMO

Prevê-se que, em 2050, a população mundial atinja 9,8 mil milhões de pessoas. Isto re-
sultará em desafios significativos relacionados com a habitação, infra-estruturas, serviços
básicos, segurança alimentar, saúde, educação, emprego, segurança e recursos naturais a
todos os níveis urbanos. Diante desse cenário alarmante, é urgente entender o funciona-
mento das cidades. Esse conhecimento pode auxiliar muito os agentes públicos na tomada
de decisões. No entanto, a literatura reconhece amplamente que as cidades são sistemas
complexos com muitos componentes que interagem entre si. Como podemos fazer a ponte
entre a tomada de decisões e a complexidade das cidades? Para abordar essa questão,
examinamos as 15 maiores cidades do Brasil em 2010 usando geometria fractal, leis de
escala urbana e ciência de redes. Buscamos demonstrar que tanto a rede de ruas quanto a
população apresentam padrões multifractais, indicando a existência de dinâmica não lin-
ear governando o comportamento destes padrões, a qual suspeitamos estar intimamente
relacionada com os seus espectros multifractais. Acreditamos que a forma destes espec-
tros está intimamente ligada à geografia e aos elementos naturais que compõem a cidade.
Além disso, este estudo apresenta indicativos de que as leis da escala urbana podem ser
descritas em termos de variáveis endógenas como a população, a área e a dimensão fractal
partindo da maximização da entropia de Shannon, utilizada para obter a probabilidade de
interação entre duas regiões da cidade. Adicionalmente, o espetro multifractal das cidades
pode ser considerado para alargar estas leis, afim de investigar qual ou quais regiões con-
tribuem mais para a predição do produto interno bruto (GDP) e do comprimento total de
ruas. No entanto, é necessária mais investigação. Buscou-se demonstrar que os modelos
que consideram fatores endógenos para explicar a economia e o rendimento de escala po-
dem ser simplificados utilizando apenas quantidades macroscópicas como a população, o
comprimento total das ruas e a área urbana. Essa simplificação foi aplicada ao conjunto
de 5523 cidades brasileiras. Finalmente, os dados indicam que as dimensões fractais dos
nós, ligações e número ciclomático das redes de ruas analisadas são iguais à dimensão
fractal da medida de centralidade de Bonacich. Além disso, a relação entre as grandezas
topológicas desse tipo de rede permanece constante, independentemente do seu tamanho.
Para além disso, deve existir uma relação estreita entre os decisores e o conhecimento ger-
ado. Portanto, para promover a qualidade de vida em ambientes urbanos, é importante
entender como as cidades funcionam. Isto pode ser conseguido através da utilização de
ferramentas computacionais e de uma base teórica derivada de vários tópicos de sistemas
complexos.

Palavras-chave: Análise Multifractal; Escala Urbana; Ciência das Cidades.
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1 INTRODUCTION

Experts project that the world’s population (Pop) will reach 9.8 billion people by

2050, see Figure 1.1, and the effects of climate change are already being felt by 75% of

cities, which contribute 70% of greenhouse gas emissions1 (NATIONS, 2017). This brings

enormous challenges in terms of sustainability, significantly affecting issues related to

adequate housing, infrastructure, basic services, food security, health, education, decent

jobs, safety and natural resources, among others, at all urban scales (NATIONS, 2016).

Faced with this alarming scenario, it is extremely urgent to understand how cities

work, both from a practical and theoretical point of view (BETTENCOURT; WEST,

2010; BETTENCOURT, 2013; BARTHELEMY, 2019b; RIBEIRO; RYBSKI, 2023). The

knowledge generated in this process can be of great help in decision-making by public

agents, especially in the creation of public policies focused on sustainability, with the

aim of mitigating the effects of climate change and solving directly or indirectly related

problems (WOODCOCK et al., 2009; SALLIS et al., 2016).

An interdisciplinary approach that has proved effective in understanding urban

processes involves considering that cities are complex systems (RYBSKI; GONZALEZ,

2022). A complex system is made up of numerous elements interconnected locally in

a non-trivial way, whose dynamics evolve in space and time, resulting in patterns of

self-organization and emergent behaviour (SAYAMA, 2015; SIEGENFELD; BAR-YAM,

2020; BIANCONI et al., 2023). For example, ant colonies, brain, global financial markets,

weather, traffic, and cities are examples of complex systems (THERAULAZ et al., 2002;

BASSETT; GAZZANIGA, 2011; JOHNSON; JEFFERIES; HUI, 2003; LOVEJOY, 2022;

DING et al., 2019; JOHNSON, 2009). These systems2 have the remarkable ability to

adapt to external effects, which makes them particularly relevant for the analysis and

management of cities in a context of climate change and Pop growth.

With the aim of understanding cities in the light of complex systems, a group of

researchers have dedicated their efforts to establishing a new field of science known as the

Science of Cities (BATTY, 2012; BATTY, 2013). In short, this new field stands out for

1 <https://www.citiesalliance.org/newsroom/news/results/climate-change-and-cities-infographic>.
2 See some examples in <http://www.complexity-explorables.org/>.

https://www.citiesalliance.org/newsroom/news/results/climate-change-and-cities-infographic
http://www.complexity-explorables.org/
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bringing together scientific methodology, a multidisciplinary3 approach and the analysis

of real data in the search for solutions to urgent problems such as climate change, ur-

banization and transport, among other crucial challenges (ALBERTI, 2017; LOBO et al.,

2020). Allied to this, the development of mathematical models plays a fundamental role

in this process, although there are some caveats4. Various models have been proposed

in this context (BATTY; LONGLEY, 1994; FRANKHAUSER, 2008; BETTENCOURT;

WEST, 2010; BARTHELEMY, 2019a; BARTHELEMY, 2019b; KEUSCHNIGG, 2019;

MOLINERO; THURNER, 2021; MOLINERO, 2022; ARCAUTE; RAMASCO, 2022;

RIBEIRO; RYBSKI, 2023), but models that consider the multifractal nature of cities,

considering both the road network, the Pop pattern and the urban scaling, have still been

little explored. In this work we chose to explore these topics using concepts involving

fractal geometry, urban scaling laws and network science. In particular, we focus on the

15 largest Brazilian cities in 2010.

Figure 1.1 – World population (Pop) projections from historical editions of the United
Nations Population Prospects. Data available: <https://ourworldindata.org/
population-projections>.

Source: United Nations, World Population Prospects (various years).

These three topics are some of the most important branches in the study of com-

plexity science (SAYAMA, 2015). We will see that fractal geometry deals with abstract

geometric objects that need to be described in terms of a different kind of geometry in

which irregularity is inherent in the scales of nature. This is due to the first observations,
3 Network and data sciences, business intelligence, artificial intelligence algorithms, internet of

thing, blockchain, quantum computation, advanced robotics, renewable energy, 5G internet,
to cite a few.

4 <https://www.wired.com/2008/06/pb-theory/>.

https://ourworldindata.org/population-projections
https://ourworldindata.org/population-projections
https://www.wired.com/2008/06/pb-theory/
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mainly by Mandelbrot and others, that natural processes are irregular and repeat them-

selves on different scales of length and time (MANDELBROT, 1995; MANDELBROT;

FREEMAN; COMPANY, 1983; MANDELBROT, 1986).

Figure 1.2 – Spatial pattern of the population (Pop ) of Lavras in its street network (SN). We
can see that the probability p in some radius (e.g 500 m) of meeting people is
distributed in a multivariate normal way.

Source: Own authorship.

We show that the Pop and the street network (SN) of the largest Brazilian are

multifractal structures. This means that both have local and global variability in their

spatial patterns, resulting from non-linear dynamics that occur on the most varied size

scales as well as in the most concentrated and rarefied parts. To capture these properties

we use the multifractal spectrum and define rates (CHEN, 2018). With the spectrum

it is possible to infer aggregation and diffusion processes to characterize these patterns

(CHANUI et al., 2022; LONG; CHEN, 2021). An aggregation process means that both

the SN and the Pop tend to concentrate in sites which are relatively larger than those

occupying peripheral regions. The diffusion process tells us that peripheral places are

denser in terms of people and streets than central ones.
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Although it is not easy to know the dynamics of the irregularities observed in

nature, it is possible to use some mathematical models to try to capture some of these

processes. We will see that socio-economic activities, infrastructure resources and indi-

vidual needs in cities tend to behave differently as the Pop grows. The difference between

the three can be seen by measuring characteristic scaling exponents (BETTENCOURT;

WEST, 2010).

In particular, the laws that describe the first two can be obtained by maximiz-

ing Shannon entropy – a quantity used in statistical physics to quantify uncertainty in

stochastic processes – providing a general law for the probability of interaction between

individuals or elements separated by a given distance, an idea first considered by Wilson

(1967) to extend models of the spatial location of activities between areas of a region, and

recently simplified by Batty (2021).

In addition, we will show that the model proposed by Molinero & Thurner (M&T),

which allows inferring the wealth and efficiency, terms of the transport network, in the

city via geometry, can be simplified heuristically considering only macroscopic variables

such as area urban area, Pop, gross domestic product (GDP) and total street length.

With such simplification it is possible to show two regimes, one linear and the other non-

linear, for the scale exponent - ratio between the fractal dimensions of street network and

population - that characterizes the relative spatial complexity between SN and Pop.

On the other hand, we will see that the street network of cities, indispensable for

transporting information, goods and access to different regions, has very similar char-

acteristics to a group of computers connected to the internet network, but that both

can exhibit non-trivial properties of their own, allowing us to classify and character-

ize them (ERDÖS; RÉNYI, 1959; WATTS; STROGATZ, 1998; BARABASI; ALBERT,

1999; NEWMAN; WATTS; STROGATZ, 2002; MATA, 2020). In fact, some networks

can exhibit properties very similar to the distribution of wealth and the irregular pattern

of Pop occupation, that is, they have a power law behavior.

Therefore, fractal geometry, scaling laws and network science can help us to gen-

erate knowledge in order to guide decision-making in solving problems that can be found

both in central regions - where the probability of finding people, stores, markets, hospitals,

bakeries, bars, restaurants is higher and there are relatively few of them - and in the pe-

ripheral regions - where the probability of finding people is lower, the basic infrastructure
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conditions is inadequate and where the majority of residents are partially excluded from

the socio-economic benefits of growing cities (ARVIDSSON; LOVSJO; KEUSCHNIGG,

2013). See Fig. 1.2 for illustration.

This work attempts to unite these three topics and is divided as follows: in Chap-

ter 2 we discuss the theoretical foundations involving fractal geometry, urban scale laws

and network science. In particular, we will focus on the dimensions of capacity, informa-

tion, correlation and the corresponding generalized dimensions. Also in this Chapter, we

present the definition of skewness and aggregation-diffusion index, as well as spatial filling

rates, where the above dimensions are extremely relevant. We will present the main cen-

tralities and topological measures associated to networks, in particular we will highlight

some models and their properties. We end this Chapter by presenting some of the most

important intra-city models recovered from the definition of the interaction probability,

which in turn can be obtained via entropy maximization; in Chapter 3 we present the

objectives that motivated the research and the justification; in Chapter 4, we present

the materials and methods used in the work; in Chapter 5, we present the results of the

research and discuss the findings; Chapter 6 presents the conclusions. Next, we present

the bibliography consulted throughout the work. Finally, we present the appendices with

information that complements the text.
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2 THEORETICAL FOUNDATIONS

In this Chapter, we will provide a brief overview of fractal geometry and focus

particularly on the main fractal dimensions used in the analysis of complex systems. These

dimensions include the capacity dimension or box-counting dimension dB, information

dimension dI , correlation dimension dC , and generalized dimensions Dq of order q. It is

possible to establish equivalences between the first three dimensions and the generalized

dimensions for values of q equal to 0, 1, and 2, respectively. Details can be found in

Appendix D.

We will also discuss the basics of multifractal theory and explain how the sandbox

method can be used to approximate generalized dimensions. Additionally, we will intro-

duce the concepts of skewness and aggregation-diffusion index and define terms such as

spatial filling, redundancy, and correlation rates.

Furthermore, we will demonstrate how intra-city models can be deduced from

entropy maximization and give an overview of the primary intra-city models that take

fractal dimension into account.

Finally, we will review the three primary models used in network science: the

random or Erdös-Rényi model (ER), Barabási-Albert (BA), and Watts-Strogatz (WS).

We will also discuss several centrality and topological measures.

2.1 Fractal Geometry

Fractal geometry is the study of fractal or fractal structures that exhibit the re-

markable property of being self-similar at different lengths and time scales – for example,

landscape, rivers, earthquakes, lungs, blood vessels, distribution of asteroids, turbulence

in fluid dynamics, percolation structures, the surface of solids, street networks (SN),

population (Pop), etc (STANLEY; MEAKIN, 1988; TAKAYASU, 1990; SCHROEDER,

1991; APPLEBY, 1996; HARTE, 2001; ROSENBERG, 2021).

Howeever, the study of fractal structures is closely linked to the idea of scale in-

variance, a concept that will be discussed in detail in the next section. Researches in this

topic dates back to Bachelier, Frish, Kolmogorov, and Mandelbrot (LOPES; BETROUNI,

2009). Zmeskal et al. (2013) note that the foundations of fractal geometry can be traced

back to Leibniz in the 17th century, who studied the concept of recursive self-similarity.

These authors, as well as Falconer (2013), agree that the first fractal structure was pro-
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posed by Karl Weierstrass in 1872, a curve that is impossible to tangent and has a fractal

dimension equal to 11, but according to Schroeder (1991), the first real fractal structure

was generated by Lichtenberg in 1777 using electrical discharges in an insulator.

A fractal structure stands out for having a non-integer dimension, which may

initially seem surprising. How is it possible for an object to occupy a certain space if

its dimension, say, is 0.631 or 1.263?. The dimension of a fractal structure is a measure

that quantifies the degree of complexity of patterns that repeat from the smallest to the

largest scale. This dimension is greater than the dimension of the topological space and

less than the dimension of the Euclidean space underlying the fractal structure in question

(FALCONER, 2004).

As an illustration, consider that an object has b similar shapes of size 1/a, then is

possible to define it’s similarity dimension by (TAKAYASU, 1990)

ds =
log b

log a
, (2.1.1)

If we consider the Cantor set, see Figure 2.1, obtained by removing the middle

third of a unit line segment at each iteration, and the Koch curve, obtained by removing

the middle third and replacing it with an equilateral triangle of the same size, then the

similarity dimension of the Cantor set can be obtained when b = 2 and a = 3. Analogously,

for the Koch curve we have b = 4 and a = 3.

On the other hand, according to Rosenberg (2021), real fractals have a finite scale

which distinguishes them from artificial fractals and a single fractal dimension is not

sufficient to characterize the complexity of the patterns in a system (FRANKHAUSER,

2008; MURCIO et al., 2015). In this context, it is essential to generalize the notion of

fractal, as certain structures can exhibit completely different patterns depending on the

region of analysis (i.e. there is a local dependency). Therefore, a more comprehensive

analysis of these structures must take into account a spectrum of dimensions that the

system can take on, allowing for the classification of more sparse regions as well as more

densely packed regions of the geometric object under study.

One approach that meets these requirements is known as multifractal analysis, in

which it is possible to generalize the notion of fractal dimension. This approach offers a

deeper and more detailed understanding of complex structures, taking into account their
1 <https://mathworld.wolfram.com/WeierstrassFunction.html>

https://mathworld.wolfram.com/WeierstrassFunction.html
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Figure 2.1 – The Cantor set a) and the Koch curve b) are sets with fractal dimensions of 0.631
and 1.262, respectively. The Cantor set can be obtained by removing the middle
third of a unit line segment at each iteration and the Koch curve can be obtained by
removing the middle third and replacing it with an equilateral triangle of the same
size. Note that the former has a dimension less than 1 and the latter has a higher
value. This means that the Koch curve is spatially more complex than the Cantor
set, because the former occupies much more two-dimensional space than the latter.

Source: Own Authorship.

local variation and allowing for a more precise characterization of their multifaceted com-

plexity (WANG; YU; ANH, 2012; CHEN; WANG, 2013; MURCIO et al., 2015; CHEN,

2016; CHEN, 2018; LONG; CHEN, 2021; SONG; CHEN; BO, 2023).

A simple example that can be used to illustrate the notion of a multifractal struc-

ture is to consider Iteration Function Systems (IFS) with memory in the plane given by

(BARNSLEY; DEMKO, 1985; HARTE, 2001; FALCONER, 2004; FRAME; NEGER,

2022) 

T1(x, y) =
(√

2
2
x+ 1,

√
2
2
y + 1

)
,

T2(x, y) =
(√

2
2
x+ 1,−

√
2
2
y + 1

)
,

T3(x, y) =
(√

2
2
x+ 1,−

√
2
2
y + 1

)
,

T4(x, y) =
(
−

√
2
2
x+ 1,−

√
2
2
y + 1

)
.

(2.1.2)

Thus, by assigning a probability pi (i = 1, 2, 3, 4) and a contraction factor (or the size

of the self-similar segment that makes up the fractal) ri = 1/2 (i = 1, 2, 3, 4) to each

transformation, we can use the generalized Moran equation (see Appendix A) to obtain

the multifractal spectrum of the system satisfying (FEDER, 1988; SCHROEDER, 1991;

ROSENBERG, 2021; FRAME; NEGER, 2022)

∑
i

pqi r
τ(q)
i = 1, (2.1.3)
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a transcendental equation that restricts the orders q ∈ R of the probabilities of each

transformation and their respective contraction factors. The quantity τ(q) is the mass

exponent which will be discussed in section 2.1.4. Thus, without loss of generality, by

choosing p1 = p2 = p3 =
1
10

and p4 =
7
10

, which means that T4 is seven times most frequent

that T1, T2 and T3. Then, it is possible to obtain the following multifractal spectrum in

terms of the moments of order q

f(q) =

(
7q

3+7q

)
log 7q + log

(
10q

3+7q

)
− log 10q

log 1/2
. (2.1.4)

The pattern and the multifractal spectrum are presented in the Figure 2.2.

Figure 2.2 – (Top left) Spatial pattern generated by an Iterated Function System (IFS) with
memory with probabilities p1 = p2 = p3 = 1/10, p4 = 7/10 and shrinkage factor
ri = 1/2 (i = 1, 2, 3, 4). (Top right) Theoretical multifractal spectrum associated
with the pattern with 50,000 points. (Bottom left) Spatial pattern formed by the
points representing the population of the city of Brasília, DF, restricted to the
geometries of the census tracts. Each point represents 500 people. (Bottom right)
Empirical multifractal spectrum of this representation. α and f(α) characterize the
local and global complexities of these systems.

Source: Own Authorship.
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Therefore, one of the first distinctions between a monofractal structure (one di-

mension) and a multifractal structure (many dimensions) is that the latter has an infinity

of dimensions.

In addition, the pattern generated by the IFS with memory is dictated the most

frequent dynamic represented by the transformation T4, which also means that there is a

dynamical process generating the spatial pattern of the fractal.

In this work, we will see that the shape of this special multifractal spectrum is a

consequence of these self-similar dynamics, and the shape of the multifractal spectrum is

the result of microscopic processes (as the nonlinear dynamics represented by the similarity

transformations presented above) that occur in space, particularly in two-dimensional

space. These processes, although difficult to know when considering real systems, e.g.

SN and Pop, are encapsulated in the shape of the spectrum given by its skwennes χ or

its aggregation-diffusion index ξ. Such a shape can appear in different ways. One shape

exhibiting a process of the aggregation type χ < 1 (ξ > 1), one of the diffusion type

χ > 1 (ξ < 1) and another exhibiting none of the previous types, or of the symmetric

type χ = ξ = 1.

Since a multifractal structure has an infinite number of dimensions, it is possible

to define filling rates, redundancy, and correlation in relation to two-dimensional space.

These quantities inform us about how much the structure under study fills the space, how

much its elements repeat, and how much they repeat across scales.

2.1.1 Capacity Dimension

In this section, we will define the capacity dimension, which will be useful for

defining the spatial filling rate that we will use to know how much the SN and the Pop

fill the space in two dimensions.

First, let N(ϵ) be the number of boxes of side ϵ needed to perfectly cover a line

of length L. The number of boxes in this case can be shown to be given by the product

between L and the scale of the boxes 1/ϵ, that is, N(ϵ) = L(1/ϵ). Now let N(ϵ) be the

number of boxes, at a given scale, needed to cover a plane. It can be shown that this

quantity is given by N(ϵ) = L2(1/ϵ)2. Analogously, the number of boxes, at a given scale,

needed to cover a cube is given by N(ϵ) = L3(1/ϵ)3. In this sense, the number of boxes
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needed to cover an object in a space of dimension d is given by

N(ϵ) = Ld(1/ϵ)d. (2.1.5)

Applying the natural logarithm to both sides of the above equation results in

d =
lnN(ϵ)

lnL+ ln(1/ϵ)
(2.1.6)

so that for L ≫ ϵ it is possible to define (BAKER; GOLLUB, 1996)

dB = lim
ϵ→0

lnN(ϵ)

ln(1/ϵ)
(2.1.7)

as the box-counting or capacity dimension, see Figure 2.3.

Figure 2.3 – Illustration of a square lattice of side L overlapping the street network (SN) of the
city of Lavras, MG. a) 4 filled boxes of size L/21 overlapping the street grid. b)
13 filled boxes of size L/22 overlapping the street grid. c) 34 filled boxes of size
L/24 overlapping the street grid. d) 108 filled boxes of size L/26 overlapping the
SN . Choosing L = 50 units of length, it is not difficult to show that the box-count
dimension of Lavras’ SN is dB = 1.46.

Source: Own authorship.
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Although the box-counting dimension has many applications in the literature

(MANDELBROT, 1986; MOORE; DASI, 2013; ABID; TORTUM; ATALAY, 2021; FER-

NANDES; FILHO; LOPES, 2020; CHEN, 2020; NATALIA et al., 2023; WEN; ZHANG;

DENG, 2023; MARTÍNEZ; SEPÚLVEDA; MANRÍQUEZ, 2023), it is unfeasible when the

measurement scale of the system is very small and when the system has a large number

of components (e.g. dynamic processes occurring in spaces with dimensions greater than

3) (ROSENBERG, 2021). This is because it counts the number of boxes needed to cover

the fractal structure at various scales of measurement, but does not provide information

on the spatial distribution of the system’s elements. In fact, we will see in the following

sections that the information and correlation dimensions overcome this problem, allow-

ing us to study systems in which the spatial distribution of points is asymmetrical or

non-uniform.

2.1.2 Information Dimension

In this section, we will define the information dimension, which will be useful for

defining the spatial redundancy index that we will use to find out to what extent the SN

and Pop repeat in space in two dimensions.

According to Hidalgo (2015), cities, firms, and teams are the embodiment of pock-

ets where species accumulate the capacity to produce information, which is highly uneven.

In the context of dynamical systems and chaos, this property of highly uneven behav-

ior leads to some asymmetries reflected in a chaotic attractor with fractal measurement

(FARMER, 1982).

If we consider, for instance, a traveler who must go from node A to node D, but

does not know which way to go, that is, he does not have any information available, Figure

2.4, but if someone advises him to go up (Top = 0) or go down (Down = 1) he acquires a

little information in each instruction received. So, if someone instructed him to follow the

path A-B-C-D, the amount of information he received was 3 bits. In general, the number

of destinations is m = 2n, where n is the number of bits of information needed to cross

the m branches.

On the other hand, if we need to specify a point in a unit length line segment with

some precision ϵ = 2−k, the number of bits of information needed is k. In general, the

number of bits to specify a point in a d dimensional space is S(ϵ) = d log2 ϵ, where ϵ is
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the accuracy of the measurement. If we consider S(ϵ) as the entropy associated with the

precision ϵ, then 2S is the number of states available in the system and a positive metric

entropy can be considered as a definition of chaos (FARMER, 1982).

If we consider the Shannon entropy

S(ϵ) = −
∑
i

pi(ϵ) ln pi(ϵ), (2.1.8)

where pi(ϵ) is the probability associated to the measurement in the i-th box of size ϵ in a

square lattice, then we can define the information dimension by

dI = lim
ϵ→0

S(ϵ)

ln(1/ϵ)
. (2.1.9)

Figure 2.4 – Consider a traveler who must go from node A to node D, but does not know which
way to go, that is, he does not have any information available. If someone advises
him to go up (Top = 0) or go down (Down = 1) he acquires a little information. So,
if someone instructed him to follow the path A-B-C-D, the amount of information
he received was 3 bits. In general, if n represents the number of branches and m
the number of destinations, then m = 2n, because each branch requires 1 bit of
information and n branches require n bits.

Source: Own authorship.

This dimension was introduced by Balatoni and Renyi in 1956 and the idea behind

of this quantity is it allows an observer to estimate the information gained when a mea-

surement is made at a given level of precision (FARMER, 1982; KAK, 2020). It counts

the number of points within circles with radii smaller than or equal to the threshold and is
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related to the spectral dimension, which counts the number of sites in a fractal structure

with a certain number of visitors after infinite steps (PITSIANIS; BLERIS; ARGYRAKIS,

1989).

This quantity is important in the study of dissipative dynamic systems and chaos

(dynamic processes occurring in spaces in dimensions greater than 3) which have non-

trivial probability measures. It depends on the metric properties of a set and allows

characterize the asymmetry of the probability distribution associated with the fractal

measure. When this measure is evenly distributed the information dimension converges

to the box-counting dimension, otherwise we have dI ≤ dB. An interesting interpretation

of the information dimension it’s an box-counting dimension of the smallest set which

contains the most part of the fractal structure or attractor (OTT, 2002).

2.1.3 Correlation Dimension

In this section, we will define the correlation dimension, which will be useful for

defining the spatial correlation index that we will use to find out to what extent the SN

and the Pop are correlated in space in two dimensions.

Defining the correlation integral by (ROSENBERG, 2021)

C(r) ≡ 1

N(N − 1)

N∑
i

C(xi, r) (2.1.10)

where

C(xi, r) ≡
N∑

j=1,j ̸=i

H(r − dij) (2.1.11)

gives the number of different points of xi at a distance dij less than or equal to r and H(·)

is the Heaviside step function equal to 1 if r − dij ≤ 0 and zero otherwise.

With this, it is possible to define the correlation dimension using

dC = lim
r→0

lim
N→∞

lnC(r)

ln r
. (2.1.12)

The correlation dimension is one of the most commonly used dimensions in the

study of dissipative dynamical systems and chaos theory, see Figure 2.5. It is important

because it characterizes the degree of correlation between neighbouring points in the
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system and in estimating the size of isolated and sparsely distributed points in a given

region (systems like these are called dusts) (ROSENBERG, 2021).

Among other properties of the correlation dimension is that it can capture vari-

ations in the density of points on small scales (BAKER; GOLLUB, 1996). The inter-

pretation of positively correlated points means that the increase in the intensity of the

dynamics occurring in the vicinity of a point A is directly proportional to the intensity

of the dynamics in the vicinity of a point B with A ̸= B. On the other hand, negatively

correlated points mean that the increase in the intensity of the dynamics occurring in

the vicinity of a point A is inversely proportional to the intensity of the dynamics in the

vicinity of a point B.

Another interpretation is that it is related to the probability of pairs of independent

events occurring in the same box and measures the dispersion of the data, (SALAT;

MURCIO; ARCAUTE, 2017). dB, dI and dC satisfy the relation dC ≤ dI ≤ dB, i.e. dC is

a lower limit for dI and dB, while dB is an upper limit for dI and dC .

In addition, it is interesting to highlight that the dimensions dI and dC have a strict

relationship with the Kaplan-Yorke conjecture (still open), which suggests relating the

dynamics of non-linear systems exhibiting chaotic behaviors to the geometric properties

of the system via Lyapunov exponents λ. This quantities permits to known in which

regime the system has periodic λ < 0, chaotic behaviour λ > 0 or exhibits both in the

critical value λ = 0, see for example (CHLOUVERAKIS; SPROTT, 2005; NICHOLS et

al., 2003; TEL; GRUIZ, 2006).

2.1.4 Generalized Dimensions

In this section, we will define the concept of generalized dimensions of q order,

which are extremely important in the study of multifractal structures. They will be

useful in trying to generalize, even if ad hoc, some of the main intra-city models discussed

in (RIBEIRO; RYBSKI, 2023).

According to Feder (1988), multifractal structures are related to the study of phys-

ical or other quantities on a geometric support, allowing a hierarchical analysis of sys-

tems that exhibit complex morphological patterns at different observation frequencies

(DROZDZ; OSWIECIMKA, 2015; YAHIA et al., 2021). Parisi and Frisch have been at-

tributed to the term multifractal formalism, while the mathematical foundations, involv-
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Figure 2.5 – Lorenz attractor. In evidence are a representative circle centered on the i-th point xi
of the attractor. All points in the circle are counted by the Heaviside step function
and all points out of the circle are not.

Source: Own authorship.

ing the notions of generalized dimension and multifractal spectrum, have been attributed

to Rényi (1955) and Halsey et al. (1986), respectively.

In Benzi et al. (1984), it is mentioned that multifractal ensembles play a crucial

role in describing turbulent flows. To explain this, the authors introduce an extension of

the beta model proposed by Frisch, Sulem, and Nelkin in 1978, called the random beta

model, which incorporates the notion of intermittency. Furthermore, the authors present

numerical simulations involving strange attractors to illustrate the relationship between

multifractal theory, dynamic systems, and chaotic attractors.

In Halsey et al. (1986), the concept of the singularity index and an associated

quantity characterizes the intensity of this index is introduced. The formalism defines

the intensity index, which describes the density of values assumed within the multifractal

structure under investigation, and the second index quantifies the local intensity of this

index in the structure. This enables the introduction of two smooth functions to char-

acterize the structure. The authors apply these concepts to investigate some dynamical

systems and also suggest that, based on the results obtained, this formalism can be used

to investigate universality phenomena in experimental situations that are different from

those arising from dynamical systems.
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These ideas were used by Paladin & Vulpiani (1987), who reviewed several con-

cepts such as chaotic attractor, Lyapunov exponents, Rényi entropy’s, anomalous scaling,

including the notion of the phenomenon of intermittency in the study of turbulence. This

work reveals that the multifractal formalism has significant importance in the study of

the theory of dynamic systems, turbulence in disordered and condensed matter systems.

For works involving the mathematical formalization of fractal and multifractal the-

ory, as well as the proposition of new strategies for estimating Dq in artificial and real sys-

tems see (TEL; VICSEK, 1987; FEDER, 1988; TEL; FULOP; VICSEK, 1989; THEILER,

1990; TAKAYASU, 1990; SCHROEDER, 1991; FALCONER; LAMMERING, 1998; VIC-

SEK, 1992; BAKER; GOLLUB, 1996; HARTE, 2001; FALCONER, 2004; ZMESKAL;

DZIK; VESELY, 2013; SALAT; MURCIO; ARCAUTE, 2017; ROSENBERG, 2021).

Interesting applications involving the generalized dimension in real systems, in par-

ticular human settlements and racial segregation, see (APPLEBY, 1996; SEMECURBE;

TANNIER; ROUX, 2016; STEPINSKI; DMOWSKA, 2020). In hydrology studies we

have the work of (HUBERT, 2001) and in rivers we have that of (BARTOLO; GAU-

DIO; GABRIELE, 2004; XIANG et al., 2019). Studies involving applications of fractal

dimension in data mining and stochastic field theory are those by (SKKUMAR, 2003)

and (SCHERTZER; LOVEJOY; HUBERT, 2002), respectively. You can also find studies

applied to data analysis (WENDT; ABRY, 2006), time series (IHLEN, 2013) and the

bitcoin market (FILHO; MAGANINI; ALMEIDA, 2018).

For applications in medicine, especially vaccine performance testing (COVID-19)

see (MOORE; DASI, 2013; ÖZDEMIR, 2023). For applications of Dq in complex networks,

street networks (SN), urban systems and spatial analysis see (WANG; YU; ANH, 2012;

CHEN; WANG, 2013; MURCIO et al., 2015; CHEN, 2016; CHEN, 2018; LONG; CHEN,

2021; SONG; CHEN; BO, 2023). Applications in studies of climatic and atmospheric

systems such as daily variability of sunspot numbers, precipitation, meteorology, and solar

radiation see (DROZDZ; OSWIECIMKA, 2015; LIU et al., 2015; PAVÓN-DOMÍNGUEZ;

JIMÉNEZ-HORNERO; RAVÉ, 2015; ALVES et al., 2015; HE, 2017; SALAT; MURCIO;

ARCAUTE, 2017; SILVA et al., 2023; ZHAO; LIU; ZHOU, 2023; SANTOS et al., 2023;

NATALIA et al., 2023).

Multifractal analysis features quantum field theory, fields and astrophysical systems

(DEPPMAN; MEGÍAS; MENEZES, 2020; YAHIA et al., 2021; CHANUI et al., 2022).



35

Therefore, it is possible to see that the multifractal theory has a wide versatility

and, in this work, we will use this tool to analyze the spatial complexity of the SN and

the population (Pop) of the largest Brazilian cities in 2010, in order to characterize them

and to understand closely the irregularities emerging from these systems.

We are now in a position to introduce the notion of multifractality by first prin-

ciples. To introduce this notion and its related quantities we follow Stanley & Meakin

1988, because it is more intuitive.

First, consider a lattice of size L defined over a fractal structure with boxes size

R, such that the relative size between L and R is given by ϵ = R/L. If we denote the

number of points in the i-th box by Mi and assuming the number of elements the fractal

has is M0 ≡
∑

i Mi, then we can denote the probability of finding a point in box i by

pi =
Mi

M0

. (2.1.13)

Defining the probability distribution function with the set pi by n(p) when n(p)δp is the

number of pi in the range [p, p + δp], we can define the partition function associated to

n(p) by

Zq ≡
∑
p

n(p)pq. (2.1.14)

It is worth highlighting that q are the moments associated with the measurements p and

when q ≪ 0 we have regions in in which the measurements are rarefied, while q ≫ 0 are

concentrated (BARTOLO; GAUDIO; GABRIELE, 2004; ROSENBERG, 2021).

However, we can express the eq. (2.1.14) in terms of relative system size ϵ by

Zq ∼ ϵ−τ(q) (2.1.15)

where τ(q) are mass exponents that relates the relative system size and the its mass.

Now, consider that this partition function is the form

Zq =
∑
p

eF (p) (2.1.16)

with

F (p) = log n(p) + q log p. (2.1.17)
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The sum of the eq. (2.1.16) has a typical value in p = p∗ when F (p = p∗) have a

maximum, such that the following approximation is valid.

Zq ∼ eF (p∗) = n(p∗)(p∗)q. (2.1.18)

If we fix q, then p∗ and n(p∗) depends on the relative size ϵ of the system and we can

write the scaling laws

p∗ ∼ ϵ−α(q), n(p∗) ∼ ϵf(α(q)), (2.1.19)

when α(q) are the singularity indexes and f(α(q)) are the singularity spectrum or mul-

tifractal spectrum. In this context f(α(q)) is though as a Hausdorff dimension of the

fractal set and α(q) it’s local version. Figure 2.6 illustrates the multifractal spectrum, the

regimes when q < 0 and q > 0, the variation of the spectrum ∆f , the αmin, αmax, α0, α1

and the corresponding dimensions that we will discuss below. αmin and αmax correspond

to the singularity indexes in the rarefied and densest regions of the fractal structure, while

α0 and α1 correspond to the largest and smallest regions which contain most of the fractal

structure, respectively.

Figure 2.6 – Typical multifractal example diagram. Illustration of the multifractal spectrum, the
regimes when q < 0 and q > 0, the variation of the spectrum ∆f , the αmin, αmax,
α0, α1 and the corresponding dimensions.

Source: (XIANG et al., 2019).



37

In this consideration, then we obtain

Zq ∼ eF (p∗) = ϵf(α(q))−α(q)q (2.1.20)

and comparing the eqs. (2.1.15) and (2.1.20), we have

τ(q) = f(α(q))− α(q)q = −(1− q)Dq (2.1.21)

and we can define

Dq =
τ(q)

q − 1
(2.1.22)

as the generalized dimensions of q order, which is related to the Rényi entropy and free

energy (RÉNYI, 1955; ZMESKAL; DZIK; VESELY, 2013; BAEZ, 2022).

From the equation eq. (2.1.21) we can write dτ(q) = −α(q)dq or dτ(q) = −α(q)dq−

qdα(q)+ qdα(q) or d(τ(q)+α(q)q) = qdα(q) and we define a function of the α(q) variable

f(α(q)) = τ(q) + α(q)q (2.1.23)

as the sigularity spectrum or multifractal espectrum.

However, in this study we follow the approach described in (TEL; VICSEK, 1987;

BARTOLO; GAUDIO; GABRIELE, 2004; TEL; FULOP; VICSEK, 1989; ZHAO; LIU;

ZHOU, 2023), witch’s use the sandbox method to obtain the multifractal quantities. The

idea of this method is to obtain the generalized dimensions and the multifractal quantities

considering an average over some randomly chose points in the fractal structure.

Moreover, is possible to extend the eq. (2.1.13) and to write

∑
boxes i

µq
i ∝ ϵ(q−1)Dq (2.1.24)

where µi is the normalized mass defined by µi = Mi/M0 with M0 the total mass of the

fractal structure. In this work, there is two kind of mass, the intersections of the SN and

the Pop. Analogously, ϵ = R/L is the normalized size of the box of the square lattice of

size L that superpose the fractal object.

To correct inconsistencies when the orders moment are negative, q < 0, Tel, Fulop

and Vicsek (1989) proposes the following modification to obtain the generalized dimen-
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sions ∑
i

(
Mi

M0

)q−1
Mi

M0

∝
(
R

L

)(q−1)Dq

. (2.1.25)

The idea behind of this modification is to calculate the moments q of the average mass

over random select points centred on the object with R ≪ L, so that〈[
M(R)

M0

]q−1
〉

∝
(
R

L

)(q−1)Dq

(2.1.26)

yielding the generalized dimensions

Dq =
1

q − 1
lim

R/L→0

ln

〈[
M(R)
M0

]q−1
〉

ln
(
R
L

) , q ̸= 1. (2.1.27)

Viczeck (1992) argues that the inconsistencies that occur in the sparse regions of

the fractal are consequences of the size of the boxes or radii used in calculating the number

of elements living within them. When the box or radius is very small we have many empty

boxes, which have a greater contribution to the average value for q → −∞.

However, this dimensions are interesting because its have some important special

cases that can encounter in many application fields in science, engineering, computational

and natural and social science. They are:

• Capacity, Hausdorff, box-counting or space-filling dimension: it is denoted by D0

when q = 0. Measures how much space is filled by the fractal set. A geometric

interpretation of the capacity dimension can be obtained from the intersection of

a horizontal line passing through the maximum of the multifractal spectrum. The

capacity dimension is the point of intersection between these two curves;

• Information dimension: it is denoted by D1 when q = 1. Measures the smallest set

which contains the most part of the fractal structure (OTT, 2002). A geometric

interpretation of the information dimension can be obtained from the intersection

of a straight line of slope 1 that is tangent to the multifractal spectrum. The

information dimension is the point of intersection between these two curves;



39

• Correlation dimension: it is denoted by D2 when q = 2. Measures how much the

fractal elements relate to each other and their nearest neighbors: it manages to

capture the intensity of the local relationship between its elements;

• Minus infinity dimension: it is denoted by D−∞ when q → −∞. Measures the

spatial distribution of the fractal in the rarefied regions;

• Plus infinity dimension: it is denoted by D∞ when q → ∞. Measures the spatial

distribution of the fractal in the densest regions.

In addition, we can also define the multifractal correlation exponent, which de-

scribes the radial dependence of the generalized correlation function defined by

Gq(r) =
1

NbNbr

∑
b

∑
br

µq
b(R)µ

q
br(R) (2.1.28)

where µbr(R) is the measure of the ball br(R) of radius R at a fixed distance r − R from

b(R). Nb (Nbr) is the number of balls b(R) (br(R)) and
∑

br
is the sum over all balls br(R).

The multifractal correlation exponent can be defined as (NAKAYAMA; YAKUBO, 2003)

z(q) = D0 + 2τ(q)− τ(2q). (2.1.29)

On the other hand, an interesting fact is that D1, D2 do not necessarily exist (PERES;

SOLOMYAK, 2000). However, the authors proved that for D1 and D2 to exist, the

measure µq must be self-conforming2, or even self-similar subject to q > 0 and q ̸= 1. They

also point out that showing the existence of D0 for any self-similar measure is still an open

problem. But recently, Ngai & Xu (2023) proved that, for any self-similar measure subject

to q > 0 and q ̸= 1, Dq also exists for fractal structures embedded in a non-Euclidean

space, in particular, in Riemannian manifolds, a fundamental mathematical structures in

the development of Einstein’s Theory of General Relativity.

Although generalized dimensions are based on Rényi’s idea of entropy, some work

has shown a more natural relationship with non-extensive statistics in which system prop-

erties are described in terms of generalized versions of functions traditionally used to
2 A self-conformal measure is a measure invariant under a set of conformal mappings. Conformal

maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily
their size or curvature. Source :<https://en.wikipedia.org/wiki/Conformal_map>.

https://en.wikipedia.org/wiki/Conformal_map


40

describe typical behavior of systems. accessible states of the system (TSALLIS, 1988).

In this formalism, the entropy of two interacting systems is greater than the sum of the

individual entropies, which translates into the fact that the whole is more than the sum

of its parts. In this sense, this also in processes of self-organization that occur in space

and emergence that occur along the scales of the system and that exhibit multifractality

have a natural mathematical formalism (LYRA; TSALLIS, 1998).

In addition, we can also define the skewness of the singularity spectrum by (CHANUI

et al., 2022)

χ =
|αmax − α0|
|αmin − α0|

, (2.1.30)

which measures the dominance of fluctuations on the system scales. When χ > 1 (right-

skewed), χ < 1 (left-skewed) and χ = 1 (symmetric), the system scale is dominated

by small, large and no fluctuations. In analogy to the author’s work, small and large

fluctuations correspond, in the present context, to higher (q → −∞) and lower (q → ∞)

generalized dimensions. This means that the spatial distribution of the fractal elements

in the more and less rarefied regions exhibit large and small fluctuations when the scale

of the system is varied.

However, to conform to the work of Long & Chen (2021), we define

ξ = 1/χ (2.1.31)

to represent the process of spatial aggregation (ξ > 1) and spatial diffusion (ξ < 1) in the

SN and in the spatial distribution of the Pop, see Figure 2.7.

According to these authors, who analyzed the multifractality of the SN of twelve

Chinese megacities, they argue that, using the definition eq. (2.1.31), ξ > 1 and ξ < 1

are closely related to non-trivial processes occurring in the formation and evolution of

these structures. A spectrum with ξ < 1 (χ > 1) implies a process of diffusion or spatial

decentralization, while a spectrum with ξ > 1 (χ < 1) involves a process of aggregation or

spatial concentration. In the diffusion process, the peripheral regions are relatively larger

and denser than the central regions, which are more sparse and small. In the aggregation

process, the central regions are relatively larger and denser than the peripheral regions,

which are more sparse and small. In the present context, ξ > 1 means that both the SN

and Pop exhibit a greater concentration (of streets and people) in the central regions,
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Figure 2.7 – Spectrum diagram of the skewness and aggregation-diffusion process.

Source: Own authorship.

being relatively larger than the more peripheral regions, which are more sparse and small.

ξ < 1 means that both the SN and Pop exhibit a greater concentration (of streets and

people) in the peripheral regions, being relatively larger than the more central regions,

which are more sparse and small.

Therefore, systems exhibiting large fluctuations in the scale of the system have

left-skewed which is governed by a aggregation process, while systems exhibiting small

fluctuations have right-skewed which is governed by an diffusion process.

In addition, according to Chen & Huang (2018) we can define the following rates:

i) Space-filling rate:

u = D0/2; (2.1.32)

ii) Spatial redundancy rate:

v = 1−D1/2. (2.1.33)
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Here, i) it measures the extent to which the embedded space is filled with fractal structure.

ii) it measures the extent to which fractal structure is repeated along spatial scales.

In analogy to i) and ii), we propose a third rate:

iii) Spatial correlation rate:

w = 1−D2/2, (2.1.34)

which measures how correlated the elements of the fractal structure are across spatial

scales.

For the details of the algorithm see Section 4.3. In the Appendix C we present

the mathematical construction used in the implementation of the generalized dimensions,

eq. (2.1.27), the SN and the Pop. Also we show the equivalences between the gener-

alized dimensions, according to the sandbox method, and the capacity, information and

correlation dimensions.

2.2 Intra-city Models

In this section, we give a brief overview, albeit still incomplete, of some of the

main works consulted in the literature involving urban systems. We will introduce the

concept of scaling law and illustrate how these ideas combined with the notion of fractal

dimension can be used to obtain urban scaling laws. We demonstrate a derivation of

the interaction probability, discussed by Ribeiro & Rybski (2023), which allows us to

obtain some intra-city models in which the fractal dimension is an important element. To

obtain these models, we use the principle of maximizing entropy and the choice of which

mechanism to maximize. Intra-city models take into account internal city processes or

only endogenous factors.

Opening with one of the main mathematical ingredients in urban systems analysis,

where many elements of cities are closely connected and inseparable, we have the laws

of scale, which seek to capture the non-linear behavior between urban indicators and

the size or Pop the city. Studies involving laws of scale date back to the late 19th

century, with the analysis of income and wealth distributions by Pareto (1897). Another

interesting work, published in 1932, is by George Kingsley Zipf. In it, the author studies

the frequency distribution of English words and discovers a power law type behavior
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(ZIPF, 1949; CORRAL; BOLEDA; FERRERI-CANCHO, 2015). He applies the same

reasoning to the size distribution of cities, discovering a similar behavior, although studies

show that this idea was already explored by Erich Auerbach around 1913 (RYBSKI;

CICCONE, 2023).

Some of the works that played important roles in the development of urban systems

theory are, for example, the work of Walter Cristaller with the proposition of Central Place

Theory, see Caves (2004). The work of Huff (1963), who proposed a spatial model to try to

predict the behavior of consumers who visit certain places with intense buying and selling

activity based on the gravitational idea. The proposition of the first Law of Geography

by Tobler (1970), stating that everything is related to everything else, but closer things

are more related than more distant things.

On the other hand, inspired by the ideas of Benoît Mandelbrot et al. (1983) on

fractals, Batty & Longley (1994) wrote a book presenting, for the first time, ideas on how

to apply knowledge of fractal geometry in urban planning and in understanding, from a

physical point of view, the spatial form of cities and their various functionalities.

Other works include (BATTY, 2008; BETTENCOURT; WEST, 2010; BATTY,

2013; BETTENCOURT, 2013; ARCAUTE et al., 2015) and more recently, (ROSNI;

NOOR, 2016; LEE; BARBOSA; YOUN, 2017; STRANO et al., 2017; BARTHELEMY,

2019b; MOLINERO; THURNER, 2021; SANTOS; CRUZ; SANTOS, 2022; ARCAUTE;

RAMASCO, 2022; GUO et al., 2022; RIBEIRO; RYBSKI, 2023; CZYŻA et al., 2023;

WEN; ZHANG; DENG, 2023; MARTÍNEZ; SEPÚLVEDA; MANRÍQUEZ, 2023).

Scaling laws play a fundamental role in fractal geometry and urban systems, it

focus on investigating and describing the relationships formed between the system’s vari-

ables occurring between order and chaos (BATTY; XIE, 1999; GLERIA; MATSUSHITA;

SILVA, 2004; CHEN; ZHOU, 2008; SIEGENFELD; BAR-YAM, 2020).

Formally, scaling laws are mathematical relationships with property of scale invari-

ance. For instance, a function f(x) is scale invariant if it can be scaled as f(λx) for all λ

(TAKAYASU, 1990). This means that there exists a function C(λ) such that

f(x) = C(λ)f(x). (2.2.1)
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Differentiating both sides of eq. (2.2.1) and eliminating C(λ), we get

f ′(x)/f(λx) = λf ′(λx)/f(λx). (2.2.2)

By substituting x = c, when c is a constant, and integrating the previous expression in λ,

it is possible to obtain

f(x) = f(c)xα, α = f ′(c)/f(c). (2.2.3)

where α is the scaling exponent which characterize the nonlinear behavior of the model,

see Figure 2.8.

Figure 2.8 – Power laws for some exponents α. If α < 0 as x increases, f(x) decreases non-
linearly. If α > 0 as x increases, f(x) increases non-linearly and if α = 0 as x
increases, f(x) remains constant.

Source: Own Authorship.

If we use the notion of fractal dimension and scale theory together with empirical

city data, for example Pop or size N , gross domestic product (GDP) Y and total street

length L, it is possible to observe that as cities grow, they become richer and more

efficient in terms of street infrastructure. In fact, this translates into the phenomena of

economies of scale, in which GDP per capita undergoes a non-linear increase, while the

total length of streets per capita decreases (RIBEIRO; RYBSKI, 2023). General models
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that capture these effects can be established by assuming that the spatial patterns of

the city’s population (Pop) and street network (SN) have fractal dimensions Dp and Di,

respectively. Therefore, from fractal theory we can derive the following mathematical

relationships

N = N0r
Dp , L = L0r

Di , (2.2.4)

where N0, L0 are constants and r is the Euclidean distance between the center and the

periphery of the fractal structure. Eliminating r from eq. (2.2.4), we can express the

economy of scale phenomenon as

L ∼ Nβsub , βsub =
Di

Dp

(2.2.5)

where βsub < 1, a scale exponent characteristic of the model. Empirical data suggests a

value of ≈ 0.85 (RIBEIRO; RYBSKI, 2023).

However, if we can consider, for example, a circle of radius r centered on the city

and an infinitesimal ring dr, see Figure 2.9, and if we assume that the rate of change

of economic activities – an input of resources, a production process and an output of

products (goods or services) – in relation to the square of the Pop is proportional to the

probability of interaction given by pintt(r) ∼ 1/rDi , which decays with the distance r

between individuals with an exponent given by the fractal dimension of the SN ,Di, then

dY (r)

d [N2(r)]
∼ pintt(r). (2.2.6)

Thus, assuming that pintt(r) and N(r) are independent of polar angle, integrating the

economic activities from Rmin to a radius Rmax, it follows

Y (Rmax) = Y (Rmin) + 2πk

∫ Rmin

Rmax

pintt(r)d[N
2(r)] (2.2.7)

where k is a proportionality constant and 2π is because the polar invariance.

Now, using the first expression of eq. (2.2.4) and the fact that N
N0

= R
Dp
max and

Y (Rmax) = Y , results in

Y = Y (Rmin) +
4πkDpN

Di
Dp

0

(2Dp −Di)

[
N

2− Di
Dp −N

2− Di
Dp

0 R
Dp(2−Di/Dp)
min

]
(2.2.8)
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Figure 2.9 – Illustration of the radius of interaction, the spatial patterns of the population (Pop)
and the street network (SN) in accounting for economic activities in a city.

Source: Own authorship.

which leads

Y ∼ Nβsup (2.2.9)

with βsup = 2− Df

Dp
.

In this way, it is possible to relate the exponent of yield and economy of scale by

means of (RIBEIRO et al., 2017)

βsup + βsub = 2. (2.2.10)

An schematic visualization of urban scaling laws is show in the Figure 2.10. The eqs.

(2.2.5) and eq. (2.2.9) were presented by Molinero & Thurner (2021) to explain economy

and increasing returns to scale.

The previous results show that the phenomenon of economies of scale can be ex-

plained by the spatial complexities of the SN and the Pop, which tend to become more

concentrated in larger cities due to agglomeration processes, generation of innovative ideas,

specialization of markets and work, opportunities and economic growth. For example, in

Lucas (1988), the economic growth of cities is due to the agglomeration process resulting

from human capital externalities. Other authors argue that this is due to stochastic pro-

cesses or the Gibrat process (BERRY; GARRISON, 1958; STEINDL, 1965; MARSILI;

ZHANG, 1998).
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Figure 2.10 – Urban scaling laws infographic. Urban scaling laws describe the non-linear rela-
tionship between urban indicators (e.g. total street length, water consumption,
gross domestic product, etc.) in terms of city size or population (Pop). This info-
graphic illustrates the i) sublinear, ii) linear and iii) super-linear scaling regimes,
which describe the behavior of infrastructure indicators (e.g. total street length
L), basic individual needs (e.g. water consumption C) and those associated with
socio-economic activities and interaction between individuals Y as a function of
Pop N . In fact, if the Pop doubles in size, there is i) a per capita saving in the
variable associated with infrastructure resources, ii) a linear increase in the vari-
able associated with resources associated with basic individual needs and iii) a per
capita increase in the variable associated with socio-economic resources.

Source: Own authorship.

We now move on to derive the probability of interaction between the elements (e.g.

individuals or regions) of cities, which is closely related to the type of intra-city model

considered. We show that this probability decreases with the inverse of the distance raised

to an arbitrary exponent, which can be chosen according to which mechanism you want

to maximize, resulting in the main models, in which the notion of fractal dimension plays

a crucial role in explaining economies and returns to scale.

We point out that intra-city models can be obtained in terms of the entropy max-

imization principle (BECK, 2009). The idea of using this principle in modeling urban

systems is due to Wilson (1967, 2010), who observed the similarity between applications

of the Newtonian gravitational model by engineers and the partition function method ap-
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proach used in statistical mechanics. Here we use the same idea, but we use it to obtain

the probability with which two regions interact with each other.

If we define the probability of interaction between two city regions (i, j) by

pij =
Tij∑

i

∑
j Tij

(2.2.11)

where Tij is the interaction between these regions. According to Cipoani (2023) and

Wilson (2010), Tij can be migration, trade flows, air travel or a general matrix of flows,

while
∑

i

∑
j Tij is the sum of these interactions discussed by Munroe & Biles (2005) and

Batty (2021).

Imposing that the restriction on the average amount of travel is ⟨ln r⟩ =
∑

i

∑
j pij ln rij,

with rij the Euclidean distance between i and j, we can maximize Shannon entropy subject

to the restriction ⟨ln r⟩, considering a Lagrangian of the form

L = −
∑
i

∑
j

pij ln pij − γ

(∑
i

∑
j

pij ln rij − ⟨ln r⟩

)
. (2.2.12)

The choice of the average value of the trip to be a logarithmic function of distance is a

consequence of the fact that costs increase non-linearly with distance. In logistics, this

effect is known as long haul, i.e. when there is: i) an increase in fuel costs due to a long-

distance journey; ii) the maintenance of hours of service for fleet drivers and iii) greater

chances of products being damaged due to the long distance (RODRIGUE, 2020).

Under these conditions, imposing that dL
dpij

= 0 and simplifying, the interaction

probability pij can be approximated by

pintt(r) ∼
1

rγ
, (2.2.13)

showing that the interactions between any two regions of the city decrease with the Eu-

clidean distance between them, raised to an exponent γ, which in turn can be interpreted

as a characteristic of the city’s endogenous constituents, see Figure 2.11.

We will see in the following sections that this parameter can take on expressions

depending on, for example, the urban area, the fractality of the street network (SN) and

the population (Pop), or even the degree of influence and the level of productivity of the

actors that make up the city.
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Figure 2.11 – Geometric interpretation of the probability of interaction. Tij is the field interac-
tion between two sites (i, j) in the city and rij is the Euclidean distance between
them. There are three routes highlighted, one in yellow, one in red and one in
green. Below is an illustration of the cost function C(r) = ln r as a function of
the distance r, where you can see that the yellow route has the lowest travel cost,
while the green route has the highest cost.

Source: Own authorship.

2.2.1 Bettencourt Model

To recover the model of Bettencourt (2013), see also Ribeiro & Ribski (2023),

we can consider γ = ln(A/a)
ln(r)

where a is the area accessible to an individual, a quantity

independent of scale, and A the area of the city. With this in mind, we can write the

following laws of scale as a function of city size N , involving economic activities and

infrastructure resources

L ∼ N
Df+1/2

Df+1 , Y ∼ N
2−

Df+1/2

Df+1 , (2.2.14)
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where Df is the fractal dimension of the city’s urban area. This means that the choice of

the γ parameter, mentioned above, is a direct consequence of the fact that the mechanism

that prevails in individual interactions is closely linked to the maximization of information

associated with the proportionalities between the cost of transport to get from one point

to another and the socio-economic output of the individuals living in the city. Thus, one

of the characteristics of this type of model is the emphasis on human interactions.

2.2.2 Molinero & Thurner (M&T) Model

On the other hand, if we choose γ = Dinfra, then the M&T model can be ob-

tained considering that the phenomena of income from scale and the economy of scale

can be expressed in terms of the size of the city by means of the following relationships

(MOLINERO; THURNER, 2021; RIBEIRO; RYBSKI, 2023)

L ∼ N
Dinfra

Dp , Y ∼ N
2−

Dinfra
Dp , (2.2.15)

where Dinfra and Dp are the fractal dimensions of the SN and city Pop, respectively.

In this case, the choice of the γ parameter as the fractal dimension of the SN can be

explained by the maximization of the information associated with the relative spatial

complexity between the Pop and the SN in the city. Thus, the yield and economy of

scale are consequences of the fact that Dinfra/Dp < 1, that is, the spatial complexity of

Pop is slightly greater than the spatial complexity of the SN . This implies that Pop can

occupy one more dimension than SN . The Pop has greater freedom to occupy, interact

and move around the urban space, including not only the streets themselves, but also

buildings or skyscrapers. In addition, this model is part of the class of models that take

into account human interactions and transportation infrastructure, revealing in a simple

and elegant way that Pop and SN are essential elements in socio-economic and urban

analysis.
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2.2.3 Macroscopic Molinero & Thurner (M&T) Model

As a novelty, if we define the quasi-dimensions of the street network (SN ) and

population (Pop) described by Chen (2020), we can to write the relations

N1/D′
p ∝ A1/2, L1/D′

i ∝ A1/2, (2.2.16)

where N and D′
p are the Pop and its quasi-dimension and A the urban area; L and D′

i

are the total street length and it’s quasi-dimension. Using the transformation described

in (Chen 2013, 2020), we have the Pop and SN fractal dimensions

Dp = 1 +
1

D′
p

, Di = 1 +
1

D′
i

, (2.2.17)

In this sense, if we have γ = Di, then simplifying the fractal ratio Di/Dp, and in

analogy to the M&T model, we can write the following scaling laws

L ∼ N
1+lnA/(2 lnL)
1+lnA/(2 lnN) , Y ∼ N2− 1+lnA/(2 lnL)

1+lnA/(2 lnN) . (2.2.18)

In this model, the mechanism is the same as that of M&T, except that the role of scaling

up and economies of scale has the effect of maximizing the information associated with

the spatial complexity of the Pop and the SN described in terms of the N itself, the L and

the A of the city. In addition, the M&T model obtains both sub-linear and super-linear

exponents from a transversal asymptotic limit, considering the city system.

2.2.4 Yakubo et al. Model

However, if we now consider γ = m(α−1), where m is a parameter associated with

the geometric properties of the city, α is a parameter related to the degree of influence of

individuals in the city and Dp it’s the fractal dimension the Pop, then according to this

model, the increasing return to scale can be expressed by means of (YAKUBO; SAIJO;

KOROVSAK, 2014; RIBEIRO; RYBSKI, 2023)

Y ∼ N
2− m

Dp
(α−1)+ η

Dp (2.2.19)
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where we can consider, in addition to the geometric properties and influence of its inhab-

itants, that the socio-economic production of the city is a distance-dependent quantity.

When η < 0 production decreases, when η > 0 production increases, and when η = 0

production is independent of distance. Therefore, considering γ as a function of the in-

trinsic properties of the city and the degree of influence of its individuals means that

we are choosing to maximize information associated to the degree of influence of those

individuals who have a significant fraction (hubs) in the network formed by social inter-

connections in the city. So, this model falls into the class of econometric models based on

the gravitational idea.

2.2.5 Fabiano et al. Model

Now, if the objective is to maximize the information associated to the condition

that people in cities choose to shop in places closer to where they live or where they are

temporarily settled in the city, for example, during work or college, we have that the γ

parameter is identically equal to the parameter in the Fabiano et al. model (RIBEIRO;

RYBSKI, 2023). This means that the economy and increasing returns in cities can be

expressed by the relationships

L ∼ N
γ

DP , Y ∼ N
2− γ

Dp (2.2.20)

which can be classified as a type of gravitational model with DP is the Pop fractal di-

mension. In Chapter 5, section 5.4 we present the results of the intra-city models of

Bettencourt and M&T.

2.3 Complex Networks

In this section we will briefly review some of the main works involving network

science. The term complex network is used more commonly in physics because of the

emphasis on the physical interpretation of its elements. For example, in a social network,

the nodes are the people and the links are the friendship ties. In a family network, the

nodes are the people who make up the family group, while the links are the ties of kinship.

On the other hand, in a street network (SN), the nodes are the intersections or dead

ends, while the links are the street segments. Other examples of complex networks are,
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for example, the nervous system, the internet, power transmission lines and radio signals,

biochemical and food chains, gene proteins, WWW, coworkers and scientific collaborators

(ALBERT; BARABASI, 2002; COSTA et al., 2007; NEWMAN., 2016).

Basically, complex networks are structures made up of a set of nodes interconnected

through relationships or connections. These networks are characterized by non-trivial

properties, such as the presence of clusters and the non-uniform distribution of connections

between their nodes, see Figure 2.12.

In particular, we highlight three of the main network models, namely the Erdös-

Rényi random network model, the Watts-Strogatz small world model and the Barabási-

Albert model. We end with the geographic network model that can be used to simulate

a transportation network. For simplicity and elegance, we consider the model discussed

in (COSTA et al., 2007).

Figure 2.12 – Topological representation of the internet in the 21st century. Note the lighter
points in the image, they are called hubs because they have a significant fraction of
the network’s links. This is a real example of a scale-free network. In particular, the
scaling exponent of the Internet’s degree distribution is γ = 3.42, which means that
it is a network that is in the random regime with the small world property. Recent
results indicate that this property comes from rules associated with mechanisms
of cooperation and altruism between individuals.

Source: A.L. Barabási, Network science <http://networksciencebook.com/>.

The origins of the study of complex networks can be traced back to graph the-

ory, which began with Leonard Euler’s solution to the problem of the seven bridges of

Konigsberg and was published in 1736 (SACHS; STIEBITZ; WILSON, 1988; MALLION,

2007).

http://networksciencebook.com/
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Although graph theory originated from the solution of the problem of the seven

bridges of Konigsberg, it was only at the beginning of the 20th century that work involving

measurements and calculations began to gain notoriety. In particular, in 1926, Otakar

Borůvka proposed an algorithm for obtaining the minimum spanning tree of a graph, when

there is no physical meaning attached to the network (BORUVKA, 1926). An interesting

fact about this algorithm is that it was applied as a method to build an efficient power

grid for Moravia, a historical region of the Czech Republic.

The applications of graph theory were not limited to engineering, but were also

applied to social studies. In 1932 and 1934, Moreno (1932, 1934) published an article

with collaborators and a book presenting his socio-metric studies3. Moreno’s work, to-

gether with Helen H. Jennings, is considered one of the first to involve the analysis and

visualization of social networks (GRANDJEAN, 2015; GIACOMUCCI, 2021).

With regard to what is now known in complex network theory as centrality mea-

sures, the 1948 and 1958 works, among others, by Bavelas, constitute some of the first

work in this area (BAVELAS, 1948; BAVELAS, 1950). In particular, Bavelas is credited

with proposing the measure of closeness centrality.

Other interesting works motivated by the applications of graph theory in social

and biological studies are those by Rapoport (1957) and Erdös & Rényi (1959, 1960). In

these works, you can find some of the first studies on the distribution of connections or

degrees. In particular, these works are the forerunners of the study of random networks,

whose degree distribution is of the Poisson type. We’ll see an example of this type of

network in the following sections.

In 1956 Price 1965 published a paper containing a particularly important mech-

anism for building network models. In this work, the author presents the rudiments of

the notion of preferential attachment, i.e. some of the nodes in the network may have a

higher probability of receiving connections. In particular, this mechanism is essential in

the construction of complex network models, e.g. the Barabási-Albert model which we

will discuss in the following sections.

In 1959, another very relevant paper in graph theory and complex networks was

published by Dijkstra 1959. This paper presents an algorithm for finding the shortest

path ℓ between any two nodes in a network, when the network has a positive weight.
3 Link to the sociograms constructed by Moreno and collaborators:<https://github.com/

grandjeanmartin/sociograms>.

https://github.com/grandjeanmartin/sociograms
https://github.com/grandjeanmartin/sociograms
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To obtain the shortest path between two nodes in a network with a negative weight,

the Bellman-Ford algorithm is used4. In this sense, the idea of shortest path takes into

account the topology of the network under study and is different from distances such as

Euclidean, Manhattan, Minkowski, etc.

In the literature, the term chemical distance is common to refer to the shortest

path between the nodes of a complex network. In fact, if we relate, for example, the

chemical distance and the corresponding distance in a network, it is possible to obtain

the relation ℓ ∼ rDmin , where r is the Euclidean distance, and Dmin is the fractal dimension

that characterizes the efficiency of the network. It describes a kind of “run” that passes

through all the nodes once between any of the network’s start and end nodes. It’s as if

there were an expert marathon runner who has run all the possible routes between nodes u

and v of an arbitrary network, considering that each node has been crossed only once, with

the exception of nodes u and v, and who is interested in the route on which he performed

best. The route on which the marathon runner performed best is the shortest path

(BUNDE; HAVLIN, 1992; BUNDE; HAVLIN, 1994; HERRMANN; STANLEY, 1999;

ZHOU et al., 2012). For example, in Garrison 1960 and Kansky 1963 we have the first

applications of graph theory ideas to the study of transportation networks at a time when

data availability, computing power and modeling techniques were still quite limited.

Other very important works in the consolidation of complex network theory are

Milgram’s (1967) work on the six degrees of separation, see also Barabási (2002). We

also have the Merton’s (1968) work, who propose the Matthew effect, which seeks to

capture the social phenomenon in which the rich get richer and the poor get poorer. In

1973, Granovetter 1973 propoded the theory of weak ties, which governs the behavior of

connections between relatively distant and close groups.

In addition, the use of graph theory to assess the shape and physical structure

of the city, in particular its street network, began with some dissidents, such as Alexan-

der (1964,1965) and Bill Hillier (1989), who were the first to propose a theory of space

syntax, relating street networks (which they called "axial maps") to the distribution of

people, meetings and land uses. Sergio Porta, at Strathclyde Glasgow, and Andres Sevt-

suk, at MIT, in the early 2000s, with regard to urban morphology, as "street network
4 <https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm>.

https://en.wikipedia.org/wiki/Bellman%E2%80%93Ford_algorithm
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analysis" (CRUCITTI; LATORA; PORTA, 2006; SEVTSUK; RATTI, 2010; SEVTSUK;

MEKONNEN, 2012).

Figure 2.13 – The four main types of complex networks. Vertically we have directed and undi-
rected networks. Horizontally we have unweighted and weigthted network.

Source: Own authorship.

Now, we review some common centrality measures essential to study network sci-

ence. The first is the degree centrality. The higher the degree of a node, the more central

it is. The degree of a node is the sum of its in-degree and out-degree or the number of

links that in and out the node. We define the degree as

kv =
∑
u

Avu (2.3.1)

where kv is the number of connections of node v and Avu is the adjacency matrix, 1 if

v and u have a connection and zero otherwise (COSTA et al., 2007; NEWMAN., 2016;

MATA, 2020).

The second measure is the betweenness centrality, it can be used to detect the

amount of influence a node has over the flow of information in a graph. Its definition is

cB(v) =
∑
s,t∈V

σ(s, t|v)
σ(s, t)

(2.3.2)
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where σ(s, t|v) is the number of shortest path between s and t going through v, σ(s, t) is

the number of shortest path between s and t, while V is set of nodes (COSTA et al., 2007;

NEWMAN., 2016; MATA, 2020). In addition, this measure also captures the dependence

of other nodes on a given node in the network (BRANDES; BORGATTI; FREEMAN,

2016).

The third centrality that we will present is the closeness centrality, it measures its

average farness (inverse distance) to all other nodes. Nodes with a high closeness score

have the shortest distances to all other nodes

1

cC(v)
=

1

n− 1

∑
u∈V \v

duv (2.3.3)

where n is the number of nodes and duv is the shortest path between u and v.

Is possible to form a relation between closeness and average path length through

that

⟨ℓ⟩ = 1

n

∑
v

1

cC(v)
=

1

n(n− 1)

∑
v

∑
u∈V \v

du,v (2.3.4)

and a relation between closeness and degree centrality as (EVANS; CHEN, 2022)

1

cC(v)
= − 1

ln z
ln kv + β, (2.3.5)

where z is some measure of the rate of exponential growth of the shortest-path tree. β is

a parameter which depends of z and the number of nodes n as

β(z, n) =

(
1

z − 1
+

ln(z − 1)

ln z

)
+

lnn

ln z
. (2.3.6)

This implies that measuring proximity is generally redundant, unless our relation-

ship is used to eliminate dependence on the degree of proximity, and most networks can

be approximated by shortest-path trees. In fact, closeness centrality also captures the

independence of a given node from the other nodes in the network, which means that

there is a dual relationship between the centralities of closeness and betweenness given by

(BRANDES; BORGATTI; FREEMAN, 2016)

1

cC(v)
= n− 1 + cB(v). (2.3.7)
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The third measure is the Bonacich centrality. The ideia behind of this centrality is the

more connections the actors in your neighborhood have, the more central you are. The

fewer the connections the actors in your neighborhood, the more powerful you are. This

can be express in the following way

cv(ϕ, θ) =
∑
u

(ϕ+ cuθ)svu (2.3.8)

where ϕ and θ reflects the degree to which an individual’s status is a function of the

statuses of those to whom he or she is connect and svu is the matrix of relationships

(BONACICH, 1987).

We also have some topological measures, for example, the cyclomatic number, α,

β, and γ numbers. The cyclomatic number describes the number of edges that must be

removed from a graph to ensure that no graph cycle remains (SHARIFI, 2019)

µ = e− n+ 1. (2.3.9)

However, the α number measures the ratio between the number of circuits (loops) to the

maximum number o circuits in the network with the same number of nodes (SHARIFI,

2019)

α =
µ

2n− 5
, (2.3.10)

and the β number measures the frequency of connections based on the ratio between the

number of links and the number of nodes in the network

β =
e

n
. (2.3.11)

Finally, the γ number measures the frequency of links and is defined as the ratio between

the number of links and the maximum possible number of links

γ =
e

3(n− 2)
. (2.3.12)

After reviewing some of the main works on complex networks and looking at some of their

main measures, we then present three types of networks: random, scale-free, small-world,

and finally we give the example of a geographic network. We also highlight some of the key
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ingredients in characterizing such networks, except for the geographic network, namely

the degree probability distribution, the average shortest path length, and the clustering

coefficient.

The degree probability distribution tells us the probability of finding a node with

a given number of links. The average length tells us the average distance between two

nodes in the network, while the cluster coefficient tells us the average number of links a

node has.

2.3.1 Random Networks

One of the first studies of random networks was done by Erdös and Rényi. A

random or Erdös-Rényi (ER) network can be constructed as follows: a value is set for a

parameter p, or the probability associated with the creation of a connection between any

two nodes in the network. For each pair of randomly selected nodes, a random number

r is generated according to a uniform distribution. At each step, the relationship p > r

is tested. If the relationship is true, a connection is added between the selected nodes,

but if the relationship is false, nothing is done (NEWMAN., 2016). Random networks

are widely used in modeling real-world networks, such as social networks, financial net-

works, percolation theory, to name a few (CALLAWAY et al., 2000; NEWMAN; WATTS;

STROGATZ, 2002; DEPREZ; WÜTHRICH, 2015).

An ER network has a given degree distribution of Poisson type

p(k) = e−⟨k⟩ ⟨k⟩k

k!
(2.3.13)

where p(k) is the probability of finding a node with degree k in the network G. It also

has an average path length of the following expression

⟨ℓ⟩ ∼ lnn

ln⟨k⟩
(2.3.14)

and a cluster coefficient given by

c(k) =
⟨k⟩
n

. (2.3.15)
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2.3.2 Small-World

The second model we’ll look at next is the Watts-Strogatz (WS) model, which has

the small-world property. The Watts & Strogatz proposed in 1998 a complex network

with small-world property, which means that the shortest average path of the network

grows linearly with the logarithm of the number of nodes (WATTS; STROGATZ, 1998).

A recent study has shown that evolutionary rules such as cooperation and altruism are

some of the ingredients that allow this phenomenon to emerge (SAMOYLENKO et al.,

2023). Examples of this type of network include: road maps, food chains, electricity

networks, metabolite processing networks, brain neuron networks, voting networks, phone

call graphs, and gene regulatory networks (NEWMAN., 2016).

A strategy used to generate such a network is as follows: i) create a circular network

with n nodes connected to k neighbors. ii) select some nodes and rewrite some of its links

so that each of the original links has a probability p (fixed in advance) of having one of

its links moved to a new randomly chosen node.

The probability distribution of a WS network is given by

p(k) ∼ e−β⟨k⟩ (2.3.16)

where 0 ≤ β ≤ 1 is a parameter that controls the regularity of the network (β = 0: regular

network or a; β = 1 Erdös-Rényi).

The average path length between two nodes in a network is.

⟨ℓ⟩ ∼ lnn

ln⟨k⟩
(2.3.17)

and its clustering coefficient is

c(k) = const. (2.3.18)

Note that the average path lengths of ER and SW are the same, but the cluster

coefficients and the degree probability distributions are different.

2.3.3 Scale-Free

In 1999 Barabási & Albert proposed a model presentig a network whose degree

distribution follows a power law and where its exponent informs the degree of hetero-
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geneity of the network - whether the network is anomalous, scale-free (SF) or random

(BARABASI; ALBERT, 1999). In these scale-free networks, it is possible to find a very

small fraction of nodes containing significantly many connections. Nodes with this char-

acteristic are called hubs. With the publication of this work, the term network science

has come to the fore in recent decades, paving the way for applications in various areas

of science. In this sense, a flurry of articles and textbooks on this line of research began

to be published in specialized journals, publishers with an academic tradition and even

personal blogs (ALBERT; BARABASI, 2002; BARABASI, 2002; COSTA et al., 2007;

NEWMAN., 2016; BARABASI, 2016; MATA, 2020). Examples of scale-free networks

are: the Internet, scientific collaboration networks, networks of actors in movies, and

protein interactions (BARABASI, 2016).

A SF network can be generated by starting with a small network of with m0

nodes. At each step, a new node u is added to the network, connecting it to m ≤ m0 of

the existing nodes v ∈ V ∈ G. In addition, it is necessary to impose that the probability

of connecting node u to node v is proportional to the degree of v. In other words, nodes

with a higher number of connections are more likely to receive new connections, a process

known as preferential attachment.

The degree distribution of a SF is a power law

p(k) ∼ k−α. (2.3.19)

Its average path length is

⟨ℓ⟩ ∼ lnn

ln lnn
(2.3.20)

and with cluster coefficient

c(k) =
(lnn)2

n
. (2.3.21)

Moreover, it is possible to relate the degree of heterogeneity of a scale-free network

to its fractal properties. To see this, let’s consider the notion of renormalization, which is

a technique that consists of creating small replicas of a given object in order to preserve

the main structural features of the original object. Basically, the idea is to obtain copies

with simpler structures to facilitate analysis which is closely related to the property of

self-similarity.
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The renormalization, see for example Rosenberg 2021, procedure in a complex

network consists of: i) covering the entire network with boxes of size (side length) ϵ; ii)

replacing each box with a single node and connecting two nodes if and only if there is at

least one link between two boxes in the original network; iii) applying steps 1 and 2 to

the renormalized network until a single node is obtained, yielding a connected network

(all nodes have links).

Thus, if we consider a network G to be a scale-free network, then its degree prob-

ability distribution is given by eq. (2.3.19) and for a renormalized network G′ is given by

p′(k) ∼ k−α.

This means that a scale-free network has a degree probability distribution invariant

by renormalizations, where the renormalization process can be understood as synonymous

with the transformation (MOLONTAY, 2015). In fact, the sequence of k times renormal-

ized networks {G′
n}n∈N,{G′′

n}n∈N, . . .,{G(k)
n }n∈N, . . . has the same scaling exponent α.

Empirical data suggests that by plotting the degree k(ϵ) of each node in the renor-

malized network against the degree kmax of the most connected node in the corresponding

box of size ϵ, it is possible to obtain a linear scaling law

k(ϵ) ∼ s(ϵ) · kmax (2.3.22)

where s(ϵ) is a scaling factor. Furthermore, this factor s (s < 1) scales with ϵ and defines

an exponent dk (fractal dimension of the degree distribution).

s(ϵ) ∼ ϵ−dk (2.3.23)

so that the degree exponent for a network sequence {Gn}n∈N is given by

dk = lim
ϵ−→0

lim
n−→0

ln sn(ϵ)

ln(1/ϵ)
(2.3.24)

where sn(ϵ) is the scale factor of the mesh Gn and the side box ϵ. Assuming that N
N(ϵ)

∼ ϵdf

where N is the number of nodes in the network, N(ϵ) is the number of boxes needed to

perfectly cover the entire network, ϵ is the size of the box, df is the fractal dimension

of the network, and denote the degree probability distributions of the non-renormalized
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network G and the renormalized network G′, respectively, by

p(k) ∼ k−α, p′(k′) ∼ k′−α, (2.3.25)

we can write

NP (k)dk ∼ N(ϵ)p′(k′)dk′. (2.3.26)

This expression means that the probability of finding a given number of nodes with degree

between k + dk in a non-renormalized network G of size N is numerically equal to the

probability of finding a given number of nodes with degree between k′ + dk′ inside N(ϵ)

boxes of size ϵ which perfectly overlap a renormalized network G′.

In this sense, we can write

Np(k) ∼ N(ϵ)p′(k′)
dk′

dk
(2.3.27)

and imposing that k = kmax will result in

Np(kmax) ∼ N(ϵ)p′(s(ϵ)kmax)s(ϵ). (2.3.28)

Using the eq. (2.3.25), we have

Nk−α
max ∼ N(ϵ)k−α

maxs(ϵ)
−αs(ϵ) =⇒ N

N(ϵ)
∼ s(ϵ)−α+1 =⇒ ϵdf ∼ (ϵ−dk)−α+1 (2.3.29)

which implies

α = 1 +
df
dk

. (2.3.30)

These results show that the scale exponent α can be explained by the complexity of the

spatial and geometric patterns of the network df and the complexity of the connection

patterns between its links dk. When df = dk we have the first critical regime A, see

Figure 2.14, when α = 2, while when df = 2dk we have the second critical regime B when

α = 3. Note that most real scale-free networks have scaling exponents in the interval

2 < α < 3, which is characterized by the ultra-small-world property. Furthermore, using
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the expression for α it follows that −dk
df

= 1
1−α

, hence

s(ϵ) ∼
(

N

N(ϵ)

) 1
1−α

=⇒ k(ϵ)

kmax

∼
(

N

N(ϵ)

) 1
1−α

=⇒ kmax ∼ N
1

α−1 , (2.3.31)

which tells us that the hub with the largest number of links scales with the size of the

network with the exponent 1
α−1

= dk
df

, or even that the formation of hubs is closely related

to the relative complexity between the local and global structure of the network when it

reaches a critical size.

Figure 2.14 – Regimes of the scaling exponent α. ⟨k⟩ is the average number of links or central
tendency of k, ⟨k2⟩ is the associated second moment or variance of k with respect
to the average, ⟨d⟩ is the average diameter of the network, and kmax is the number
of links of the largest hub in the network. Note that most real scale-free networks
have scaling exponents in the range 2 < α < 3, which is characterized by the ultra-
small-world property. A network has the small-world property if it has relatively
few long-distance links, but a small average path length relative to the total number
of nodes. 1) α < 2 means that the number of links connecting to the largest hub
in the network grows faster than the size of the network. 2) 2 < α < 3 means that
the number of links connecting to the largest hub in the network grows with the
size of the network. 3) α > 3 indicates that the average distance between nodes
converges to the small-world formula.
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2.3.4 Spatial Network

Another example of a complex network is a spatial network. Some of the main

examples of these networks are transportation systems, electricity grids, communications,

infrastructures and brain activity (AMIT et al., 2023). In particular, urban streets can

be generated from the following interaction probability (COSTA et al., 2007)

pij(r) ∼ e−λrij (2.3.32)

where rij is the Euclidean distance between nodes i and j and λ a scaling factor that

controls the size of the links between the nodes of the network.

In fact, the above interaction probability can be obtained from the maximization

of Shannon entropy

L = −
∑
i

∑
j

pij ln pij − λ

(∑
i

∑
j

pijrij − ⟨r⟩

)
. (2.3.33)

subject to the constraint ⟨r⟩ =
∑

i

∑
j pijrij, in analogy to eq. (2.2.12).

Other interesting works involve how street networks (SN) can be modeled by

mimicking biological systems or by taking into account endogenous quantities such as

accessibility, income of the individuals who make up the city, transport costs, betweenness

as well as the topological property of the network, see (BARTHELEMY; FLAMMINI,

2009; TERO et al., 2010; COURTAT; GLOAGUEN; DOUADY, 2011).
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3 OBJECTIVES AND JUSTIFICATIONS

In this Chapter we present the questions that motivate our study, give some justi-

fications and point out the general and specific objectives.

• Problem formulation:

What are the fractal dimensions of space filling, information, and correlation of Brazilian

cities with a population (Pop) greater than or equal to 1 million inhabitants? What are the

similarities and differences between the multifractal spectrums of the street network (SN)

and the Pop? Is it possible to expand econometric models that take fractal theory into

account from a multifractal perspective? If so, what are the models and what are the main

implications? What are the main information measures on the Brazilian city network, such

as degree, closeness, betweenness centralities and some topological quantities? What is the

relationship between the network measurements of Brazilian cities and the corresponding

Pop?

• Justification:

We see in the Chapter 2 that application of multifractal analysis, urban scaling law and

network science can be applied in several fields of science and engineering. So, the need

to understand urban systems, in particular, cities as a complex adaptive system in light

of statistical, non-conventional, computational methods that take into account real data

is mandatory. Because we need to generate new knowledge that allows the insertion

of empirical results in decision-making at the local and global level, seeking to improve

people’s lives in cities (NATIONS, 2016). In addition, because a multifractal analysis of

the SN and Pop, taken together, of cities in developing countries has not yet been carried

out.

• Objectives:

General objectives : Investigate the multifractality of the Pop and SN of the 15 largest

Brazilian cities and extend the main intra-city econometric models. Specific objectives :

1) Estimate the fractal dimensions (capacity, information, correlation, minus and plus

infinity) of the Pop and SN of the 15 largest Brazilian cities using multifractal analysis

and 2) Empirically verify the sub-linearity and super-linearity of the scale exponents
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between infrastructure and socio-economic variables using econometric models, comparing

their results. 3) calculate the following measures of centrality of the SN of the Brazilian

municipalities: a) degree; b) closeness ; c) betweenness; d) Bonacich; f) α number; g) β

number; h) γ number and i) cyclomatic number µ; j) number of nodes and links.
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4 MATERIALS AND METHODS

This Chapter describes the materials and methods used throughout the research.

Before we go any further, it is worth highlighting the characteristics of the re-

search: i) Purpose: applied, as we believe that the knowledge generated directly or in-

directly from this research can be used to support decision-making in urban systems in

the short, medium and long term. ii) Nature: experimental because we use real data

involving population (SN), the street network (SN) and other statistical measures of the

city; iii) Approach: quantitative, as the physical quantities of interest were: 1) the spatial

distribution of the Pop; 2) the spatial distribution of the SN (number of streets, corners,

area, perimeter, etc.), the degree, betweenness, closeness, Bonacich centrality’s besides

some topological measures; 3) the generalized dimensions for the SN and the Pop; 4)

scale exponents between urban metrics and Pop; iv) Technical Procedures : documental

(review of textbooks and scientific articles) and laboratory (simulation of experiments

using computational tools); The programming language used was Python, as it is one of

the most widely used languages for data analysis and exploration today. In particular,

I highlight that throughout the master’s degree several computer simulations were car-

ried out, generating codes ranging from graphical and statistical analyses, as well as the

creation of agent-based models with the intention of enriching the learning of complex

systems.

In addition, a self-explanatory flowchart was constructed, Figure 4.1, to better

visualize the path that was traced from data collection to the preparation of this work.

4.1 Data Avaliability

In this section we highlight the databases used in our analysis and the variables

of interest. We would point out that our analysis would be greatly compromised if the

data we will refer to next had not been made publicly available, which reinforces the

importance of public data in order to conduct scientific research.

Below are two of the main institutions and one foundation where data was collected

for the research.

The first1 was the Instituto Brasileiro de Geografia e Estatística (IBGE), which

is the country’s main provider of data and information, meeting the needs of the most
1 <https://www.ibge.gov.br/>

https://www.ibge.gov.br/
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Figure 4.1 – Flowchart of the path that was traced, from data collection to the preparation of
this work.

Source: Own authorship.

diverse segments of civil society, as well as federal, state and municipal government bodies.
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The second2 company was the Empresa Brasileira de Pesquisa Agropecuária (Embrapa),

which is an innovation company focused on generating knowledge and technologies for

Brazilian agriculture. Thirdly3, was the OpenStreetMap Foundation, an open initiative to

create and provide free map data to anyone who wants it.

Initially, data4 was collected involving the census sectors of the 5570 Brazilian

municipalities available in the IBGE database. The reference year was 2010.

The variables of interest were:

• Resident people (Information base of the 2010 Demographic Census: results of the

Synopsis by census sector);

• Total Pop;

• Census mesh and its geometry (Polygon)5

After collecting the data mentioned above, the Brazilian urban area was collected,

where the information on the delimitations of the geometry of the urban area can be

found in the database6 made available by Embrapa.

In this data set, the variables of interest were:

• Urban sprawl - referring to the year 2015 and its geometry (Polygon or MultiPolygon);

• Geocode (municipality code according to IBGE);

• Urban area;

• Urban perimeter.

For the municipal SN data, the library osmnx7 was used (BOEING, 2017). With

this package, with the geometries of the urban areas from Embrapa’s data and after
2 <https://www.embrapa.br/>.
3 <https://wiki.osmfoundation.org/wiki/Main_Page>.
4 Link to access the data: <https://www.ibge.gov.br/geociencias/organizacao-do-territorio/

malhas-territoriais/26565-malhas-de-setores-censitarios-divisoes-intramunicipais.html?
edicao=26589&t=acesso-ao-produto>.

5 For more details on the types of variables used go to: <https://shapely.readthedocs.io/en/
stable/geometry.html>.

6 Data access link: <http://geoinfo.cnpm.embrapa.br/layers/geonode%3Aareas_urbanas_br_
15>.

7 A Python package for downloading, modeling, analyzing and visualizing SN and other geospa-
tial elements. Link to access: <https://osmnx.readthedocs.io/en/stable/>.

https://www.embrapa.br/
https://wiki.osmfoundation.org/wiki/Main_Page
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/26565-malhas-de-setores-censitarios-divisoes-intramunicipais.html?edicao=26589&t=acesso-ao-produto
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/26565-malhas-de-setores-censitarios-divisoes-intramunicipais.html?edicao=26589&t=acesso-ao-produto
https://www.ibge.gov.br/geociencias/organizacao-do-territorio/malhas-territoriais/26565-malhas-de-setores-censitarios-divisoes-intramunicipais.html?edicao=26589&t=acesso-ao-produto
https://shapely.readthedocs.io/en/stable/geometry.html
https://shapely.readthedocs.io/en/stable/geometry.html
http://geoinfo.cnpm.embrapa.br/layers/geonode%3Aareas_urbanas_br_15
http://geoinfo.cnpm.embrapa.br/layers/geonode%3Aareas_urbanas_br_15
https://osmnx.readthedocs.io/en/stable/
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developing codes in Python, it was possible to extract the SN of 5523 Brazilian cities,

which were stored in files in the (comma-separated values) csv format. Two files were

generated for each city, the first containing information identifying the nodes (intersections

and dead-end streets) of the SN , geographical location in EPSG format 43268, Cartesian

coordinates and geometry in Point type. The second is the file containing information on

the links (street segments) of the SN , the identification of the end nodes of the links, the

weight of the links or length in meters and the associated geometries of the LineString

type. Thus, the variables of interest were:

• Osmid (node identification according to osmnx);

• Cartesian coordinates (x, y), geographic (epsg format: 4326) of SN nodes and ge-

ometry (Point);

• Links (u, v) of the SN where u and v are the nodes, their weights w and geometry

(LineString);

4.2 A Python Package: FractalCity

In this section we introduce the Python packages that were used throughout the

research and provide a tutorial along with a FractalCity9 package created specifically

to automate the processes of obtaining the generalized dimensions of the street network

(SN) and the population (Pop). To see the codes developed.

In order to automate, facilitate data analysis, disseminate and generate new data,

FractalCity was developed, a Python package with classes and methods to help with

the simulations. The ICN/DFI Departamento de Física cluster was used to carry out the

simulations (the cluster descriptions are shown in the Table 4.1) and a personal computer

with 4 CPU(s), model Intel(R) Core(TM) i3-2310M CPU @ 2.10GHz and Zorin OS 15.3

operating system.

The following main packages were used as aids:

• networkx10: network analysis and visualization, including osmnx;
8 <https://pt.wikipedia.org/wiki/WGS84>.
9 Link to access codes and tutorial: <https://www.dropbox.com/scl/fi/pevlue8vlp1tax519f1t2/

FractalCity-code-and-graphs.zip?rlkey=nflraas61jrcjfr4yhtq941hm&dl=0>.
10<https://networkx.org/>.

https://pt.wikipedia.org/wiki/WGS84
https://www.dropbox.com/scl/fi/pevlue8vlp1tax519f1t2/FractalCity-code-and-graphs.zip?rlkey=nflraas61jrcjfr4yhtq941hm&dl=0
https://www.dropbox.com/scl/fi/pevlue8vlp1tax519f1t2/FractalCity-code-and-graphs.zip?rlkey=nflraas61jrcjfr4yhtq941hm&dl=0
https://networkx.org/
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Table 4.1 – The DFI computer cluster consists of 1 server and 19 calculation nodes, the machines
have the configurations described below.

Machine Configuration by machine

1 Head node - CPU 1x Intel(R) Core(TM) i7-2600K CPU 3.40GHz
- 6 GB de RAM, 64 bit, DDR3, 1333MHz
- Storage 1x HD - 1.8 TB (home), 1x HD 500 GB (backup)

8 Compute nodes - CPU 1x Intel(R) Core(TM) i7-2600K CPU 3.40GHz
- 16 GB de RAM, 64 bit, DDR3, 1333MHz.

1 Compute node - CPU 2x Intel(R) Xeon(R) X5650 CPU 2.67GHz
- 24 GB RAM, 64 bit, DDR3, 1333MHz.

3 Compute nodes - CPU 2x Intel(R) Xeon(R) CPU E5-2640 2.50GHz
- 32/8/110 GB RAM, 64 bit, DDR3, 1333MHz.

7 Compute nodes - 1x Intel(R) Core(TM) i7 CPU 3.60GHz
- 32 GB RAM, 64 bit, DDR4

Source: Own authorship.

• numpy11: for numerical calculations and statistics;

• powerlaw12: for proper estimation of power law exponents;

• pandas13 e geopandas14: for reading, processing and manipulating of data and

maps;

• dask15: for reading, processing and manipulating extensive data;

• shapely16: for creating, manipulating and measuring geometric objects;
11<https://www.google.com/search?channel=fs&client=ubuntu&q=numpy>.
12<https://pypi.org/project/powerlaw/>.
13<https://pandas.pydata.org/>.
14<https://geopandas.org/en/stable/>.
15<https://www.dask.org/>.
16<https://shapely.readthedocs.io/en/stable/manual.html>.

https://www.google.com/search?channel=fs&client=ubuntu&q=numpy
https://pypi.org/project/powerlaw/
https://pandas.pydata.org/
https://geopandas.org/en/stable/
https://www.dask.org/
https://shapely.readthedocs.io/en/stable/manual.html
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• scipy17 e scikit-learn18: for modeling and machine learning;

• matplotlib19, pylab20, seaborn21 e plotly22: for data visualization;

• jupyter23: for creating and viewing codes;

• geobr24: for visualizing geospatial data of the Brazilian territory.

4.3 Sandbox Method and Abnormal Spectra

In this Section we present the algorithm for the sandbox method and present the

criteria used to choose the spectra of the street network (SN) and population (Pop),

because depending on the choice of point where the measurements are made, the spectra

show abnormalities at the left and right ends, which can compromise the estimates of the

generalized dimensions. Basically, this translates mathematically in a bound condition

for the dimensions discussed in section 2.1.4.

D2 ≤ D1 ≤ D0. (4.3.1)

Finally, we also present the values of the parameters used in the simulations.

In order to meet specific objective 1, presented in Chapter 3, we chose the sandbox

method to estimate the generalized dimensions of the SN and the Pop, see Figure 4.2.

The justification for the choice is that this method provides good estimates com-

pared to the box-counting method for generalized dimensions, which allows us to deal with

effects occurring in more rarefied regions of the fractal q < 0, where q are the moments of

order associated with the fractal measure (TEL; VICSEK, 1987) (BARTOLO; GAUDIO;

GABRIELE, 2004) (TEL; FULOP; VICSEK, 1989) (ROSENBERG, 2021).

Basically, the method consists of:
17<https://scipy.org/>.
18<https://scikit-learn.org/stable/>.
19<https://matplotlib.org/>.
20<https://www.tutorialspoint.com/matplotlib/matplotlib_pylab_module.htm>.
21<https://seaborn.pydata.org/>.
22<https://plotly.com/>.
23<https://jupyter.org/>.
24<https://github.com/ipeaGIT/geobr>.

https://scipy.org/
https://scikit-learn.org/stable/
https://matplotlib.org/
https://www.tutorialspoint.com/matplotlib/matplotlib_pylab_module.htm
https://seaborn.pydata.org/
https://plotly.com/
https://jupyter.org/
https://github.com/ipeaGIT/geobr
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Figure 4.2 – Illustration of the sandbox method. The method consists of calculating the average
number of structural elements between the radii of each point and then performing
a linear regression and obtain the inclination of a curve in a log-log scale for each
moment order q. A more detailed description can be shown in the Appendix C.

Source: Own authorship.

1. Choose a fraction of points inside the fractal or nearby points and, for each point

chosen, calculate the number of elements inside a ball of a specific radius. Repeat

this procedure varying the radii and on the chosen points;

2. Define a probability measure with the fractal elements on the spatial support (nor-

malize with size or number of fractal elements, e.g., number of nodes in the net-

work, number of people, etc.) raised to a real number q (moments of order), e.g.,

q ∈ [−∞,∞];

3. Calculate the average value of the probability measure obtained in the previous

step between all the points and for each radius;

4. Plot the list of average values against the list of chosen radii on a log-log graph and

extract the sequence of slopes with the same number of elements as the sequence
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of q values; interpret each slope as the generalized fractal dimension Dq=q′ of order

q′.

In order to rule out abnormalities in the fractal dimension data and the multifractal

spectrum, the above procedures were repeated 20 times for each city. These abnormalities

are related to the poor choice of points chosen at random and where the measurements

will be taken. Depending on the points chosen, it is possible to obtain a very deformed

spectrum of singularities .

Figure 4.3 – Singularity spectra of the street network (SN) in blue and the population (Pop) of
the city of São Paulo, SP, in orange. a) Singularity spectra as a function of the order
moments q for SN . b) Singularity spectra as a function of the order moments q for
Pop. c) and d) Singularity spectra as a function of the singularity indexes α. Shown
in blue and orange are the spectra satisfying the min{fa(α−∞)}n=20

i=1 criterion for
a = {SN,Pop} and, in gray, those that do not.

Source: Own authorship.
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To eliminate abnormal samples from the spectra of SN and Pop, we search within

the sample sequences of spectra {fa
i (α−∞)}ni=1 with a = {SN,Pop}. n is the number of

samples for a given city and fa(α−∞) the value of the singularity spectrum at q = −∞,

see Figure 4.3 a) of the city of São Paulo, SP, as an example. In particular, we used

n = 20, i.e. 20 samples for each city. Once this was done, the configuration satisfying

min{fa
i (α−∞)}ni=1 was selected.

This criterion was used based on the fact that the singularity spectrum must be

increasing to the left and decreasing to the right of q = 0, i.e, we must have


dfa(α(q′))

dq
> 0, q < q′ < 0;

dfa(α(q′))

dq
< 0, 0 < q′ < q.

(4.3.2)

The sample that satisfied min{fa
i (α−∞)}ni=1 was the one that best captured the conditions

around q = 0, and it was possible to obtain spectra with little or no abnormalities.

Below are the parameters chosen for the simulations. The reason for choosing these

parameters is that we were interested in making as few inferences as possible about the

cities analyzed. We wanted a way to apply the simulations to each city in an automated

way.

The value of Rmin was chosen to be equal to one over fiftyths of the value of the

diagonal of the lattice. If a lattice has side L, then its diagonal is given by diag =
√
2L

and therefore Rmin = diag
50

. In Appendix C we show the mathematical formulation used to

estimate the fractal dimensions for SN and Pop according to the sandbox method. The

value of Rmax was chosen to be equal to half the diagonal of the lattice, so Rmax = diag
2

.

We considered a linear space with 50 elements in the closed interval [Rmin, Rmax], defined

to account for the number of elements (nodes or persons) of the fractal structures (SN or

Pop) studied. To generate the values of q, we define a linear space in the closed interval

[−10, 10] with 100 points, so q = −∞ is the same as q = −10.0, etc. In the section

2.1.4 we show the theoretical foundations involved in the construction of the generalized

dimensions and the multifractal spectrum.
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5 RESULTS AND DISCUSSION

In this Chapter, we present the main results of this work. With regard to the

multifractal analysis, we calculated the parameters of the multifractal modeling carried

out with the aim of recovering the spectrum of generalized dimensions with as few pa-

rameters as possible (4 parameters), without having to store them in files. We calculated

the generalized dimensions of the street network (SN) and the population (Pop), their

respective standard deviations and the coefficients of determination. We calculated the

spatial completion, redundancy, and correlation rates u, v and w for both and built hi-

erarchical classification dendrograms for each; we calculated the skewedness index of the

spectra χ and the aggregation-diffusion index ξ, satisfying ξ = 1/χ. In particular, the ξ

index allowed us to find out which cities show patterns of aggregation and diffusion. We

suggest that the phenomenon of aggregation is a consequence of the presence of natural

resources, for example lakes, forests and rock formations within cities, and of internal in-

terference occurring from above, such as urban planning, thus delimiting and interfering

in the urban space where people live.

We also present the results involving intra-city models, for example, we show that

only Betterncourt’s model and Molinero and Thurner’s macroscopic model (M&T) could

be extended ad hoc by exchanging the fractal dimensions of the model for some gener-

alized dimensions, but they require further investigation with a larger number of cities.

We present the results of linear regressions of M&T’s macroscopic model and perform

an analysis similar to theirs, confirming that the urban scaling laws can be determined

through geometry. Using this approach, it was possible to see two growth regimes in the

relative spatial complexity between SN and Pop. We observed that there is a kind of

phase transition that occurs around cities with Pop of 10,000 inhabitants. Below this

regime, this relative complexity grows linearly with time and above, it grows non-linearly,

asymptotically approaching a limit value that we use to test the validity of the model.

In addition, we present scaling laws involving network measures as a function of

city size and their distributions. We show that the number of nodes n, the links e and the

cyclomatic number µ scale sub-linearly with city size. We provide the average distributions

of the numbers of degrees k, α, β and γ, as well as two linear relationships between the

measures for each network. In addition, we illustrate the scaling laws of the urban area

and the perimeter with the size of the city. Finally, we present the power law relationships
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between the averages of centralities, including betweenness, closeness and Bonacich, and

city size.

5.1 Multifractal Analysis and Modeling

In this section, we present the results of the multifractal modeling of the estimated

multifractal measures of street network (SN) and population (Pop), namely: generalized

dimensions Dq, mass exponents τ(q), indexes α(q) and spectrum f(α(q)) of singularities

in terms of moments of order q and spectrum of singularities or multifractal spectrum

f(α(q)), for the 15 largest Brazilian cities in 2010. We show that this modeling allows us

to make predictions of the abnormalities found in the singularity spectra. Long and Chen

(2021) argue that these abnormalities result from uncontrolled development in peripheral

and sparse areas, as well as degradation of the fractal structure in central and high-density

regions.

First, we emphasize that mathematical modeling1 plays a very important role in dif-

ferent areas of science, for example, climate, epidemic, city system modeling, to name a few

(ROSENBLUETH; WIENER, 1945) (QUARTERONI, 2009) (SAYAMA, 2015) (FRIGG;

HARTMANN, 2020). In the context of multifractal analysis it is also possible to model

as we will see below.

Observing the behavior of the inverted “S” type of generalized dimensions, see

Figure 5.1 a), an interesting ansatz that we can use to model this quantity is from a

sigmoid function

f(x) = a+
b

1 + cedx
, (5.1.1)

widely used in economics and computing (KYURKCHIEV; MARKOV, 2015), which we

use to model the multifractal quantities. For the mathematical construction of multifractal

modeling, see Appendix B.

Figure 5.1 presents as an example the modeling of multifractal functions of the SN

and the Pop in the city of São Paulo. The SN and the map of the census sectors Pop of the

city of São Paulo can be seen in Figures 5.3 and 5.4, respectively. It is possible to observe

that the model perfectly explains the generalized dimensions, the mass exponents, and the
1 Mathematical modeling enables: i) forecasting and planning; ii) decision-making; iii) opti-

mization; iv) control and automation; v) simulation and experimentation; vi) risk analysis;
vii) education and research, to name a few.
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Figure 5.1 – Multifractal quantities: the blue and orange balls refer to empirical values for the
street network (SN) and population (Pop) of the city of São Paulo, SP. The solid
lines refer to the points captured by the models. The dashed lines refer to the 90%
confidence intervals. a) generalized dimensions, b) mass exponents, c) singularity
exponents, d) singularity spectrum as a function of order moments, e) singularity
spectra.

Source: Own authorship.
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singularity spectrum only. The exponents of singularity, of the SN , and the spectrums

depending on the moments of order, of the SN and of the Pop, deviate from the rule at

the extremes, but are explained reasonably well in the most central parts.

But why does this deviate from the norm? A first insight into this is that in the

denser regions, with no or almost no potholes, and in the more sparse ones, with the

presence of potholes of various sizes, there is a preponderance and an absence of streets

and people, respectively. In the case where these quantities are absent, the generalized

dimension D−∞ can, in some cases, exceed spatial dimension 2, which means that the

slope of the curve used to measure this dimension is quite steep, with a very small linear

coefficient, see Figure 5.2. b).

The parameters of the multifractal modeling can be found in Table 5.1. The

intention to obtain these parameters was based on the fact that, once these parameters

are known, we can recover and predict the generalized dimensions considering a larger

space in relation to the moments of order q. Also in Figure 5.1, the empty balls correspond

to the estimated empirical values, the continuous lines correspond to the modeling, while

the dashed lines correspond to the confidence interval 90%.

We can see in Figure 5.1 e) that the multifractal spectrum of SN exhibits abnormal

behavior at the left and right ends, which has been captured and predicted by the model.

Figure 5.5 shows the multifractal SN and Pop spectra of the 15 largest Brazilian

cities in 2010.

The capacity, information, correlation, minus and plus infinity dimensions of SN

and Pop can be found in Tables 5.2 and 5.3, respectively. For the results of the fractal mea-

surements of the 15 cities analyzed, access the multifractal-analysis-br-renan.djvu

file via the link2.

In relation to SN , the cities with the lowest and highest capacity dimension were

Campinas with 1.319 and São Paulo with 1.712; those with the lowest and highest infor-

mation dimension were Campinas with 1.311 and São Paulo with 1.663; those with the

lowest and highest correlation dimension were Campinas with 1.303 and São Paulo with

1.624. In terms of the least infinite dimension, with the lowest and highest values, Camp-
2 <https://www.dropbox.com/scl/fi/pevlue8vlp1tax519f1t2/FractalCity-code-and-graphs.zip?

rlkey=nflraas61jrcjfr4yhtq941hm&dl=0>.

https://www.dropbox.com/scl/fi/pevlue8vlp1tax519f1t2/FractalCity-code-and-graphs.zip?rlkey=nflraas61jrcjfr4yhtq941hm&dl=0
https://www.dropbox.com/scl/fi/pevlue8vlp1tax519f1t2/FractalCity-code-and-graphs.zip?rlkey=nflraas61jrcjfr4yhtq941hm&dl=0
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Figure 5.2 – Scaling regime for different moments of order. Scaling regimes for: a) the street
network (SN) and b) the population (Pop) of the city of Brasilia. Note that in b)
for q = −10 the line whose slope gives the generalized dimension Dq=−10 is quite
steep in relation to the line whose generalized dimension is Dq=10, but the same is
not true in a). The vertical circles of the same color correspond to the data obtained
at different points in the fractal structure for the same radius R. The curve in black
gives the average value between these points for the same value of R.

Source: Own authorship.

inas again had 1.392 and São Paulo 1.993, while in terms of the most infinite dimension,

with the lowest and highest values, Campinas again had 1.266 and Fortaleza 1.583.
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Figure 5.3 – Street network (SN) in the city of São Paulo, SP. In gray we have the geographical
locations of the SN nodes and in yellow the locations of the points where measure-
ments were taken.

Source: Own authorship.

On the other hand, in relation to Pop, the cities with the lowest and highest

capacity dimensions were Porto Alegre with 1.377 and Brasília with 2.146; those with the

lowest and highest information dimensions were Porto Alegre with 1.354 and Fortaleza

with 1.739; those with the lowest and highest correlation dimensions were Guarulhos with

1.329 and Fortaleza with 1.705. Taking into account the limit dimensions, in particular

the dimension of less infinity, the cities with the lowest and highest values were Salvador

with 1.528 and Brasília with 2.772, while the cities with the lowest and highest values for

the dimension of more infinity were Rio de Janeiro with 1.21 and Fortaleza with 1.629.

We can see that São Paulo in relation to SN is the city with the largest capacity

dimension, while in relation to Pop, Brasília is the city with the highest value for this

quantity.
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Figure 5.4 – Sensitivity map of the city of São Paulo, SP. In yellow are the locations of the
points where measurements were taken. Each sector has been colored according to
the resident population (Pop) according to data from the 2010 IBGE census. The
legend indicates the number of people living in each sector.

Source: Own authorship.
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Figure 5.5 – Multifractal spectra of the largest Brazilian cities in 2010: a) street network (SN),
b) population (Pop).

Source: Own authorship.



85

Table 5.1 – Parameters obtained from the multifractal model for the 15 largest Brazilian cities
according to the 2010 census. With these parameters and with the help of the model
equations it is possible to reproduce the generalized dimensions, the mass exponents,
the singularity exponents, the singularity spectra depending on moments of order
and multifractal spectrums of the population (Pop) and the street network (SN). In
Appendix B we present the mathematical formulas for obtaining these parameters.

City UF Region a (Pop) a (SN) b (Pop) b (SN) c (Pop) c (SN) d (Pop) d (SN)
Campinas SP Sudeste 1.385 1.257 0.423 0.155 0.784 1.453 0.39 0.23
Guarulhos SP Sudeste 1.264 1.341 0.398 0.314 1.608 1.082 0.517 0.305
São Paulo SP Sudeste 1.477 1.521 0.253 0.476 1.137 1.395 0.263 0.437
Porto Alegre RS Sul 1.271 1.279 0.268 0.366 1.418 1.353 0.355 0.43
Rio de Janeiro RJ Sudeste 1.221 1.331 0.714 0.363 0.905 1.363 0.569 0.417
Recife PE Nordeste 1.456 1.427 0.572 0.398 1.705 1.371 0.558 0.395
Curitiba PR Sul 1.446 1.578 0.463 0.195 0.97 2.752 0.427 0.353
Belém PA Norte 1.265 1.306 0.499 0.204 1.09 0.898 0.436 0.337
Belo Horizonte MG Sudeste 1.486 1.51 0.3 0.175 0.881 2.403 0.253 0.275
São Luís MA Nordeste 1.311 1.383 0.464 0.281 1.439 1.686 0.428 0.393
Goiânia GO Centro-Oeste 1.391 1.47 0.333 0.383 1.175 1.143 0.333 0.354
Brasília DF Centro-Oeste 1.318 1.287 1.42 0.429 0.725 1.439 0.943 0.452
Fortaleza CE Nordeste 1.637 1.582 0.422 0.333 1.439 2.944 0.564 0.582
Salvador BA Nordeste 1.275 1.37 0.259 0.344 0.921 0.866 0.342 0.278
Manaus AM Norte 1.358 1.427 0.447 0.148 1.357 2.129 0.461 0.319

Source: Own authorship.
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5.2 Urban Spatial Rates

In this section we present the results of the space-filling u, redundancy v and

correlation w spatial rates of the 15 largest Brazilian cities according to the 2010 census.

We also built dendograms (Hierarchical clustering) to find out which cities were most and

least similar to each other in terms of this spatial rates. Our results show that São Paulo

and Brasília are the most spatially complete cities in terms of street network (SN) and

population (Pop), respectively.

We can see from Table 5.4 that the average values for the u rate, for the SN and

the Pop, were around 0.76 ± 0.05 and 0.80 ± 0.09, respectively, revealing quite slightly

different values. We can attribute this slight difference to the outlier represented by the

city of Brasília.

With regard to the v rate, for the SN and the Pop, the average values were 0.25

± 0.05 and 0.24 ± 0.06, revealing even closer values.

On the other hand, with regard to the w rate, for the SN and the Pop, the average

values were 0.26 ± 0.05 and 0.26 ± 0.06, respectively, revealing identical values. Then,

we can see that on average the SN fills the space slightly less than the Pop, because of

the presence of an outlier represented by the Pop of Brasília.

Furthermore, we can see that the SN and Pop are quite similar at the various

spatial scales and that on average the degree of correlation between them is the same.

In relation to SN and Pop, the cities with the highest u were São Paulo and

Brasília, with values equal to 0.856 and 1.073, respectively. The cities with the highest v

were Campinas and Porto Alegre with values of 0.344 and 0.323. Those with the highest

correlation rate w were Campinas and Guarulhos with values of 0.348 and 0.335.

On the other hand, those with the lowest u were Campinas and Porto Alegre with

values of 0.659 and 0.688, respectively. Those with the lowest v were São Paulo and

Fortaleza with values of 0.168 and 0.131. Finally, those with the lowest w were São Paulo

and Fortaleza with values of 0.188 and 0.147.

Furthermore, we can see that in relation to the spatial completion rate of the uSN

, Figure 5.6 a), the most similar cities were São Luís and Rio de Janeiro. We can also see

that Salvador, Belo Horizonte, Recife, Fortaleza, Goiânia, Curitiba and São Paulo belong

to the same cluster, while São Luís, Rio de Janeiro, Guarulhos, Manaus, Brasília, Belém
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Table 5.4 – Space-filling u, spatial redundancy v and spatial correlation w rates of the street
network (SN) and population (Pop) for the 15 largest Brazilian cities according to
the 2010 census.

City UF uSN vSN wSN uPop vPop wPop

Campinas SP 0.659 0.345 0.349 0.81 0.212 0.233
Guarulhos SP 0.745 0.268 0.279 0.705 0.319 0.335
São Paulo SP 0.856 0.168 0.188 0.797 0.212 0.22
Porto Alegre RS 0.714 0.305 0.32 0.688 0.323 0.332
Rio de Janeiro RJ 0.74 0.278 0.293 0.792 0.263 0.304
Recife PE 0.793 0.226 0.24 0.824 0.209 0.228
Curitiba PR 0.813 0.193 0.197 0.838 0.189 0.211
Belém PA 0.707 0.302 0.311 0.747 0.281 0.303
Belo Horizonte MG 0.78 0.224 0.228 0.821 0.189 0.198
São Luís MA 0.742 0.27 0.28 0.746 0.277 0.295
Goiânia GO 0.821 0.195 0.21 0.771 0.244 0.256
Brasília DF 0.727 0.296 0.313 1.073 0.133 0.238
Fortaleza CE 0.829 0.187 0.196 0.9 0.131 0.147
Salvador BA 0.775 0.237 0.248 0.704 0.308 0.318
Manaus AM 0.736 0.269 0.273 0.771 0.255 0.274

Source: Own authorship.

and Porto Alegre belong to another cluster and Campinas was the most dissimilar of all

the cities analyzed.

In relation to the spatial redundancy rate of the vSN , Figure 5.6 c), the most similar

cities were Manaus and Guarulhos. We can also see that Goiânia, Curitiba, Fortaleza and

São Paulo belong to the same cluster and that Campinas was also the most dissimilar of

all the cities analyzed.

As for the spatial correlation rate of the wSN , Figure 5.6 d), the most similar cities

were Fortaleza and Curitiba, São Luís and Guarulhos, as well as Brasília and Belém. It

was also possible to see that Fortaleza, Curitiba, São Paulo, Goiânia, Salvador, Recife

and Belo Horizonte belong to the same cluster and that Campinas, once again, was the

most dissimilar of all the cities analyzed.

On the other hand, in relation to the space-filling rate uPop , Figure 5.6 b), the

most similar cities were São Luís and Belém, as well as Salvador and Guarulhos. We can

also see that all the cities except Brasilia belong to the same cluster, with Fortaleza being

the most dissimilar city in this cluster.

Regarding the spatial redundancy rate vPop, Figure 5.6 d), the most similar cities

were Belo Horizonte and Curitiba, as well as São Paulo and Campinas. We can also see
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Figure 5.6 – Hierarchical clustering of the 15 largest Brazillian cities in 2010 in terms of space-
filling u, spatial redundancy v and spatial correlation w rates of the street network
(SN) a), c) and e) and population (Pop) b), d) and f).

Source: Own authorship.

that all the cities except Brasilia and Fortaleza belong to the same cluster, with Fortaleza

and Brasilia being similar to each other.

Finally, in relation to the spatial correlation rate wPop, Figure 5.6 f), the most

similar cities were Belém and Rio de Janeiro. Furthermore, all the cities except Fortaleza
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belong to the same cluster, with Fortaleza being the most dissimilar among the other

cities.

5.3 Skewness and Aggregation-Diffusion Analysis

In this Section process of diffusion and aggregation taking place in these cities, re-

spectively. In particular, São Paulo’s street network (SN) diffusion process exhibits small

scale fluctuations and its peripheral regions are denser and larger than the central parts,

which are more sparse and relatively smaller. The population (Pop) aggregation process

in Brasilia, on the other hand, exhibits large fluctuations in scale, with the peripheral

regions being less dense and smaller than the central parts, which are denser and larger.

The calculation of the skewness index χ, eq. (2.1.30), and aggregation-diffusion

index ξ, eq. (2.1.31), of the singularity spectra for the 15 largest Brazilian cities can be

visualized in Figure 5.7. Examples of right-skewed asymmetry are stock market index,

foreign exchange market (forex or FX), variability in sentence length in texts, Missouri

River Discharge (DROZDZ; OSWIECIMKA, 2015); and examples of left-skewed asym-

metry are: times between transactions, variability in the number of sunspots (DROZDZ;

OSWIECIMKA, 2015).

In Figure 5.7 a) the blue and green bars correspond to the spectra of the SN and

the Pop with left-skewed (χ < 1) and right-skewed (χ > 1), respectively. Also in the

same figure, in b), red and orange bars correspond to the spectra of the SN and Pop

with spatial diffusion (ξ < 1) and aggregation (ξ > 1), respectively. Values of χ = ξ ≈ 1

correspond to perfectly symmetrical spectra. The measurements obtained for each city

can be viewed in Table 5.5.

With regard to the χ index, for SN and Pop, the average values were 1.29 ± 0.53

and 0.82 ± 0.25, which are surprising in their uncertainty.

On the other hand, with regard to the ξ aggregation-diffusion index, for SN and

Pop, the average values were 0.88 ± 0.3 and 1.44 ± 0.88, also revealing quite large values

in the deviations.

In relation to SN and Pop, the cities with the highest χ were Fortaleza with 2.289

and Guarulhos with 1.161, and the cities with the highest ξ were Salvador with 1.399 and

Brasília with 4.417, respectively.
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Figure 5.7 – Skewness χ and aggregation-diffusion ξ spectrum of the street network (SN) and
population (Pop) of the 15 largest Brazilian cities. a) Skewness of the SN , left, and
the Pop, right. b) Aggregation-diffusion of the SN (left) and the Pop (right).

Source: Own authorship.

On the other hand, in relation to SN and Pop, those with the lowest χ were

Salvador with 0.715 and Brasília with 0.226, respectively. Those with the lowest ξ were

Fortaleza and Curitiba with 0.437 and Guarulhos with 0.862.
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Table 5.5 – Skewness χ and spatial aggregation-diffusion process ξ of the street network (SN)
and the population (Pop) singularity spectra for the 15 largest Brazilian cities ac-
cording to the 2010 census.

City UF χSN χPop ξSN ξPop

Campinas SP 1.222 0.591 0.818 1.693
Guarulhos SP 0.890 1.161 1.124 0.862
São Paulo SP 1.070 0.948 0.935 1.055
Porto Alegre RS 1.007 1.084 0.993 0.923
Rio de Janeiro RJ 1.068 0.530 0.937 1.885
Recife PE 1.029 1.051 0.972 0.951
Curitiba PR 2.288 0.665 0.437 1.504
Belém PA 0.797 0.762 1.254 1.312
Belo Horizonte MG 2.031 0.689 0.492 1.451
São Luís MA 1.380 1.038 0.724 0.963
Goiânia GO 0.860 0.936 1.163 1.069
Brasília DF 1.004 0.226 0.996 4.417
Fortaleza CE 2.289 0.866 0.437 1.154
Salvador BA 0.715 0.731 1.399 1.368
Manaus AM 1.732 0.973 0.578 1.028

Source: Own authorship.

However, we believe that one of the probable causes of Braslia having a very high

value for ξPop = 4.417 compared to the other cities is the presence of potholes in the

census tracts. These holes are due to the absence of sectors (Brasilia National Park

and areas of dense forest around the city) , the presence of continental waters (Lake

Paranoá) that are stored in depressions surrounded by land and urban planning or its

absence, see spatial distribution of Brasilia’s Pop in Appendix D and Brasília’s map3.

This means that from a physical point of view, the presence of lakes, rivers, forests, rock

formations, and urban planning found within cities can be seen as the agents influencing

the aggregation process that takes place in SN or Pop. In the same way that two massive

bodies attract each other in the presence of a gravitational field, people and streets can

become more concentrated in the presence of lakes, rivers, forests, parks, rock formations,

and external forces such as employment opportunities, access to services and education,

economic growth, accessibility in terms of infrastructure, cultural diversity, demand for

innovation and investment, and networking, tourism and leisure, all of which contribute

to increasing local interaction processes.
3 <https://maps.app.goo.gl/HmNXZsLgbJCsh1rC7>.

https://maps.app.goo.gl/HmNXZsLgbJCsh1rC7
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In addition, we can see that in relation to SN , 4 cities showed spectra with left-

skewed χ < 1, that is, the system’s scaling is dominated by large fluctuations and aggre-

gation ξ > 1, while 11 cities showed spectra with right-skewed χ > 1, i.e. the system’s

scaling is dominated by small fluctuations, and diffusion ξ > 1.

On the other hand, with regard to Pop, 11 cities showed spectra with left-skewed

χ < 1 and aggregation ξ > 1, while 4 cities showed spectra with right-skewed χ > 1 and

diffusion ξ > 1.

5.4 Intra-city Models

The aim of this section is to try to extend some of the intra-city models, which

take into account the notion of fractal dimension, by considering, even if ad hoc, some

of the generalized dimensions D0, D1, D2, D−∞ and D∞ of the street network (SN)

and the population (Pop) instead of the fractal dimensions previously considered in the

construction of the models.

Nest, we present the results of the intra-city models, and should be noted that

the only models that allowed us to conduct an analysis in relation to the explanation of

the sub-linear and super-linear scale exponents were the Bettencourt model, eq. (2.2.14),

and the M&T macroscopic model, eq. (2.2.18). In the Betterncourt model, the fractal

dimensions used were those of SN and those of Pop, although the construction of the

model takes into account the fractal dimension of the urban area A. In both models, our

intention from the outset was to try to explain the total length of the streets, L, and

the Gross Domestic Product (GDP), Y , the infrastructure and socioeconomic variables,

respectively, in terms of endogenous properties of cities, a different approach to that of

M&T, who consider the asymptotic and transversal limit of the sublinear exponent given

by the ratio between the fractal dimensions of SN and Pop to explain laws of urban scale

(MOLINERO; THURNER, 2021).

In Figure 5.8 a) and b) we show L and Y in terms of N for the 15 largest Brazilian

cities in 2010 using the generalized dimension of SN . In Figure 5.9 a) and b) we show

L and Y in terms of N using the generalized dimension of Pop. This figure shows an

attempt to extend Bettencourt’s model (2.2.14), but with caveats.

In this sense, we considered the endogenous properties of each city, namely N

and Da
i with a = {SN,Pop} and i = {0, 1, 2,−∞,∞}, obtained the predictions for
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Figure 5.8 – Bettencourt model for generalized dimension of street network (SN) DSN
i for i =

(0, 1, 2,∞,−∞). a) Sub-linear scaling between total street length L and city size N
with DSN

i . b) Super-linear scaling between gross domestic product (GPD) Y and
city size N with DSN

i . The blue circles are the empirical data and the lines are the
predictions of the model.

Source: Own authorship.

the empirical variables under study L and Y and made log-log scale graphs considering

their respective theoretical predictions, eq. (2.2.14) and considering the multiplicative

constants c1 and c2. The values found are shown in Table 5.6.
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Figure 5.9 – Bettencourt model for generalized dimension of population (Pop) DPop
i for i =

(0, 1, 2,∞,−∞). a) Sub-linear scaling between total street length L and city size N
with DPop

i . b) Super-linear scaling between gross domestic product (GPD) Y and
city size N with DPop

i . The blue circles are the empirical data and the lines are the
predictions of the model.

Source: Own authorship.

In particular, considering a = SN and i = {0, 1, 2,−∞,∞}, the exponents of the

best linear regressions of the L data against N had an average slope of 0.77± 0.03, while



97

Table 5.6 – Bettencourt linear regression summary for the street network (SN) and population
(Pop). i represents the moment of order q of the generalized dimension Dq.

SN Pop

Variable i slope std R2 slope std R2

L with c1 = 20 0 0.77 0.35 0.63 0.81 0.31 0.71
1 0.78 0.36 0.63 0.85 0.32 0.71
2 0.79 0.36 0.63 0.85 0.34 0.70
−∞ 0.72 0.33 0.63 0.77 0.33 0.66
∞ 0.81 0.36 0.64 0.84 0.36 0.66

Y with c2 = 0.06 0 1.08 0.29 0.84 0.95 0.37 0.70
1 1.07 0.28 0.84 0.99 0.33 0.76
2 1.06 0.28 0.84 1.00 0.31 0.79
−∞ 1.12 0.32 0.82 0.91 0.39 0.66
∞ 1.04 0.28 0.84 0.99 0.29 0.81

Source: Own authorship.

the exponents of the best linear regressions of the Y data against N had an average slope

of 1.07± 0.03.

On the other hand, considering a = Pop and i = {0, 1, 2,−∞,∞}, the exponents

of the best linear regressions of the L data against N had an average slope of 0.82± 0.03,

while the exponents of the best linear regressions of the Y data against N had an average

slope of 0.97± 0.03. Note that this value was higher than the 0.77± 0.03 obtained when

we considered a = SN .

However, considering the dimensions of a = {SN,Pop} for each i, the slopes of

the individual linear regressions varied little from each other, but showed very significant

standard deviations in the first decimal place, compromising the estimates. We can at-

tribute these significant deviations in the individual estimate to the size of the sample.

This means that, in order to obtain a more conclusive result and to know whether the

present approach can explain the infrastructure and socioeconomic variables only from

endogenous factors, considering a longitudinal point of view, it is necessary to obtain the

generalized dimensions i for all cities and repeat the analysis. Furthermore, we can see

that on average the generalized dimensions considered with a = {SN,Pop} are able to

explain Y and L, the latter with some caveats.

On the other hand, in relation to the macroscopic model of M&T, eq. (2.2.18),

in which L, N and A were taken into account to obtain the expression of both sub- and

superlinear exponents, the slopes obtained, graphing only the 15 largest Brazilian cities in
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Figure 5.10 – Macroscopic M&T model with fractal dimensions obtained by the eqs. (2.2.16) and
(2.2.17). a) Sub-linear scaling between total street network (SN) L and city size
N for 15 greater Brazilian cities, with c1 = 0.6. b) Super-linear scaling between
Gross Domestic Product Y and city size N for 15 greater Brazilian cities, with
c2 = 2.1. The blue circles are the empirical data and the line is the prediction of
the model.

Source: Own authorship.

2010, were significantly better than in the previous analysis using the Bettencourt model

and with generalized fractal dimensions; see Figure 5.10. For L against N , the exponent
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Figure 5.11 – Macroscopic M&T model with fractal dimensions obtained by the eqs. (2.2.16)
and (2.2.17). a) Sub-linear scaling between total street network (SN) L and city
size N for 5523 Brazilian cities, with c1 = 0.5. b) Super-linear scaling between
Gross Domestic Product Y and city size N for 5523 Brazilian cities, with c2 = 2.
The blue circles are the empirical data and the line is the prediction of the model.

Source: Own authorship.

was 0.88± 0.23 with R2 = 0.84, while for Y against N the exponent was 0.98± 0.38 with

R2 = 0.79.
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Taking into account the 5523 cities available, for L against N the exponent was

1.03 ± 0.01 with R2 = 0.91, while for Y against N the exponent was 0.95 ± 0.02 with

R2 = 0.66, see Figure 5.11. These results are also presented in Table 5.6 for a better

comparison.

Table 5.7 – Macroscopic M&T linear regression summary for the 15 main and 5523 Brazillian
cities.

# Cities Variable slope std R2

15 L with c1 = 0.6 0.88 0.23 0.84
Y with c2 = 2.1 0.98 0.38 0.79

5523 L with c1 = 0.5 1.03 0.01 0.91
Y with c2 = 2 0.95 0.02 0.66

Source: Own authorship.

We stress that the difference between the latter approach and that of M&T in

(MOLINERO; THURNER, 2021), is that we used macroscopic city variables such as

L, N and A, while in the study presented, they obtained Di and Dp from percolation

methods, which we believe have a huge computational cost to obtain these quantities.

In this sense, if the strategy presented previously, using macroscopic variables, can be

verified with data from cities in other countries, we emphasize that this is simpler and

faster in confirming that laws of urban scale can be explained in terms of the geometric

properties of cities.

Using an approach similar to that of M&T (MOLINERO; THURNER, 2021),

who calculated the fractal dimensions of SN and Pop of some European cities and the

asymptotic sublinear exponent γsub equal to a ≈ 0.86, from the model γ(N) ≈ a− b
(logN)c

where N is the city Pop, see Figure 5.12, we obtain a ≈ 0.95 for the asymptotic value,

see Table 5.8.

We can see in this graph that there are two behaviors for the value of γsub. We

see that below N ≈ 10, 000 inhabitants, γsub grows linearly with N , but above this value

the exponent grows non-linearly converging to an asymptotic value corresponding to γ′
sub.

Thus, our data suggest that the relative complexity between the SN and the Pop grows

differently depending on the size of the city.

This suggests that the gradual increase in human occupation in urban areas, which

can result in serious negative consequences - a fact already known in the literature, such as:

congestion, heavy traffic, atmospheric pollution, heat islands, traffic accidents, pressure
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Figure 5.12 – Graph of γsub vs. N . The green dotted curve corresponds to the fit of the model
γsub(N) = a − b/(lnN)c whose parameters are shown in Table 5.8. The blue
dotted curve corresponds to the asymptotic value γ′sub = 0.95, while the red curve
corresponds to the average value γ̄sub = 0.93. Note the existence of two regimes
around N ≈ 104, the first for γsub < γ̄sub and the second for γsub < γ̄sub < γ′sub.
This result suggests that the exponent γsub grows linearly between 0 < N < 104

and grows smoothly and non-linearly for values N > 104.

Source: Own authorship.

on public services, disorganized urban development, reduced quality of life, especially on

the outskirts - also brings with it positive consequences such as new job opportunities,

higher wages, innovation, networking, versatility in the local economy, leisure, to name

a few. Thus, our data suggests that these consequences start to occur above of 10,000

inhabitant’s.

We also find that on average the fractal dimensions of the SN are smaller than

the fractal dimensions of the Pop, as they have already pointed out, see Figure 5.13 a).

The average value of Di was 1.68 ± 0.03, while the average value of Dp was 1.81 ± 0.06.

In b) we see the values of Di, Dp and the ratio γsub as a function of N .

Using the asympotic sub-linear exponent γ′
sub = 0.95 and average value of γ̄sub =

0.93, it was able to predict L and Y for the 5523 Brazilian cities. The results are shown

in Figure 5.14 a) and b). Using the asymptotic approach to predict L , the slope was

0.97 ± 0.01 with R2 = 0.77 and using the average approach, the slope was 0.99 ± 0.01

with R2 = 0.77 and using the average approach. On the other hand, using the average

approach to predict Y , the slope was 1.03 ± 0.02 with R2 = 0.76 and using the asymptotic
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Figure 5.13 – Macroscopic M&T model. a) histogram of the population (SN) and street network
(SN) fractal dimensions obtained by the eqs. (2.2.16) and (2.2.17). b) fractal
dimensions and the ratio vs. Pop

Source: Own authorship

approach the slope was 1.00 ± 0.01 with R2 = 0.76. It is possible to see that the average

approach is slightly better that the asymptotic approach, showing excellent predictions

for L and Y . In this case, in order to confirm whether it is really valid, we need to do an

analysis for cities in different countries.
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Table 5.8 – Macroscopic M&T linear regression summary for the 5523 Brazilian cities.

Approach Regime Parameters of the model slope std R2

Asymptotic sub-linear a = 0.95383, b = 658.79528, c = 4.61111 0.97 0.01 0.77
Average - 0.99 0.01 0.77
Asymptotic super-linear a = 0.95383, b = 658.79528, c = 4.61111 1.03 0.02 0.76
Average - 1.00 0.01 0.76

Source: Own authorship.

Figure 5.14 – M&T model with fractal dimensions obtained by the eqs. (2.2.16) and (2.2.17). a)
Sub-linear scaling between total road network L and city size N for 5523 Brazilian
cities raised by γ

′
sub and γ̄sub which are the asymptotic and average sub-linear ex-

ponents obtained. b) Super-linear scaling between Gross Domestic Product (GDP)
Y and city size N for 5523 Brazilian cities raised by γ

′
sup and γ̄sup which are the

asymptotic and average super-linear exponents obtained. We see that the average
exponent fits the data well because the slopes are equal to 1.

Source: Own authorship.

Table 5.9 shows some urban metrics for the 15 largest cities in 2010, namely: A

urban area in square meters, P urban perimeter in meters, N the Pop, Y Gross Domestic

Product, L total street length, n number of nodes and e number of links in the SN .

5.5 Street Networks Measures

In this section we present the results obtained from the analysis of the network

metrics chosen in our work, namely: number of nodes n, number of links e, cyclomatic
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Table 5.9 – Urban metrics of the 15 largest Brazilian cities in 2010. A urban area in square
meters, P urban perimeter in meters, the Pop N , Gross Domestic Product Y , total
street length L, number of nodes n and number of links e of the street network (SN).

City UF A (m2) P (m) N Y L n e
Campinas SP 421222664.01 278459.69 1080113 38195022 7135108.46 29381 73496
Guarulhos SP 230179544.27 124657.6 1221979 35671510 3757246.98 15136 38171
São Paulo SP 1135636458.51 612979.51 11253503 450491988 26190538.13 113272 281872
Porto Alegre RS 410625345.52 223398.31 1409351 42724992 4944750.08 19069 45405
Rio de Janeiro RJ 1095789894.42 482420.5 6320446 208153595 16355990.84 70329 170490
Recife PE 146142086.37 126564.58 1537704 33369681 3738115.6 18469 47130
Curitiba PR 507657895.71 115778.09 1751907 58122788 9393066.64 34887 90749
Belém PA 2114684.66 8928.36 1393399 18801039 3140062.58 14311 35708
Belo Horizonte MG 357285541.72 123905.92 2375151 59203074 8302358.58 32358 83388
São Luís MA 285835641.08 222185.26 1014837 18211488 4798184.39 20899 55277
Goiânia GO 461923803.55 180765.48 1302001 29038011 9492848.46 38079 98491
Brasília DF 965744106.0 806426.03 2570160 144174102 12084570.64 60385 139205
Fortaleza CE 288216767.71 118255.71 2452185 37001831 7934034.72 36728 96359
Salvador BA 274876314.45 162741.36 2675656 40762687 5225368.12 27482 63209
Manaus AM 431152233.65 139381.42 1802014 50168821 6988648.03 28652 74878

Source: Own authorship.

number µ and the average values of betweenness, closeness and Bonacich, see Figure 5.15.

We present the results taking into account the perimeter and the urban area. All of the

above quantities were analyzed as a function of the Pop, N , and we were able to observe

that they all scale with the Pop, but with different behaviors and exponents. In addition,

we analyzed the average values of the number of links ⟨k⟩ and the numbers α, β and γ,

which are closely related.

We start by pointing out that the number of nodes n, the number of links e and the

cyclomatic number µ have the same fractal dimension. To show this, we can assume that

these quantities scale with the Euclidean distance r with positive exponents and given by

the respective fractal dimensions, dn, de and dµ, respectively. We must also assume that

the Pop follows this same pattern but with an exponent given by the fractal dimension

of the Pop, i.e. dp. Therefore, we have

Na(r) ∼ rda N(r) ∼ rdp (5.5.1)

where Na(r) with a = (n, e, µ) are the number of each quantity in a radii r. Under these

conditions, you can show that

N1/da
a ∼ N1/dp (5.5.2)

in such a way that

Na ∼ Nda/dp , (5.5.3)

which means
da
dp

≈ 17

20
=⇒ dn = de = dµ (5.5.4)
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Figure 5.15 – Street network (SN) in Curitiba, PR, with nodes colored according to: a) degree.
b) betweenness, c) closeness and d) Bonacich centrality. Red nodes have higher
values and blue nodes have lower values.

Source: Own authorship.

a consequence of the following results

Na ∼ N ca , ca ≈
17

20
, a = (n, e, µ), (5.5.5)

and the eq. 2.3.9.
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We can use the same arguments to estimate the fractal dimension of the urban

area A and its perimeter P , so that

A(r) ∼ rdA , P (r) ∼ rdo (5.5.6)

where dA and do are the fractal dimensions of the urban area and perimeter. Therefore,

we have the following equivalence between these quantities

A1/dA ∼ P 1/do , (5.5.7)

with
do
dA

∼ 3

5
. (5.5.8)

This can be confirmed by noting that

A ∼ N c4 , c4 =
97

100
; P ∼ N c5 , c5 =

31

50
, (5.5.9)

then we have P ∼ Ac5/c4 with c5
c4

= 3007
5000

≈ 3
5
.

We can see that the average values of the measures of betweenness, closeness, and

Bonacich scale with the Pop with a negative exponent and less than 1. This means

that these quantities tend to decrease sublinearly as the city grows. For the case of

betweenness, the exponent was 0.44±0.01 with R2 = 0.65, see Figure 5.22 a). In the case

of closeness, the exponent value was 0.39± 0.01 with R2 = 0.68, see Figure 5.23 a), while

for the Bonacich measure we obtained a value of 0.85 ± 0.01 with R2 = 0.71, see Figure

5.24 a). In addition, also we present the exponents of the distibution following the power

law (ALSTOTT; BULLMORE; PLENZ, 2014)

p(x) ∼ (α± σ − 1)xα±σ−1
min x−α±σ, (5.5.10)

where p(x) is a probability associated with the variable x, xmin is the cutoff for adjusting

this quantity by depressing its heavy tail. α is the exponent and σ is the uncertainty

associated with this exponent. The summary results are in the Table 5.10.
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Table 5.10 – Power law expoents.

measure α σ xmin

n 1.716 0.002 1.0
e 1.164 0.002 1.0
µ 1.202 0.003 1.0
A 1.052 0.001 0.016
P 1.073 0.001 0.016
⟨cB(v)⟩ 5.736 0.224 0.085
⟨cC(v)⟩ 7.202 0.398 0.178
⟨ci(θ, ϕ)⟩ 4.007 0.167 0.016

Source: Own authorship.

Furthermore, considering that the average value of Bonacich, see Figure 5.24, cen-

trality scales with r with an exponent given by the fractal dimension dc, we have

⟨ci(θ, ϕ)⟩(r) ∼ r−dc , (5.5.11)

providing

⟨ci(θ, ϕ)⟩ ∼ N−dc/dp (5.5.12)

where dp is the fractal dimension of the population. But we know that dc
dp

= 17
20

, which

implies that

dc = dn = de = dµ. (5.5.13)

This result shows that the spatial complexity associated with Bonacich’s centrality is the

same as that associated with the number of nodes, links, and cyclomatic number, making

it possible to say that they belong to the same universality class.

Another interesting result that can be observed is that the numbers α, β, γ are

closely related to the average value of the degree of nodes ⟨k⟩, which can be seen in the

relationship
⟨k⟩
⟨β⟩

≈ ⟨γ⟩
⟨α⟩

≈ 2, (5.5.14)

which suggests that the ratio between these quantities is constant regardless of the size of

the network, see Figure 5.19. According with Barthelemy (2009), the ratio ⟨k⟩
⟨β⟩ is in line

with two-dimensional spatial networks, which have strong physical constraints, which in

turn prevent hubs from appearing. However, considering the ratio ⟨γ⟩
⟨α⟩ , we have something

new.
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The following are some of the contributions of this work:

• application of generalized dimensions in intra-city models, initially based on a

monofractal approach, in an attempt to predict urban indicators;

• joint multifractal analysis of the SN and the Pop of the most populous cities in a

developing country and South America;

• proposition of the spatial correlation rate in analogy to the special filling and re-

dundancy rates;

• proposing an index to characterize the process of aggregation and diffusion in terms

of the inverse of the skewness of the multifractal spectrum;

• heuristic urban scale model (in analogy to the Molinero & Thurner model) using

macroscopic city variables such as Pop, total street length and urban area in an

attempt to predict urban indicators;

• demonstration that intra-city models can be obtained via Shannon entropy maxi-

mization;

• demonstration of the equivalence between the generalized dimension of order 2 via

the sandbox method and the correlation dimension;

• demonstration that the generalized dimensions of orders other than 0 and 1 are

normalized versions of the correlation dimension.
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Figure 5.16 – Number of nodes e vs. city size N and histogram associated to this measure.

Source: Own authorship.

Figure 5.17 – Number of edges or links e vs. city size N and histogram associated to this measure.

Source: Own authorship.
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Figure 5.18 – Cyclomatic number µ vs. city size N and histogram associated to this measure.

Source: Own authorship.
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Figure 5.19 – Street network (SN) histograms. a) degree centrality. b) α number. c) β number.
γ number. Note that the ⟨k⟩/⟨β⟩ ≈ ⟨γ⟩/⟨α⟩ ≈ 2.

Source: Own authorship.
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Figure 5.20 – Urban area A vs. city size N and histogram associated to this quantity.

Source: Own authorship.

Figure 5.21 – Urban perimeter P vs. city size N and histogram associated to this quantity.

Source: Own authorship.
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Figure 5.22 – Average betweenness centrality ⟨cB(v)⟩ vs. city size N and histogram associated
to this centrality.

Source: Own authorship.

Figure 5.23 – Average closeness centrality ⟨cC(v)⟩ vs. city size N and histogram associated to
this centrality.

Source: Own authorship.
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Figure 5.24 – Average Bonacich centrality ⟨ci(ϕ, θ)⟩ vs. city size N and histogram associated to
this centrality.

Source: Own authorship.
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6 CONCLUSIONS

In this Chapter we present some conclusions about this work.

Firstly, the street network (SN) and the spatial distribution of the population

(Pop) of the 15 largest Brazilian cities in 2010 showed: i) properties of multifractal

structures, ii) a tendency towards aggregation and diffusion phenomena, iii) disordered

development in the peripheral regions and in the most sparse areas, in addition to showing

degradation of the fractal structure in the central regions and in high-density areas. Our

results show that São Paulo is the city with the highest rate of spatial completion in

relation to SN , while Brasília is the city with the highest value in relation to Pop. In

the case of São Paulo, our result was not surprising, as it has the highest number of

nodes and links compared to the other cities, see Figure 5.9. On the other hand, although

Brasília does not have a larger Pop than São Paulo, we can attribute its higher space-

filling rate in relation to Pop to its geography, which has regions with the presence of

forest (Brasilia National Park) and continental waters (Paranoá Lake). We can see that

these cities showed phenomena of diffusion and aggregation, respectively.

In relation to the Bettencourt model, we see that in order to obtain more satisfac-

tory results, if we want to extend this model and the others, even if ad hoc, it is necessary

to carry out a multifractal analysis of all the cities in order to obtain the spectra and

the generalized dimensions. With this, the uncertainties of the exponents could be sig-

nificantly improved, improving the predictions of indicators related to infrastructure and

those related to socioeconomic activities. The idea is that the generalized dimensions,

which have different meanings, can provide some additional information when used to de-

velop intra-city models. This is justified by the fact that the Pop and SN are distributed

in space in a non-uniform way and only a multifractal approach can capture the spatial

complexity of these structures.

In relation to intra-city models, the Molinero & Thurner (M&T) model and the

ratio between the fractal dimensions of SN and Pop, using the (CHEN, 2020) approxi-

mation, allowed us to observe that the total length of streets, L, and the gross domestic

product (GDP), Y , can be explained via the geometric properties of cities. Using the

asymptotic limit of the exponent γsub = Di/Dp, which in (MOLINERO; THURNER,

2021) is approximately 0.86, in our case, on the other hand, the exponent that best

answered the predictions of L vs. N and Y vs. N was the average value of γsub = 0.93,
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providing slopes of 0.99±0.01 with R2 = 0.77 and 1.00±0.01 with R2 = 0.76, respectively.

Then, we confirm that infrastructure and socio-economic variables in urban systems can

be explain urban scaling via geometry, but as novelty, the geometry the cities can be easy

obtained from the definition of the fractal dimensions of SN and Pop in terms of the

L, N , and urban area A data. This strategy has significant implications, such as speed

and simplicity in obtaining these exponents, which can often be computationally costly

when using more complex methodologies to estimate fractal dimensions. We believe that

this strategy can be implemented in any urban system as long as the necessary data is

available for analysis. Once the data is available, a comprehensive analysis of all urban

systems can be conducted within a few hours or even minutes. This knowledge can be

used to create mathematical models to support local and global decision-making in cities.

Considering fractal theory and the number of nodes, links and cyclomatics, as well

as Bonacich’s centrality, it was possible to show that the spatial complexity captured by

the fractal dimension of each of these quantities is the same. In relation to the number

of nodes, links and the cyclomatic number this conclusion is trivial, but when we in-

clude Bonacich’s centrality this result, whose meaning is completely different from these

quantities, is not so trivial, which suggests future research.

Regarding the centrality measures estimated for the SN , we see that some of

them do not present typical values, for example, betweenness, closeness, Bonacich, but

others do, for example, the number of links and the topological measures α, β and γ.

In particular, it was observed that there is a relationship whose value is constant and

independent of the size of the network.

Furthermore, it is essential to understand how cities work in order to promote

quality of life in urban environments. This requires the use of computational tools, a

theoretical foundation derived from various topics of complex systems, and a close rela-

tionship between decision-makers and the knowledge generated.

The work has the following limitations: i) a limited number of samples were used

in the multifractal analysis, indicating the need for further procedures with more cities.

ii) The calculations with census tract geometries are computationally expensive.

However, this work serves as an introduction to the application of multifractal anal-

ysis in urban systems, particularly in developing countries. Additionally, it contributes to

the study of urban scale laws by considering the fractal properties of their constituents.
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The author hopes to publish at least one article presenting the results of this work and

plans to continue their studies in a doctoral program.
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APPENDIX A – Self-Similar Multifractal

In this appendix, we demonstrate how a system of iterated functions with mem-

ory can be used to study self-similar multifractals. If we consider a self-similar fractal

generated from an Iteration Function System (IFS) with memory, like



T1(x, y) = (sx cos θ,−ry sin θ) + (g, f),

T2(x, y) = (sx sin θ, ry cos θ) + (g, f),

T3(x, y) = (sx cos θ, ry sin θ) + (g, f),

T4(x, y) = (−sx sin θ, ry cos θ + f) + (g, f)

(A.1)

we can generate some beautiful multifractals. A IFS with memory is a set of similarity

transformations that we can apply to an initial pair of coordinates, such as the origin of

coordinates x = 0, y = 0, with restrictions on the transitions between the transformations

considered, which means that some transformations are prohibited and others are not,

then the term memory is because there is some prohibited transitions. If there is a set

of similarity transformations i = (1, · · · , n) denoted by Ti, it is possible to associate a

probability pi with it such that some transformation can occur more likely than others

(BARNSLEY; DEMKO, 1985; FRAME; NEGER, 2022).

In general, if we have an IFS with n transformation, we can define a generalized

Moran’s equation ∑
i

pqi r
τ(q)
i = 1, (A.2)

where ri is the contraction factor of the similarity transformation Ti and pi is the prob-

ability with which Ti is applied to the fractal points. τ(q) is the mass exponent, which

describes how the mass of fractal change with ri and q is the moments of order. Applying

the natural logarithm to both sides of the equation follows

ln

(∑
i

pqi r
τ(q)
i

)
= ln

(∑
i

pqi

)
+ ln

(∑
i

r
τ(q)
i

)
= 0 (A.3)

so that the mass exponents can be written as follows

τ(q) = − ln (
∑

i p
q
i )

ln (
∑

i ri)
. (A.4)
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By implicitly deriving both sides of the previous equation with respect to q, it follows

d

dq

(∑
i

pqi r
τ(q)
i

)
=

d

dq

(∑
i

pqi

)
r
τ(q)
i +

∑
i

pqi
d

dq

(
r
τ(q)
i

)
= 0. (A.5)

But
d

dq

(∑
i

pqi

)
=
∑
i

d

dq
pqi =

∑
i

pqi ln pi (A.6)

and
d

dq

(
r
τ(q)
i

)
= r

τ(q)
i ln ri

d

dq
τ(q). (A.7)

So, taking these results into eq. (A.5), we get

∑
i

pqi ln pir
τ(q)
i +

∑
i

pqi r
τ(q)
i ln ri

d

dq
τ(q) = 0, (A.8)

which solving for the derivative of the mass exponents results in

d

dq
τ(q) = −

∑
i p

q
i r

τ(q)
i ln pi∑

i p
q
i r

τ(q)
i ln ri

. (A.9)

Now, defining the singularity indexes by

α(q) = − d

dq
τ(q) (A.10)

and noticing that

dτ(q) = −α(q)dq = −α(q)dq − qdα(q) + qdα(q), (A.11)

we have

d (τ(q) + qα(q)) = qdα(q), (A.12)

making it possible to define

f(α(q)) ≡ τ(q) + qα(q) (A.13)

such as the multifractal spectrum associated with the generalized Moran equation or even

f(α(q)) =

∑
i p

q
i r

τ(q)
i ln pqi∑

i p
q
i r

τ(q)
i ln ri

− ln (
∑

i p
q
i )

ln (
∑

i ri)
. (A.14)
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In addition, we can also define the generalized dimensions using

Dq =
τ(q)

1− q
. (A.15)

Therefore, if we impose transition rules for each transformation Ti (i = 1, 2, 3, 4) of the

form

1 → 1, 2, 4; 2 → 1, 3, 4; 3 → 1, 2, 4; 4 → 4,

we can see that the forbidden transitions are: i) from 1 to 3; ii) from 2 to 2; iii) from 3 to

3; iv) from 4 to 1, 2, and 3. In particular, considering s = 1 = −r, θ = π/4 and g = f = 1

in the eq. (A.1), we have



T1(x, y) =
(√

2
2
x+ 1,

√
2
2
y + 1

)
T2(x, y) =

(√
2
2
x+ 1,−

√
2
2
y + 1

)
T3(x, y) =

(√
2
2
x+ 1,−

√
2
2
y + 1

)
T4(x, y) =

(
−

√
2
2
x+ 1,−

√
2
2
y + 1

)
(A.16)

Also, if we choose the following probabilities and contraction factor

p1 = p2 = p3 =
1

10
, p4 =

7

10
, ri = r =

1

2
(i = 1, 2, 3, 4), (A.17)

is not difficult to show that

τ(q) =
log
(

10q

3+7q

)
log r

, Dq =
1

1− q

log
(

10q

3+7q

)
log r

, (A.18)

α(q) =

(
7q

3+7q

)
log 7− log 10

log r
, f(q) =

(
7q

3+7q

)
log 7q − log 10q + log

(
10q

3+7q

)
log r

. (A.19)

In Section 2.1.4 we present the theoretical formalism of generalized dimensions and

the multifractal spectrum.
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APPENDIX B – Multifractal Modeling

In this appendix we present the mathematical construction of the multifractal mod-

eling. First, by observing the behavior of the inverted “S” type of generalized dimensions,

an interesting ansatz that we can use to model this quantity is from a sigmoid function, a

function widely used in economics and computing. Therefore, assume that the generalized

dimensions of the street network (SN) and population (Pop) are described by

Dq = a+
b

1 + cedq
. (B.20)

We can obtain the mass exponents in terms of generalized dimensions, so we have

τ(q) = (1− q)Dq = (1− q)

[
a+

b

1 + cedq

]
. (B.21)

Without loss of generality, we can also express the singularity exponents through

α(q) = −dτ(q)

dq
= a+

b

1 + cedq
− bcd(q − 1)edq

(1 + cedq)2
, (B.22)

while the spectrum of singularities can be written as

f(α(q)) = qα(q) + τ(q) = a+
b

1 + cedq
− bcdq(q − 1)edq

(1 + cedq)2
. (B.23)

However, we can obtain the dimensions of the capacity, information, correlation

and the limiting dimensions, when the moments of order q approach ±∞, in terms of the

parameters a, b, c and d, that is:

D0 = a+
b

1 + c
, D1 = a+

b

1 + ced
, D2 = a+

b

1 + ce2d
, D−∞ = a+ b, D∞ = a.

(B.24)

Following this same reasoning, the the respective mass exponents are given by

τ(0) = a+
b

1 + c
, τ(1) = 0, τ(2) = −a− b

1 + ce2d
(B.25)

The singularity exponents by

α(0) = a+
b

1 + c
+

bcd

(1 + c)2
, α(1) = a+

b

1 + ced
, (B.26)
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α(2) = a+
b

1 + c
− bcde2d

(1 + ce2d)2
, α(−∞) = a+ b, , α(∞) = a. (B.27)

In turn, the spectrum of singularities are given by

f(α(0)) = a+
b

1 + c
, f(α(1)) = a+

b

1 + ced
(B.28)

f(α(2)) = a+
b

1 + c
− 2bcde2d

(1 + ce2d)2
, f(α(−∞)) = a+ b, f(α(∞)) = a. (B.29)

With the previous quantities we can obtain the mass exponents in the limit ±∞,

by means of

τ(−∞) = f(α(−∞))− α(−∞)q, τ(∞) = f(α(∞))− α(∞)q. (B.30)

so that

τ(−∞) = (a+ b)(1− q), τ(∞) = a(1− q) (B.31)

Using the definition of multifractal correlation exponent eq. (2.1.29), we can obtain the

correlation exponents from the relation

z(q) = 2a+
b

1 + c
+ (1− q)

[
2b

1 + cedq

]
+ (2q − 1)

[
b

1 + ce2dq

]
(B.32)

z(0) = 2D0, z(1) = D0 +D2, z(2) = D0 + a+
3b

1 + ce4d
− 2b

1 + ce2d
, (B.33)

z(−∞) = D0 + (a+ b)(1− q), z(∞) = D0 + a(1− q). (B.34)

In Section 5.1, Table 5.1, you will find the best parameters for modeling the generalized

dimensions, the mass and singularity exponents, and the spectrum of singularities, the

SN and Pop of the 15 largest Brazilian cities according to the 2010 census.
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APPENDIX C – Sandbox Algorithm

In this appendix we highlight the points executed and the mathematical formal-

ization for obtaining the generalized dimensions of the street network (SN) and the pop-

ulation (Pop) of the 15 largest Brazilian cities in 2010. We also show the equivalence

between the generalized dimensions D0, D1, D2 and the capacity dB, information dI and

correlation dC dimensions. In fact, for the case of the equivalence between D2 and dC ,

we show that by appropriately choosing a normalization factor, it is possible to interpret

the generalized dimensions (for q ̸= 0, 1) as being nothing more than the dimensions

normalized by the correlation dimension dC .

Generalized Dimensions of the SN

Below are the points taken into account when estimating street network (SN):

• to obtain information on the positions of the SN (x, y or lon, lat) of the nodes of

a of size M0 via osmnx, Figure 1;

• define the enclosing box side L (originating from the center of SN) over the nodes

of the SN ;

• define a lattice of size S × S (e.g., S = 15) with S2 points and side L;

• find the points of the lattice at a previously specified distance d (e.g., d = 50m);

• Choose at random a number l (s1, s2, ..., sj, . . . , sl) of the points found;

• For each of the l points chosen, define k (1 ≤ i ≤ k) circles of radius Ri (R1 =

Rmin < R2 < ... < Ri < ... < Rk = Rmax) with Ri ≪ L and, for each of them,

count the number of elements (nodes in the case of SN or people in the case of Pop)

circumscribed, forming the matrix
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M(R(s)) =



M(R1(s1)) M(R1(s2)) · · · M(R1(sj)) · · · M(R1(sl))

M(R2(s1)) M(R2(s2)) · · · M(R2(sj)) · · · M(R2(sl))
...

... . . . ...
...

...

M(Ri(s1)) M(Ri(s2)) · · · M(Ri(sj)) · · · M(Ri(sl))
...

...
...

... . . . ...

M(Rk(s1)) M(Rk(s2)) · · · M(Rk(sj)) · · · M(Rk(sl))


. (C.35)

• Calculate the ratio between M(R(s)) and M0, raise it to the exponent q− 1, where

q are the moments of order, and obtain the average value of this ratio at each of the

l points chosen for each of the Rj radii, forming the quantity

〈[
M(R)

M0

]q−1
〉

=



1
l

∑l
j=1

(
M(R1(sj))

M0

)q−1

1
l

∑l
j=1

(
M(R2(sj))

M0

)q−1

...
1
l

∑l
j=1

(
M(Ri(sj))

M0

)q−1

...
1
l

∑l
j=1

(
M(Rk(sj))

M0

)q−1


(C.36)

• Building quantity

(
R

L

)
=



R1

L

R2

L
...
Ri

L
...
Rk

L


. (C.37)

• Obtain the generalized dimensions of the SN according to eq. (2.1.27) and with the

aid of a linear regression method.

Generalized Dimensions of the Pop

Below are the points taken into account when estimating Pop:
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• Repeat the first 5 items to calculate the fractal dimension of the SN ;

• Then carry out the following steps:

Let’s consider a census grid containing t census tracts with areas {a1, . . . , at} and

populations {p1, . . . , pt} evenly distributed over them and defining k (1 ≤ i ≤ k) circles

of radius Ri (R1 = Rmin < R2 < ... < Ri < ... < Rk = Rmax) with Ri ≪ L, we adopt

the l (s1, s2, ..., sj, . . . , sl) points found as the origin of the k circles defined. In particular,

choosing the point s1, the areas of the k circles are given by

A(R1(s1)), A(R2(s1)), . . . , A(Ri(s1)), . . . , A(Rk(s1)).

For simplicity’s sake, if we consider a census grid made up of t = 3 areas, and consequently

t = 3 resident populations, then the resident Pop M(R1(s1)) within the circle of radius

R1 originating in s1 can be obtained by adding the populations p̃1, p̃2 and p̃3 restricted

to the circle of radius R1 so that

M(R1(s1)) = p̃1 + p̃2 + p̃3

=
ã1
a1

p1 +
ã2
a2

p2 +
ã3
a3

p3

=
A(R1(s1)|a1)

a1
p1 +

A(R1(s1)|a2)
a2

p2 +
A(R1(s1)|a3)

a3
p3

=
3∑

m=1

A(R1(s1)|am)
am

pm

(C.38)

where A(R1(s1)|am) is the area of the circle of radius R1(s1) restricted to the area am of

the mth census tract and pm its respective Pop. In fact, for t census tracts, we have

M(R1(s1)) =
t∑

m=1

A(R1(s1)|am)
am

pm, (C.39)

making it possible to construct a matrix, similarly to the case of the fractal dimension of

the SN

However, considering the l points and the k radii chosen, it is possible to form the

quantity
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〈[
M(R)

M0

]q−1
〉

=



1
l

∑l
j=1

(
1

M0

∑t
m=1

A(R1(sj)|am)

am
pm

)q−1

1
l

∑l
j=1

(
1

M0

∑t
m=1

A(R2(sj)|am)

am
pm

)q−1

...
1
l

∑l
j=1

(
1

M0

∑t
m=1

A(Ri(sj)|am)

am
pm

)q−1

...
1
l

∑l
j=1

(
1

M0

∑t
m=1

A(Rk(sj)|am)

am
pm

)q−1


(C.40)

• This topic is carried out analogously to topic 8 of the SN fractal dimension strategy;

• Obtain the generalized dimensions of the Pop according to eq. (2.1.27) and with

the aid of a linear regression method.

In Section 2.1.4 we show the mathematical construction of the generalized dimen-

sions and the multifractal spectrum.

In the Section 4.3 we present the details used to eliminate abnormal spectra and

the parameters adopted in the simulations.
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Figure 1 – Graphical representation of the strategy used to choose the possible points where the
measurements will be taken. a) Geographical location (blue dots) of street intersec-
tions in the city of São Paulo, SP. b) Geographical location of street intersections
and grid (black dots) 15× 15 with equally spaced points. c) geographical location of
street intersections, grid and nearest points (red dots), 50 m from the blue dots. d)
geographical location of street intersections, grid, nearest points and randomly chosen
points (yellow dots) where measurements will be taken.

a) b)

c) d)

Source: Own authorship.
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APPENDIX D – Equivalences for Dq

In this appendix we present the equivalences between the dimensions of capacity

dB, information dI , correlation dC and the generalized dimensions of order 0, 1, 2, respec-

tively. We start by showing the equivalence between D0 and dB. To show this equivalence

we follow Bartolo et al. (2004) and Rosenberg (2021). Calculating the limit of generalized

dimensions when q → 0, it follows

lim
q−→0

Dq = lim
q−→0


1

q − 1
lim

R/L→0

ln

〈[
M(R)
M0

]q−1
〉

ln
(
R
L

)
 = − lim

R/L→0

ln

〈[
M(R)
M0

]−1
〉

ln
(
R
.
L
) (D.41)

In fact, the natural logarithm argument can be written as〈[
M(R)

M0

]−1
〉

=
1

M0

M0

M(R)
= M(R)−1. (D.42)

where

D0 = − lim
R/L→0

lnM(R)−1

ln
(
R
L

)
= lim

R/L→0

lnM(R)

ln
(
R
L

) (D.43)

so that

lim
q−→0

Dq = dB (D.44)

provides the capacity dimension.

Now, we show the equivalence between D1 and dI . Making the approximation

q = 1 + dq where dq is an infinitesimal value of the moment order q, we can write〈[
M(R)

M0

]1+dq−1
〉

=

〈[
M(R)

M0

]dq〉
=

〈
e
dq ln

[
M(R)
M0

]〉
∝
(
R

L

)(1+dq−1)D1+dq

=

(
R

L

)dqD1+dq

.

(D.45)

For |dq| ≪ 1, you can use the Taylor series expansion of the exponential ex ≈ 1+x, which

allows you to rewrite the left-hand side as

⟨edq ln
[
M(R)
M0

]
⟩ ≈

〈
1 + dq ln

[
M(R)

M0

]〉
= 1 + dq

〈
ln

[
M(R)

M0

]〉
, (D.46)
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so we have

1 + dq

〈
ln

[
M(R)

M0

]〉
∝
(
R

L

)dqD1+dq

(D.47)

which, taking the logarithm of both sides and using the approximation ln(1 + x) ≈ x for

|x| ≪ 1, follows 〈
ln

[
M(R)

M0

]〉
∝ D1+dq ln

(
R

L

)
(D.48)

results in

D1+dq = lim
R/L−→0

〈
ln
[
M(R)
M0

]〉
ln
(
R
L

) (D.49)

so that

D1 = lim
dq−→0

D1+dq = lim
R/L−→0

〈
ln
[
M(R)
M0

]〉
ln
(
R
L

) = dI (D.50)

provides the information dimension.

Finally, the equivalence between D2 and dC follows. As a novelty, here’s a way

of showing the equivalence between D2 and dC . Starting from the integral correlation

defined by

C(R) ≡ lim
M0−→∞

1

M2
0

∞∑
i,j=1
i ̸=j

H(R− dij) (D.51)

where

H(R− dij) =

1, R ≤ dij,

0, R > dij,

(D.52)

is the Heaviside function and dij is the distance between two places on the fractal. Con-

sidering that

M(R) = M2
0C(R) =

∞∑
i,j=1
i ̸=j

H(R− dij), (D.53)

so we have
M(R)

M0

= M0C(R) (D.54)

so that [
M(R)

M0

]q−1
M(R)

M0

= [M0C(R)]q . (D.55)

But [
M(R)

M0

]q−1
M(R)

M0

=

〈[
M(R)

M0

]q−1
〉

∝
(
R

L

)(q−1)Dq

. (D.56)
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then, we have

[M0C(R)]q ∝
(
R

L

)(q−1)Dq

(D.57)

which means

M0C(R) ∝
(
R

L

)(q−1)Dq/q

(D.58)

and
C(R)

C(R′)
∝
(
R
L

)(q−1)Dq/q(
R′

L

)(q−1)Dq/q
=

(
R

R′

)(q−1)Dq/q

. (D.59)

Applying the logarithm to both sides of the previous expression, solving for Dq and making

R,R′ −→ 0, we have

Dq ≡ k

(
q

q − 1

)
lim

R,R′−→0

ln
[

C(R)
C(R′)

]
ln
[
R
R′

] (D.60)

where k is a normalization factor. In particular, for q = 2 and k = 1/2, it follows

D2 ≡ dC (D.61)

where

dC = lim
R,R′−→0

ln
[

C(R)
C(R′)

]
ln
[
R
R′

] (D.62)

is the correlation dimension. The previous result shows that the generalized dimensions

are nothing more than normalized versions (for q ̸= 0, 1) of the correlation dimension, as

is expected according to Rosenberg (2021, p. 217). In Chapter 2, Section 2.1.4, we show

the construction of the generalized dimensions and the multifractal spectrum.
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